JP2009250047A - Temperature control device of exhaust emission control device - Google Patents

Temperature control device of exhaust emission control device Download PDF

Info

Publication number
JP2009250047A
JP2009250047A JP2008095706A JP2008095706A JP2009250047A JP 2009250047 A JP2009250047 A JP 2009250047A JP 2008095706 A JP2008095706 A JP 2008095706A JP 2008095706 A JP2008095706 A JP 2008095706A JP 2009250047 A JP2009250047 A JP 2009250047A
Authority
JP
Japan
Prior art keywords
temperature
exhaust
throttle valve
flow rate
opening degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008095706A
Other languages
Japanese (ja)
Other versions
JP4686567B2 (en
Inventor
Hisao Haga
久夫 羽賀
Tadashi Umeda
正 梅田
Kenichi Tajiri
賢一 田尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008095706A priority Critical patent/JP4686567B2/en
Publication of JP2009250047A publication Critical patent/JP2009250047A/en
Application granted granted Critical
Publication of JP4686567B2 publication Critical patent/JP4686567B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably maintain the target temperature by restraining an overshoot to the target temperature, while enabling an early arrival at the target temperature of an exhaust emission control device, by taking into consideration a flow rate of exhaust gas, in a temperature control device for controlling the temperature of the exhaust emission control device via opening control of an exhaust throttle valve. <P>SOLUTION: This temperature control device has the exhaust throttle valve, a temperature detecting means for detecting the temperature of a catalyst device, an opening control means for controlling opening of the exhaust throttle valve, and an exhaust flow rate detecting means for detecting an exhaust flow rate Qe, and controls the temperature in the target temperature To of the catalyst device by controlling the opening of the exhaust throttle valve by the opening control means. The opening control means controls the exhaust throttle valve in required opening β by calculating the required opening β of the exhaust throttle valve based on a temperature difference ΔT being an absolute value of a difference between the target temperature To being the temperature when the catalyst device is put in an active state and the actual temperature T detected by the temperature detecting means and the exhaust flow rate Qe detected by the exhaust flow rate detecting means. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、排気通路に配置された排気浄化装置を備える内燃機関において、該排気浄化装置の温度を制御するために、前記排気通路に配置された排気絞り弁の開度を制御する温度制御装置に関する。   The present invention relates to a temperature control device for controlling an opening degree of an exhaust throttle valve disposed in the exhaust passage in order to control a temperature of the exhaust purification device in an internal combustion engine including an exhaust purification device disposed in the exhaust passage. About.

ガソリン機関およびディーゼル機関を含む内燃機関において、排気ガスを浄化する排気浄化装置として、酸化触媒装置やNOx触媒装置などの触媒装置、またディーゼル機関において排気微粒子を捕集するフィルタ装置が使用されている。これら排気浄化装置においては、その排気浄化性能を維持・向上させるために、触媒装置では触媒が活性状態になる活性温度に早期に達すると共に浄化率が高い温度を維持するように、また、SOx(硫黄酸化物)の付着による浄化性能の低下が生じるNOx触媒装置や排気微粒子の付着による浄化性能の低下が生じるフィルタ装置では、浄化性能を回復すべく付着したSOxの還元や排気微粒子の燃焼が可能な再生温度に昇温させる必要がある。
そこで、内燃機関の排気通路に配置される触媒装置よりも下流に配置されて排気ガスの流量を制御する排気絞り弁と、触媒装置の温度を検出する温度検出手段とを備え、排気絞り弁を閉じ気味して排圧を高めることで、排気ガスの温度が上昇することを利用して、該温度検出手段により検出された温度に基づいて排気絞り弁の開度を制御することにより、触媒装置が早期に活性温度に達するようにした排気制御装置が知られている(例えば、特許文献1参照)。
また、排気通路に配置される触媒装置を備える内燃機関において、温度センサによる触媒装置の温度の検出精度を高めるために、排気通路を流れる排気ガスの流量と温度センサの出力とに基づいて、触媒装置の温度を推定することが知られている(例えば、特許文献2参照)。
特許第2817852号公報 特開2007−16653号公報
In an internal combustion engine including a gasoline engine and a diesel engine, a catalyst device such as an oxidation catalyst device or a NOx catalyst device is used as an exhaust gas purification device for purifying exhaust gas, and a filter device for collecting exhaust particulates is used in a diesel engine. . In these exhaust purification apparatuses, in order to maintain and improve the exhaust purification performance, in the catalyst apparatus, so as to quickly reach the activation temperature at which the catalyst becomes active and maintain a high purification rate, SOx ( In the NOx catalyst device that reduces the purification performance due to the adhesion of sulfur oxides) and the filter device that deteriorates the purification performance due to the adhesion of exhaust particulates, it is possible to reduce the attached SOx and burn the exhaust particulates to restore the purification performance It is necessary to raise the temperature to a suitable regeneration temperature.
Therefore, an exhaust throttle valve that is disposed downstream of the catalyst device that is disposed in the exhaust passage of the internal combustion engine and controls the flow rate of the exhaust gas, and a temperature detection means that detects the temperature of the catalyst device, the exhaust throttle valve is provided. By utilizing the fact that the temperature of the exhaust gas rises by increasing the exhaust pressure by closing, the catalyst device is controlled by controlling the opening of the exhaust throttle valve based on the temperature detected by the temperature detecting means There is known an exhaust control device that can reach the activation temperature early (see, for example, Patent Document 1).
Further, in an internal combustion engine including a catalyst device disposed in an exhaust passage, in order to increase the accuracy of temperature detection of the catalyst device by the temperature sensor, the catalyst is based on the flow rate of exhaust gas flowing through the exhaust passage and the output of the temperature sensor. It is known to estimate the temperature of the apparatus (for example, see Patent Document 2).
Japanese Patent No. 2817852 JP 2007-16653 A

触媒装置の温度に応じて排気絞り弁の開度を制御することにより触媒装置の温度が制御される場合、触媒装置の温度が目標温度(例えば活性温度)に達するまでは、排気絞り弁が閉じ気味の一定の開度に保持され、該目標温度に達したときに、排気絞り弁が開き気味の中間開度に変更され、さらに触媒装置の温度が触媒の劣化を早める温度に達したときは、排気絞り弁が全開にされるなど、排気絞り弁の開度が段階的に制御されると、触媒装置の温度の上昇制御時には、温度が目標温度よりも上昇するオーバシュートや、下降制御時には、温度が目標温度よりも下降するオーバシュートを生じる。
そして、このようにオーバシュートが生じると、浄化率が高い温度範囲から外れて浄化性能の低下を招来したり、過度の昇温やその頻度が高まる場合には、触媒装置の劣化を生じやすくなって、触媒装置の耐久性の低下を招来することがある。また、浄化性能を回復するための再生処理が必要な排気浄化装置においても、再生処理の効率の低下や、過度の温度上昇に起因する排気浄化装置の耐久性の低下を招来することがある。
また、排気絞り弁の開度が同一の場合でも、排気ガスの流量が異なる場合には、排気ガスの温度上昇率、したがって排気浄化装置の温度の上昇率や下降率も異なるため、オーバシュートが一層発生しやすくなる。
When the temperature of the catalyst device is controlled by controlling the opening of the exhaust throttle valve according to the temperature of the catalyst device, the exhaust throttle valve is closed until the temperature of the catalyst device reaches a target temperature (for example, the activation temperature). When the target temperature is reached, the exhaust throttle valve is opened and changed to an intermediate opening, and when the temperature of the catalytic device reaches a temperature that accelerates catalyst deterioration, When the exhaust throttle valve opening is controlled in stages, such as when the exhaust throttle valve is fully opened, the temperature of the catalyst device is controlled to increase, the overshooting when the temperature rises above the target temperature, This causes an overshoot in which the temperature falls below the target temperature.
If overshoot occurs in this way, the purification rate falls outside the high temperature range, leading to a reduction in purification performance, or excessive increase in temperature or frequency thereof tends to cause deterioration of the catalyst device. Thus, the durability of the catalyst device may be reduced. Further, even in an exhaust purification device that requires a regeneration process for recovering the purification performance, the efficiency of the regeneration process may be reduced, or the durability of the exhaust purification device may be reduced due to an excessive temperature rise.
Even if the exhaust throttle valve opening is the same, if the exhaust gas flow rate is different, the exhaust gas temperature rise rate, and therefore the exhaust gas purification device temperature rise rate and fall rate, will also differ, so overshoot will occur. It becomes easier to generate.

