JP2009251361A - Device and method for estimating incident wave number - Google Patents

Device and method for estimating incident wave number Download PDF

Info

Publication number
JP2009251361A
JP2009251361A JP2008100378A JP2008100378A JP2009251361A JP 2009251361 A JP2009251361 A JP 2009251361A JP 2008100378 A JP2008100378 A JP 2008100378A JP 2008100378 A JP2008100378 A JP 2008100378A JP 2009251361 A JP2009251361 A JP 2009251361A
Authority
JP
Japan
Prior art keywords
incident wave
value
column vector
wave number
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008100378A
Other languages
Japanese (ja)
Other versions
JP5078717B2 (en
Inventor
Takeshi Amishima
武 網嶋
Nobuhiro Suzuki
信弘 鈴木
Atsushi Okamura
敦 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008100378A priority Critical patent/JP5078717B2/en
Publication of JP2009251361A publication Critical patent/JP2009251361A/en
Application granted granted Critical
Publication of JP5078717B2 publication Critical patent/JP5078717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Radio Transmission System (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an incident wave number estimating device capable of estimating the number of incident waves, based on the magnitude of each column vector of a mixed matrix estimated value. <P>SOLUTION: The device includes an independent component analysis processing part 41 to output the mixed matrix estimated value from received signals obtained by the interference of mutually independent incident waves, and a column vector magnitude computing part 42 for computing the magnitude of each column vector of the mixed matrix estimated value based on the norm of each column vector of the mixed matrix estimated value and the number of received signals. The device estimates the number of incident waves using the magnitude of the column vector of the mixed matrix estimated value. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、独立成分分析ICA(Independent Component Analysis)による信号分離処理で、入射波数設定パラメータを事前に設定する必要がある問題に対し、混合行列推定値の列ベクトルの大きさに基づき入射波数を推定する入射波数推定装置及び入射波数推定方法に関するものである。   In the present invention, in the signal separation processing by independent component analysis (ICA), it is necessary to set the incident wave number setting parameter in advance. The incident wave number is calculated based on the size of the column vector of the mixing matrix estimation value. The present invention relates to an incident wave number estimation apparatus and an incident wave number estimation method to be estimated.

独立成分分析ICAは、複数の入射波が混信して得られる受信信号から、各入射波が互いに統計的に独立であるという性質のみを用いて、受信信号から各入射波を分離する方式である。この方式は、複数話者の音声の混信分離、通信等での混信電波の分離等、種々の分野で適用されている。信号の統計的独立性のみを用いて分離を行うため、各入射波に関する事前情報が不要であるという利点がある。   Independent component analysis ICA is a method of separating each incident wave from the received signal using only the property that each incident wave is statistically independent from the received signal obtained by interference of a plurality of incident waves. . This method is applied in various fields such as interference separation of voices of a plurality of speakers, separation of interference radio waves in communication, and the like. Since the separation is performed using only the statistical independence of signals, there is an advantage that prior information on each incident wave is unnecessary.

独立成分分析ICAには様々な方式が提案されているが、代表的な方式が、非特許文献1に示されている。方式の詳細は非特許文献1にゆずるが、ここで重要なことは、独立成分分析は、設定パラメータとして入射波数をあらかじめ設定しておく必要があることである。入射波数を誤ると、全入射波を正しく分離することができない。   Various methods have been proposed for independent component analysis ICA, but a typical method is shown in Non-Patent Document 1. Although details of the method are given in Non-Patent Document 1, what is important here is that the independent component analysis needs to set the incident wave number as a setting parameter in advance. If the number of incident waves is incorrect, all incident waves cannot be separated correctly.

このため、混信した入射波の入射波数を推定する場合、一般には、受信信号の共分散行列の固有値の情報から入射波数を推定する。その中でも、代表的な方式として、MDL(Minimum Description Length)と呼ばれる方式(非特許文献2参照)がある。方式の詳細は非特許文献2にゆずるが、この方式は、受信信号の共分散行列を固有値分解して得られた固有値を用いて入射波数を判定する。   For this reason, when estimating the incident wave number of a mixed incident wave, the incident wave number is generally estimated from information on the eigenvalues of the covariance matrix of the received signal. Among them, a representative method is a method called MDL (Minimum Description Length) (see Non-Patent Document 2). Although details of the method are given in Non-Patent Document 2, this method determines the incident wave number using eigenvalues obtained by eigenvalue decomposition of the covariance matrix of the received signal.

ここで、後述の実施の形態の説明で必要な要点を中心に、独立成分分析ICAの概要を説明する。詳細は非特許文献1に譲る。なお、非特許文献1は複素信号を分離する複素ICAであるが、実数信号を分離するICAでも同じである。   Here, the outline of the independent component analysis ICA will be described with a focus on the essential points in the description of the embodiments described later. Details are left to Non-Patent Document 1. Non-Patent Document 1 is a complex ICA that separates complex signals, but the same applies to an ICA that separates real signals.

図5は、独立成分分析処理の概要を示す図である。また、図6は、入射波数パラメータを真値と異なった値に設定したときの分離信号例を示す図である。   FIG. 5 is a diagram showing an outline of the independent component analysis processing. FIG. 6 is a diagram showing an example of a separated signal when the incident wave number parameter is set to a value different from the true value.

独立成分分析ICAは、上述したように、複数の入射波が混信して得られる受信信号から、入射波が互いに統計的に独立である性質のみを用いて各入射波を分離する方式である。ICAは、以下の混信モデルにおいて、互いに独立な入射波が混信して得られた受信信号から各入射波を混信分離するアルゴリズムである。   As described above, the independent component analysis ICA is a method of separating each incident wave from a reception signal obtained by interference of a plurality of incident waves using only the property that the incident waves are statistically independent from each other. ICA is an algorithm that separates each incident wave from a received signal obtained by interference of mutually independent incident waves in the following interference model.

Figure 2009251361
Figure 2009251361

ここで、s=[s,…,sは各入射波s(j=1,…,J)をベクトル状に格納した入射波ベクトル、Aは混信を表す混合行列、n=[n,…,nは各受信アンテナ♯i(i=1,…,I)の受信機で受信される受信機雑音をベクトル状に格納した受信機雑音ベクトル、x=[x,…,xは、各受信アンテナ♯iで受信した受信信号xをベクトル状に格納した受信信号ベクトルである。入射波数はJ、受信信号数はIとする。混合行列の各要素は、混信を意味する係数であり、信号が入射してくる方位や、信号の周波数、アンテナ1の配置、ゲイン等の諸条件から決まる値である。 Here, s = [s 1 ,..., S J ] T is an incident wave vector in which each incident wave s j (j = 1,..., J) is stored as a vector, A is a mixing matrix representing interference, and n = [N 1 ,..., N I ] T is a receiver noise vector in which receiver noise received by the receivers of the respective receiving antennas #i (i = 1,..., I) is stored in a vector form, x = [x 1 ,..., X I ] T is a received signal vector in which received signals x i received by the respective receiving antennas #i are stored in vector form. The number of incident waves is J, and the number of received signals is I. Each element of the mixing matrix is a coefficient indicating interference, and is a value determined from various conditions such as the direction in which the signal enters, the frequency of the signal, the arrangement of the antenna 1, and the gain.

