JP2009249652A - Electroless plating method - Google Patents

Electroless plating method Download PDF

Info

Publication number
JP2009249652A
JP2009249652A JP2008095562A JP2008095562A JP2009249652A JP 2009249652 A JP2009249652 A JP 2009249652A JP 2008095562 A JP2008095562 A JP 2008095562A JP 2008095562 A JP2008095562 A JP 2008095562A JP 2009249652 A JP2009249652 A JP 2009249652A
Authority
JP
Japan
Prior art keywords
electroless plating
metal
plating
pressure
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008095562A
Other languages
Japanese (ja)
Inventor
Tetsuya Shimizu
哲也 清水
Nagayoshi Tajima
永善 田島
Seizo Miyata
清▲蔵▼ 宮田
Masato Sone
正人 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SES Co Ltd
Original Assignee
SES Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SES Co Ltd filed Critical SES Co Ltd
Priority to JP2008095562A priority Critical patent/JP2009249652A/en
Publication of JP2009249652A publication Critical patent/JP2009249652A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroless plating method in which a subcritical fluid or a supercritical fluid is used, and with which a uniform film can be obtained by the electroless plating in a short period of time. <P>SOLUTION: When performing the electroless plating on the surface of a metallic base sample 22, electroless plating liquid contains at least one of carbon dioxide and inert gas, and a surfactant, metal powder having the average particle diameter larger than 100 μm is added by the amount at which no more metal powder is dissolved therein, and dispersed, and the electroless plating is performed in a supercritical or subcritical state. A uniform and thick plating layer can be obtained in a short period of time without causing any induction eutectoid phenomenon. In the electroless plating method, metallic powder having the average particle diameter larger than 100 μm can be used, and the electroless plating method is applicable to a damascene process or a dual damascene process which is a method for forming fine metal wiring within a semiconductor element. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、金属基体の表面に無電解めっきを行う無電解めっき方法に関し、特に亜臨界流体又は超臨界流体の存在下に、誘導共析現象を発生させることなく短時間で均一で均質な被膜を無電解めっきで得られるようにした無電解めっき方法に関する。   The present invention relates to an electroless plating method for performing electroless plating on the surface of a metal substrate, and in particular, in the presence of a subcritical fluid or a supercritical fluid, a uniform and homogeneous coating in a short time without causing induction eutectoid phenomenon. The present invention relates to an electroless plating method that can be obtained by electroless plating.

従来から、半導体素子内の微細金属配線形成方法としては、スパッタリング法により基板上に例えばアルミニウム薄膜を形成した後、フォトレジストを塗布し、露光・現像処理によりパターニングを行い、エッチングにより所定の配線を形成することが行われていた。しかしながら、半導体回路素子の高度集積化、微細化に伴い、このような方法では配線形成方法が困難となってきたため、予め配線用の溝や孔を形成し、化学気相成長法CVD、スパッタリング、めっき法等によりアルミニウムや銅を溝や孔の中に埋込み、その後に、化学的機械研磨CMP(Chemical Mechanical Polishing)法により表面を研磨することにより配線を形成する方法、いわゆるダマシン法が行われるようになってきた。このダマシン法において、下層の配線への接続孔も溝形成時に孔開けし、この接続孔と溝とに同時にアルミニウムや銅を充填し、配線を形成する方法はデュアルダマシン法と呼ばれている。   Conventionally, as a method for forming fine metal wiring in a semiconductor element, after forming, for example, an aluminum thin film on a substrate by sputtering, a photoresist is applied, patterning is performed by exposure / development processing, and predetermined wiring is formed by etching. It was done to form. However, with the high integration and miniaturization of semiconductor circuit elements, the wiring forming method has become difficult with such a method. Therefore, grooves and holes for wiring are formed in advance, chemical vapor deposition CVD, sputtering, A method of forming wiring by embedding aluminum or copper in a groove or hole by a plating method or the like and then polishing the surface by a chemical mechanical polishing (CMP) method, so-called damascene method is performed. It has become. In this damascene method, a connection hole to a lower layer wiring is also formed at the time of forming a groove, and this connection hole and groove are filled with aluminum or copper at the same time to form a wiring, which is called a dual damascene method.

近年、半導体装置の配線形成工程としては、電気めっき法を適用したダマシン法が主流となっている(下記特許文献1、2参照)。ここで下記特許文献1に従来例として開示されているダマシン法を適用した3次元実装用半導体装置の配線の形成方法について図3及び図4を用いて説明する。この配線の形成方法は、図3Aに示すように、例えばシリコン基板等の基板70の表面にリソグラフィ及びエッチング技術により孔72を形成し、次いで、図3Bに示すように、この基板70の表面に例えばCVDによりSiO2からなる絶縁膜74を形成して孔72の表面を絶縁膜74で覆い、これによって、電気が漏れないようにし、更に、図3Cに示すように、絶縁膜74の上に電気めっきの給電層としてのシード層76を例えばCVDやスパッタリングで形成する。   In recent years, a damascene method to which an electroplating method is applied has become the mainstream as a wiring formation process for semiconductor devices (see Patent Documents 1 and 2 below). Here, a method of forming a wiring of a three-dimensional mounting semiconductor device to which the damascene method disclosed as a conventional example in Patent Document 1 below is described will be described with reference to FIGS. 3A, holes 72 are formed on the surface of a substrate 70 such as a silicon substrate by lithography and etching techniques as shown in FIG. 3A, and then, on the surface of the substrate 70 as shown in FIG. 3B. For example, an insulating film 74 made of SiO 2 is formed by CVD, and the surface of the hole 72 is covered with the insulating film 74, thereby preventing electricity from leaking. Further, as shown in FIG. A seed layer 76 as a power feeding layer for plating is formed by, for example, CVD or sputtering.

