JP2009250233A - Suppression of gas turbine inlet temperature during under frequency events and related method - Google Patents

Suppression of gas turbine inlet temperature during under frequency events and related method Download PDF

Info

Publication number
JP2009250233A
JP2009250233A JP2009075418A JP2009075418A JP2009250233A JP 2009250233 A JP2009250233 A JP 2009250233A JP 2009075418 A JP2009075418 A JP 2009075418A JP 2009075418 A JP2009075418 A JP 2009075418A JP 2009250233 A JP2009250233 A JP 2009250233A
Authority
JP
Japan
Prior art keywords
gas turbine
air inlet
compressor
ambient air
liquid air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009075418A
Other languages
Japanese (ja)
Inventor
David A Snider
デイビッド・エイ・シュナイダー
Randy S Rosson
ランディ・エス・ロッソン
Scott V Hannula
スコット・ヴィ・ハヌラ
Kevin W Wilkes
ケヴィン・ダブリュ・ウィルクス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2009250233A publication Critical patent/JP2009250233A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/06Purpose of the control system to match engine to driven device
    • F05D2270/061Purpose of the control system to match engine to driven device in particular the electrical frequency of driven generator

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for augmenting power output in a gas turbine electrical power-generating plant including a multistage compressor, a combustor and a multistage turbine component, during events when grid frequency drops below a prescribed target frequency. <P>SOLUTION: This method is carried out by (a) a step of providing a liquified air source arranged to selectively add liquified air to an ambient air inlet to the compressor 12, and (b) a step of making the liquified air of controlled amount flow into the ambient air inlet during such events. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガスタービンの運転に関し、具体的には、需要が供給を超えた不足周波数事象時におけるガスタービンの運転に関する。   The present invention relates to operation of a gas turbine, and more particularly to operation of a gas turbine during an underfrequency event when demand exceeds supply.

電力需要が配電網(グリッド)への供給を超えた時に、グリッド周波数は、50Hz又は60Hzのいずれかの目標値以下に低下することになる。ガスタービンベースの発電プラントの場合には、ガスタービンの発電能力は、周波数の低下と共に低下する。従って、大きな周波数低下の間にグリッド安定性を得るためには、ガスタービン発電プラントの出力は、少なくとも一時的に増大させることが必要となる可能性がある。発電するのに使用するガスタービンの出力は、例えば付加的な圧縮機質量流量又は付加的な燃料流量によって増大させることができる。しかしながら、圧縮機質量流量の増加は、圧縮機サージマージン又はその他の限界値のために制限される可能性があり、一方、燃料流量の増加は、正常作動温度を超えた運転により生じる部品寿命の問題のために制限される可能性がある。   When the power demand exceeds the supply to the distribution network (grid), the grid frequency will drop below the target value of either 50 Hz or 60 Hz. In the case of a gas turbine-based power plant, the power generation capacity of the gas turbine decreases with decreasing frequency. Therefore, to obtain grid stability during large frequency reductions, the output of the gas turbine power plant may need to be increased at least temporarily. The output of the gas turbine used to generate electricity can be increased by, for example, additional compressor mass flow or additional fuel flow. However, the increase in compressor mass flow may be limited due to compressor surge margins or other limits, while the increase in fuel flow will reduce component life resulting from operation above normal operating temperatures. May be limited due to problems.

米国特許第4354565号明細書US Pat. No. 4,354,565

Ohasi Yoshihito, "Liquid Air Storage System to Boost Gas Turbine Capacity", Science Links Japan, http://sciencelinks.jp/j-east/article/200216/000020021602A0608919.php, Vol. 8th.,pp, 349-352 (2002) (Abstract only)Ohasi Yoshihito, "Liquid Air Storage System to Boost Gas Turbine Capacity", Science Links Japan, http://sciencelinks.jp/j-east/article/200216/000020021602A0608919.php, Vol. 8th., Pp, 349-352 ( 2002) (Abstract only) "Heat Transfer-Asian Research", http://www3.interscience.wiley.com/journal/72507742/abstract, Wiley InterScience, Vol. 29 Issue 5, 347-357 (2002) (Abstract Only)"Heat Transfer-Asian Research", http://www3.interscience.wiley.com/journal/72507742/abstract, Wiley InterScience, Vol. 29 Issue 5, 347-357 (2002) (Abstract Only)

従って、それによって、必要条件を満たすためにタービンを正常作動温度よりも高い温度で燃焼させる必要性がない状態で又は燃焼温度の上昇を最小にした状態で、短期間の不足周波数事象時にガスタービン出力を増強することができる機構に対する要求が存在する。   Thus, the gas turbine during a short underfrequency event without the need to burn the turbine above the normal operating temperature to meet the requirements or with minimal increase in combustion temperature. There is a need for a mechanism that can enhance the output.

