JP2009250248A - Bearing device - Google Patents

Bearing device Download PDF

Info

Publication number
JP2009250248A
JP2009250248A JP2008094618A JP2008094618A JP2009250248A JP 2009250248 A JP2009250248 A JP 2009250248A JP 2008094618 A JP2008094618 A JP 2008094618A JP 2008094618 A JP2008094618 A JP 2008094618A JP 2009250248 A JP2009250248 A JP 2009250248A
Authority
JP
Japan
Prior art keywords
spacer
inner ring
bearing
rotating shaft
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008094618A
Other languages
Japanese (ja)
Inventor
Yoshiro Hirose
義郎 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howa Machinery Ltd
Original Assignee
Howa Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Howa Machinery Ltd filed Critical Howa Machinery Ltd
Priority to JP2008094618A priority Critical patent/JP2009250248A/en
Publication of JP2009250248A publication Critical patent/JP2009250248A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing device moving an inner ring of a bearing in an axial direction by thermal displacement of seats between inner rings with a simple structure and inhibiting change of preload due to the thermal displacement. <P>SOLUTION: The seat 8 between the inner rings is composed of material having larger thermal expansion coefficient than thermal expansion coefficient of a rotary shaft 5, a spacer 7 is composed of material having smaller thermal expansion coefficient than thermal expansion coefficient of the rotary shaft 5. Difference ΔL1 of displacement between the seat 8 between the inner ring thermally displaced by heat generated at bearings 3, 4 by rotation of the rotary shaft 5 and the rotary shaft 5 near the seat between the inner ring are offset by difference ΔL2 of displacement of the space 7 thermally displaced by the heat and the rotary shaft 5 near the spacer 7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、回転軸を軸支する軸受の間に内、外輪間座を夫々設け、回転軸に備えたナットを締め付けることでスペーサ、内輪間座を介して各軸受に予圧を付与するようにした軸受装置に関する。   According to the present invention, inner and outer ring spacers are provided between the bearings that support the rotating shaft, and a preload is applied to each bearing via the spacer and the inner ring spacer by tightening a nut provided on the rotating shaft. The present invention relates to a bearing device.

従来、ハウジング内の軸方向に間隔を設けて嵌合した軸受により回転軸を回転自在に軸支し、前記軸受と軸受の間には内輪間座と外輪間座とを夫々設け、回転軸の後端側に備えたナットと後方の軸受との間にスペーサを設け、ナットを締め付けることでスペーサ、内輪間座を介して各軸受に予圧を付与するようにした軸受装置では、回転軸の回転により軸受の内輪と転動体が遠心力により外輪に押し付けられ、内、外輪と転動体の間で摩擦等によって熱が生じ、その熱により軸受の内輪が熱膨張して内、外輪と転動体との間で焼付きが起きるので、特許文献1,2のように、内輪間座を熱膨張係数の大きな材料で構成し、前記熱により内輪間座を軸方向に熱変位させて軸受の内輪を軸方向に変位させることが知られている。また、特許文献3には、凹溝を設けて弾性を有するようにスペーサを形成したものが記載されている。
実開昭61−114121号公報 実開平2−127817号公報 特開平9−19805号公報
Conventionally, a rotary shaft is rotatably supported by a bearing fitted with a gap in the axial direction in the housing, and an inner ring spacer and an outer ring spacer are provided between the bearing and the bearing, respectively. In a bearing device in which a spacer is provided between the nut provided on the rear end side and the rear bearing, and a preload is applied to each bearing through the spacer and the inner ring spacer by tightening the nut, the rotating shaft rotates. The inner ring and the rolling element of the bearing are pressed against the outer ring by centrifugal force, and heat is generated by friction between the inner and outer rings and the rolling element. As shown in Patent Documents 1 and 2, the inner ring spacer is made of a material having a large coefficient of thermal expansion, and the inner ring spacer is thermally displaced in the axial direction by the heat to change the inner ring of the bearing. It is known to be displaced in the axial direction. Patent Document 3 describes a structure in which a spacer is formed so as to have elasticity by providing a concave groove.
Japanese Utility Model Publication No. 61-114121 Japanese Utility Model Publication No. 2-127817 Japanese Unexamined Patent Publication No. 9-19805