例えば、受信アンテナ♯1の受信信号xは、x=A11+,…,+A1J+nのような形となり、受信信号xはs,…,sが混合行列の係数Aijが乗算されてから線形的に加算された形で混信しており、受信信号そのままでは、各到来波sを得られないことが分かる。 For example, the received signals x 1 receive antenna ♯1 is, x 1 = A 11 s 1 +, ..., + A 1J s J + n becomes shaped like a 1, the received signal x 1 is s 1, ..., s J is mixed It can be seen that interference occurs in the form of linear addition after multiplication by matrix coefficient A ij , and each incoming wave s j cannot be obtained with the received signal as it is.

なお、これらのベクトルは、A/D変換器3でサンプルされたタイミングで時系列(k=1,…,K)に得られる、すなわち、x={x(1),…,x(K)}、s={s(1),…,s(K)}、n={n(1),…,n(K)}である。なお、図5は入射波数が3波の例(J=3)を示している。   These vectors are obtained in time series (k = 1,..., K) at the timing sampled by the A / D converter 3, that is, x = {x (1),..., X (K). }, S = {s (1),..., S (K)}, n = {n (1),..., N (K)}. FIG. 5 shows an example (J = 3) in which the number of incident waves is three.

独立成分分析ICAは、あらかじめ入射波の数をパラメータとして設定しておく必要がある。以下、入射波数パラメータJを正しく設定した(J=J)と仮定し、ICAの処理の概要を説明する。ICAでは、前処理としてPCA(Principal Component Analysis)により受信信号xを白色化処理する。白色化とは、信号間で互いに無相関で、同一電力であることを意味する。受信信号xの共分散行列ハットRを次の式(2)で計算する。 The independent component analysis ICA needs to set the number of incident waves as a parameter in advance. Hereinafter, assuming that the incident wave number parameter JP is correctly set ( JP = J), an outline of the ICA process will be described. In ICA, the received signal x is whitened by PCA (Principal Component Analysis) as preprocessing. Whitening means that the signals are uncorrelated with each other and have the same power. The covariance matrix hat R of the received signal x is calculated by the following equation (2).

Figure 2009251361
Figure 2009251361

ここで、E{・}は期待値、Hは複素共役転置を意味する。上記の行列の固有値分解で得られる固有値及び固有ベクトルを、固有値の大きさが降順になるように並べ、   Here, E {·} means an expected value, and H means a complex conjugate transpose. Arrange the eigenvalues and eigenvectors obtained by eigenvalue decomposition of the above matrix so that the eigenvalues are in descending order,

Figure 2009251361
Figure 2009251361

とする。上記J個の固有値とそれに対応する固有ベクトルから、白色化行列M∈CJ×Iを、 And From the J P eigenvalues and the corresponding eigenvectors, the whitening matrix M∈C J × I,

Figure 2009251361
Figure 2009251361

と定義する。ここで、diag{1/√λ,…,1/√λ}は、1/√λ,…,1/√λを対角要素にもつ正方行列である。Mを受信信号に乗算する。 It is defined as Here, diag {1 / √λ 1, ..., 1 / √λ J} is, 1 / √λ 1, ..., is a square matrix with 1 / √λ J on the diagonal. Multiply the received signal by M.

Figure 2009251361
Figure 2009251361

この場合、   in this case,

Figure 2009251361
Figure 2009251361

となる。IJ×JはJ×Jの単位行列である。単位行列の非対角項は零である。すなわち、これは、受信信号ベクトルxは互いに無相関なJ次のベクトルチルダxに変換されたことを意味する。無相関とは、独立であるための必要条件であるから、実質、これでICA処理の半分が終わったと言える。あとは、互いに無相関な信号チルダxから、最も独立な信号を見つけ出せばよい。 It becomes. I J × J is a unit matrix of J × J. The off-diagonal term of the identity matrix is zero. That is, this means that the received signal vector x has been converted to a J-order vector tilde x that is uncorrelated with each other. Since non-correlation is a necessary condition for being independent, it can be said that substantially half of the ICA processing is finished. After that, it is only necessary to find the most independent signal from the signal tilde x uncorrelated with each other.

次に、ICAでは、チルダxから最も独立な信号を見つけるため、ネゲントロピーと呼ばれる指標値を最大化する。このネゲントロピーとは、ガウス性の変数に対しては0となるよう定義された尺度である。実際には、ネゲントロピーの計算には各入射波の確率密度関数が必要であるが、それらは一般には未知であるので、何らかの評価関数Gを導入し、各分離信号のネゲントロピー近似値の和を最大化する問題に帰着させる。具体的には、次の式の各分離信号のネゲントロピー値Eの和が最大となるような直交変換行列Wを見つける処理である。 Next, ICA maximizes an index value called negentropy in order to find the most independent signal from tilde x. This negentropy is a scale defined to be 0 for Gaussian variables. Actually, the probability density function of each incident wave is necessary for the calculation of negentropy, but since they are generally unknown, some evaluation function G is introduced to maximize the sum of the negentropy approximations of each separated signal. To reduce the problem. Specifically, this is a process of finding an orthogonal transformation matrix W that maximizes the sum of the negentropy values E j of the separated signals in the following equation.

Figure 2009251361
Figure 2009251361

ここで、ygaussは、分離信号ハットs=W チルダxと同じ分散をもつガウス性の信号、Gは何らかの滑らかな(微分可能な)関数、E{・}は期待値であり、期待値の計算にはサンプル平均値を用いる。関数G(y)としては、例えば、 Here, y gauss is separated signal hat s j = W j H tilde x and Gaussian signal having the same variance, G is (differentiable) some smooth function, E {·} is the expectation value, The sample average value is used to calculate the expected value. As the function G (y), for example,

Figure 2009251361
Figure 2009251361

などがあり、aは設定パラメータである。式(8)の最適化問題の解法は、ここでは重要でないので、省略する。   A is a setting parameter. Since the solution of the optimization problem of Equation (8) is not important here, it will be omitted.