本発明は、このような事情に鑑みてなされたものであり、請求項1〜5記載の発明は、排気絞り弁の開度制御を通じて排気浄化装置の温度を制御する温度制御装置において、排気ガスの流量を考慮することにより、排気浄化装置の目標温度への早期到達を可能にしながら、目標温度に対するオーバシュートを抑制して、目標温度の安定維持を図ることを目的とする。   The present invention has been made in view of such circumstances, and the invention according to claims 1 to 5 is directed to an exhaust gas in a temperature control device that controls the temperature of an exhaust purification device through opening control of an exhaust throttle valve. It is an object to achieve stable maintenance of the target temperature by suppressing overshoot with respect to the target temperature while allowing the exhaust purification device to reach the target temperature early by considering the flow rate of the exhaust gas.

請求項1記載の発明は、内燃機関(E)の排気通路(7)に配置される排気浄化装置(9)よりも上流または下流に配置されて前記排気通路(7)を流れる排気ガスの流量を制御する排気絞り弁(10)と、前記排気浄化装置(9)の温度を検出する温度検出手段(23)と、前記排気絞り弁(10)の開度を制御する開度制御手段(30)とを備え、前記排気絞り弁(10)の開度を制御することにより前記排気浄化装置(9)の温度を制御する温度制御装置において、排気ガスの流量を検出する排気流量検出手段(24)を備え、前記開度制御手段(30)は、前記排気浄化装置(9)が活性状態にあるときの温度または再生可能状態にあるときの温度である目標温度(To)と前記温度検出手段(23)により検出された実温度(T)との差の絶対値である温度差(ΔT)と、前記排気流量検出手段(24)により検出された排気流量(Qe)とに基づいて前記排気絞り弁(10)の必要開度(β)を算出し、前記排気絞り弁(10)を前記必要開度(β)に制御する温度制御装置である。
請求項2記載の発明は、請求項1記載の温度制御装置において、前記開度制御手段(30)は、前記温度差(ΔT)と前記排気流量(Qe)とに基づいて温度変更量(Tc)を算出する温度変更量算出手段(31)と、前記温度変更量(Tc)に基づいて前記必要開度(β)を算出する開度算出手段(32)とから構成されるものである。
請求項3記載の発明は、請求項2記載の温度制御装置において、前記実温度(T)が前記目標温度(To)以下のとき、前記温度変更量算出手段(31)は、前記温度差(ΔT)が低温側の所定値(ΔT)以上であるときに前記温度変更量(Tc)である温度上昇量(Tu)を最大値(Tum)とし、前記温度差(ΔT)が前記所定値(ΔT)未満であるときに前記温度差(ΔT)の減少に応じて前記温度上昇量(Tu)を連続的に減少する値とし、前記開度算出手段(32)は、前記温度上昇量(Tu)の減少に応じて連続的に前記必要開度(β)を増加させるものである。
請求項4記載の発明は、請求項2または3記載の温度制御装置において、前記実温度(T)が前記目標温度(To)を超えるとき、前記温度変更量算出手段(31)は、前記温度差(ΔT)が高温側の所定値(ΔT)以上であるときに前記温度変更量(Tc)である温度下降量(Td)を最大値(Tdm)とし、前記温度差(ΔT)が前記高温側の所定値(ΔT)未満であるときに前記温度差(ΔT)の減少に応じて前記温度下降量(Td)を連続的に減少する値とし、前記開度算出手段(32)は、前記温度下降量(Td)の減少に応じて連続的に前記必要開度(β)を減少させるものである。
請求項5記載の発明は、請求項3または4記載の温度制御装置において、前記所定値(ΔT,ΔT)は、前記排気流量(Qe)が増加するに応じて増加するものである。
According to the first aspect of the present invention, the flow rate of the exhaust gas that is disposed upstream or downstream of the exhaust purification device (9) disposed in the exhaust passage (7) of the internal combustion engine (E) and flows through the exhaust passage (7). An exhaust throttle valve (10) for controlling the temperature, a temperature detection means (23) for detecting the temperature of the exhaust purification device (9), and an opening degree control means (30 for controlling the opening degree of the exhaust throttle valve (10)) And an exhaust flow rate detecting means (24) for detecting the flow rate of the exhaust gas in a temperature control device that controls the temperature of the exhaust purification device (9) by controlling the opening of the exhaust throttle valve (10). The opening degree control means (30) includes a target temperature (To) that is a temperature when the exhaust purification device (9) is in an active state or a temperature when it is in a regenerative state, and the temperature detection means. The temperature which is the absolute value of the difference from the actual temperature (T) detected by (23) A required opening (β) of the exhaust throttle valve (10) is calculated based on the degree difference (ΔT) and the exhaust flow rate (Qe) detected by the exhaust flow rate detecting means (24), and the exhaust throttle valve (10) is a temperature control device that controls the required opening degree (β).
According to a second aspect of the present invention, in the temperature control device according to the first aspect, the opening degree control means (30) is configured to change a temperature change amount (Tc) based on the temperature difference (ΔT) and the exhaust flow rate (Qe). ) For calculating the required opening degree (β) based on the temperature change amount (Tc) and an opening degree calculating means (32) for calculating the required opening degree (β).
According to a third aspect of the present invention, in the temperature control device according to the second aspect, when the actual temperature (T) is equal to or lower than the target temperature (To), the temperature change amount calculating means (31) When ΔT) is equal to or higher than a predetermined value (ΔT L ) on the low temperature side, the temperature increase amount (Tu) that is the temperature change amount (Tc) is set to the maximum value (Tum), and the temperature difference (ΔT) is the predetermined value. When the temperature difference (ΔT) is less than (ΔT L ), the temperature increase amount (Tu) is set to a value that continuously decreases in accordance with a decrease in the temperature difference (ΔT), and the opening degree calculation means (32) The required opening (β) is continuously increased in accordance with the decrease in (Tu).
According to a fourth aspect of the present invention, in the temperature control device according to the second or third aspect, when the actual temperature (T) exceeds the target temperature (To), the temperature change amount calculating means (31) When the difference (ΔT) is equal to or greater than a predetermined value (ΔT H ) on the high temperature side, the temperature decrease amount (Td) that is the temperature change amount (Tc) is set to the maximum value (Tdm), and the temperature difference (ΔT) is When the temperature difference (ΔT) is less than a predetermined value (ΔT H ) on the high temperature side, the temperature decrease amount (Td) is continuously decreased in accordance with the decrease in the temperature difference (ΔT), and the opening degree calculation means (32) The required opening degree (β) is continuously decreased in accordance with the decrease in the temperature decrease amount (Td).
According to a fifth aspect of the present invention, in the temperature control device according to the third or fourth aspect, the predetermined values (ΔT L , ΔT H ) increase as the exhaust flow rate (Qe) increases.

請求項1記載の発明によれば、排気浄化装置の温度を制御するための排気絞り弁の開度が、目標温度と温度検出手段により検出された実温度との温度差のほかに、排気流量検出手段により検出された排気流量にも基づいて制御されるので、排気浄化装置の温度が速やかに目標温度に達するようにでき、しかも排気浄化装置の温度が目標温度に対してオーバシュートすることが抑制されて、目標温度を安定して維持できる。この結果、浄化性能の向上や、浄化性能を回復するための再生処理の効率の向上が可能になり、さらに、過度の温度上昇が防止されて、排気浄化装置の耐久性を向上させることができる。
請求項2記載の事項によれば、排気絞り弁の開度が、目標温度と実温度との温度差および排気流量に基づいて制御される場合にも、温度変更量算出手段により該温度差が排気流量により補正された温度変更量が設定されるので、温度差のみに基づいて設定される温度変更量算出手段に対して利用可能な開度算出手段をそのまま使用できる。
請求項3記載の事項によれば、排気浄化装置の温度を目標温度まで上昇させるときに、目標温度と実温度との温度差が所定値未満となって小さくなるとき、連続的に減少する温度上昇量と共に排気絞り弁の必要開度が連続的に増加するので、排気浄化装置の温度上昇時における目標温度に対するオーバシュートを効果的に抑制できる。
請求項4記載の事項によれば、排気浄化装置の温度を目標温度まで下降させるときに、目標温度と実温度との温度差が所定値未満となって小さくなるとき、連続的に減少する温度下降量と共に排気絞り弁の必要開度も連続的に減少するので、排気絞り弁の必要開度が大きくなる温度下降時における目標温度に対するオーバシュートおよび該必要開度が小さくなる温度上昇時における目標温度に対するオーバシュートを効果的に抑制できる。
請求項5記載の事項によれば、排気流量が増加するときに、温度差が比較的大きい時期から温度変更量が減少し始めるので、目標温度に対するオーバシュートを一層抑制できる。
According to the first aspect of the present invention, in addition to the temperature difference between the target temperature and the actual temperature detected by the temperature detection means, the opening of the exhaust throttle valve for controlling the temperature of the exhaust purification device is not limited to the exhaust flow rate. Since the control is also based on the exhaust flow rate detected by the detection means, the temperature of the exhaust purification device can quickly reach the target temperature, and the temperature of the exhaust purification device can overshoot the target temperature. It is suppressed and the target temperature can be stably maintained. As a result, it is possible to improve the purification performance and the efficiency of the regeneration process for recovering the purification performance, and further it is possible to prevent an excessive temperature rise and improve the durability of the exhaust purification device. .
According to the second aspect of the present invention, even when the opening degree of the exhaust throttle valve is controlled based on the temperature difference between the target temperature and the actual temperature and the exhaust flow rate, the temperature change amount calculation means calculates the temperature difference. Since the temperature change amount corrected by the exhaust flow rate is set, the available opening degree calculation means can be used as it is for the temperature change amount calculation means set based only on the temperature difference.
According to the third aspect of the present invention, when the temperature of the exhaust gas purification device is raised to the target temperature, the temperature continuously decreases when the temperature difference between the target temperature and the actual temperature becomes smaller than a predetermined value and becomes smaller. Since the required opening of the exhaust throttle valve continuously increases with the amount of increase, it is possible to effectively suppress overshoot with respect to the target temperature when the temperature of the exhaust purification device rises.
According to the fourth aspect of the present invention, when the temperature of the exhaust purification device is lowered to the target temperature, the temperature continuously decreases when the temperature difference between the target temperature and the actual temperature becomes smaller than a predetermined value and becomes smaller. Since the required opening of the exhaust throttle valve decreases continuously with the amount of lowering, the overshoot with respect to the target temperature when the temperature drops when the required opening of the exhaust throttle valve increases and the target when the temperature rises when the required opening becomes smaller The overshoot with respect to temperature can be effectively suppressed.
According to the fifth aspect of the present invention, when the exhaust gas flow rate increases, the amount of temperature change starts to decrease from a time when the temperature difference is relatively large, so that overshoot with respect to the target temperature can be further suppressed.