ところが、軸受に生じる熱により内輪間座が熱変位すると共に、回転軸及びスペーサも軸方向に熱変位するので、上記特許文献1,2では、熱変位する内輪間座と内輪間座付近の回転軸との変位量の差を、熱変位するスペーサとスペーサ付近の回転軸との変位量の差で相殺することが出来ないために、内輪間座の熱変位量とスペーサの熱変位量が回転軸の熱変位量より大きくなって軸受の内輪が軸方向に移動しないので、予め軸受に付与する予圧と、回転軸の回転中に軸受に付与する予圧が異なるおそれがあった。そこで、特許文献3のようにスペーサや回転軸が熱変位しても、スペーサが伸縮することで、内輪間座の熱変位により軸受の内輪を軸方向に移動させることが考えられた。しかし、回転軸の回転によってスペーサの撓みに遠心力が生じて回転軸の回転に悪影響を与えるおそれがあった。
そこで本発明の課題は、上記問題点に鑑み、簡単な構成で内輪間座の熱変位により軸受の内輪を軸方向に移動させ、熱変位による予圧の変化を抑えるようにした軸受装置を提供することを目的とする。
However, the inner ring spacer is thermally displaced by the heat generated in the bearing, and the rotating shaft and the spacer are also thermally displaced in the axial direction. Therefore, in Patent Documents 1 and 2, the rotation of the inner ring spacer that is thermally displaced and the vicinity of the inner ring spacer are performed. Because the difference in displacement from the shaft cannot be offset by the difference in displacement between the spacer that is thermally displaced and the rotating shaft near the spacer, the thermal displacement of the inner ring spacer and the thermal displacement of the spacer rotate. Since the inner ring of the bearing does not move in the axial direction because it is larger than the thermal displacement of the shaft, the preload applied to the bearing in advance may be different from the preload applied to the bearing during rotation of the rotating shaft. Therefore, it has been considered that the inner ring of the bearing is moved in the axial direction by the thermal displacement of the inner ring spacer by the expansion and contraction of the spacer even if the spacer and the rotating shaft are thermally displaced as in Patent Document 3. However, the rotation of the rotating shaft may cause a centrifugal force in the deflection of the spacer, which may adversely affect the rotation of the rotating shaft.
In view of the above problems, an object of the present invention is to provide a bearing device in which the inner ring of the bearing is moved in the axial direction by the thermal displacement of the inner ring spacer with a simple configuration, and the change in the preload due to the thermal displacement is suppressed. For the purpose.

本発明は、ハウジング内の軸方向に間隔を設けて嵌合した軸受により回転軸を回転自在に軸支し、前記軸受と軸受の間には内輪間座と外輪間座とを夫々設け、回転軸の後端側に備えたナットと後方の軸受との間にスペーサを設け、ナットを締め付けることでスペーサ、内輪間座を介して各軸受に予圧を付与するようにした軸受装置において、内輪間座を回転軸の熱膨張係数より大きな熱膨張係数の材料で構成し、スペーサを回転軸の熱膨張係数より小さな熱膨張係数の材料で構成し、回転軸の回転により軸受に生じる熱によって熱変位する内輪間座と内輪間座付近の回転軸との変位量の差を、前記熱によって熱変位するスペーサとスペーサ付近の回転軸との変位量との差で相殺するようにしたことを特徴とする。   The present invention rotatably supports a rotating shaft by a bearing fitted with an interval in the axial direction in the housing, and an inner ring spacer and an outer ring spacer are provided between the bearing and the bearing, respectively. In a bearing device in which a spacer is provided between the nut provided on the rear end side of the shaft and the rear bearing, and a preload is applied to each bearing through the spacer and the inner ring spacer by tightening the nut. The seat is made of a material with a coefficient of thermal expansion larger than that of the rotating shaft, the spacer is made of a material with a coefficient of thermal expansion smaller than the coefficient of thermal expansion of the rotating shaft, and thermal displacement is caused by the heat generated in the bearing by the rotation of the rotating shaft. The difference in displacement between the inner ring spacer and the rotating shaft in the vicinity of the inner ring spacer is offset by the difference in displacement between the spacer thermally displaced by the heat and the rotating shaft in the vicinity of the spacer. To do.