そして、最後に、式(8)の最適化問題で得られた直交変換行列Wの複素共役転置をチルダxに乗算することにより、分離信号ハットsを抽出する。   Finally, the separated signal hat s is extracted by multiplying the tilde x by the complex conjugate transpose of the orthogonal transformation matrix W obtained by the optimization problem of Expression (8).

Figure 2009251361
Figure 2009251361

最終的に得られる混合行列推定値ハットAの一般化逆行列は、   The generalized inverse matrix of the finally obtained mixed matrix estimate hat A is

Figure 2009251361
Figure 2009251361

である。このとき、   It is. At this time,

Figure 2009251361
Figure 2009251361

である。仮に、混合行列が誤差なく推定できた、すなわち、ハットA=Aであるとする。このとき、ハットAAは単位行列となるので、分離信号ハットsは次の式となる。 It is. It is assumed that the mixing matrix can be estimated without error, that is, hat A = A. At this time, since the hat A A is a unit matrix, the separated signal hat s is expressed by the following equation.

Figure 2009251361
Figure 2009251361

式(14)では、雑音項Anは残るものの、sの項には如何なる混信係数も存在しないため、sが正しく得られることが分かる。以上が、入射波数パラメータJを正しく設定(J=J)したときの処理である。 In the equation (14), although the noise term A n remains, there is no interference coefficient in the s term, so that s can be obtained correctly. The above is the processing when the incident wave number parameter JP is correctly set ( JP = J).

しかしながら、入射波数パラメータJを真値Jより大きく設定(J>J)した場合、分離信号ハットsは次の式で得えられる。 However, when larger than the true value J incident wave number parameter J P (J P> J), separating the signal hat s is E obtained by the following equation.

Figure 2009251361
Figure 2009251361

ここで、Bはある行列である。式(14)と比較すると、入射波成分s+Anに加え、雑音nの線形和信号Bnが出力される。すなわち、分離信号のうちJ波は入射波成分、残りのJ−J波は雑音nの線形和信号Bnが得られる。ガウス信号の線形和はガウス信号であるので、nがガウス雑音の場合、Bnもガウス雑音である。なお、式(15)は、ベクトル中の上J波を入射波成分、下J−Jを雑音成分として表しているが、実際のICAでは、順番の不確定性の性質があるため、各分離信号の順番は未知である。 Here, B is a certain matrix. Compared with equation (14), in addition to the incident wave component s + A n, a linear sum signal Bn of noise n is output. That, J wave incident wave component of the separated signal, the remaining J P -J wave linear sum signal Bn of the noise n can be obtained. Since the linear sum of Gaussian signals is Gaussian, when n is Gaussian noise, Bn is also Gaussian noise. The expression (15) represents the upper J wave in the vector as an incident wave component and the lower J P -J as a noise component. However, in actual ICA, there is a property of order uncertainty. The order of the separated signals is unknown.

独立成分分析ICAに誤った入射波数パラメータを真値より大きく設定したときの動作例を説明する。図6(a)に入射波数を真値より小さく設定した時の分離信号例(正解3波を2波と設定⇒誤った出力)、図6(b)に入射波数を正しく設定したときの分離信号例(全3波を正しく出力)、図6(c)に入射波数を真値より大きく設定した時の分離信号例(正解3波を5波と設定⇒3波以外で雑音を出力)を示す。なお、ここでは、入射波として若干周波数の異なる3波の正弦波とし、観測雑音にはガウス性雑音を付加している。   An example of operation when an incorrect incident wave number parameter is set larger than the true value in the independent component analysis ICA will be described. Fig. 6 (a) shows an example of a separated signal when the incident wave number is set to be smaller than the true value (corrected 3 waves are set as 2 waves ⇒ wrong output), and Fig. 6 (b) shows a separated signal when the incident wave number is set correctly. Signal example (all 3 waves are output correctly), Fig. 6 (c) shows an example of a separated signal when the incident wave number is set larger than the true value (set 5 correct waves to 5 waves → output noise other than 3 waves) Show. Here, three sine waves with slightly different frequencies are used as incident waves, and Gaussian noise is added to the observation noise.

図6より、(b)では波数を正しく設定しているために全入射波を正しく分離できているのに対し、入射波数パラメータを真値より小さく設定すると、正しく信号を分離抽出できないことが分かる。一方、入射波数を真値より大きく設定すると、全信号を正しく分離抽出し、残りの信号成分として、雑音信号を出力することが分かる。   FIG. 6 shows that in FIG. 6B, all the incident waves can be correctly separated because the wave number is set correctly, but when the incident wave number parameter is set smaller than the true value, the signal cannot be correctly separated and extracted. . On the other hand, when the incident wave number is set larger than the true value, all signals are correctly separated and extracted, and a noise signal is output as the remaining signal components.

次に、入射波数パラメータが真値より少なく設定(J<J)した場合、式(4)で信号空間より狭い空間への射影となるため、全入射波を正しく分離できない。 Next, when the incident wave number parameter is set to be smaller than the true value ( JP <J), the projection onto a space narrower than the signal space is performed in Expression (4), and therefore all incident waves cannot be correctly separated.

Bingham E. and Hyvarinen A.,“A fast fixed-point algorithm for independent component analysis of complex valued signals,” International Journal of Neural Systems, Vol. 10, No.1, pp.1-8, Feb. 2000.Bingham E. and Hyvarinen A., “A fast fixed-point algorithm for independent component analysis of complex valued signals,” International Journal of Neural Systems, Vol. 10, No.1, pp.1-8, Feb. 2000. Mati Wax and Thomas Kailath,"Detection of Signals by Information Theoretic Criteria“,IEEE Trans. on Acoustics, Speech and Signal Processing, Vol. ASSP-33, No. 2, Apr. 1985.Mati Wax and Thomas Kailath, "Detection of Signals by Information Theoretic Criteria", IEEE Trans. On Acoustics, Speech and Signal Processing, Vol. ASSP-33, No. 2, Apr. 1985.

独立成分分析ICAでは、事前に入射波数パラメータを設定する必要があるが、実際には未知の複数の混信波を分離する場合、入射波数を事前に知ることは困難である。更に、入射波数パラメータが真の値と異なると、正しく全入射波のみを分離抽出できないという問題点があった。また、MDLなどの受信信号の共分散行列の固有値に基づく方式は、実環境では、雑音の有色性などが原因で入射波数を誤るという問題点があった。   In the independent component analysis ICA, it is necessary to set an incident wave number parameter in advance. However, in actuality, when separating a plurality of unknown interference waves, it is difficult to know the incident wave number in advance. Further, when the incident wave number parameter is different from the true value, there is a problem that only all incident waves cannot be correctly separated and extracted. In addition, the method based on the eigenvalues of the covariance matrix of the received signal such as MDL has a problem in that the incident wave number is erroneous in the actual environment due to noise coloration or the like.