以下、本発明の実施形態を図1〜図7を参照して説明する。
図1を参照すると、本発明が適用された温度制御装置は、車両に搭載されるディーゼル機関である内燃機関Eに備えられる。
内燃機関Eは、燃焼室と該燃焼室内の燃焼ガスの圧力により駆動されてクランク軸を回転駆動するピストンとが設けられる機関本体1と、エアクリーナ3を備えると共に吸入空気を前記燃焼室に導く吸気通路4を形成する吸気装置2と、該燃焼室内の吸入空気に燃料を噴射して混合気を形成する燃料噴射弁5と、前記燃焼室内での前記混合気の燃焼により発生した燃焼ガスを排気ガスとして内燃機関Eの外部に導く排気通路7を形成する排気装置6とを備える。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
Referring to FIG. 1, a temperature control device to which the present invention is applied is provided in an internal combustion engine E that is a diesel engine mounted on a vehicle.
The internal combustion engine E includes an engine body 1 provided with a combustion chamber and a piston that is driven by the pressure of the combustion gas in the combustion chamber to rotationally drive a crankshaft, an air cleaner 3, and intake air that guides intake air to the combustion chamber. An intake device 2 that forms a passage 4, a fuel injection valve 5 that forms fuel-air mixture by injecting fuel into the intake air in the combustion chamber, and exhausts combustion gas generated by combustion of the fuel-air mixture in the combustion chamber And an exhaust device 6 that forms an exhaust passage 7 that leads to the outside of the internal combustion engine E as gas.

吸気装置2は、吸気通路4に配置されて前記燃焼室に吸入される吸入空気の流量を制御する吸気絞り弁8を備える。
排気装置6は、排気通路7に配置されて排気ガスを浄化する排気浄化装置としての触媒装置であるリーンNOx触媒装置9と、排気通路7を流れる排気ガスの流量を制御する排気絞り弁10とを備える。
蝶形弁から構成される排気絞り弁10は、排気通路7において触媒装置9よりも下流に配置される。
触媒装置9は、例えば白金などを担体に担持させた触媒装置、または金属炭化物または金属窒化物からなる担体にイリジウムおよびアルカリ土類金属を担持させた選択還元型触媒装置である。
The intake device 2 includes an intake throttle valve 8 that is disposed in the intake passage 4 and controls the flow rate of intake air that is sucked into the combustion chamber.
The exhaust device 6 includes a lean NOx catalyst device 9 that is a catalyst device that is disposed in the exhaust passage 7 and purifies exhaust gas, and an exhaust throttle valve 10 that controls the flow rate of exhaust gas flowing through the exhaust passage 7. Is provided.
An exhaust throttle valve 10 composed of a butterfly valve is disposed downstream of the catalyst device 9 in the exhaust passage 7.
The catalyst device 9 is, for example, a catalyst device in which platinum or the like is supported on a carrier, or a selective reduction type catalyst device in which iridium and an alkaline earth metal are supported on a carrier made of metal carbide or metal nitride.

内燃機関Eは、さらに、内燃機関Eの運転状態を制御する運転制御装置11と、吸気絞り弁8を開閉駆動する駆動手段であるアクチュエータ12と、排気絞り弁10を開閉駆動する駆動手段であるアクチュエータ13とを備える。
図2を併せて参照すると、運転制御装置11は、内燃機関Eの運転状態など内燃機関Eの状態を検出する機関状態検出手段20と、機関状態検出手段20により検出された機関状態に応じて燃料噴射弁5や各アクチュエータ12,13の動作を制御する電子制御ユニット(以下、「ECU」という。)15とを備える。そして、燃料噴射弁5および各アクチュエータ12,13は、ECU15から出力される駆動信号によりその動作が制御される。
ECU15は、機関状態検出手段20により検出される機関状態に応じて、燃料噴射弁5および排気絞り弁10をそれぞれ制御する燃料噴射制御手段16および開度制御手段17,30を備える。
ECU15は、入出力インターフェース、中央演算処理装置、各種の制御プログラムおよび各種のマップなどが記憶されたROMおよび各種のデータなどが一時的に記憶されるRAMを有する記憶装置を備えるコンピュータから構成される。そして、前記マップには、後述するマップM,M,Mv(図6参照)が含まれる。
The internal combustion engine E is further an operation control device 11 that controls the operation state of the internal combustion engine E, an actuator 12 that is a drive unit that drives the intake throttle valve 8 to open and close, and a drive unit that drives the exhaust throttle valve 10 to open and close. And an actuator 13.
Referring also to FIG. 2, the operation control device 11 includes an engine state detection unit 20 that detects the state of the internal combustion engine E, such as an operation state of the internal combustion engine E, and an engine state detected by the engine state detection unit 20. An electronic control unit (hereinafter referred to as “ECU”) 15 for controlling the operation of the fuel injection valve 5 and the actuators 12 and 13 is provided. The operations of the fuel injection valve 5 and the actuators 12 and 13 are controlled by a drive signal output from the ECU 15.
The ECU 15 includes fuel injection control means 16 and opening degree control means 17 and 30 for controlling the fuel injection valve 5 and the exhaust throttle valve 10 according to the engine state detected by the engine state detection means 20, respectively.
The ECU 15 is composed of a computer including an input / output interface, a central processing unit, a ROM storing various control programs and various maps, and a storage device having a RAM temporarily storing various data. . Then, the map, the map M L, M H to be described later, it includes Mv (see FIG. 6).

機関状態検出手段20は、前記クランク軸の回転位置に基づいて内燃機関Eの機関回転速度Neを検出する回転速度検出手段21と、アクセル操作量Aを検出するアクセル操作量検出手段22、触媒装置9の温度である実温度Tを検出する温度検出手段23と、排気通路7を流れる排気ガスの流量である排気流量Qeを検出する排気流量検出手段24と、吸気通路4において吸気絞り弁8よりも上流に配置されて吸入空気量Qaを検出するエアフローメータ25と、燃料噴射弁5から噴射される燃料量Qfを検出する燃料量検出手段26とを備える。
触媒装置9の温度には、触媒装置9における触媒自体の温度、または該触媒を担持する担体の温度、または該触媒または該担体の温度の指標となる温度を有する排気ガスの温度が含まれる。
排気流量検出手段24は、エアフローメータ25により検出された吸入空気量Qaおよび燃料量検出手段26により検出された燃料量Qfに基づいて排気流量Qeを算出する。
ここで、回転速度検出手段21、エアフローメータ25、燃料量検出手段26および排気流量検出手段24のそれぞれの検出手段の一部または全部、および、各制御手段は、それぞれECU15の機能として、該ECU15に備えられる。
The engine state detection means 20 includes a rotation speed detection means 21 for detecting the engine rotation speed Ne of the internal combustion engine E based on the rotation position of the crankshaft, an accelerator operation amount detection means 22 for detecting the accelerator operation amount A, and a catalyst device. The temperature detection means 23 for detecting the actual temperature T, which is the temperature 9, the exhaust flow rate detection means 24 for detecting the exhaust flow rate Qe, which is the flow rate of the exhaust gas flowing through the exhaust passage 7, and the intake throttle valve 8 in the intake passage 4 And an air flow meter 25 that is disposed upstream to detect the intake air amount Qa and a fuel amount detection means 26 that detects the fuel amount Qf injected from the fuel injection valve 5.
The temperature of the catalyst device 9 includes the temperature of the catalyst itself in the catalyst device 9, the temperature of the carrier supporting the catalyst, or the temperature of the exhaust gas having a temperature that is an index of the temperature of the catalyst or the carrier.
The exhaust flow rate detection means 24 calculates the exhaust flow rate Qe based on the intake air amount Qa detected by the air flow meter 25 and the fuel amount Qf detected by the fuel amount detection means 26.
Here, a part or all of the detection means of the rotational speed detection means 21, the air flow meter 25, the fuel amount detection means 26, and the exhaust flow rate detection means 24, and the control means are respectively functions of the ECU 15 as functions of the ECU 15. Prepared for.