本発明では、内輪間座を回転軸の熱膨張係数より大きな熱膨張係数の材料で構成し、スペーサを回転軸の熱膨張係数より小さな熱膨張係数の材料で構成し、回転軸の回転により軸受に生じる熱によって熱変位する内輪間座と内輪間座付近の回転軸との変位量の差を、前記熱によって熱変位するスペーサとスペーサ付近の回転軸との変位量との差で相殺するようにしたので、回転軸の回転により、回転軸、内輪間座及びスペーサが熱変位しても、内輪間座とスペーサの熱変位量の合計が回転軸の熱変位量と略同一となり、回転軸の回転中に予め軸受に付与した予圧と同一の予圧を付与し続けることが可能となる。また、スペーサを熱膨張係数の小さな材料で構成し、長さを調整するだけの簡単な構成で行える。   In the present invention, the inner ring spacer is made of a material having a thermal expansion coefficient larger than the thermal expansion coefficient of the rotary shaft, the spacer is made of a material having a thermal expansion coefficient smaller than the thermal expansion coefficient of the rotary shaft, and the bearing is driven by the rotation of the rotary shaft. The difference in displacement between the inner ring spacer that is thermally displaced by the heat generated in the inner ring and the rotating shaft in the vicinity of the inner ring spacer is offset by the difference in displacement between the spacer that is thermally displaced by the heat and the rotating shaft in the vicinity of the spacer. Therefore, even if the rotation shaft, the inner ring spacer and the spacer are thermally displaced due to the rotation of the rotation shaft, the total amount of thermal displacement of the inner ring spacer and the spacer is substantially the same as the heat displacement amount of the rotation shaft. During the rotation, it is possible to continue to apply the same preload as that previously applied to the bearing. In addition, the spacer can be made of a material having a small coefficient of thermal expansion and can be made with a simple structure by simply adjusting the length.

図1に示す軸受装置1は、ハウジング2内の軸方向に間隔を設けて嵌合した軸受3,4により回転軸5(例えば工作機械の主軸)が回転自在に軸支されている。前方の軸受3の外輪3a、内輪3bは、夫々ハウジング2に取り付けたヘッドキャップ6と回転軸5の段部5aに当接させている。後方の軸受4の外輪4a、内輪4bは、夫々ハウジング2の段部2aと回転軸5に嵌め込んだスペーサ7に当接させている。前方の軸受3と後方の軸受4の間には内輪間座8と外輪間座9とが夫々設けられている。回転軸5の後端側に備えたナット10を前記スペーサ7に当接させている。ナット10を締め付けることで、スペーサ7、内輪間座8を介して各軸受3,4に予圧が付与されるようになっている。
本実施形態では前記回転軸5を鋼材としたときに、内輪間座8を熱膨張係数A:11〜12×10−6/℃の鋼材より大きな熱膨張係数の材料、例えば、熱膨張係数B:19〜23×10−6/℃のアルミニウム材で構成した。また、スペーサ7を熱膨張係数A:11〜12×10−6/℃の鋼材より小さな熱膨張係数の材料、例えば、熱膨張係数C:1〜2×10−6/℃のノビナイト鋳鉄(商品名)で構成した。
In a bearing device 1 shown in FIG. 1, a rotating shaft 5 (for example, a main shaft of a machine tool) is rotatably supported by bearings 3 and 4 which are fitted with a space in an axial direction inside a housing 2. The outer ring 3a and the inner ring 3b of the front bearing 3 are brought into contact with the head cap 6 attached to the housing 2 and the step portion 5a of the rotary shaft 5, respectively. The outer ring 4a and the inner ring 4b of the rear bearing 4 are brought into contact with the stepped portion 2a of the housing 2 and the spacer 7 fitted into the rotary shaft 5, respectively. An inner ring spacer 8 and an outer ring spacer 9 are provided between the front bearing 3 and the rear bearing 4, respectively. A nut 10 provided on the rear end side of the rotary shaft 5 is brought into contact with the spacer 7. By tightening the nut 10, a preload is applied to the bearings 3 and 4 via the spacer 7 and the inner ring spacer 8.
In this embodiment, when the rotating shaft 5 is made of steel, the inner ring spacer 8 is made of a material having a thermal expansion coefficient larger than that of the steel having a thermal expansion coefficient A of 11 to 12 × 10 −6 / ° C., for example, thermal expansion coefficient B. : 19-23 × 10 −6 / ° C. aluminum material. The spacer 7 is made of a material having a thermal expansion coefficient smaller than that of a steel material having a thermal expansion coefficient A of 11 to 12 × 10 −6 / ° C., for example, novinite cast iron having a thermal expansion coefficient C of 1 to 2 × 10 −6 / ° C. Name).