この発明は、上述のような課題を解決するためになされたもので、その目的は、固有値に基づかない新たな方法、すなわち混合行列推定値の列ベクトルの大きさに基づいて入射波数を推定することができる入射波数推定装置及び入射波数推定方法を得るものである。   The present invention has been made to solve the above-described problems, and its purpose is to estimate the incident wave number based on a new method that is not based on eigenvalues, that is, the size of the column vector of the mixing matrix estimation value. An incident wave number estimation device and an incident wave number estimation method that can be obtained are obtained.

この発明に係る入射波数推定装置は、互いに独立な入射波が混信して得られた受信信号から混合行列推定値を出力する独立成分分析処理部と、前記混合行列推定値の各列ベクトルのノルム及び受信信号数に基づいて、前記混合行列推定値の各列ベクトルの大きさを計算する列ベクトルの大きさ計算部とを設け、前記混合行列推定値の列ベクトルの大きさを用いて入射波数を推定するものである。   An incident wave number estimation apparatus according to the present invention includes an independent component analysis processing unit that outputs a mixing matrix estimation value from a received signal obtained by interference of mutually independent incident waves, and a norm of each column vector of the mixing matrix estimation value And a column vector size calculation unit for calculating the size of each column vector of the mixing matrix estimation value based on the number of received signals, and the number of incident waves using the size of the column vector of the mixing matrix estimation value Is estimated.

この発明に係る入射波数推定装置は、固有値に基づかない新たな方法、すなわち混合行列推定値の列ベクトルの大きさに基づいて入射波数を推定することができるという効果を奏する。   The incident wave number estimation apparatus according to the present invention has an effect that the incident wave number can be estimated based on a new method that is not based on the eigenvalue, that is, the size of the column vector of the mixing matrix estimation value.

実施の形態1.
この発明の実施の形態1に係る入射波数推定装置について図1から図3までを参照しながら説明する。図1は、この発明の実施の形態1に係る入射波数推定装置を含む受信機の構成を示す図である。なお、各図中、同一符号は同一又は相当部分を示す。
Embodiment 1 FIG.
An incident wave number estimation apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 is a diagram showing a configuration of a receiver including an incident wave number estimation apparatus according to Embodiment 1 of the present invention. In addition, in each figure, the same code | symbol shows the same or equivalent part.

図1において、受信機は、複数(I本)の受信アンテナ1と、加算器2と、A/D変換器3と、入射波数推定装置4とが設けられている。   In FIG. 1, the receiver is provided with a plurality (I) of receiving antennas 1, an adder 2, an A / D converter 3, and an incident wave number estimating device 4.

また、入射波数推定装置4は、独立成分分析(ICA)処理部41と、列ベクトルの大きさ計算部42と、閾値判定部43とが設けられている。   In addition, the incident wave number estimation apparatus 4 includes an independent component analysis (ICA) processing unit 41, a column vector magnitude calculation unit 42, and a threshold determination unit 43.

つぎに、この実施の形態1に係る入射波数推定装置の動作について図面を参照しながら説明する。図2は、この発明の実施の形態1に係る入射波数推定装置の動作を示すフローチャートである。また、図3は、この発明の実施の形態1に係る入射波数推定装置の列ベクトルの大きさ値例を示す図である。   Next, the operation of the incident wave number estimation apparatus according to the first embodiment will be described with reference to the drawings. FIG. 2 is a flowchart showing the operation of the incident wave number estimation apparatus according to Embodiment 1 of the present invention. Moreover, FIG. 3 is a figure which shows the magnitude value example of the column vector of the incident wave number estimation apparatus based on Embodiment 1 of this invention.

ここでは、混合行列推定値の列ベクトルの大きさに基づく入射波数推定装置の動作を説明する。まず、その前に、独立成分分析ICAにより得られる混合行列推定値ハットAの各列ベクトルが各入射波の電力値と関連があることを説明する。今、説明を簡単にするために雑音項は無視する。独立成分分析ICAでは、任意の電力をもつ入射波sが混信して得られる受信信号に対して信号分離を行うが、実際には、電力値が1となるように正規化された分離信号が得られる性質がある。すなわち、 Here, the operation of the incident wave number estimation apparatus based on the size of the column vector of the mixing matrix estimation value will be described. First, before that, it will be described that each column vector of the mixing matrix estimated value hat A obtained by the independent component analysis ICA is related to the power value of each incident wave. For the sake of simplicity, the noise term is ignored now. In the independent component analysis ICA, signal separation is performed on a received signal obtained by interference of an incident wave s j having arbitrary power, but in practice, the separated signal is normalized so that the power value becomes 1. Is obtained. That is,

Figure 2009251361
Figure 2009251361

である。これは言い換えると、分離信号ハットsと入射波sの間にはある係数αを介した関係がある。すなわち、 It is. In other words, there is a relationship between the separated signal hat s j and the incident wave s j via a certain coefficient α j . That is,

Figure 2009251361
Figure 2009251361

であることを意味する。今、この分離信号から受信信号を再構成するには、   It means that. Now to reconstruct the received signal from this separated signal:

Figure 2009251361
Figure 2009251361

となる。仮に混合行列推定値が誤差なく得られたとすると、再構成されたハットxと実際のxが同じになるべきである。そのためには、式(17)で各分離信号がある係数で除算された分、混合行列推定値の各列ベクトルは乗算されている必要がある。すなわち、   It becomes. If the mixing matrix estimate is obtained without error, the reconstructed hat x and the actual x should be the same. For this purpose, each column vector of the mixed matrix estimation value needs to be multiplied by the amount obtained by dividing each separation signal by a certain coefficient in Expression (17). That is,

Figure 2009251361
Figure 2009251361

である。実際、独立成分分析ICAにより得られる混合行列推定値は、式(19)の形となる。各入射波sの電力(分散値)が仮にσ とすると、式(16)及び式(17)より、分離信号の電力E{|ハットs|}は、 It is. Actually, the mixing matrix estimated value obtained by the independent component analysis ICA is in the form of Equation (19). Assuming that the power (dispersion value) of each incident wave s j is σ j 2 , the power E {| hat s j | 2 } of the separated signal is expressed by Equation (16) and Equation (17) as follows:

Figure 2009251361
Figure 2009251361

であるから、式(20)より、   Therefore, from equation (20),

Figure 2009251361
Figure 2009251361

となり、|α|は入射波sの電力σ (分散値)を表している。また、混合行列推定値の各列ベクトルハットAの大きさは、式(19)より、 Where | α j | 2 represents the power σ j 2 (dispersion value) of the incident wave s j . In addition, the size of each column vector hat A j of the mixed matrix estimation value is given by Equation (19):

Figure 2009251361
Figure 2009251361

であり、|A1j|=1と仮定すると、式(22)より、 Assuming that | A 1j | 2 = 1, from Equation (22),

Figure 2009251361
Figure 2009251361

である。このように、係数αの大きさ、すなわち各入射波の電力は、式(23)で各列ベクトルハットAの大きさを√Iで除算することにより得られる。以上が、混合行列推定値の各列ベクトルと各分離信号電力との関連である。 It is. As described above, the magnitude of the coefficient α j , that is, the power of each incident wave is obtained by dividing the magnitude of each column vector hat A j by √I in Expression (23). The above is the relationship between each column vector of the mixing matrix estimation value and each separated signal power.

本入射波数推定装置は、以下の考え方に基づいている。
1)混合行列推定値の各列ベクトルは、各分離信号の電力と関連がある。
2)S/Nが十分高ければ、雑音電力は入射波のそれよりも十分低いはずであるので、式(23)に示す値も小さいはずである。
3)ICAの入射波数パラメータを大きく設定しておくと、入射波の他に雑音信号が得られる。
This incident wave number estimation apparatus is based on the following concept.
1) Each column vector of the mixing matrix estimate is related to the power of each separated signal.
2) If the S / N is sufficiently high, the noise power should be sufficiently lower than that of the incident wave, so the value shown in equation (23) should also be small.
3) When the incident wave number parameter of ICA is set large, a noise signal can be obtained in addition to the incident wave.

これらの性質から、ICAの入射波数パラメータJを大きく設定(J>J)してICAを実行し、得られた混合行列推定値の各列ベクトルの大きさを計算し、その値の大小から、入射波か雑音かを判定すれば、入射波と判定された総数により入射波数の推定を行うことができる。 From these properties, perform the ICA was set larger incident wave number parameter J P of ICA (J P> J), and calculates the size of each column vector of the mixed matrix estimate, the magnitude of the value Therefore, if it is determined whether it is an incident wave or noise, the number of incident waves can be estimated from the total number determined to be incident waves.

ここで、実施の形態1に係る入射波数推定装置の構成を示す図1と、その動作を示す図2に従って説明する。   Here, it demonstrates according to FIG. 1 which shows the structure of the incident wave number estimation apparatus which concerns on Embodiment 1, and FIG. 2 which shows the operation | movement.

まず、未知の入射波数の入射波s=[s(図1では一例とし3波)が、混信してI本の受信アンテナ1で受信される。 First, an incident wave s = [s 1 s 2 s 3 ] T (three waves as an example in FIG. 1) having an unknown incident wave number is mixed and received by I receiving antennas 1.

次に、ICA処理部41(ステップ101)では、大きめの入射波数パラメータ値Jを設定し、混信受信信号から信号分離を行う。このとき、ハットs,…,ハットsJPの計J波の分離信号が得られる。 Then, the ICA process unit 41 (step 101), sets a larger incident wave number parameter value J P, performs signal separation from the interference reception signal. At this time, the hat s 1, ..., isolated signals in total J P-wave of the hat s JP is obtained.

次に、列ベクトルの大きさ計算部42(ステップ102)では、各列ベクトルの大きさを計算する。列ベクトルの大きさFは、次の式で計算する。 Next, the column vector size calculator 42 (step 102) calculates the size of each column vector. The column vector size F j is calculated by the following equation.

Figure 2009251361
Figure 2009251361

最後に、閾値判定部43(ステップ103)により、閾値判定により入射波と雑音の判定を行い、入射波数を推定する。閾値を超えるものの総数が入射波数推定結果となる。   Finally, the threshold value determination unit 43 (step 103) determines the incident wave and noise by the threshold value determination, and estimates the incident wave number. The total number of objects exceeding the threshold is the incident wave number estimation result.

Figure 2009251361
Figure 2009251361

ここで、Fthは閾値であり、0≦Fthの値をとる。 Here, F th is a threshold value and takes a value of 0 ≦ F th .

図3に列ベクトルの大きさ値例を示す。この図3では、正解数が3波の場合、設定数を6波としてICAを実行後、得られた混合行列推定値の各列ベクトルの大きさ値を示している。分かりやすいように、大きい順にならべている。モンテカルロ10試行分を示している。このように、3つの時間列ベクトルの大きさ値が閾値を超えており、閾値判定により3波と判定され、正解である。   FIG. 3 shows an example of the magnitude value of the column vector. In FIG. 3, when the number of correct answers is 3, the magnitude value of each column vector of the obtained mixed matrix estimation value is shown after ICA is executed with the set number being 6 waves. To make it easier to understand, they are arranged in descending order. 10 trials of Monte Carlo are shown. As described above, the magnitude values of the three time series vectors exceed the threshold value, and are determined to be three waves by the threshold determination, and are correct.

実施の形態2.
この発明の実施の形態2に係る入射波数推定装置について図4を参照しながら説明する。図4は、この発明の実施の形態2に係る入射波数推定装置の閾値の設定方法を示す図である。なお、この発明の実施の形態2に係る入射波数推定装置の構成は、上記の実施の形態1と同様である。
Embodiment 2. FIG.
An incident wave number estimation apparatus according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 4 is a diagram showing a threshold value setting method of the incident wave number estimation apparatus according to Embodiment 2 of the present invention. The configuration of the incident wave number estimation apparatus according to the second embodiment of the present invention is the same as that of the first embodiment.