そして、図3Dに示すように、基板70の表面に電気めっきによる銅めっきを施すことで、基板70の孔72の内部に銅を充填させるとともに、絶縁膜74の上に銅めっき膜78を堆積させ、その後、図3Eに示すように、CMP法により、基板70上の銅めっき膜78及び絶縁膜74を除去し、孔72内に充填させた銅めっき膜78の表面を基板70の表面と略同一平面となるようにして埋込み配線している。   Then, as shown in FIG. 3D, the surface of the substrate 70 is subjected to copper plating by electroplating to fill the hole 72 of the substrate 70 with copper and deposit a copper plating film 78 on the insulating film 74. Thereafter, as shown in FIG. 3E, the copper plating film 78 and the insulating film 74 on the substrate 70 are removed by CMP, and the surface of the copper plating film 78 filled in the holes 72 is replaced with the surface of the substrate 70. The embedded wiring is made so as to be substantially in the same plane.

この下記特許文献1に開示されている埋込み配線は、孔72の径Wが5〜20μm程度であり、深さDが50〜70μm程度のものに適用し得るとされている。そして、下記特許文献1に開示された発明では、図3Dに示した電気めっきによる銅めっき工程においては、図4Aに示すように孔72の入口近傍で銅がオーバーハングして銅配線の内部にボイド(巣)が生じるのを防止するため、図4Bに示すように電気めっき工程の途中でめっき膜の一部をエッチングする工程を追加し、更に図4C及び図4Dに示すように所望の回数電気めっき工程及びめっき膜のエッチング工程を繰り返すことにより、図4Eに示すように溝72内を銅めっき膜78で埋めるようにしている。   The embedded wiring disclosed in the following Patent Document 1 can be applied to a hole 72 having a diameter W of about 5 to 20 μm and a depth D of about 50 to 70 μm. In the invention disclosed in Patent Document 1 below, in the copper plating process by electroplating shown in FIG. 3D, copper overhangs near the entrance of the hole 72 as shown in FIG. In order to prevent the formation of voids, a process of etching a part of the plating film is added during the electroplating process as shown in FIG. 4B, and the desired number of times as shown in FIGS. 4C and 4D. By repeating the electroplating process and the plating film etching process, the groove 72 is filled with the copper plating film 78 as shown in FIG. 4E.

なお、上述のような特許文献1に開示された発明を適用しても、0.20μm程度ないしはそれ以下というような狭い溝ないし孔内に銅をボイドなく埋め込むことは困難であるため、下記特許文献2に開示された発明では、めっき液の組成を調整して溝ないし孔の底部側と入口側の金属析出速度を調整することで対処するようにしている。
特開2003− 96596号公報(特許請求の範囲、段落[0003]〜[0010]、[0011]、図4、図6、図8) 特開2005−259959号公報(特許請求の範囲、段落[0011]、[0013]、[0029]、図1、図2) 特開平10−245683号公報(特許請求の範囲、段落[0011]〜[0015]) 特開2006− 37188号公報(請求項7〜12、段落[0008]〜[0012]、図1)
Even if the invention disclosed in Patent Document 1 as described above is applied, it is difficult to bury copper without voids in narrow grooves or holes of about 0.20 μm or less. In the invention disclosed in Document 2, the composition of the plating solution is adjusted to adjust the metal deposition rate on the bottom side and the inlet side of the groove or hole.
JP 2003-96596 A (claims, paragraphs [0003] to [0010], [0011], FIG. 4, FIG. 6, FIG. 8) JP 2005-259959 A (claims, paragraphs [0011], [0013], [0029], FIG. 1 and FIG. 2) JP 10-245683 A (claims, paragraphs [0011] to [0015]) Japanese Patent Laying-Open No. 2006-37188 (Claims 7 to 12, paragraphs [0008] to [0012], FIG. 1)

上述のような電気めっき法による微細金属配線形成方法は、給電層としてのシード層76を大きく形成できる場合には給電用端子の形成が容易であるために有効な方法であるが、めっき部分のサイズが小さい場合や開口部の大きさに比べて深さが深い溝ないし孔内等をめっきする必要がある場合には、給電用端子の形成が困難であるため、無電解めっき法が採用される。   The fine metal wiring formation method by the electroplating method as described above is an effective method because it is easy to form a power supply terminal when the seed layer 76 as a power supply layer can be formed large. When the size is small or when it is necessary to plate the groove or hole deeper than the size of the opening, it is difficult to form the power supply terminal, so the electroless plating method is adopted. The

無電解めっき法は、得られるめっき層が緻密で、微細な部分にもめっきでき、しかも絶縁物の表面にもめっきできるため、幅広い分野で採用されているが、めっき層の析出速度が遅いため、厚い金属層の形成が要求される上述のようなダマシン法ないしデュアルダマシン法に対しては直ちには適用困難である。   The electroless plating method is used in a wide range of fields because the resulting plating layer is dense, can be plated even on fine parts, and can also be plated on the surface of an insulator, but because the deposition rate of the plating layer is slow It is difficult to apply to the damascene method or dual damascene method as described above, which requires formation of a thick metal layer.

一方、上記特許文献3には、錫と合金を形成しはんだ膜として機能する粉末を含めた錫または錫合金めっき浴を用い、無電解めっき法によって厚い錫合金膜を形成する方法が開示されている。しかしながら、このような無電解めっき法ではめっき膜自体の特性が良好でなく、しかも下地との密着性が良好でないため、上記特許文献3に開示されている方法のようにはんだ膜として加熱処理するような用途の場合には有効であるとしても、汎用的には採用し難い。   On the other hand, Patent Document 3 discloses a method of forming a thick tin alloy film by an electroless plating method using a tin or tin alloy plating bath containing powder that forms an alloy with tin and functions as a solder film. Yes. However, in such an electroless plating method, the properties of the plating film itself are not good and the adhesion to the base is not good, so that the heat treatment is performed as a solder film as in the method disclosed in Patent Document 3 above. Even if it is effective in such a use, it is difficult to adopt it for general purposes.