上記構成の軸受装置1では、回転軸5の回転により軸受3,4に熱が生じ、その熱が回転軸5、内輪間座8及びスペーサ7に伝わって夫々熱変位する。熱変位量は長さ×熱膨張係数であるので、内輪間座8及びスペーサ7長さをL1、L2としたとき、内輪間座8と内輪間座8付近の回転軸5との変位量の差ΔL1がL1×(19〜23)×10−6−L1×(11〜12)×10−6となり、スペーサ7とスペーサ7付近の回転軸5との変位量の差ΔL2がL2×(1〜2)×10−6−L2×(11〜12)×10−6となる。よって、内輪間座8が内輪間座8付近の回転軸5よりΔL1多く熱変位し、スペーサ7付近の回転軸5がスペーサ7よりΔL2多く熱変位していることになる。従って、L1×(8〜11)=L2×10となるようにL2を設定し、変位量の差ΔL1を変位量の差ΔL2で相殺することで、回転軸5の回転により、回転軸5、内輪間座8及びスペーサ7が熱変位しても、内輪間座8とスペーサ7の熱変位量の合計が回転軸5の熱変位量と略同一となり、回転軸5の回転中に予め軸受3,4に付与した予圧と同一の予圧を付与し続けることができる。また、スペーサ7を熱膨張係数の小さな材料で構成し、長さを調整するだけの簡単な構成であり、従来のように、スペーサ7を伸縮させるための溝加工をする必要がない。尚、内輪間座8やスペーサ7の材料が上記のもの以外であっても、内輪間座8を熱膨張係数の大きな材料でマグネシウム材やステンレス材等で構成し、スペーサ7を熱膨張係数の小さな材料でセラミック材やインバー材等で構成し、変位量の差ΔL1を変位量の差ΔL2で相殺するように選択すればよい。 In the bearing device 1 configured as described above, heat is generated in the bearings 3 and 4 by the rotation of the rotating shaft 5, and the heat is transmitted to the rotating shaft 5, the inner ring spacer 8 and the spacer 7, and is thermally displaced. Since the amount of thermal displacement is length × thermal expansion coefficient, when the lengths of the inner ring spacer 8 and the spacer 7 are L1 and L2, the amount of displacement between the inner ring spacer 8 and the rotating shaft 5 near the inner ring spacer 8 is The difference ΔL1 is L1 × (19-23) × 10 −6 −L1 × (11-12) × 10 −6 , and the difference ΔL2 in the displacement amount between the spacer 7 and the rotating shaft 5 near the spacer 7 is L2 × (1 ˜2) × 10 −6 −L2 × (11 to 12) × 10 −6 . Therefore, the inner ring spacer 8 is thermally displaced by ΔL1 more than the rotating shaft 5 near the inner ring spacer 8, and the rotating shaft 5 near the spacer 7 is thermally displaced by ΔL2 more than the spacer 7. Therefore, L2 is set so that L1 × (8 to 11) = L2 × 10, and the difference ΔL1 in the displacement amount is canceled by the difference ΔL2 in the displacement amount. Even if the inner ring spacer 8 and the spacer 7 are thermally displaced, the total amount of thermal displacement of the inner ring spacer 8 and the spacer 7 becomes substantially the same as the amount of thermal displacement of the rotary shaft 5, and the bearing 3 is preliminarily used during the rotation of the rotary shaft 5. , 4 can be continuously applied with the same preload as that applied to. Further, the spacer 7 is made of a material having a small thermal expansion coefficient and is simply configured to adjust the length, and it is not necessary to perform groove processing for expanding and contracting the spacer 7 as in the prior art. Even if the inner ring spacer 8 and the spacer 7 are made of materials other than those described above, the inner ring spacer 8 is made of a material having a large thermal expansion coefficient, such as magnesium or stainless steel, and the spacer 7 has a coefficient of thermal expansion. A small material may be used, such as a ceramic material or an Invar material, and the displacement amount difference ΔL1 may be selected to be offset by the displacement amount difference ΔL2.

本発明の軸受装置を示す図である。It is a figure which shows the bearing apparatus of this invention.