閾値判定部43の閾値の設定には、オペレータが、列ベクトルの大きさを見ながら手動で決定することも可能であるが、自動化するには、例えば以下の方法が考えられる。
1)入射波が存在せず、雑音のみが存在する場合の受信信号をICA処理後、得られた列ベクトルの大きさを計算し、その値よりある程度大きい値に設定しておく。そして、実際に入射波が進入してきた場合にその閾値を用いる。こうすれば、閾値を低く設定しすぎて雑音を信号と誤判定することが無い。
2)入射波が存在する状況で、受信信号をICA処理後、得られた列ベクトルの大きさを計算し、その最大値からある程度小さい値に設定する。こうすれば、閾値を高く設定しすぎて信号を雑音と誤判定することが無い。
3)入射波が存在する状況で、受信信号をICA処理後、得られた列ベクトルの大きさを計算し、それらの平均値を閾値とする。こうすれば、1)及び2)のトレードオフ的な値を設定することができる。
Although the operator can manually determine the threshold value of the threshold value determination unit 43 while looking at the size of the column vector, for example, the following method can be considered for automation.
1) After the ICA process is performed on the received signal when no incident wave exists and only noise exists, the magnitude of the obtained column vector is calculated and set to a value somewhat larger than that value. When the incident wave actually enters, the threshold value is used. In this way, the threshold value is set too low, and noise is not erroneously determined as a signal.
2) In a situation where an incident wave exists, the received signal is subjected to ICA processing, and the magnitude of the obtained column vector is calculated and set to a value that is somewhat smaller than the maximum value. In this way, the threshold value is not set too high and the signal is not erroneously determined as noise.
3) In a situation where an incident wave is present, the received signal is subjected to ICA processing, the magnitude of the obtained column vector is calculated, and the average value thereof is set as a threshold value. In this way, trade-off values of 1) and 2) can be set.

図4(a)、(b)、(c)に、上記の1)〜3)の各方法の概念を示す。この図4では、入射波3波で、Jを6波と設定した場合の例を示している。 4 (a), (b), and (c) show the concept of each of the methods 1) to 3). In FIG. 4, the incident wave 3 wave, shows an example of setting the J P and six waves.

実施の形態3.
この発明の実施の形態3に係る入射波数推定装置について説明する。なお、この発明の実施の形態3に係る入射波数推定装置は、互いに独立な入射波が混信して得られた受信信号から混合行列推定値を出力する独立成分分析処理部と、前記混合行列推定値の各列ベクトル及びアンテナ素子の入射波の入射方向のアンテナパターンに基づいて、入射波の電力を計算する入射波電力計算部と、前記入射波電力計算部により計算された入射波の電力が所定の閾値を超えるものの総数を入射波数と推定する閾値判定部とが設けられている。
Embodiment 3 FIG.
An incident wave number estimation apparatus according to Embodiment 3 of the present invention will be described. The incident wave number estimation apparatus according to the third embodiment of the present invention includes an independent component analysis processing unit that outputs a mixing matrix estimation value from a reception signal obtained by interference of mutually independent incident waves, and the mixing matrix estimation. Based on each column vector of values and the antenna pattern in the incident direction of the incident wave of the antenna element, an incident wave power calculation unit that calculates the power of the incident wave, and the power of the incident wave calculated by the incident wave power calculation unit is A threshold determination unit is provided that estimates the total number of objects exceeding a predetermined threshold as the number of incident waves.

上記の実施の形態1及び2で説明したように、混合行列推定値の列ベクトルの大きさではなく、入射波の電力自体を計算してもよい。以下、電力の計算方法を説明する。   As described in the first and second embodiments, the power of the incident wave itself may be calculated instead of the size of the column vector of the mixing matrix estimation value. Hereinafter, a method for calculating the power will be described.

例えば、狭帯域信号で、入射波が各受信アンテナ1に到達する時間差が位相差で表せる場合、混合行列Aの各要素Ai,jは次の式のモデルで表すことができると仮定する。 For example, it is assumed that each element A i, j of the mixing matrix A can be expressed by a model of the following equation when a time difference in which an incident wave reaches each receiving antenna 1 can be expressed by a phase difference in a narrowband signal.

Figure 2009251361
Figure 2009251361

ここで、gijはアンテナ素子♯iの入射波♯jの入射方向のアンテナパターン、qアンテナ素子♯iの位置ベクトル、pは入射波♯jの入射方向単位ベクトル、λは入射波♯jの波長である。今、ICAで仮に、分離誤差なく分離できたとする。すなわち、ハットA=α、ハットs=s/αとする。未知のスカラー係数αをキャンセルするために、任意の要素ハットAi,jを用いて次の式を計算する。 Here, g ij is an antenna pattern in the incident direction of the incident wave #j of the antenna element #i, a position vector of the q i antenna element #i, p j is an incident direction unit vector of the incident wave #j, and λ j is an incident wave. This is the wavelength of #j. Now, suppose that ICA can be separated without separation error. That is, the hat A j = α j A j and the hat s j = s j / α j . In order to cancel the unknown scalar coefficient α j , the following equation is calculated using an arbitrary element hat A i, j .

Figure 2009251361
Figure 2009251361

式(28)の右端のgijに含まれる種々の情報が既知であるならば、この値を用いて、次の式を計算する。なお、D=jP である。 If various information included in g ij D at the right end of Equation (28) is known, the following equation is calculated using this value. Note that D = jP j T q i .

Figure 2009251361
Figure 2009251361

式(29)は、αによる不確定性の存在しない、真の信号である。この電力を計算すると、ハットsの電力は、ICAの分離信号の性質により1であるため、 Equation (29) is a true signal with no uncertainty due to α j . When this power is calculated, the power of the hat s j is 1 because of the nature of the separated signal of ICA.

Figure 2009251361
Figure 2009251361

となる。式(30)が各信号(入射波)の電力である。この値をすべての信号に対して計算し、その値の大小から、入射波か雑音かを判定すれば、入射波と判定された総数により入射波数の推定を行うことができる。   It becomes. Equation (30) is the power of each signal (incident wave). If this value is calculated for all signals and it is determined whether the incident wave or noise is based on the magnitude of the value, the number of incident waves can be estimated from the total number determined to be incident waves.

この発明の実施の形態1に係る入射波数推定装置を含む受信機の構成を示す図である。It is a figure which shows the structure of the receiver containing the incident wave number estimation apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る入射波数推定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the incident wave number estimation apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る入射波数推定装置の列ベクトルの大きさ値例を示す図である。It is a figure which shows the magnitude value example of the column vector of the incident wave number estimation apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る入射波数推定装置の閾値の設定方法を示す図である。It is a figure which shows the setting method of the threshold value of the incident wave number estimation apparatus which concerns on Embodiment 2 of this invention. 独立成分分析処理の概要を示す図である。It is a figure which shows the outline | summary of an independent component analysis process. 入射波数パラメータを真値と異なった値に設定したときの分離信号例を示す図である。It is a figure which shows the example of a separated signal when an incident wave number parameter is set to the value different from a true value.