また、上記特許文献4には、めっき金属と同一の金属を含む金属錯体を溶かした亜臨界流体又は超臨界流体を基材に接触させることにより、前記基材表面を脱脂しかつエッチングするとともに、前記基材表面に前記金属錯体を担持させ、前記基材表面に担持した金属錯体を還元することにより前記金属錯体中の金属を前記基材の表面に析出させて金属核を形成し、表面に金属核の形成された基材を前記めっき金属を含むめっき液に浸漬することにより、前記金属核をそのまま自己触媒として利用して連続的に析出反応を進行させてめっき層を形成する工程とを含む無電解めっき法が開示されている。   In addition, in Patent Document 4, the substrate surface is degreased and etched by bringing a subcritical fluid or supercritical fluid in which a metal complex containing the same metal as the plating metal is dissolved into contact with the substrate, The metal complex is supported on the surface of the base material, and the metal complex supported on the surface of the base material is reduced to precipitate the metal in the metal complex on the surface of the base material to form a metal nucleus on the surface. Immersing the substrate on which the metal nuclei are formed in a plating solution containing the plating metal to form a plating layer by using the metal nuclei as they are as a self-catalyst to cause a continuous precipitation reaction. Including electroless plating methods are disclosed.

しかしながら、上記特許文献4に開示されている無電解めっき法も、従来の無電解めっき法の場合と同様に、めっき層の析出速度が遅いため、厚い金属層の形成が要求される上述のようなダマシン法ないしデュアルダマシン法に対しては直ちには適用困難である。   However, the electroless plating method disclosed in Patent Document 4 also requires the formation of a thick metal layer because the deposition rate of the plating layer is slow, as in the case of the conventional electroless plating method. It is difficult to apply to the damascene method or the dual damascene method immediately.

発明者等は、めっき層の析出速度が速く、かつ、下地金属基体への密着性が良好な無電解めっき法を得るべく種々実験を重ねた結果、予め無電解めっき液中に二酸化炭素及び不活性ガスの少なくとも一方と、金属基体、無電解めっき処理にて得られる金属被膜の少なくとも一方と同種の金属であって、平均粒径が100μmより大きい金属粉末を多量に添加すると共に、亜臨界状態又は超臨界状態において無電解めっきを行った。このとき、先ず、めっき液より金属イオンが析出してめっき層を形成する。析出して減少した金属イオンは平均粒径が100μmより大きい金属粉末がめっき液中に溶解することによって補充される。   The inventors have conducted various experiments in order to obtain an electroless plating method in which the deposition rate of the plating layer is high and the adhesion to the base metal substrate is good. At least one of the active gas, the metal substrate, and the same kind of metal as at least one of the metal coating obtained by the electroless plating process, and a large amount of metal powder having an average particle size larger than 100 μm is added, and a subcritical state Alternatively, electroless plating was performed in a supercritical state. At this time, first, metal ions are precipitated from the plating solution to form a plating layer. The metal ions deposited and reduced are replenished by dissolving the metal powder having an average particle size larger than 100 μm in the plating solution.

このとき、めっき液は亜臨界又は超臨界環境であって摩擦が発生せず粘度もほぼゼロに近いことから、金属粉末は金属粉末の粒径が大きいことと併せてめっき層内に取り込まれにくく誘導共析現象の発生を防止でき、均一で均質な膜厚の薄膜金属層が形成できる。なお、本明細書における誘導共析現象とは、めっき時に金属粉末の一部も同時にめっき被膜中に取り込まれる現象を意味する(図5を参照。)。   At this time, since the plating solution is in a subcritical or supercritical environment, friction does not occur and the viscosity is almost zero, the metal powder is difficult to be taken into the plating layer together with the large particle size of the metal powder. Generation of the inductive eutectoid phenomenon can be prevented, and a thin metal layer having a uniform and uniform thickness can be formed. In addition, the induction eutectoid phenomenon in this specification means the phenomenon in which a part of metal powder is simultaneously taken in into a plating film at the time of plating (refer FIG. 5).

一方、金属粉末の粒径が小さいと、めっき層に吸着したときにめっき層内に取り込まれ易くなって、誘導共析現象を引き起こして凸部を形成してしまう。このような観点から、亜臨界状態又は超臨界状態においてめっき液中に多量に添加する金属粒子の平均粒径を100μmより大きくすることによって、金属イオンの補充も十分になされ、誘導共析現象を発生させることなく金属粉末粒子による凸部も形成されない均一で均質な膜厚の薄膜金属層が形成できるということを見出し、本発明を完成するに至ったのである。   On the other hand, when the particle size of the metal powder is small, the metal powder is easily taken into the plating layer when adsorbed on the plating layer, causing an induction eutectoid phenomenon and forming a convex portion. From this point of view, by increasing the average particle size of the metal particles added in a large amount in the plating solution in the subcritical state or supercritical state to more than 100 μm, the metal ions can be sufficiently replenished, and the induced eutectoid phenomenon The inventors have found that a thin metal layer having a uniform and uniform film thickness can be formed without generating convex portions due to metal powder particles without generating the metal powder particles, and the present invention has been completed.

すなわち、本発明は、めっき層の析出速度が速く、かつ、下地金属基体への密着性が良好で、短時間で均一で均質な膜厚のめっき被膜が得られる無電解めっき方法を提供することを目的とする。   That is, the present invention provides an electroless plating method in which a plating layer has a high deposition rate, has good adhesion to an underlying metal substrate, and can provide a uniform and uniform film thickness in a short time. With the goal.