本明細書に記載した本技術の例示的であるが非限定的な実施形態によると、圧縮機入口温度の低下は一般的にガスタービン出力性能を増大させるという公知の現象の利点を採用している。従って、グリッド周波数が所定の目標周波数以下に低下した場合のような事象時に、複数段圧縮機、燃焼器及び複数段タービン構成要素を含むガスタービン発電プラント(又は、その他の機械的駆動用途)における出力を増強する方法を提供し、本方法は、a)圧縮機への周囲空気入口に対する液体空気の選択的付加を可能にするように配置された液体又は液化空気或いは気体ブレンド源(従って、単に「空気」と呼ぶ)を設けるステップと、b)そのような事象時に周囲空気入口内に制御量の液体空気を流すステップとを含む。   According to an exemplary but non-limiting embodiment of the technology described herein, a reduction in compressor inlet temperature generally takes advantage of the known phenomenon of increasing gas turbine output performance. Yes. Thus, in an event such as when the grid frequency drops below a predetermined target frequency, in a gas turbine power plant (or other mechanical drive application) that includes a multi-stage compressor, combustor and multi-stage turbine components A method is provided for enhancing the output, the method comprising: a) a liquid or liquefied air or gas blend source (and thus simply arranged) to allow selective addition of liquid air to the ambient air inlet to the compressor. B) providing a controlled amount of liquid air in the ambient air inlet during such an event.

別の態様では、本発明は、ガスタービン発電プラントに関し、本ガスタービン発電プラントは、周囲空気入口を有する複数段圧縮機と、複数段タービン構成要素と、圧縮機から加圧空気を受けかつ複数段タービン構成要素に対してガス状燃焼生成物を供給するように配置された燃焼器と、圧縮機の周囲空気入口に対して液体空気を供給するように配置された液体空気源とを含む。   In another aspect, the invention relates to a gas turbine power plant, the gas turbine power plant receiving a multi-stage compressor having an ambient air inlet, a multi-stage turbine component, pressurized air from the compressor, and a plurality of A combustor arranged to supply gaseous combustion products to the stage turbine component and a liquid air source arranged to supply liquid air to the ambient air inlet of the compressor.

以下に特定する単一の図面の図に関連させて、本発明を説明する。   The invention will be described with reference to the single drawing figures identified below.

本発明の例示的であるが非限定的な実施形態による圧縮機入口冷却構成を組み込んだガスタービンプラントの簡略概略図。1 is a simplified schematic diagram of a gas turbine plant incorporating a compressor inlet cooling configuration according to an exemplary but non-limiting embodiment of the present invention. FIG.

図を参照すると、ガスタービンプラント10は、燃焼器14に対して空気を供給する複数段圧縮機12を含み、燃焼器14は次に、複数段ガスタービン16に対して高温燃焼ガスを供給する。図示するように、圧縮機12及びガスタービン16は、共通のロータシャフト18上で作動し、ロータシャフト18はまた、タービン16の下流に配置された発電機(図示せず)に連結することができる。その他のタービン構成もまた、本発明により利点を得ることができる。ガスタービン構成自体は、本発明の主題ではなく、何らさらに詳細に説明する必要はない。   Referring to the figure, a gas turbine plant 10 includes a multi-stage compressor 12 that supplies air to a combustor 14, which in turn supplies hot combustion gases to a multi-stage gas turbine 16. . As shown, the compressor 12 and the gas turbine 16 operate on a common rotor shaft 18, and the rotor shaft 18 may also be coupled to a generator (not shown) disposed downstream of the turbine 16. it can. Other turbine configurations can also benefit from the present invention. The gas turbine configuration itself is not the subject of the present invention and need not be described in any further detail.

本発明の例示的であるが非限定的な実施形態によると、圧縮機12に対して実質的に開口端部の入口プレナム20が配置されて、圧縮機入口22に対して低温吸気を供給する。貯蔵タンク24は、複数ノズル30を備えた噴射マニホルド28に対して導管26を通して液体空気を供給するように配置される。液体空気は、圧縮及び熱除去によって非常に低温に冷却された空気である。液体空気は、約870kg/mの密度を有し、この密度は、空気の元素組成に応じて変化させることができる。液体空気噴射は、マニホルド28及びノズル30の上流において導管24内に配置された制御弁32によって制御される。 According to an exemplary but non-limiting embodiment of the present invention, a substantially open end inlet plenum 20 is disposed with respect to the compressor 12 to supply cold intake air to the compressor inlet 22. . The storage tank 24 is arranged to supply liquid air through a conduit 26 to an injection manifold 28 having a plurality of nozzles 30. Liquid air is air that has been cooled to a very low temperature by compression and heat removal. Liquid air has a density of about 870 kg / m 3 and this density can vary depending on the elemental composition of the air. Liquid air injection is controlled by a control valve 32 located in the conduit 24 upstream of the manifold 28 and nozzle 30.