符号の説明Explanation of symbols

1 受信アンテナ、2 加算器、3 A/D変換器、4 入射波数推定装置、41 独立成分分析処理部、42 列ベクトルの大きさ計算部、43 閾値判定部。   DESCRIPTION OF SYMBOLS 1 Reception antenna, 2 Adder, 3 A / D converter, 4 Incident wave number estimation apparatus, 41 Independent component analysis process part, 42 Column vector magnitude | size calculation part, 43 Threshold determination part.

Claims (14)

互いに独立な入射波が混信して得られた受信信号から混合行列推定値を出力する独立成分分析処理部と、
前記混合行列推定値の各列ベクトルのノルム及び受信信号数に基づいて、前記混合行列推定値の各列ベクトルの大きさを計算する列ベクトルの大きさ計算部とを備え、
前記混合行列推定値の列ベクトルの大きさを用いて入射波数を推定する
ことを特徴とする入射波数推定装置。
An independent component analysis processing unit that outputs a mixing matrix estimation value from a received signal obtained by interference of mutually independent incident waves; and
A column vector size calculation unit that calculates the size of each column vector of the mixing matrix estimation value based on the norm of each column vector of the mixing matrix estimation value and the number of received signals;
An incident wave number estimation apparatus that estimates an incident wave number using a column vector magnitude of the mixing matrix estimation value.
前記列ベクトルの大きさ計算部により計算された列ベクトルの大きさが所定の閾値を超えるものの総数を入射波数と推定する閾値判定部をさらに備える
ことを特徴とする請求項1記載の入射波数推定装置。
The incident wave number estimation according to claim 1, further comprising a threshold value determination unit that estimates a total number of the column vectors calculated by the column vector size calculation unit exceeding a predetermined threshold value as an incident wave number. apparatus.
前記所定の閾値は、入射波が存在せず、雑音のみが存在する場合の受信信号を独立成分分析処理後、得られた列ベクトルの大きさを計算し、この計算した全ての値より大きい値に設定する
ことを特徴とする請求項2記載の入射波数推定装置。
The predetermined threshold value is a value larger than all the calculated values after calculating the size of the obtained column vector after performing independent component analysis on the received signal when no incident wave exists and only noise exists. The incident wave number estimation apparatus according to claim 2, wherein
前記所定の閾値は、入射波が存在する状況で、受信信号を独立成分分析処理後、得られた列ベクトルの大きさを計算し、この計算した値の最大値より小さい値に設定する
ことを特徴とする請求項2記載の入射波数推定装置。
The predetermined threshold value is set to a value smaller than the maximum value of the calculated value by calculating the magnitude of the obtained column vector after the independent component analysis processing of the received signal in the situation where the incident wave exists. The incident wave number estimation apparatus according to claim 2, wherein
前記所定の閾値は、入射波が存在する状況で、受信信号を独立成分分析処理後、得られた列ベクトルの大きさを計算し、この計算した値の平均値に設定する
ことを特徴とする請求項2記載の入射波数推定装置。
The predetermined threshold value is set to an average value of the calculated values after calculating the magnitude of the obtained column vector after performing independent component analysis processing on the received signal in a situation where an incident wave exists. The incident wave number estimation apparatus according to claim 2.
互いに独立な入射波が混信して得られた受信信号から混合行列推定値を出力する独立成分分析処理部と、
前記混合行列推定値の各列ベクトル及びアンテナ素子の入射波の入射方向のアンテナパターンに基づいて、入射波の電力を計算する入射波電力計算部とを備え、
前記入射波の電力を用いて入射波数を推定する
ことを特徴とする入射波数推定装置。
An independent component analysis processing unit that outputs a mixing matrix estimation value from a received signal obtained by interference of mutually independent incident waves; and
An incident wave power calculation unit that calculates the power of the incident wave based on each column vector of the mixing matrix estimation value and the antenna pattern in the incident direction of the incident wave of the antenna element,
An incident wave number estimating apparatus that estimates an incident wave number using the electric power of the incident wave.
前記入射波電力計算部により計算された入射波の電力が所定の閾値を超えるものの総数を入射波数と推定する閾値判定部をさらに備える
ことを特徴とする請求項6記載の入射波数推定装置。
The incident wave number estimation device according to claim 6, further comprising a threshold value determination unit that estimates the total number of incident wave powers calculated by the incident wave power calculation unit exceeding a predetermined threshold as the incident wave number.
互いに独立な入射波が混信して得られた受信信号から混合行列推定値を出力する独立成分分析処理ステップと、
前記混合行列推定値の各列ベクトルのノルム及び受信信号数に基づいて、前記混合行列推定値の各列ベクトルの大きさを計算する列ベクトルの大きさ計算ステップとを含み、
前記混合行列推定値の列ベクトルの大きさを用いて入射波数を推定する
ことを特徴とする入射波数推定方法。
An independent component analysis processing step of outputting a mixing matrix estimation value from a received signal obtained by interference of mutually independent incident waves;
A column vector size calculating step of calculating the size of each column vector of the mixing matrix estimate based on the norm of each column vector of the mixing matrix estimate and the number of received signals;
An incident wave number is estimated by using the magnitude of a column vector of the mixing matrix estimation value.
前記列ベクトルの大きさ計算ステップにより計算された列ベクトルの大きさが所定の閾値を超えるものの総数を入射波数と推定する閾値判定ステップをさらに含む
ことを特徴とする請求項8記載の入射波数推定方法。
9. The incident wave number estimation according to claim 8, further comprising a threshold determination step of estimating a total number of the column vectors whose magnitudes calculated by the column vector magnitude calculation step exceed a predetermined threshold as an incident wave number. Method.
前記所定の閾値は、入射波が存在せず、雑音のみが存在する場合の受信信号を独立成分分析処理後、得られた列ベクトルの大きさを計算し、この計算した全ての値より大きい値に設定する
ことを特徴とする請求項9記載の入射波数推定方法。
The predetermined threshold value is a value larger than all the calculated values after calculating the size of the obtained column vector after performing independent component analysis on the received signal when no incident wave exists and only noise exists. The incident wave number estimation method according to claim 9, wherein:
前記所定の閾値は、入射波が存在する状況で、受信信号を独立成分分析処理後、得られた列ベクトルの大きさを計算し、この計算した値の最大値より小さい値に設定する
ことを特徴とする請求項9記載の入射波数推定方法。
The predetermined threshold value is set to a value smaller than the maximum value of the calculated value by calculating the magnitude of the obtained column vector after the independent component analysis processing of the received signal in the situation where the incident wave exists. 10. The incident wave number estimation method according to claim 9, wherein the incident wave number is estimated.
前記所定の閾値は、入射波が存在する状況で、受信信号を独立成分分析処理後、得られた列ベクトルの大きさを計算し、この計算した値の平均値に設定する
ことを特徴とする請求項9記載の入射波数推定方法。
The predetermined threshold value is set to an average value of the calculated values after calculating the magnitude of the obtained column vector after performing independent component analysis processing on the received signal in a situation where an incident wave exists. The incident wave number estimation method according to claim 9.
互いに独立な入射波が混信して得られた受信信号から混合行列推定値を出力する独立成分分析処理ステップと、
前記混合行列推定値の各列ベクトル及びアンテナ素子の入射波の入射方向のアンテナパターンに基づいて、入射波の電力を計算する入射波電力計算ステップとを含み、
前記入射波の電力を用いて入射波数を推定する
ことを特徴とする入射波数推定方法。
An independent component analysis processing step of outputting a mixing matrix estimation value from a received signal obtained by interference of mutually independent incident waves;
An incident wave power calculation step of calculating the power of the incident wave based on each column vector of the mixing matrix estimation value and the antenna pattern of the incident direction of the incident wave of the antenna element,
Incident wave number is estimated using the power of the incident wave.
前記入射波電力計算ステップにより計算された入射波の電力が所定の閾値を超えるものの総数を入射波数と推定する閾値判定ステップをさらに含む
ことを特徴とする請求項13記載の入射波数推定方法。
The incident wave number estimation method according to claim 13, further comprising a threshold value determination step of estimating a total number of incident wave powers calculated by the incident wave power calculation step exceeding a predetermined threshold value as an incident wave number.
JP2008100378A 2008-04-08 2008-04-08 Incident wave number estimation device and incident wave number estimation method Active JP5078717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008100378A JP5078717B2 (en) 2008-04-08 2008-04-08 Incident wave number estimation device and incident wave number estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008100378A JP5078717B2 (en) 2008-04-08 2008-04-08 Incident wave number estimation device and incident wave number estimation method