上記目的を達成するため、本発明の無電解めっき方法においては、無電解めっき液は、二酸化炭素及び不活性ガスの少なくとも一方と界面活性剤を含み、平均粒径が100μmより大きい金属粉末を金属粉末が溶解しなくなる量以上に添加して分散させたものであり、超臨界状態又は亜臨界状態で無電解めっきを行うことを特徴とする。   In order to achieve the above object, in the electroless plating method of the present invention, the electroless plating solution contains at least one of carbon dioxide and an inert gas and a surfactant, and a metal powder having an average particle size of more than 100 μm is made of metal. The powder is added and dispersed in an amount that does not dissolve the powder, and is characterized by performing electroless plating in a supercritical state or a subcritical state.

また、本発明は、前記無電解めっき方法において、前記金属粉末は、金属基体、無電解めっき処理にて得られる金属被膜の少なくとも一方と同種の金属であることを特徴とする。   In the electroless plating method, the present invention is characterized in that the metal powder is the same type of metal as at least one of a metal substrate and a metal coating obtained by electroless plating.

本発明の無電解めっき方法によれば、金属基体の表面に無電解めっきする際に、無電解めっき液は、二酸化炭素及び不活性ガスの少なくとも一方と界面活性剤を含み、平均粒径が100μmより大きい金属粉末を金属粉末が溶解しなくなる量以上に添加して分散させたものであり、超臨界状態又は亜臨界状態で無電解めっきを行うようにしているため、めっき液は亜臨界又は超臨界環境であって摩擦が発生せず粘度もほぼゼロに近いことから、金属粉末は金属粉末の粒径が大きいことと併せてめっき層内に取り込まれにくく誘導共析現象の発生を防止でき、均一で均質な膜厚の薄膜金属層が形成できる。   According to the electroless plating method of the present invention, when electroless plating is performed on the surface of a metal substrate, the electroless plating solution contains at least one of carbon dioxide and an inert gas and a surfactant, and has an average particle size of 100 μm. A larger metal powder is added and dispersed in an amount that does not dissolve the metal powder. Electroless plating is performed in the supercritical or subcritical state, so the plating solution is subcritical or supercritical. Because it is a critical environment and friction is not generated and the viscosity is almost zero, the metal powder is difficult to be incorporated into the plating layer together with the large particle size of the metal powder and can prevent the occurrence of induction eutectoid phenomenon, A thin metal layer having a uniform and uniform film thickness can be formed.

また、本発明の無電解めっき方法によれば、金属基体、無電解めっき処理にて得られる金属被膜の少なくとも一方と同種の金属を金属粉末としてめっき液中に分散しているので、無電解めっきにより析出して減少した金属イオンも平均粒径が100μmより大きい金属粉末がめっき液中に溶解することによって補充されることから、短時間で均一で均質な膜厚のめっき被膜を得ることができる。   Further, according to the electroless plating method of the present invention, since the same kind of metal as the metal base and the metal coating obtained by the electroless plating treatment is dispersed as a metal powder in the plating solution, the electroless plating is performed. Since the metal ions deposited and reduced by the metal powder are replenished by dissolving the metal powder having an average particle size larger than 100 μm in the plating solution, a uniform and uniform film thickness can be obtained in a short time. .

また、本発明は、特にダマシン法ないしデュアルダマシン法等による高度集積化、微細化された半導体回路素子の微細配線形成用として適用した場合に下記のような優れた効果を奏する。   In addition, the present invention has the following excellent effects particularly when applied for forming fine wiring of highly integrated and miniaturized semiconductor circuit elements by the damascene method or dual damascene method.

すなわち、半導体回路素子の微細配線を形成するには、図3に示すように半導体基板の基体上に配線となる孔を設け、その上にシード層を形成し、シード層を覆うように金属めっきを施した後、平坦面を研磨することにより、微細配線を露出させるのが一般的な方法である。しかしながら、配線を微細にしようとすると、前記孔は微小な大きさになり、金属粒子により孔が塞がれてしまうことで、微細配線に「す」とよばれる空洞が生じてしまう。(図4C参照。)   That is, in order to form a fine wiring of a semiconductor circuit element, a hole to be a wiring is provided on a base of a semiconductor substrate as shown in FIG. 3, a seed layer is formed thereon, and metal plating is performed so as to cover the seed layer. After performing the above, it is a general method to expose the fine wiring by polishing the flat surface. However, if the wiring is made finer, the hole becomes very small, and the hole is blocked by the metal particles, so that a cavity called “su” is generated in the fine wiring. (See FIG. 4C.)

しかしながら、本発明は、無電解めっき液として二酸化炭素及び不活性ガスの少なくとも一方と界面活性剤を含み、平均粒径が100μmより大きい金属粉末を金属粉末が溶解しなくなる量以上に添加して分散させたものを用い、超臨界状態又は亜臨界状態で無電解めっきを行うようにしているため、めっき液は亜臨界又は超臨界環境であって摩擦が発生せず粘度もほぼゼロに近いことから、金属粉末は金属粉末の粒径が大きいことと併せてめっき層内に取り込まれにくく、微細配線を形成するための微細な孔にめっき液が十分浸透してめっきを行うことができ、「す」の無い微細配線を形成することができる。したがって、本発明は、特にダマシン法ないしデュアルダマシン法等による高度集積化、微細化された半導体回路素子の微細配線形成用にも有効に適用することができるようになる。   However, in the present invention, as an electroless plating solution, at least one of carbon dioxide and an inert gas and a surfactant are added, and a metal powder having an average particle size of more than 100 μm is added and dispersed in an amount that does not dissolve the metal powder. Since the electroless plating is performed in the supercritical state or subcritical state using the processed material, the plating solution is in a subcritical or supercritical environment and no friction is generated, and the viscosity is almost zero. In addition to the large particle size of the metal powder, the metal powder is difficult to be taken into the plating layer, and the plating solution can be sufficiently penetrated into the fine holes for forming the fine wiring. Can be formed. Therefore, the present invention can be effectively applied to the formation of fine wiring of highly integrated and miniaturized semiconductor circuit elements, particularly by the damascene method or dual damascene method.