燃料噴射制御手段16は、回転速度検出手段21により検出された機関回転速度Neおよびアクセル操作量検出手段22により検出されたアクセル操作量Aに応じて燃料噴射弁5から噴射される燃料量Qfおよび噴射時期を制御する。
吸気用開度制御手段17は、アクセル操作量Aに基づいて駆動信号をアクチュエータ12に対して出力して、吸気絞り弁8の開度を制御する。
The fuel injection control means 16 includes a fuel quantity Qf injected from the fuel injection valve 5 in accordance with the engine rotational speed Ne detected by the rotational speed detection means 21 and the accelerator operation quantity A detected by the accelerator operation quantity detection means 22. Control injection timing.
The intake opening control means 17 outputs a drive signal to the actuator 12 based on the accelerator operation amount A to control the opening of the intake throttle valve 8.

排気用開度制御手段30は、触媒装置9が活性状態にあるときの温度である目標温度To(図7参照)と実温度Tとの差の絶対値である温度差ΔT(図6参照)と、排気流量Qeとに基づいて、排気絞り弁10の必要開度βを算出し、該必要開度βとなるように排気絞り弁10の開度を制御する。   The exhaust opening control means 30 is a temperature difference ΔT (see FIG. 6) which is an absolute value of a difference between the target temperature To (see FIG. 7) which is a temperature when the catalyst device 9 is in an active state and the actual temperature T. And the required opening degree β of the exhaust throttle valve 10 is calculated based on the exhaust flow rate Qe, and the opening degree of the exhaust throttle valve 10 is controlled so as to be the required opening degree β.

目標温度Toは、触媒装置9の活性温度Ta(図7参照)よりも所定温度だけ高い温度である。ここで、活性温度Taは、触媒装置9が活性状態にあるときの最低温度である。したがって、活性温度Taおよび目標温度Toは、いずれも触媒装置9が活性状態にあるとき温度である。
前記所定温度は、排気ガスの温度変動により触媒装置9の温度が活性温度Ta未満になることなく良好な浄化性能を維持する観点から、浄化率が最も高くなる温度またはその近傍の温度に設定される。
The target temperature To is a temperature that is higher than the activation temperature Ta (see FIG. 7) of the catalyst device 9 by a predetermined temperature. Here, the activation temperature Ta is the lowest temperature when the catalyst device 9 is in the activated state. Therefore, the activation temperature Ta and the target temperature To are both temperatures when the catalyst device 9 is in the active state.
The predetermined temperature is set to a temperature at which the purification rate is highest or a temperature in the vicinity thereof from the viewpoint of maintaining good purification performance without the temperature of the catalyst device 9 becoming less than the activation temperature Ta due to temperature fluctuations of the exhaust gas. The

開度制御手段30は、温度差ΔTおよび排気流量Qeに基づいて温度変更量Tcを算出する温度変更量算出手段31と、温度変更量Tcに基づいて排気絞り弁10の開口率α(図5も参照)を算出する開口率算出手段33と、開口率αを必要開度βに換算する換算手段34とから構成される。ここで、開口率算出手段33および換算手段34は、温度変更量Tcに基づいて排気絞り弁10の必要開度βを算出する開度算出手段32を構成する。また、温度変更量Tcは、図5に示されるように、触媒装置9の温度を上昇させる温度上昇量Tuと、触媒装置9の温度を下降させる温度下降量Tdとからなる。   The opening degree control means 30 includes a temperature change amount calculation means 31 for calculating a temperature change amount Tc based on the temperature difference ΔT and the exhaust flow rate Qe, and an opening ratio α of the exhaust throttle valve 10 based on the temperature change amount Tc (FIG. 5). The aperture ratio calculating means 33 for calculating the aperture ratio α, and the conversion means 34 for converting the aperture ratio α into the required opening degree β. Here, the opening ratio calculating means 33 and the converting means 34 constitute an opening degree calculating means 32 for calculating the required opening degree β of the exhaust throttle valve 10 based on the temperature change amount Tc. Further, as shown in FIG. 5, the temperature change amount Tc includes a temperature increase amount Tu that increases the temperature of the catalyst device 9 and a temperature decrease amount Td that decreases the temperature of the catalyst device 9.

図2〜図4を参照すると、温度変更量算出手段31は、目標温度Toと実温度Tとの差の絶対値である温度差ΔTを算出し、さらに該温度差ΔTおよび排気流量Qeを変数とする3次元マップであるマップM,M(図6参照)を検索することにより、温度差ΔTおよび排気流量Qeに基づいた温度変更量Tcを算出する。
具体的には、図3に示されるように、実温度Tが目標温度To(図7参照)以下のときに検索される温度上昇量マップMにおいて、温度変更量Tcである温度上昇量Tuは、温度差ΔTが低温側の所定値ΔT以上であるときに最大値Tumとなり、温度差ΔTが所定値ΔT未満であるときに温度差ΔTの減少に応じて温度上昇量Tuが連続的に減少する値となるように設定されている。
また、図4に示されるように、実温度Tが目標温度Toを超えるときに検索される温度下降量マップMにおいて、温度変更量Tcである温度下降量Tdは、温度差ΔTが高温側の所定値ΔT以上であるときに最大値Tdmとなり、温度差ΔTが所定値ΔT未満であるときに温度差ΔTの減少に応じて温度下降量Tdが連続的に減少する値となるように設定されている。
各所定値ΔT,ΔTは、目標温度Toに対する温度上昇時のオーバシュートおよび温度下降時のオーバシュートを抑制する観点から、実験等により適宜設定される。
2 to 4, the temperature change amount calculation means 31 calculates a temperature difference ΔT that is an absolute value of a difference between the target temperature To and the actual temperature T, and further changes the temperature difference ΔT and the exhaust flow rate Qe as variables. The temperature change amount Tc based on the temperature difference ΔT and the exhaust gas flow rate Qe is calculated by searching the maps M L and M H (see FIG. 6) which are three-dimensional maps.
Specifically, as shown in FIG. 3, the temperature increase map M L the actual temperature T is searched when: the target temperature To (see Fig. 7), the temperature rise amount Tu is the temperature change amount Tc a continuous temperature rise Tu in response to the decrease of the temperature difference [Delta] T when the maximum value Tum, and the temperature difference [Delta] T is less than a predetermined value [Delta] T L when the temperature difference [Delta] T is equal to or higher than a predetermined value [Delta] T L of the low-temperature side It is set so as to become a decreasing value.
Further, as shown in FIG. 4, in the temperature decrease amount map MH searched when the actual temperature T exceeds the target temperature To, the temperature decrease amount Td, which is the temperature change amount Tc, is such that the temperature difference ΔT is higher. maximum value Tdm next when a predetermined value or more [Delta] T H of, as the temperature difference [Delta] T becomes a value temperature lowering amount Td decreases continuously in accordance with a decrease of the temperature difference [Delta] T when it is less than the predetermined value [Delta] T H Is set to
Each predetermined value [Delta] T L, [Delta] T H from the viewpoint of suppressing overshoot during overshoot and temperature fall when the temperature is raised to the target temperature To, is set appropriately through experiments or the like.