マニホルド28及び関連するノズル30の配置は、プレナム20内で変化させることができる。例えば、プレナム入口34に近接させてノズルを設置することによって、空気が圧縮機入口22に向かって流れるにつれて、より均一な温度を達成することができるが、通路に沿った幾分望ましくない温度上昇を生じる可能性がある。圧縮機入口22に近接させてマニホルド28及び関連するノズル30を配置することによって、低温であるがより均一さが劣る温度が生じる可能性がある。従って、マニホルド28及びノズル30の的確な配置は、特定の用途に応じて決まることになるが、このことは、当業者にはよく知られていることである。   The arrangement of the manifold 28 and associated nozzles 30 can vary within the plenum 20. For example, by placing the nozzle in close proximity to the plenum inlet 34, a more uniform temperature can be achieved as the air flows toward the compressor inlet 22, but a somewhat undesired temperature rise along the passageway. May occur. Placing the manifold 28 and associated nozzle 30 in close proximity to the compressor inlet 22 can result in a colder but less uniform temperature. Thus, the exact placement of manifold 28 and nozzle 30 will depend on the particular application, which is well known to those skilled in the art.

上記の入口構成は、圧縮機12の入口システム内に液体空気を噴射し、それによって圧縮機12に流入する周囲空気の温度を低下させることによって、短期間の出力増強を可能にする。液体空気の流量を増大させることによる温度の低下は、少なくとも一時的に、そうでなければガスタービン16をその正常作動温度以上で燃焼させることが必要となるレベルまで該ガスタービン16の出力を増大させる。   The inlet configuration described above allows for short-term power augmentation by injecting liquid air into the inlet system of the compressor 12 thereby lowering the temperature of the ambient air entering the compressor 12. A decrease in temperature by increasing the flow rate of liquid air will increase the output of the gas turbine 16 to a level that will at least temporarily require the gas turbine 16 to burn above its normal operating temperature. Let

制御方式は、様々な周波数レベルでの出力要件に又は具体的な圧縮機入口温度の維持に基づいたものとすることができる。弁32によって液体空気の供給量を、所定の周波数レベルでの必要な出力に維持するのに必要な最小量に、すなわち高価な液体空気をより長い補充間隔として節約する断続又は調整基準に基づいて制御することもまた、利点をもたらすことができる。   The control scheme can be based on power requirements at various frequency levels or on maintaining a specific compressor inlet temperature. Valve 32 provides the liquid air supply to the minimum required to maintain the required output at a given frequency level, ie, based on intermittent or regulated criteria that saves expensive liquid air as a longer refill interval. Controlling can also provide benefits.

本明細書に記載したような付加的な圧縮機質量流量によって達成される出力増強により、圧縮機サージ及び部品寿命を改善することができることも、理解されたい。   It should also be understood that compressor surge and component life can be improved by the power enhancement achieved by the additional compressor mass flow as described herein.

現時点で最も実用的かつ好ましい実施形態であると考えられるものに関して本発明を説明してきたが、本発明は、開示した実施形態に限定されるものではなく、逆に特許請求の範囲の技術思想及び技術的範囲内に含まれる様々な改良及び均等な構成を保護しようとするものであることを理解されたい。   Although the present invention has been described with respect to what is considered to be the most practical and preferred embodiments at the present time, the invention is not limited to the disclosed embodiments, and conversely, It should be understood that various modifications and equivalent arrangements included within the technical scope are intended to be protected.

10 ガスタービンプラント
12 複数段圧縮機
14 燃焼器
16 複数段ガスタービン
18 ロータシャフト
20 入口プレナム
22 貯蔵タンク
26 導管
28 マニホルド
30 ノズル
32 制御弁
34 プレナム入口
DESCRIPTION OF SYMBOLS 10 Gas turbine plant 12 Multiple stage compressor 14 Combustor 16 Multiple stage gas turbine 18 Rotor shaft 20 Inlet plenum 22 Storage tank 26 Conduit 28 Manifold 30 Nozzle 32 Control valve 34 Plenum inlet

Claims (11)