[無電解めっき装置]
無電解めっき装置10としては、図1に示したように、超臨界流体ないし亜臨界流体を用いて無電解めっきを行うことができるようにするため、耐圧無電解めっき槽11を用いた。この耐圧無電解めっき槽11には、必要に応じて二酸化炭素ボンベ12からの二酸化炭素を高圧ポンプユニット13及びバルブ14を経て上部の蓋15に設けられた入口16に供給することができ、また、この二酸化炭素を上部の蓋15に設けられた出口17から圧力調整ユニット18を経て周囲大気中に排出することができるようになっている。
[Electroless plating equipment]
As the electroless plating apparatus 10, as shown in FIG. 1, a pressure-resistant electroless plating tank 11 is used so that electroless plating can be performed using a supercritical fluid or a subcritical fluid. The pressure-resistant electroless plating tank 11 can be supplied with carbon dioxide from a carbon dioxide cylinder 12 to an inlet 16 provided in an upper lid 15 via a high-pressure pump unit 13 and a valve 14 as necessary. The carbon dioxide can be discharged from the outlet 17 provided in the upper lid 15 through the pressure adjustment unit 18 into the surrounding atmosphere.

そして、耐圧無電解めっき槽11は蓋15を外すことによって所定量の無電解めっき液19を注入することができるとともに、耐圧無電解めっき槽11内には撹拌手段としてのスターラー20が挿入されている。さらに、この耐圧無電解めっき槽11はオーブン21内に載置されて内部に挿入された無電解めっき液19を所定の恒温に維持することができるようになっている。また、大気圧下で測定を行う場合には、二酸化炭素ボンベ12、高圧ポンプユニット13、バルブ14及び圧力調整ユニット18を操作することにより耐圧無電解めっき槽11内を大気圧下に開放できるようになっている。なお、この無電解めっき装置10においては耐圧無電解めっき槽11の上部から金属基体試料22を保持するとともに必要に応じて外部から無電解めっき液19中に浸漬できるようにしてある。   The pressure-resistant electroless plating tank 11 can be injected with a predetermined amount of electroless plating solution 19 by removing the lid 15, and a stirrer 20 as a stirring means is inserted into the pressure-resistant electroless plating tank 11. Yes. Further, the pressure-resistant electroless plating tank 11 is configured to maintain the electroless plating solution 19 placed in the oven 21 and inserted therein at a predetermined constant temperature. When measurement is performed under atmospheric pressure, the pressure-resistant electroless plating tank 11 can be opened to atmospheric pressure by operating the carbon dioxide cylinder 12, the high-pressure pump unit 13, the valve 14 and the pressure adjusting unit 18. It has become. In the electroless plating apparatus 10, the metal substrate sample 22 is held from the upper part of the pressure-resistant electroless plating tank 11 and can be immersed in the electroless plating solution 19 from the outside as necessary.

[金属基体]
各種実験例で使用する金属基体としては市販の真ちゅうを使用し、この金属基体を酸洗前処理後に上記の触媒としての塩化パラジウム系・アクチベーター水溶液に25℃において3分間浸漬することにより表面が活性化された金属基体試料22を用いた。
[Metal base]
A commercially available brass is used as the metal substrate used in various experimental examples, and the surface of the metal substrate is immersed in a palladium chloride activator aqueous solution as the above catalyst for 3 minutes at 25 ° C. after the pickling pretreatment. An activated metal substrate sample 22 was used.

[実験例1及び2]
実験例1及び2としては、超臨界状態ないしは亜臨界状態で、ニッケル粉末を添加した場合(実験例1)及びニッケル粉末を添加しない場合(実験例2)のそれぞれについて無電解めっきを行った。まず、耐圧無電解めっき槽11内に所定の無電解めっき液19を30mL注入し、金属基体試料22を上記耐圧無電解めっき槽11内の無電解めっき液19の上部に、この無電解めっき液19に触れないように配置した。この状態で、耐圧無電解めっき槽11内の無電解めっき液の温度を80℃に加熱し、スターラー20で無電解めっき液19の撹拌を開始(撹拌速度300rpm一定)するとともに、二酸化炭素ボンベ12、高圧ポンプユニット13、バルブ14及び圧力調整ユニット18を手動で操作することによって耐圧無電解めっき槽11内の圧力が10MPaとなるように加圧した。
[Experimental Examples 1 and 2]
As Experimental Examples 1 and 2, electroless plating was performed in each of a case where nickel powder was added (Experimental Example 1) and a case where nickel powder was not added (Experimental Example 2) in a supercritical state or a subcritical state. First, 30 mL of a predetermined electroless plating solution 19 is injected into the pressure-resistant electroless plating tank 11, and the metal substrate sample 22 is placed on the electroless plating solution 19 in the pressure-resistant electroless plating tank 11. 19 was placed so as not to touch. In this state, the temperature of the electroless plating solution in the pressure-resistant electroless plating tank 11 is heated to 80 ° C., and stirring of the electroless plating solution 19 is started by the stirrer 20 (stirring speed is constant at 300 rpm). The pressure in the pressure-resistant electroless plating tank 11 was increased to 10 MPa by manually operating the high-pressure pump unit 13, the valve 14 and the pressure adjusting unit 18.