そして、排気ガスの流量が多いときは、排気ガスと触媒装置9(図1参照)との間での単位時間当たりの熱の移動量が大きくなるので、図3,図4に破線で排気流量Qe1、Qe2により例示されるように、排気ガスの流量の増加に応じて各所定値ΔT,ΔTが増加するように、該所定値ΔT,ΔTが排気流量Qeに応じて変更される。ここで、排気流量Qe2は排気流量Qe1よりも大きい。
なお、図3,図4において、実線で示される特性は、排気流量Qe1、Qe2よりも小さい排気流量Qでの温度差ΔTと温度上昇量Tu、温度下降量Tdとの関係を示している。
When the flow rate of the exhaust gas is large, the amount of heat transferred per unit time between the exhaust gas and the catalyst device 9 (see FIG. 1) becomes large. as illustrated by the Q e1, Q e2, flow the predetermined value [Delta] T L in accordance with the increase of the exhaust gas, so that [Delta] T H increases, the predetermined value [Delta] T L, [Delta] T H is in accordance with the exhaust flow Qe Be changed. Here, the exhaust flow rate Q e2 is larger than the exhaust flow rate Q e1 .
Incidentally, FIG. 3, 4, characteristics shown by solid line shows the exhaust flow rate Q e1, Q low exhaust flow rate than e2 Q temperature difference ΔT at e and temperature increase Tu, the relationship between the temperature lowering amount Td ing.

さらに、温度変更量算出手段31による温度変更量Tcの算出の際に、温度検出手段23により検出される排気ガスの温度による補正を加えることにより、排気絞り弁10の開度制御の精度を高めることができ、ひいては触媒装置9の温度制御の精度を高めることができる。   Further, when the temperature change amount calculating means 31 calculates the temperature change amount Tc, the accuracy of the opening control of the exhaust throttle valve 10 is improved by adding correction based on the temperature of the exhaust gas detected by the temperature detecting means 23. As a result, the accuracy of temperature control of the catalyst device 9 can be improved.

図2,図5を参照すると、開度算出手段32は、温度変更量算出手段31で算出された温度変更量Tcを変数とする2次元のマップである開口率マップMvを検索することにより、温度変更量Tcに対応する開口率αを算出し、該開口率αに相当する排気絞り弁10(図1参照)の必要開度βを算出する。マップMvにおいて、開口率αは、温度上昇量Tuの減少(または増加)および温度下降量Tdの増加(または減少)に応じて連続的に増加(または減少)するように設定されている。
ここで、開口率αは、排気絞り弁10の全開時の開口面積に対する全開時以外での開度の開口面積の比であり、最小開度と全開と間で連続した値を有する。最小開度は、内燃機関Eの運転を可能とする排気ガスの排出を許容するための開度である。
換算手段34は、排気絞り弁10の開度を必要開度βとするための駆動信号をアクチュエータ13に出力する。
Referring to FIGS. 2 and 5, the opening degree calculation means 32 searches the opening ratio map Mv which is a two-dimensional map with the temperature change amount Tc calculated by the temperature change amount calculation means 31 as a variable. An opening ratio α corresponding to the temperature change amount Tc is calculated, and a necessary opening degree β of the exhaust throttle valve 10 (see FIG. 1) corresponding to the opening ratio α is calculated. In the map Mv, the aperture ratio α is set to continuously increase (or decrease) in accordance with a decrease (or increase) in the temperature increase amount Tu and an increase (or decrease) in the temperature decrease amount Td.
Here, the opening ratio α is the ratio of the opening area of the opening other than when the exhaust throttle valve 10 is fully opened to the opening area when the exhaust throttle valve 10 is fully opened, and has a continuous value between the minimum opening and the fully opened. The minimum opening is an opening for allowing the exhaust gas to be discharged to allow the internal combustion engine E to operate.
The conversion means 34 outputs a drive signal for setting the opening of the exhaust throttle valve 10 to the required opening β to the actuator 13.

そして、排気絞り弁10の開度が所定開口率αc(または排気絞り弁10の開度が所定開度)であるときに、触媒装置9(図1参照)の温度が目標温度To(図7参照)に維持される。このため、所定開口率αcを境に、排気絞り弁10が閉じ側に移動して開口率αが減少することにより、排気通路7において排気絞り弁10の上流の排気ガスの圧力が上昇して、排気ガスの温度も上昇することにより、触媒装置9の温度が上昇する。一方、所定開口率αcを境に、排気絞り弁10が開き側に移動して開口率αが増加することにより、排気通路7において排気絞り弁10の上流の排気ガスの圧力が下降して、排気ガスの温度も下降することにより、触媒装置9の温度が下降する。
それゆえ、排気絞り弁10、温度検出手段23、排気流量検出手段24および開度制御手段30は、排気絞り弁10の開度を制御することにより触媒装置9の温度を制御する温度制御装置を構成する。
When the opening degree of the exhaust throttle valve 10 is a predetermined opening ratio αc (or the opening degree of the exhaust throttle valve 10 is a predetermined opening degree), the temperature of the catalyst device 9 (see FIG. 1) is set to the target temperature To (FIG. 7). Reference) is maintained. For this reason, the exhaust throttle valve 10 moves to the closing side at the predetermined opening ratio αc and the opening ratio α decreases, whereby the pressure of the exhaust gas upstream of the exhaust throttle valve 10 in the exhaust passage 7 increases. As the exhaust gas temperature also rises, the temperature of the catalyst device 9 rises. On the other hand, when the exhaust throttle valve 10 moves to the opening side at the predetermined opening ratio αc and the opening ratio α increases, the pressure of the exhaust gas upstream of the exhaust throttle valve 10 in the exhaust passage 7 decreases. As the temperature of the exhaust gas also decreases, the temperature of the catalyst device 9 decreases.
Therefore, the exhaust throttle valve 10, the temperature detection means 23, the exhaust flow rate detection means 24, and the opening degree control means 30 are temperature control devices that control the temperature of the catalyst device 9 by controlling the opening degree of the exhaust throttle valve 10. Constitute.

図2を参照しながら図6を主に参照して、前記温度制御装置により所定時間(例えば、10ms)毎に実行される触媒装置9の温度制御の手順および前記温度制御装置の機能について説明する。
内燃機関Eの運転開始後、ステップS1で、温度検出手段23により検出された触媒装置9(図1参照)の実温度Tおよび排気流量検出手段24により検出された排気流量Qeが読み込まれる。次いで、ステップS2で、触媒装置9の目標温度Toと実温度Tとが比較されて、ステップS2での判定が肯定されて実温度Tが目標温度To以下であるとき、ステップS3に進んで、目標温度Toと実温度Tとの差の絶対値である温度差ΔTが算出される。
その後、ステップS4で、温度差ΔTと排気流量Qeとに基づいてマップMが検索されて、温度差ΔTおよび排気流量Qeに応じた温度上昇量Tuが算出される。
With reference mainly to FIG. 6 with reference to FIG. 2, the temperature control procedure of the catalyst device 9 executed every predetermined time (for example, 10 ms) by the temperature control device and the function of the temperature control device will be described. .
After the operation of the internal combustion engine E is started, in step S1, the actual temperature T of the catalyst device 9 (see FIG. 1) detected by the temperature detection means 23 and the exhaust flow rate Qe detected by the exhaust flow rate detection means 24 are read. Next, in step S2, the target temperature To of the catalyst device 9 is compared with the actual temperature T. When the determination in step S2 is affirmative and the actual temperature T is equal to or lower than the target temperature To, the process proceeds to step S3. A temperature difference ΔT that is an absolute value of a difference between the target temperature To and the actual temperature T is calculated.
Thereafter, in step S4, it is retrieved map M L based on the temperature difference ΔT and the exhaust gas flow rate Qe, the temperature rise amount Tu corresponding to the temperature difference ΔT and the exhaust gas flow rate Qe is calculated.

次いで、ステップS5に進んで、ステップS4で得られた温度変更量Tc(図5参照)である温度上昇量Tuを実現するための排気絞り弁10の開口率αがマップMvを検索することにより算出される。そして、開口率αを必要開度βに換算されて、排気絞り弁10の必要開度βが算出される。
その後、ステップS6で、必要開度βを得るための駆動信号がアクチュエータ13に出力されて、排気絞り弁10が必要開度βとなるように駆動される。
このステップS5,S6でのECU15の機能が開度算出手段32を構成する。
実温度Tが目標温度To以下のときは、ステップS1〜S6により構成される制御が、前記所定時間毎に繰り返して実行されて、触媒装置9の活性温度Taへの到達が早められて、浄化性能が向上し、しかもオーバシュートが抑制される。
Next, the process proceeds to step S5, where the opening ratio α of the exhaust throttle valve 10 for realizing the temperature increase amount Tu that is the temperature change amount Tc (see FIG. 5) obtained in step S4 is searched by searching the map Mv. Calculated. Then, the opening ratio α is converted into the required opening β, and the required opening β of the exhaust throttle valve 10 is calculated.
Thereafter, in step S6, a drive signal for obtaining the required opening degree β is output to the actuator 13, and the exhaust throttle valve 10 is driven so as to have the required opening degree β.
The function of the ECU 15 in steps S5 and S6 constitutes the opening degree calculation means 32.
When the actual temperature T is equal to or lower than the target temperature To, the control constituted by the steps S1 to S6 is repeatedly executed every predetermined time, and the arrival of the catalyst device 9 to the activation temperature Ta is accelerated, thereby purifying. Performance is improved and overshoot is suppressed.