符号の説明Explanation of symbols

1 軸受装置
2 ハウジング
3 軸受
4 軸受
5 回転軸
7 スペーサ
8 内輪間座
9 外輪間座
10 ナット
ΔL1 変位量の差
ΔL2 変位量の差
DESCRIPTION OF SYMBOLS 1 Bearing apparatus 2 Housing 3 Bearing 4 Bearing 5 Rotating shaft 7 Spacer 8 Inner ring spacer 9 Outer ring spacer 10 Nut ΔL1 Difference in displacement ΔL2 Difference in displacement

Claims (1)

ハウジング内の軸方向に間隔を設けて嵌合した軸受により回転軸を回転自在に軸支し、前記軸受と軸受の間には内輪間座と外輪間座とを夫々設け、回転軸の後端側に備えたナットと後方の軸受との間にスペーサを設け、ナットを締め付けることでスペーサ、内輪間座を介して各軸受に予圧を付与するようにした軸受装置において、内輪間座を回転軸の熱膨張係数より大きな熱膨張係数の材料で構成し、スペーサを回転軸の熱膨張係数より小さな熱膨張係数の材料で構成し、回転軸の回転により軸受に生じる熱によって熱変位する内輪間座と内輪間座付近の回転軸との変位量の差を、前記熱によって熱変位するスペーサとスペーサ付近の回転軸との変位量との差で相殺するようにしたことを特徴とする軸受装置。 A rotating shaft is rotatably supported by a bearing fitted with an interval in the axial direction in the housing, and an inner ring spacer and an outer ring spacer are provided between the bearing and the bearing, respectively, and a rear end of the rotating shaft. In a bearing device in which a spacer is provided between a nut provided on the side and a rear bearing, and a preload is applied to each bearing via the spacer and the inner ring spacer by tightening the nut, the inner ring spacer is a rotating shaft. The inner ring spacer is made of a material having a coefficient of thermal expansion larger than that of the shaft, the spacer is made of a material having a coefficient of thermal expansion smaller than that of the rotating shaft, and is thermally displaced by the heat generated in the bearing by the rotation of the rotating shaft. The bearing device is characterized in that the difference in displacement between the inner ring spacer and the rotating shaft in the vicinity of the inner ring spacer is canceled out by the difference in displacement between the spacer thermally displaced by the heat and the rotating shaft in the vicinity of the spacer.
JP2008094618A 2008-04-01 2008-04-01 Bearing device Pending JP2009250248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094618A JP2009250248A (en) 2008-04-01 2008-04-01 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094618A JP2009250248A (en) 2008-04-01 2008-04-01 Bearing device

Publications (1)

Publication Number Publication Date
JP2009250248A true JP2009250248A (en) 2009-10-29

Family

ID=41311170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094618A Pending JP2009250248A (en) 2008-04-01 2008-04-01 Bearing device

Country Status (1)

Country Link
JP (1) JP2009250248A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200359A (en) * 1995-01-20 1996-08-06 Toshiba Mach Co Ltd Bearing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200359A (en) * 1995-01-20 1996-08-06 Toshiba Mach Co Ltd Bearing device

Similar Documents

Publication Publication Date Title
UA89021C2 (en) Turbomachine with means for axial retention of the rotor
PL1615737T3 (en) Strand-guiding roller
JP2011205884A (en) Built-in motor main-shaft device, and processing device
JP2004239388A (en) Bearing support unit
TWI572799B (en) Ball screw device and manufacturing method thereof
JP2009250248A (en) Bearing device
JP2005069252A (en) Rolling bearing unit
JP2009174556A (en) Rolling bearing device
JP2007154967A (en) Rolling bearing device with preload adjusting mechanism
JP2006234098A (en) Bearing device
JP2006300079A (en) Roller bearing
JP2003239955A (en) Bearing support structure of rotary body
JP2008115961A (en) Roller bearing and ball bearing
JP2009078319A (en) Pipe cutting device
JP2009079696A (en) Mechanism for applying preload to rolling bearing
JP2014151402A (en) Bearing structure of wheel spindle
JP5779880B2 (en) Continuous annealing furnace
JP2009008211A (en) Roller bearing-bearing housing assembling body
JP4478942B2 (en) Bearing fixing device
JP6270014B2 (en) Bearing device
JP2006336720A (en) Bearing unit
JP5041146B2 (en) Electric motor
JP2006077925A (en) Bearing device
JP5107165B2 (en) Bearing structure at the tip of the screw shaft in a two-axis different-direction non-meshing extruder
JP2007232035A (en) Pressurization controlling bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101203

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20120120

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Effective date: 20120126

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120523