Publications (2)

Publication Number Publication Date
JP2009251361A true JP2009251361A (en) 2009-10-29
JP5078717B2 JP5078717B2 (en) 2012-11-21

Family

ID=41312128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008100378A Active JP5078717B2 (en) 2008-04-08 2008-04-08 Incident wave number estimation device and incident wave number estimation method

Country Status (1)

Country Link
JP (1) JP5078717B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250833A (en) * 2008-04-08 2009-10-29 Mitsubishi Electric Corp Device and method for estimating incident wave number
JP2009250832A (en) * 2008-04-08 2009-10-29 Mitsubishi Electric Corp Device and method for estimating incident wave number
JP2019533194A (en) * 2016-09-29 2019-11-14 合肥華凌股▲フン▼有限公司Hefei Hualing Co.,Ltd. Blind signal separation method, configuration and voice control system, and electrical assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003150977A (en) * 2001-11-15 2003-05-23 Japan Science & Technology Corp Three-dimensional person moving image drawing system
JP2005245636A (en) * 2004-03-02 2005-09-15 Shimadzu Corp Method and apparatus for biophotonic measurement using near-infrared light
JP2007226036A (en) * 2006-02-24 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> Signal separation device, signal separation method, signal separation program, and recording medium, and signal direction-of-arrival estimation device, signal direction-of-arrival estimation method, signal direction-of-arrival estimation program, and recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003150977A (en) * 2001-11-15 2003-05-23 Japan Science & Technology Corp Three-dimensional person moving image drawing system
JP2005245636A (en) * 2004-03-02 2005-09-15 Shimadzu Corp Method and apparatus for biophotonic measurement using near-infrared light
JP2007226036A (en) * 2006-02-24 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> Signal separation device, signal separation method, signal separation program, and recording medium, and signal direction-of-arrival estimation device, signal direction-of-arrival estimation method, signal direction-of-arrival estimation program, and recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250833A (en) * 2008-04-08 2009-10-29 Mitsubishi Electric Corp Device and method for estimating incident wave number
JP2009250832A (en) * 2008-04-08 2009-10-29 Mitsubishi Electric Corp Device and method for estimating incident wave number
JP2019533194A (en) * 2016-09-29 2019-11-14 合肥華凌股▲フン▼有限公司Hefei Hualing Co.,Ltd. Blind signal separation method, configuration and voice control system, and electrical assembly

Also Published As

Publication number Publication date
JP5078717B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
US7085711B2 (en) Method and apparatus for blind separation of an overcomplete set mixed signals
Trinh-Hoang et al. Partial relaxation approach: An eigenvalue-based DOA estimator framework
Aissa-El-Bey et al. Underdetermined blind separation of nondisjoint sources in the time-frequency domain
Arberet et al. A robust method to count and locate audio sources in a multichannel underdetermined mixture
JP6434657B2 (en) Spatial correlation matrix estimation device, spatial correlation matrix estimation method, and spatial correlation matrix estimation program
JP2007524860A (en) System and method for weighting of matrix pencil separation of hybrid least mean square error of blind source separation
Aissa-El-Bey et al. Blind separation of underdetermined convolutive mixtures using their time–frequency representation
Nguyen et al. An adaptive extraction of generalized eigensubspace by using exact nested orthogonal complement structure
Rao et al. A denoising approach to multisensor signal estimation
Liu et al. A linear source recovery method for underdetermined mixtures of uncorrelated AR-model signals without sparseness
JP5078717B2 (en) Incident wave number estimation device and incident wave number estimation method
Liang et al. Cramér-Rao bound analysis of underdetermined wideband DOA estimation under the subband model via frequency decomposition
Wang et al. An importance sampling maximum likelihood direction of arrival estimator
JP5328210B2 (en) Incident wave number estimation device and incident wave number estimation method
JP2009250833A (en) Device and method for estimating incident wave number
JP6973254B2 (en) Signal analyzer, signal analysis method and signal analysis program
Pan et al. Simplified spatial smoothing for DoA estimation of coherent signals
Madadi et al. Three-dimensional localization of multiple acoustic sources in shallow ocean with non-Gaussian noise
Ye et al. New Fast-ICA algorithms for blind source separation without prewhitening
Zhou et al. Blind separation of partially overlapping data packets
Sbai et al. Robust underdetermined blind audio source separation of sparse signals in the time-frequency domain
da Costa et al. Subspace based multi-dimensional model order selection in colored noise scenarios
Martino et al. Parallel interacting Markov adaptive importance sampling
Laufer et al. ML estimation and CRBs for reverberation, speech, and noise PSDs in rank-deficient noise field
JP2020012976A (en) Sound source separation evaluation device and sound source separation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5078717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250