グリッド又はガスタービン周波数が所定の目標周波数以下に低下した場合或いはガスタービン負荷が一時的にその能力を超えると予測された場合のような事象時に、複数段圧縮機、燃焼器及び複数段タービン構成要素を含むガスタービン発電プラントにおける出力を増強する方法であって、
a)前記圧縮機への周囲空気入口に対する液体空気の選択的付加を可能にするように配置された液体空気源を設けるステップと、
b)前記事象時に前記周囲空気入口内に制御量の液体空気を流すステップと
を含む方法。
Multi-stage compressor, combustor and multi-stage turbine configurations during events such as when the grid or gas turbine frequency drops below a predetermined target frequency or when the gas turbine load is predicted to temporarily exceed its capacity A method for enhancing power in a gas turbine power plant including an element, comprising:
a) providing a liquid air source arranged to allow selective addition of liquid air to an ambient air inlet to the compressor;
b) flowing a controlled amount of liquid air into the ambient air inlet during the event.
前記周囲空気入口に対して前記液体空気を供給する導管内に1以上の制御弁を設けるステップを含む、請求項1記載の方法。   The method of claim 1, comprising providing one or more control valves in a conduit that supplies the liquid air to the ambient air inlet. 前記ステップb)が、前記圧縮機の周囲空気入口に近接させて設置した複数のノズルを通して前記液体空気を噴射するステップを含む、請求項2記載の方法。   The method of claim 2, wherein step b) includes injecting the liquid air through a plurality of nozzles installed in close proximity to an ambient air inlet of the compressor. 前記ステップb)が、
前記ノズルをマニホルドに取付けるステップと、
前記マニホルドを前記周囲空気入口に隣接させてプレナム内に設置するステップと
をさらに含む,
請求項3記載の方法。
Said step b)
Attaching the nozzle to a manifold;
Installing the manifold in the plenum adjacent to the ambient air inlet;
The method of claim 3.
前記ステップb)が、前記グリッド周波数の関数として実施される、請求項1記載の方法。   The method of claim 1, wherein step b) is performed as a function of the grid frequency. 前記ステップb)が、圧縮機空気入口温度及びタービン出力の関数として実施される、請求項1記載の方法。   The method of claim 1, wherein step b) is performed as a function of compressor air inlet temperature and turbine power. 前記ステップb)が、所定の周波数レベルで必要な出力を維持するための最小量の液体空気を供給するように実施される、請求項1記載の方法。   The method of claim 1, wherein step b) is performed to provide a minimum amount of liquid air to maintain the required power at a predetermined frequency level. 周囲空気入口を有する複数段圧縮機と、
複数段タービン構成要素と、
前記圧縮機から加圧空気を受けかつ前記複数段タービン構成要素に対してガス状燃焼生成物を供給するように配置された燃焼器と、
前記圧縮機の周囲空気入口に対して液体空気を供給するように配置された液体空気源と
を含むガスタービン発電プラント。
A multi-stage compressor having an ambient air inlet;
A multi-stage turbine component;
A combustor arranged to receive pressurized air from the compressor and to supply gaseous combustion products to the multi-stage turbine component;
A gas turbine power plant including a liquid air source arranged to supply liquid air to an ambient air inlet of the compressor.
前記周囲空気入口に近接させて設置した1以上の噴射ノズルを備えた液体空気噴射マニホルドを含む、請求項8記載のガスタービン発電プラント。   The gas turbine power plant according to claim 8, comprising a liquid air injection manifold with one or more injection nozzles installed proximate to the ambient air inlet. 前記液体空気源と前記周囲空気入口との間に配置された導管を含み、
前記マニホルドの上流において前記導管内に、制御弁が設置される、
請求項9記載のガスタービン発電プラント。
A conduit disposed between the liquid air source and the ambient air inlet;
A control valve is installed in the conduit upstream of the manifold;
The gas turbine power plant according to claim 9.
前記マニホルドが、前記周囲空気入口に隣接してプレナム内に設置される、請求項10記載のガスタービン発電プラント。   The gas turbine power plant of claim 10, wherein the manifold is installed in a plenum adjacent to the ambient air inlet.
JP2009075418A 2008-04-02 2009-03-26 Suppression of gas turbine inlet temperature during under frequency events and related method Withdrawn JP2009250233A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/078,612 US20090252598A1 (en) 2008-04-02 2008-04-02 Gas turbine inlet temperature suppression during under frequency events and related method

Publications (1)

Publication Number Publication Date
JP2009250233A true JP2009250233A (en) 2009-10-29

Family

ID=41051617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009075418A Withdrawn JP2009250233A (en) 2008-04-02 2009-03-26 Suppression of gas turbine inlet temperature during under frequency events and related method

Country Status (5)