そうすると、二酸化炭素の臨界温度は31.1℃であり、臨界圧力は7.38MPaであるから、上記の温度及び圧力条件下では耐圧無電解めっき槽11内は実質的に超臨界状態ないし亜臨界状態となっている。そして、無電解めっき液19は実質的に摩擦が発生せず粘度がほぼゼロに近い状態となり、この摩擦が発生せず粘度がほぼゼロに近い環境状態の無電解めっき液19は耐圧無電解めっき槽11内に充満して金属基体試料22と十分に接触する状態となる。   Then, since the critical temperature of carbon dioxide is 31.1 ° C. and the critical pressure is 7.38 MPa, the inside of the pressure-resistant electroless plating tank 11 is substantially supercritical or subcritical under the above temperature and pressure conditions. It is in a state. The electroless plating solution 19 is substantially free of friction and has a viscosity of nearly zero. The electroless plating solution 19 in an environmental state in which the friction is not generated and the viscosity is nearly zero is pressure-resistant electroless plating. The tank 11 is filled and fully in contact with the metal substrate sample 22.

そして、耐圧無電解めっき槽11内の圧力が10MPaとなった時から30分後に耐圧無電解めっき槽11の圧力の減圧を開始し、耐圧無電解めっき槽11内の圧力が大気圧に戻ったときに無電解めっき液19の撹拌を停止し、蓋15を外して金属基体試料22を取り出し、水洗及び乾燥後に目視により金属基体試料22の表面のめっき状態を観察した。この実験例1及び2の耐圧無電解めっき槽11のタイミングフローチャートを図2に示し、また、実験例1及び2で得られた測定結果を表1に示す。   And pressure reduction of the pressure-resistant electroless plating tank 11 was started 30 minutes after the pressure in the pressure-resistant electroless plating tank 11 became 10 MPa, and the pressure in the pressure-resistant electroless plating tank 11 returned to atmospheric pressure. Occasionally, stirring of the electroless plating solution 19 was stopped, the lid 15 was removed, the metal substrate sample 22 was taken out, and the surface of the metal substrate sample 22 was visually observed after washing and drying. FIG. 2 shows a timing flowchart of the pressure-resistant electroless plating tank 11 of Experimental Examples 1 and 2, and Table 1 shows the measurement results obtained in Experimental Examples 1 and 2.

[実験例3及び4]
実験例3及び4としては、大気圧下でニッケル粉末を添加した場合(実験例3)及びニッケル粉末を添加しない場合(実験例4)のそれぞれについて無電解めっきを行った。まず、大気開放状態の耐圧無電解めっき槽11内に所定の無電解めっき液19を40mL注入し、この状態で、耐圧無電解めっき槽11内の無電解めっき液の温度を80℃に加熱した。次いで、スターラー20で無電解めっき液19の撹拌を開始(撹拌速度300rpm一定)するとともに、金属基体試料22を無電解めっき液19内に浸漬した。この状態を30分間維持した後、金属基体試料22を取り出し、水洗及び乾燥後に目視により金属基体試料22の表面のめっき状態を観察した。この実験例3及び4で得られた測定結果を実験例1及び2の測定結果とまとめて表1に示す。

Figure 2009249652
[Experimental Examples 3 and 4]
As Experimental Examples 3 and 4, electroless plating was performed for each of the case where nickel powder was added under atmospheric pressure (Experimental Example 3) and the case where nickel powder was not added (Experimental Example 4). First, 40 mL of a predetermined electroless plating solution 19 was injected into the pressure-resistant electroless plating tank 11 in an open air state, and the temperature of the electroless plating solution in the pressure-resistant electroless plating tank 11 was heated to 80 ° C. in this state. . Next, stirring of the electroless plating solution 19 was started with the stirrer 20 (stirring speed was constant at 300 rpm), and the metal substrate sample 22 was immersed in the electroless plating solution 19. After maintaining this state for 30 minutes, the metal substrate sample 22 was taken out, washed with water and dried, and the surface of the metal substrate sample 22 was visually observed. The measurement results obtained in Experimental Examples 3 and 4 are shown in Table 1 together with the measurement results of Experimental Examples 1 and 2.
Figure 2009249652

表1に示した結果から、以下のことが分かる。すなわち、大気圧下で無電解めっきを行った場合、無電解めっき液中にニッケル粉末を添加しない実験例4の場合では、めっき被膜は薄く、全面にムラが認められた。更に、無電解めっき液中にニッケル粉末を添加した実験例3の場合では、めっき被膜は得られたが、厚さは薄くかつ部分的にムラが認められた。実験例3及び4で使用した無電解めっき液は、従来から普通に使用されている無電解めっき液であって、析出速度が遅いために30分の無電解メッキ時間ではめっき時間が足りず、ムラが見られたものと認められる。加えて、無電解めっき液中にニッケル粉末を添加した実験例3の方がニッケル粉末を添加しない実験例4の場合よりも良好な結果等得られていることから、大気圧下の無電解めっきでもニッケル粉末を添加することによるめっき層の析出速度の向上効果は一応認められる。   From the results shown in Table 1, the following can be understood. That is, when electroless plating was performed under atmospheric pressure, in the case of Experimental Example 4 in which nickel powder was not added to the electroless plating solution, the plating film was thin and unevenness was observed on the entire surface. Furthermore, in the case of Experimental Example 3 in which nickel powder was added to the electroless plating solution, a plating film was obtained, but the thickness was thin and unevenness was partially observed. The electroless plating solution used in Experimental Examples 3 and 4 is a conventionally used electroless plating solution, and because the deposition rate is slow, the electroless plating time is insufficient for 30 minutes, It is recognized that unevenness was observed. In addition, since Experimental Example 3 in which nickel powder was added to the electroless plating solution had better results than in Experimental Example 4 in which nickel powder was not added, electroless plating under atmospheric pressure However, the effect of improving the deposition rate of the plating layer by adding nickel powder is recognized for the time being.

さらに、超臨界状態ないし亜臨界状態で無電解めっきを行った場合、無電解めっき液中にニッケル粉末を添加しない実験例2の場合では、良好なめっき被膜が得られたが、イオンの補充が十分に行われず厚さは薄かった。これに対し、無電解めっき液中にニッケル粉末を添加した実験例1の場合ではイオンの補充が十分になされ良好な厚いめっき被膜が得られた。この結果から、超臨界状態ないし亜臨界状態での無電解めっきでは、ニッケル粉末を添加しなくてもめっき層の析出速度の向上効果は一応認められるが、30分間という無電解めっき時間ではまだ短すぎるために部分的にムラが認められたものであることが分かる。これに対して、無電解めっき液中にニッケル粉末を添加した実験例1の場合では、めっき層の析出速度が速いために、30分間の無電解めっきでも十分な厚さのめっき層がむらなく形成されている。   Furthermore, when electroless plating was performed in a supercritical state or a subcritical state, in the case of Experimental Example 2 where no nickel powder was added to the electroless plating solution, a good plating film was obtained, but ion supplementation was performed. It was not done sufficiently and the thickness was thin. On the other hand, in the case of Experimental Example 1 in which nickel powder was added to the electroless plating solution, ions were sufficiently replenished and a good thick plating film was obtained. From this result, in electroless plating in the supercritical state or subcritical state, the effect of improving the deposition rate of the plating layer is recognized without adding nickel powder, but the electroless plating time of 30 minutes is still short. Therefore, it can be seen that unevenness was partially recognized. On the other hand, in the case of Experimental Example 1 in which nickel powder is added to the electroless plating solution, the deposition rate of the plating layer is fast, so that a sufficiently thick plating layer is not uneven even after 30 minutes of electroless plating. Is formed.

以上のことから、超臨界状態ないし亜臨界状態で無電解めっきを行う際に、予め無電解めっき液中にめっきされる金属の粉末を添加しておくと、めっき層の析出速度が向上するために、均質で均一な厚さのめっき被膜が得られ、ダマシン法ないしはデュアルダマシン法に対しても適用可能であることが明らかとなった。   From the above, when performing electroless plating in the supercritical state or subcritical state, if the metal powder to be plated is added to the electroless plating solution in advance, the deposition rate of the plating layer is improved. In addition, it has been clarified that a plating film having a uniform and uniform thickness can be obtained and can be applied to the damascene method or the dual damascene method.

なお、上記実験例においては、ニッケル粉末として100μmの粒度のものを用いたが、このニッケル粉末により無電解めっき液からめっき層が析出すると同時にめっき液中にニッケルイオンが補充され、無電解めっき時のめっき層の析出速度の向上に繋がり、また、粒径が大きいほどめっき層に取り込まれることなく、誘導共析現象によるめっき層のむらを防止できる。また、狭い場所にも「す」を発生させることなく、緻密で高速にめっきできるようにするためにも、金属粒子の粒径は大きい方がよい。特に100μmより大きい粒子を使用すると、電解液への分散状態が良好であり、めっき層に取り込まれることもなく、1μm未満の精度を持つ基板構造にも容易に無電解めっきすることができるようになる。また、金属粒子の粒径は1mm程度までは良好な分散状態が得られ緻密で均一な膜厚のめっきが得られる。   In the above experimental example, a nickel powder having a particle size of 100 μm was used, but this nickel powder deposited a plating layer from the electroless plating solution and at the same time supplemented with nickel ions in the plating solution. As a result, it is possible to prevent unevenness of the plating layer due to the induction eutectoid phenomenon without being taken into the plating layer as the particle size increases. Also, it is preferable that the particle size of the metal particles is large so that the plating can be carried out densely and at high speed without generating “soot” even in a narrow place. In particular, when particles larger than 100 μm are used, the dispersion state in the electrolytic solution is good, so that the substrate structure having an accuracy of less than 1 μm can be easily electrolessly plated without being taken into the plating layer. Become. Further, when the particle size of the metal particles is up to about 1 mm, a good dispersion state can be obtained, and a dense and uniform film thickness can be obtained.

また、上記各実験例においては、金属基体が真ちゅうであり、無電解めっきする金属がニッケルの場合について説明したが、本発明の無電解めっき方法は金属基体と無電解めっきする金属が同種の場合であっても異種の場合であっても同様の効果を奏する。そのため、金属基体及び無電解めっきする金属としては、真ちゅうやニッケルの場合だけでなく、銅、亜鉛、鉄、ニッケル、コバルト等に対しても等しく適用可能である。   In each of the above experimental examples, the case where the metal base is brass and the metal to be electrolessly plated has been described as nickel. However, the electroless plating method of the present invention is the case where the metal base and the metal to be electrolessly plated are the same type. Even if they are different types, the same effect can be obtained. Therefore, the metal substrate and the metal to be electrolessly plated are equally applicable not only to brass and nickel but also to copper, zinc, iron, nickel, cobalt, and the like.

各実験例で使用した無電解めっき装置の概略図である。It is the schematic of the electroless-plating apparatus used in each experiment example. 超臨界流体ないし亜臨界流体を用いて無電解めっきを行う際の耐圧無電解めっき槽のタイミングフローチャートである。It is a timing flowchart of the pressure | voltage resistant electroless-plating tank at the time of performing electroless plating using a supercritical fluid or a subcritical fluid. 図3A〜図3Eは従来例の3次元実装用半導体装置の配線の形成工程を順に説明する図である。FIG. 3A to FIG. 3E are diagrams for sequentially explaining the wiring formation process of the conventional three-dimensional mounting semiconductor device. 図3に示した従来で採用されているボイド抑制工程を説明する図である。It is a figure explaining the void suppression process employ | adopted conventionally shown in FIG. 金属粒子がめっき層に取り込まれた誘導共析現象の問題点を説明する図である。It is a figure explaining the problem of the induction eutectoid phenomenon in which the metal particle was taken in into the plating layer.

符号の説明Explanation of symbols

10 無電解めっき装置
11 耐圧無電解めっき槽
12 二酸化炭素ボンベ
13 高圧ポンプユニット
14 バルブ
15 蓋
16 入口
17 出口
18 圧力調整ユニット
19 無電解めっき液
20 スターラー
21 オーブン
22 金属基体試料
DESCRIPTION OF SYMBOLS 10 Electroless-plating apparatus 11 Pressure-resistant electroless-plating tank 12 Carbon dioxide cylinder 13 High pressure pump unit 14 Valve 15 Lid 16 Inlet 17 Outlet 18 Pressure adjusting unit 19 Electroless plating solution 20 Stirrer 21 Oven 22 Metal base sample

Claims (2)

金属基体の表面に無電解めっきする方法において、無電解めっき液は、二酸化炭素及び不活性ガスの少なくとも一方と界面活性剤を含み、平均粒径が100μmより大きい金属粉末を金属粉末が溶解しなくなる量以上に添加して分散させたものであり、超臨界状態又は亜臨界状態で無電解めっきを行うことを特徴とする無電解めっき方法。   In the method of electroless plating on the surface of a metal substrate, the electroless plating solution contains at least one of carbon dioxide and inert gas and a surfactant, and the metal powder does not dissolve the metal powder having an average particle size of more than 100 μm. An electroless plating method, wherein the electroless plating is carried out in a supercritical state or a subcritical state. 前記金属粉末は、金属基体、無電解めっき処理にて得られる金属被膜の少なくとも一方と同種の金属であることを特徴とする請求項1に記載の無電解めっき方法。   2. The electroless plating method according to claim 1, wherein the metal powder is the same type of metal as at least one of a metal substrate and a metal coating obtained by electroless plating.
JP2008095562A 2008-04-01 2008-04-01 Electroless plating method Pending JP2009249652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008095562A JP2009249652A (en) 2008-04-01 2008-04-01 Electroless plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008095562A JP2009249652A (en) 2008-04-01 2008-04-01 Electroless plating method

Publications (1)

Publication Number Publication Date
JP2009249652A true JP2009249652A (en) 2009-10-29

Family

ID=41310628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008095562A Pending JP2009249652A (en) 2008-04-01 2008-04-01 Electroless plating method

Country Status (1)

Country Link
JP (1) JP2009249652A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316830A (en) * 1994-05-31 1995-12-05 Hitachi Ltd Method for dissolving metal powder and device therefor
JP2003321791A (en) * 2000-08-24 2003-11-14 Hideo Yoshida Electrochemical reaction method
JP2008121063A (en) * 2006-11-10 2008-05-29 Ses Co Ltd Electroless plating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316830A (en) * 1994-05-31 1995-12-05 Hitachi Ltd Method for dissolving metal powder and device therefor
JP2003321791A (en) * 2000-08-24 2003-11-14 Hideo Yoshida Electrochemical reaction method
JP2008121063A (en) * 2006-11-10 2008-05-29 Ses Co Ltd Electroless plating method

Similar Documents

Publication Publication Date Title
JP4163728B2 (en) Electroplating method
CN104025724B (en) The method that conducting image is formed in non-conductive surface
JP2005539369A (en) Electroless deposition equipment
JP3670238B2 (en) Metal plating method, pretreatment agent, semiconductor wafer and semiconductor device using the same
JPWO2003091476A1 (en) Semiconductor wafer having electroless plating method and metal plating layer formed thereon
JP4177400B2 (en) Electroless plating method
JP2013524019A (en) Seed layer deposition in microscale structures
Kim et al. Electroless nickel alloy deposition on SiO2 for application as a diffusion barrier and seed layer in 3D copper interconnect technology
JP6498187B2 (en) Method for depositing a copper seed layer on a barrier layer and copper plating bath
JP5243832B2 (en) Electroplating method
JP4613270B2 (en) Electroless plating method
JP2009249652A (en) Electroless plating method
JP5291377B2 (en) Electroless plating method
KR20100003492A (en) Electrochemical polishing and plating method for manufacturing of through via and bumps in 3d sip
JP5214092B2 (en) Method for forming a metal layer on an insulator patterned by electroless plating using a catalyst
JP2007297652A (en) Plating method and plating apparatus
JP5095423B2 (en) Electroplating method
Li et al. Metallization process of a polyimide surface with palladium-free activation for electronic field applications
Lim et al. The effect of inducing uniform Cu growth on formation of electroless Cu seed layer
Wu et al. Dual effects of CTAB on Co-deposition of SiC/Cu in micro via
JP3864138B2 (en) Method for forming copper wiring on substrate
Lee et al. Nano palladium catalyst formation assisted by ultrasound for electroless copper plating
van der Veen et al. Conformal Cu electroless seed on Co and Ru liners enables Cu fill by plating for advanced interconnects
TWI415962B (en) Substrate with alloy film of metal element having barrier function and metal element having catalytic energy
Kim et al. Electroless Nickel Alloy Deposition on SiO

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20101102

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Effective date: 20110311

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20121220

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130523