一方、ステップS2での判定が否定されて実温度Tが目標温度Toを超えるとき、ステップS7に進んで目標温度Toと実温度Tとの差の絶対値である温度差ΔTが算出される。その後、ステップS8で、温度差ΔTと排気流量Qeとに基づいてマップMが検索されて、温度差ΔTおよび排気流量Qeに応じた温度下降量Tdが算出される。
それゆえ、このステップS3,S4,S7,S8でのECU15の機能が、温度変更量算出手段31を構成する。
次いで、ステップS5に進んで、ステップS7で得られた温度下降量Tdを実現するための排気絞り弁10の開口率αがマップMvを検索することにより算出される。そして、開口率αに基づいて必要開度βが算出され、ステップS6で、駆動信号がアクチュエータ12,13に出力されて、排気絞り弁10が必要開度βとなるように駆動される。
この温度制御装置による触媒装置9の温度制御により、図7に示されるように、実温度Tが目標温度To以下の場合である触媒装置9の昇温過程では、温度差ΔTが大きいときには、排気絞り弁10の必要開度βが最小開度(図5も参照)に維持されて、触媒装置9の温度が速やかに上昇して、活性温度Taへの早期到達を実現し、温度差ΔTの減少に応じて排気絞り弁10の開度の必要開度βが連続的に増加されて、目標温度Toに達した後のオーバシュートが抑制される。また、触媒装置9の温度が目標温度Toに達した後の目標温度維持過程では、目標温度Toに対する温度下降時および温度上昇時のオーバシュートが抑制される。
On the other hand, when the determination in step S2 is negative and the actual temperature T exceeds the target temperature To, the process proceeds to step S7, where a temperature difference ΔT that is an absolute value of the difference between the target temperature To and the actual temperature T is calculated. Thereafter, in step S8, the map MH is searched based on the temperature difference ΔT and the exhaust flow rate Qe, and the temperature decrease amount Td corresponding to the temperature difference ΔT and the exhaust flow rate Qe is calculated.
Therefore, the function of the ECU 15 in steps S3, S4, S7, and S8 constitutes the temperature change amount calculation means 31.
Next, proceeding to step S5, the opening ratio α of the exhaust throttle valve 10 for realizing the temperature decrease amount Td obtained at step S7 is calculated by searching the map Mv. Then, the required opening degree β is calculated based on the opening ratio α, and in step S6, a drive signal is output to the actuators 12 and 13, and the exhaust throttle valve 10 is driven so as to have the required opening degree β.
By controlling the temperature of the catalyst device 9 by this temperature control device, as shown in FIG. 7, in the temperature rising process of the catalyst device 9 where the actual temperature T is equal to or lower than the target temperature To, the exhaust gas is exhausted when the temperature difference ΔT is large. The required opening β of the throttle valve 10 is maintained at the minimum opening (see also FIG. 5), the temperature of the catalyst device 9 rises quickly, and the early arrival at the activation temperature Ta is realized, and the temperature difference ΔT The required opening degree β of the opening degree of the exhaust throttle valve 10 is continuously increased according to the decrease, and the overshoot after reaching the target temperature To is suppressed. Further, in the target temperature maintaining process after the temperature of the catalyst device 9 has reached the target temperature To, overshoot at the time of temperature decrease and temperature increase with respect to the target temperature To is suppressed.

実温度Tが目標温度Toを超えるときは、ステップS7,S8,S5,S6により構成される制御が、前記所定時間毎に繰り返して実行されて、目標温度Toに対して触媒装置9の温度のオーバシュートが抑制されて、温度が目標温度Toに安定して維持される。   When the actual temperature T exceeds the target temperature To, the control configured by steps S7, S8, S5, and S6 is repeatedly performed at the predetermined time, and the temperature of the catalyst device 9 is set to the target temperature To. Overshoot is suppressed and the temperature is stably maintained at the target temperature To.

次に、前述のように構成された実施形態の作用および効果について説明する。
排気絞り弁10の開度を制御する開度制御手段30により排気絞り弁10の開度を制御することで触媒装置9の温度を制御する前記温度制御装置が排気ガスの流量を検出する排気流量検出手段24を備え、開度制御手段30は、触媒装置9が活性状態にあるときの温度である目標温度Toと温度検出手段23により検出された実温度Tとの差の絶対値である温度差ΔTと、排気流量検出手段24により検出された排気流量Qeとに基づいて排気絞り弁10の必要開度βを算出し、排気絞り弁10を必要開度βに制御することにより、触媒装置9の温度を制御するための排気絞り弁10の開度が、目標温度Toと温度検出手段23により検出された実温度Tとの温度差ΔTのほかに、排気流量検出手段24により検出された排気流量Qeにも基づいて制御されるので、触媒装置9の温度が速やかに目標温度Toに達するようにでき、しかも触媒装置9の温度が目標温度Toに対してオーバシュートすることが抑制されて、目標温度Toを安定して維持できる。この結果、浄化性能の向上が可能になり、さらに、過度の温度上昇が防止されて、触媒装置9の耐久性を向上させることができる。
Next, operations and effects of the embodiment configured as described above will be described.
Exhaust flow rate at which the temperature control device that controls the temperature of the catalyst device 9 by controlling the opening degree of the exhaust throttle valve 10 by the opening degree control means 30 that controls the opening degree of the exhaust throttle valve 10 detects the flow rate of the exhaust gas. A detection means 24 is provided, and the opening degree control means 30 is a temperature that is an absolute value of a difference between a target temperature To that is a temperature when the catalyst device 9 is in an active state and an actual temperature T that is detected by the temperature detection means 23. Based on the difference ΔT and the exhaust flow rate Qe detected by the exhaust flow rate detection means 24, the required opening β of the exhaust throttle valve 10 is calculated, and the exhaust throttle valve 10 is controlled to the required opening β, whereby the catalyst device The opening of the exhaust throttle valve 10 for controlling the temperature 9 is detected by the exhaust flow rate detection means 24 in addition to the temperature difference ΔT between the target temperature To and the actual temperature T detected by the temperature detection means 23. Since it is also controlled based on the exhaust flow rate Qe, Degrees can quickly be to reach the target temperature To, yet is suppressed that the temperature of the catalyst device 9 is overshooting the target temperature To, can maintain a target temperature To stably. As a result, the purification performance can be improved, and an excessive temperature rise can be prevented, and the durability of the catalyst device 9 can be improved.

開度制御手段30は、温度差ΔTおよび排気流量Qeに基づいて温度変更量Tcを算出する温度変更量算出手段31と、温度変更量Tcに基づいて必要開度βを算出する開度算出手段32とから構成されることにより、排気絞り弁10の開度が、目標温度Toと実温度Tとの温度差ΔTおよび排気流量Qeに基づいて制御される場合にも、温度変更量算出手段31により該温度差ΔTが排気流量Qeにより補正された温度変更量Tcが設定されるので、温度差ΔTのみに基づいて設定される温度変更量算出手段31に対して利用可能な開度算出手段32をそのまま使用できる。   The opening degree control means 30 includes a temperature change amount calculation means 31 that calculates the temperature change amount Tc based on the temperature difference ΔT and the exhaust flow rate Qe, and an opening degree calculation means that calculates the required opening degree β based on the temperature change amount Tc. 32, even when the opening degree of the exhaust throttle valve 10 is controlled based on the temperature difference ΔT between the target temperature To and the actual temperature T and the exhaust flow rate Qe, the temperature change amount calculation means 31 Thus, the temperature change amount Tc in which the temperature difference ΔT is corrected by the exhaust flow rate Qe is set, so that the opening degree calculation means 32 that can be used for the temperature change amount calculation means 31 set based only on the temperature difference ΔT. Can be used as is.