Country Link
US (1) US20090252598A1 (en)
JP (1) JP2009250233A (en)
CN (1) CN101550874A (en)
DE (1) DE102009003701A1 (en)
FR (1) FR2929647A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090249794A1 (en) * 2008-04-02 2009-10-08 General Electric Company Systems and Methods for Augmenting Power Output of a Turbine During a Transient Event
KR101239352B1 (en) * 2010-02-24 2013-03-06 삼성중공업 주식회사 Floating liquefied natural gas charging station
CN102635777A (en) * 2012-04-26 2012-08-15 孙炜 Production method and device of canned liquefied air
FR2996625B1 (en) * 2012-10-09 2017-08-11 Gaztransport Et Technigaz WATERPROOF AND INSULATED TANK FOR CONTAINING COLD FLUID UNDER PRESSURE
US9492780B2 (en) 2014-01-16 2016-11-15 Bha Altair, Llc Gas turbine inlet gas phase contaminant removal
US10502136B2 (en) 2014-10-06 2019-12-10 Bha Altair, Llc Filtration system for use in a gas turbine engine assembly and method of assembling thereof
FR3117168B1 (en) * 2020-12-03 2023-08-25 Total Se Process for producing electrical and/or mechanical energy for a consumer system and associated production system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4354565A (en) * 1978-11-06 1982-10-19 R & D Associates Engine system using liquid air and combustible fuel
US4442665A (en) * 1980-10-17 1984-04-17 General Electric Company Coal gasification power generation plant
JP2877098B2 (en) * 1995-12-28 1999-03-31 株式会社日立製作所 Gas turbines, combined cycle plants and compressors
US5974572A (en) * 1996-10-15 1999-10-26 Mercury Interactive Corporation Software system and methods for generating a load test using a server access log
DE69720950T2 (en) * 1997-02-07 2004-03-11 Alstom (Switzerland) Ltd. Method for controlling a power plant
US6474069B1 (en) * 2000-10-18 2002-11-05 General Electric Company Gas turbine having combined cycle power augmentation
DE10115131A1 (en) * 2001-03-27 2002-10-17 Alstom Switzerland Ltd Process for the immediate, quick and temporary increase in the output of a combined cycle power plant
GB2382847A (en) * 2001-12-06 2003-06-11 Alstom Gas turbine wet compression
US7274111B2 (en) * 2005-12-09 2007-09-25 General Electric Company Methods and apparatus for electric power grid frequency stabilization
US20090249794A1 (en) * 2008-04-02 2009-10-08 General Electric Company Systems and Methods for Augmenting Power Output of a Turbine During a Transient Event

Also Published As

Publication number Publication date
US20090252598A1 (en) 2009-10-08
FR2929647A1 (en) 2009-10-09
CN101550874A (en) 2009-10-07
DE102009003701A1 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
US20110210555A1 (en) Gas turbine driven electric power system with constant output through a full range of ambient conditions
JP2009250233A (en) Suppression of gas turbine inlet temperature during under frequency events and related method
JP6205118B2 (en) Method and apparatus for optimizing turbine system operation under flexible loads
US20090249794A1 (en) Systems and Methods for Augmenting Power Output of a Turbine During a Transient Event
JP5024460B2 (en) engine
US9970360B2 (en) Gas turbine engine configured to shape power output
JP5591462B2 (en) System for delivering air from a multi-stage compressor of a gas turbine engine to a turbine section
RU2665773C2 (en) Gas turbine plant operation method with step and / or sequential combustion
JP2014139429A (en) Systems and methods for active component life management for gas turbine engines
US9523313B2 (en) System and method for loading a combined cycle power plant
US8152457B2 (en) Compressor clearance control system using bearing oil waste heat
JP2010261458A (en) Method related to control and operation of gas turbine
JP2011001954A (en) System and method for heating turbine fuel in simple cycle plant
US8220266B2 (en) Condenser for power plant
US10267231B2 (en) Systems and methods for augmenting gas turbine power output with a pressurized air tank and/or an external compressor
JP2015214973A (en) Enhanced turbine cooling system using blend of compressor bleed air and ambient air
US20140123666A1 (en) System to Improve Gas Turbine Output and Hot Gas Path Component Life Utilizing Humid Air for Nozzle Over Cooling
US9882453B2 (en) Method for providing a frequency response for a combined cycle power plant
JP6800692B2 (en) Gas turbine with valve cooling system
US10739233B2 (en) CAES combustor test facility
US20130219916A1 (en) Apparatus and method for conditioning air received by a power generation system
US11976588B2 (en) Gas turbine hot air injection power augmentation utilizing compressed stored air
CN104204425B (en) Power station and the method for running power station

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120306

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20130709

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130806