実温度Tが目標温度To以下のとき、温度変更量算出手段31は、温度差ΔTが低温側の所定値ΔT以上であるときに温度変更量Tcである温度上昇量Tuを最大値Tumとし、温度差ΔTが所定値ΔT未満であるときに温度差ΔTの減少に応じて温度上昇量Tuを連続的に減少する値とし、開度算出手段32は、温度上昇量Tuの減少に応じて連続的に必要開度βを増加させることにより、触媒装置9の温度を目標温度Toまで上昇させるときに、温度差ΔTが所定値ΔT未満となって小さくなるとき、連続的に減少する温度上昇量Tuと共に排気絞り弁10の必要開度βが連続的に増加するので、触媒装置9の温度上昇時における目標温度Toに対するオーバシュートを効果的に抑制できる。 When the actual temperature T is below the target temperature To, the temperature change amount calculating means 31, a temperature rise amount Tu is the temperature change amount Tc and the maximum value Tum when the temperature difference [Delta] T is a predetermined value [Delta] T L or more low-temperature side , a value that continuously decreases the temperature rise Tu according to the decrease of the temperature difference [Delta] T when the temperature difference [Delta] T is less than a predetermined value [Delta] T L, the opening degree calculating means 32, according to the decrease of the temperature rise amount Tu by increasing continuously required opening β Te, when raising the temperature of the catalytic converter 9 up to the target temperature to, when the temperature difference [Delta] T is reduced becomes less than the predetermined value [Delta] T L, continuously decreases Since the required opening degree β of the exhaust throttle valve 10 continuously increases with the temperature rise amount Tu, overshooting with respect to the target temperature To when the temperature of the catalyst device 9 rises can be effectively suppressed.

実温度Tが目標温度Toを超えるとき、温度変更量算出手段31は、温度差ΔTが高温側の所定値ΔT以上であるときに温度変更量Tcである温度下降量Tdを最大値Tdmとし、温度差ΔTが所定値ΔT未満であるときに温度差ΔTの減少に応じて温度下降量Tdを連続的に減少する値とし、開度算出手段32は、温度下降量Tdの減少に応じて連続的に前記必要開度βを減少させることにより、触媒装置9の温度を目標温度Toまで下降させるときに、目標温度Toと実温度Tとの温度差ΔTが所定値ΔT未満となって小さくなるとき、連続的に減少する温度下降量Tdと共に排気絞り弁10の必要開度βも連続的に減少するので、排気絞り弁10の必要開度βが大きくなる温度下降時における目標温度Toに対するオーバシュートおよび該必要開度βが小さくなる温度上昇時における目標温度Toに対するオーバシュートを効果的に抑制できる。 When the actual temperature T exceeds the target temperature To, the temperature change amount calculating means 31, the temperature lowering amount Td is a temperature change amount Tc and the maximum value Tdm when the temperature difference [Delta] T is equal to or higher than a predetermined value [Delta] T H of the high-temperature side , a value that continuously decreases the temperature lowering amount Td according to the decrease of the temperature difference [Delta] T when the temperature difference [Delta] T is less than a predetermined value [Delta] T H, opening calculation means 32, according to the decrease of the temperature lowering amount Td by reducing continuously the required opening β Te, when lowering the temperature of the catalytic converter 9 up to the target temperature to, is the temperature difference [Delta] T between the target temperature to and the actual temperature T is less than the predetermined value [Delta] T H Since the required opening degree β of the exhaust throttle valve 10 continuously decreases together with the temperature decrease amount Td that continuously decreases, the target temperature at the time of temperature decrease when the required opening degree β of the exhaust throttle valve 10 increases. Overshoot against To and the necessary opening The overshoot with respect to the target temperature To at the time of temperature rise when the degree β becomes small can be effectively suppressed.

所定値ΔT,ΔTは、排気流量Qeが増加するに応じて増加することにより、排気流量Qeが増加するときに、温度差ΔTが比較的大きい時期から温度変更量Tcが減少し始めるので、目標温度Toに対するオーバシュートを一層抑制できる。 Predetermined value [Delta] T L, [Delta] T H, by the exhaust gas flow rate Qe is increased in response to increases, exhaust gas when the flow rate Qe is increased, the temperature change amount Tc from time temperature difference [Delta] T is relatively large starts to decrease Further, the overshoot with respect to the target temperature To can be further suppressed.

以下、前述した実施形態の一部が変更された形態について、変更された部分を中心に説明する。
排気絞り弁10は、前記実施形態では触媒装置9(つまり排気浄化装置)よりも下流に配置されたが、排気通路7において触媒装置9よりも上流に配置されてもよい。すなわち、排気絞り弁10が触媒装置9よりも上流に配置された場合、排気絞り弁10の開度が小さいときは、排気通路7と排気絞り弁10との隙間を通ることで増速された排気ガスが触媒装置9を流れる位置に該触媒装置9を配置することにより、排気ガスから触媒装置9への単位時間当たりの熱の移動量が増加して、触媒装置9の温度上昇を促進することができる。
温度変更量算出手段31は、複数の排気流量Qeをパラメータとして、温度差ΔTに対する温度変更量Tcが設定された2次元のマップに基づいて、温度差ΔTに対する排気流量Qeに応じた温度変更量Tcを補間により算出するものであってもよく、さらに、離散値を有する温度差ΔTおよび温度変更量Tcに関しても補間により温度変更量Tcが算出されてもよい。
排気浄化装置は、SOx(硫黄酸化物)の付着による浄化性能の低下が生じるNOx触媒装置、または排気微粒子の付着による浄化性能の低下が生じるフィルタ装置であってもよく、これらの場合には、目標温度は、浄化性能を回復すべく付着したSOxの還元や排気微粒子の燃焼が可能な再生温度である。そして、このときの温度制御装置により、浄化性能を回復するための再生処理の効率の向上が可能になり、さらに、過度の温度上昇が防止されて、排気浄化装置の耐久性を向上させることができる。
排気浄化装置は、触媒装置としての酸化触媒であってもよい。
内燃機関は、火花点火式内燃機関であってもよく、排気浄化装置は、触媒装置としての三元触媒装置であってもよい。
目標温度は活性温度であってもよい。
Hereinafter, a mode in which a part of the above-described embodiment is changed will be described focusing on the changed portion.
The exhaust throttle valve 10 is disposed downstream of the catalyst device 9 (that is, the exhaust gas purification device) in the above-described embodiment, but may be disposed upstream of the catalyst device 9 in the exhaust passage 7. That is, when the exhaust throttle valve 10 is arranged upstream of the catalyst device 9, the speed is increased by passing through the gap between the exhaust passage 7 and the exhaust throttle valve 10 when the opening degree of the exhaust throttle valve 10 is small. By disposing the catalyst device 9 at a position where the exhaust gas flows through the catalyst device 9, the amount of heat transferred from the exhaust gas to the catalyst device 9 per unit time is increased, and the temperature increase of the catalyst device 9 is promoted. be able to.
The temperature change amount calculation means 31 uses a plurality of exhaust flow rates Qe as parameters, and a temperature change amount corresponding to the exhaust flow rate Qe with respect to the temperature difference ΔT based on a two-dimensional map in which the temperature change amount Tc with respect to the temperature difference ΔT is set. The temperature change amount Tc may be calculated by interpolation with respect to the temperature difference ΔT and the temperature change amount Tc having discrete values.
The exhaust purification device may be a NOx catalyst device in which the purification performance decreases due to adhesion of SOx (sulfur oxide), or a filter device in which the purification performance decreases due to adhesion of exhaust particulates. In these cases, The target temperature is a regeneration temperature at which the attached SOx can be reduced and exhaust particulates can be combusted to recover the purification performance. The temperature control device at this time makes it possible to improve the efficiency of the regeneration process for recovering the purification performance, and further, the excessive temperature rise can be prevented to improve the durability of the exhaust purification device. it can.
The exhaust purification device may be an oxidation catalyst as a catalyst device.
The internal combustion engine may be a spark ignition type internal combustion engine, and the exhaust purification device may be a three-way catalyst device as a catalyst device.
The target temperature may be an activation temperature.

本発明が適用された温度制御装置を備える内燃機関の模式図である。It is a mimetic diagram of an internal-combustion engine provided with a temperature control device to which the present invention was applied. 図1の内燃機関の運転制御装置のブロック図である。It is a block diagram of the operation control apparatus of the internal combustion engine of FIG. 温度制御装置において温度上昇量の算出に使用されるマップを説明する図である。It is a figure explaining the map used for calculation of the temperature rise amount in a temperature control apparatus. 温度制御装置において、温度下降量の算出に使用されるマップを説明する図である。It is a figure explaining the map used for calculation of the amount of temperature fall in a temperature control device. 温度制御装置において、排気絞り弁の開口率の算出に使用されるマップを説明する図である。It is a figure explaining the map used for calculation of the aperture ratio of an exhaust throttle valve in a temperature control apparatus. 温度制御装置の制御手順および機能を説明するフローチャートである。It is a flowchart explaining the control procedure and function of a temperature control apparatus. 温度制御装置による排気絞り弁の開度および触媒装置の温度の変化を説明する図である。It is a figure explaining the change of the opening degree of the exhaust throttle valve by the temperature control apparatus, and the temperature of a catalyst apparatus.

符号の説明Explanation of symbols

7…排気通路、9…触媒装置、10…排気絞り弁、11…運転制御装置、15…ECU、23…温度検出手段、24…排気流量検出手段、30…開度制御手段、31…温度変更量算出手段、32…開度算出手段、
E…内燃機関、T…実温度、To…目標温度、Ta…活性温度、ΔT…温度差、Tu…温度上昇量、Td…温度下降量、ΔT,ΔT…所定値。
DESCRIPTION OF SYMBOLS 7 ... Exhaust passage, 9 ... Catalytic device, 10 ... Exhaust throttle valve, 11 ... Operation control device, 15 ... ECU, 23 ... Temperature detection means, 24 ... Exhaust flow rate detection means, 30 ... Opening control means, 31 ... Temperature change Amount calculation means, 32... Opening calculation means,
E ... internal combustion engine, T ... actual temperature, the To ... target temperature, Ta ... activation temperature, [Delta] T ... temperature difference, Tu ... temperature increase, Td ... temperature drop amount, ΔT L, ΔT H ... predetermined value.

Claims (5)

内燃機関の排気通路に配置される排気浄化装置よりも上流または下流に配置されて前記排気通路を流れる排気ガスの流量を制御する排気絞り弁と、前記排気浄化装置の温度を検出する温度検出手段と、前記排気絞り弁の開度を制御する開度制御手段とを備え、前記排気絞り弁の開度を制御することにより前記排気浄化装置の温度を制御する温度制御装置において、
排気ガスの流量を検出する排気流量検出手段を備え、
前記開度制御手段は、前記排気浄化装置が活性状態にあるときの温度または再生可能状態にあるときの温度である目標温度と前記温度検出手段により検出された実温度との差の絶対値である温度差と、前記排気流量検出手段により検出された排気流量とに基づいて前記排気絞り弁の必要開度を算出し、前記排気絞り弁を前記必要開度に制御することを特徴とする温度制御装置。
An exhaust throttle valve that controls the flow rate of exhaust gas that is arranged upstream or downstream of the exhaust purification device that is arranged in the exhaust passage of the internal combustion engine and flows through the exhaust passage, and a temperature detection means that detects the temperature of the exhaust purification device And an opening control means for controlling the opening of the exhaust throttle valve, and a temperature control device for controlling the temperature of the exhaust purification device by controlling the opening of the exhaust throttle valve,
An exhaust flow rate detecting means for detecting the exhaust gas flow rate is provided,
The opening degree control means is an absolute value of a difference between a target temperature which is a temperature when the exhaust purification device is in an active state or a temperature when the exhaust purification device is in a reproducible state and an actual temperature detected by the temperature detection means. A temperature that calculates a required opening of the exhaust throttle valve based on a certain temperature difference and an exhaust flow rate detected by the exhaust flow rate detecting means, and controls the exhaust throttle valve to the required opening degree. Control device.
前記開度制御手段は、前記温度差と前記排気流量とに基づいて温度変更量を算出する温度変更量算出手段と、前記温度変更量に基づいて前記必要開度を算出する開度算出手段とから構成されることを特徴とする請求項1記載の温度制御装置。   The opening degree control means includes a temperature change amount calculating means for calculating a temperature change amount based on the temperature difference and the exhaust flow rate, and an opening degree calculating means for calculating the required opening degree based on the temperature change amount. The temperature control device according to claim 1, comprising: 前記実温度が前記目標温度以下のとき、前記温度変更量算出手段は、前記温度差が低温側の所定値以上であるときに前記温度変更量である温度上昇量を最大値とし、前記温度差が前記所定値未満であるときに前記温度差の減少に応じて前記温度上昇量を連続的に減少する値とし、
前記開度算出手段は、前記温度上昇量の減少に応じて連続的に前記必要開度を増加させることを特徴とする請求項2記載の温度制御装置。
When the actual temperature is less than or equal to the target temperature, the temperature change amount calculation means sets the temperature increase amount that is the temperature change amount as a maximum value when the temperature difference is equal to or greater than a predetermined value on the low temperature side, and the temperature difference When the temperature difference is less than the predetermined value, the temperature increase amount is continuously reduced according to the decrease in the temperature difference,
The temperature control apparatus according to claim 2, wherein the opening degree calculation means continuously increases the required opening degree according to a decrease in the temperature increase amount.
前記実温度が前記目標温度を超えるとき、前記温度変更量算出手段は、前記温度差が高温側の所定値以上であるときに前記温度変更量である温度下降量を最大値とし、前記温度差が前記高温側の所定値未満であるときに前記温度差の減少に応じて前記温度下降量を連続的に減少する値とし、
前記開度算出手段は、前記温度下降量の減少に応じて連続的に前記必要開度を減少させることを特徴とする請求項2または3記載の温度制御装置。
When the actual temperature exceeds the target temperature, the temperature change amount calculation means sets the temperature decrease amount that is the temperature change amount as a maximum value when the temperature difference is greater than or equal to a predetermined value on the high temperature side, and the temperature difference When the temperature is less than a predetermined value on the high temperature side, the temperature decrease amount is a value that continuously decreases in accordance with the decrease in the temperature difference,
4. The temperature control apparatus according to claim 2, wherein the opening degree calculation means continuously reduces the required opening degree according to a decrease in the temperature decrease amount.
前記所定値は、前記排気流量が増加するに応じて増加することを特徴とする請求項3または4記載の温度制御装置。   The temperature control apparatus according to claim 3 or 4, wherein the predetermined value increases as the exhaust flow rate increases.
JP2008095706A 2008-04-02 2008-04-02 Exhaust purification device temperature control device Expired - Fee Related JP4686567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008095706A JP4686567B2 (en) 2008-04-02 2008-04-02 Exhaust purification device temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008095706A JP4686567B2 (en) 2008-04-02 2008-04-02 Exhaust purification device temperature control device

Publications (2)

Publication Number Publication Date
JP2009250047A true JP2009250047A (en) 2009-10-29
JP4686567B2 JP4686567B2 (en) 2011-05-25

Family

ID=41311001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008095706A Expired - Fee Related JP4686567B2 (en) 2008-04-02 2008-04-02 Exhaust purification device temperature control device

Country Status (1)

Country Link
JP (1) JP4686567B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11117771A (en) * 1997-10-16 1999-04-27 Denso Corp Throttle control device for internal combustion engine
JP2000265827A (en) * 1999-03-18 2000-09-26 Nissan Motor Co Ltd Engine exhaust emission control device
JP2006200517A (en) * 2005-01-24 2006-08-03 Denso Corp Fuel injection device for internal combustion engine
JP2007138773A (en) * 2005-11-16 2007-06-07 Denso Corp Fuel injection control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11117771A (en) * 1997-10-16 1999-04-27 Denso Corp Throttle control device for internal combustion engine
JP2000265827A (en) * 1999-03-18 2000-09-26 Nissan Motor Co Ltd Engine exhaust emission control device
JP2006200517A (en) * 2005-01-24 2006-08-03 Denso Corp Fuel injection device for internal combustion engine
JP2007138773A (en) * 2005-11-16 2007-06-07 Denso Corp Fuel injection control device

Also Published As

Publication number Publication date
JP4686567B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP4301070B2 (en) Exhaust gas purification device for internal combustion engine
US7758833B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP4905415B2 (en) Exhaust gas purification system for internal combustion engine
EP2781711B1 (en) Exhaust gas purification system for internal combustion engine
US20080060347A1 (en) Exhaust Gas Control Apparatus for Internal Combustion Engine
JP2008138619A (en) Exhaust emission control device of internal combustion engine
JP4247843B2 (en) Temperature detection device abnormality determination device
JP2007332858A (en) Fuel injection control device of internal combustion engine
JP4114077B2 (en) Exhaust gas purification device for internal combustion engine
JP5009189B2 (en) Exhaust gas purification device for internal combustion engine
JP2009250086A (en) Abnormality diagnostic system of air-fuel ratio sensor
JP6674226B2 (en) Method and control device for operating an internal combustion engine
JP2016169621A (en) Exhaust emission control system
JP4574700B2 (en) Internal combustion engine provided with supercharger control device and exhaust throttle valve control device
JP4241784B2 (en) Exhaust gas purification system for internal combustion engine
JP5880592B2 (en) Abnormality detection device for exhaust purification system
JP2007291983A (en) Catalyst control device for internal combustion engine
JP4062302B2 (en) Catalyst temperature raising system for internal combustion engine
JP4352635B2 (en) Exhaust gas purification device for internal combustion engine
JP4686567B2 (en) Exhaust purification device temperature control device
JP2008121518A (en) Exhaust emission control device of internal combustion engine
JP2004060563A (en) Fuel injection amount control device of internal combustion engine
JP2017115703A (en) Controller of internal combustion engine
JP2010112251A (en) Exhaust purification system
JP6268682B2 (en) Engine exhaust purification system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees