JP2009247964A - Manufacturing method of coated article - Google Patents

Manufacturing method of coated article Download PDF

Info

Publication number
JP2009247964A
JP2009247964A JP2008097655A JP2008097655A JP2009247964A JP 2009247964 A JP2009247964 A JP 2009247964A JP 2008097655 A JP2008097655 A JP 2008097655A JP 2008097655 A JP2008097655 A JP 2008097655A JP 2009247964 A JP2009247964 A JP 2009247964A
Authority
JP
Japan
Prior art keywords
coating
time
coated
substrate
coating liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008097655A
Other languages
Japanese (ja)
Inventor
Makoto Doi
誠 土肥
Shuichi Yamanami
秀一 山並
Takashi Irie
剛史 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2008097655A priority Critical patent/JP2009247964A/en
Publication of JP2009247964A publication Critical patent/JP2009247964A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a coated article, which comprises asking a physical quantities by a fluid simulation without coating using an actual coating machine or a test model close to the actual coating machine, and setting coating conditions based on the physical quantities. <P>SOLUTION: The manufacturing method of the coated article comprises the step of setting coating conditions using the coefficient A(t) shown in a formula (1) asked from the simulation results by a numeric fluid analytic method to coat. In the formula, S<SB>o</SB>represents a coated substrate exit cross section, and G<SB>i</SB>(t) represents an area ratio in which a gas part occupies in a micro area dS in a time t. The dS is a micro area factor constituting the coating substrate exit cross section. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、塗工不良部分が少なく良好な表面状態を持つ塗工物の製造方法に関する。   The present invention relates to a method for producing a coated product having few coating defects and a good surface state.

一般的に、塗工機を用いて塗工物を製造する際には、塗工物表面の荒れや、部分的に塗液が塗工されていないヌケ、印刷方向に直線状に塗液の厚みのむらができるスジ等と呼ばれる塗工不良が発生することがあり、塗工物の品質に著しく悪影響を与える。   In general, when producing a coated product using a coating machine, the surface of the coated material is rough, the coating liquid is not partially applied, or the coating liquid is linear in the printing direction. A coating defect called a streak or the like with uneven thickness may occur, and the quality of the coated product is significantly adversely affected.

これらの塗工不良を発生させずに良好な塗工物を得るためには、塗液室内の圧力設定や開口部の間隙の設定、及び塗液の粘度物性の調整等の設定条件を最適化する必要がある。   In order to obtain a good coated product without causing these coating defects, the setting conditions such as the pressure setting in the coating solution chamber, the setting of the opening gap, and the adjustment of the viscosity property of the coating solution are optimized. There is a need to.

従来塗工不良を減少させるために、これまでは、塗工不良が発生したことを検知し、速やかにダイヘッドを移動させ不良の原因である異物や気泡を除去することが知られている(特許文献1)。   Conventionally, in order to reduce coating defects, it has been known to detect the occurrence of coating defects and quickly move the die head to remove foreign substances and bubbles that cause defects (patents) Reference 1).

しかし、この方法では塗工不良が発生してから対策を行うものであり、塗工不良を発生させない条件で塗工を行う本発明とは根本的に異なるものである。   However, in this method, countermeasures are taken after a coating failure occurs, which is fundamentally different from the present invention in which coating is performed under conditions where coating failure does not occur.

また、塗液の粘度、表面張力等の物性値を規定し塗工不良を防ぐ方法が知られている(特許文献2、3、4参照)が、これらの方法では塗工機の条件設定には触れておらず、良好な塗工条件を探すためには実際の塗工機または実際の塗工機に近い実験機を用いて塗工する必要がある。通常最適な条件を探し当てるまでには多数の条件による塗工を行わなければならず、設備の保守費用や塗工材の購入費、試験塗工された塗工物の廃棄費用など、多額の塗工費用が必要であった。さらに高速で連続塗工を行う塗工機においては、塗工された被印刷物を巻き取って保管することが一般的であり、塗工物が良好であるか否かの判断を行うためには、巻き取られた膨大な面積の塗工物を巻き戻しつつ観察しなければならず、塗工状態を判断するための結果が出るまでには多大な労力と長い時間が必要であった。   In addition, there are known methods for preventing physical defects by defining physical properties such as viscosity and surface tension of the coating liquid (see Patent Documents 2, 3, and 4). In order to search for good coating conditions, it is necessary to perform coating using an actual coating machine or an experimental machine close to the actual coating machine. Usually, it is necessary to perform coating under a number of conditions before finding the optimal conditions, and a large amount of coating is required, including equipment maintenance costs, purchase costs for coating materials, and disposal costs for test coatings. Construction cost was necessary. Furthermore, in a coating machine that performs continuous coating at a high speed, it is common to wind up and store the coated printed material, and in order to determine whether the coated material is good or not In addition, it was necessary to observe while winding up the enormous area of the wound coating material, and it took a great deal of labor and a long time to obtain a result for judging the coating state.

他には、有限要素法を用いた数値解析手法にてダイヘッドの設計を行い塗工する方法が知られている(特許文献5参照)が、この方法は幅方向の吐出量分布を最適にすることが目的であり、塗工不良の改善には至っていない。
特開2002−45758号公報 特開2001−49203号公報 特開2006−16511号公報 特開2006−16512号公報 特開2004−148228号公報
In addition, there is known a method of designing and coating a die head by a numerical analysis method using a finite element method (see Patent Document 5), but this method optimizes the discharge amount distribution in the width direction. This is the purpose and has not led to the improvement of coating defects.
JP 2002-45758 A JP 2001-49203 A JP 2006-16511 A JP 2006-16512 A JP 2004-148228 A

本発明の目的は塗工機や塗工試験機を用いて実際に塗工することなく良好な塗工機の設定条件や塗液の物性値を得て、塗工を行う方法を提供することである。 An object of the present invention is to provide a method for performing coating by obtaining good coating machine setting conditions and coating liquid physical properties without actually coating using a coating machine or a coating testing machine. It is.

本発明者はかかる課題を解決するために鋭意検討した結果、数値流体解析法によるシミュレーション結果を用いて塗工機および塗工試験機の条件を設定し塗工することによって、塗工不良の少ない塗工物を得ることができることを見いだし本発明に至った。
すなわち本発明は塗工機を用いて塗工物を製造する際に、数値流体解析法によるシミュレーション結果から得られる式(1)から得られる係数A(t)を用いて塗工機および塗工試験機の条件を設定し塗工することを特徴とする。
As a result of diligent investigations to solve such problems, the present inventors set the conditions of the coating machine and the coating testing machine using the simulation results by the numerical fluid analysis method, thereby reducing coating defects. The present inventors have found that a coated product can be obtained and have reached the present invention.
That is, the present invention uses the coefficient A (t) obtained from the equation (1) obtained from the simulation result by the numerical fluid analysis method when producing a coated product using the coating machine. It is characterized by setting the conditions of the testing machine and coating.

(式中、Soは塗工基材出口断面の面積、Gi(t)はある時間tにおける微小面積dS中の気体部分の占める面積比率を表す。このときdSは塗工基材出口断面を構成する微小面積要素の面積とする。)
さらに、数値流体解析法にてシミュレーション計算を行う際に、初期に設定した塗液の状態から塗工状態が安定する時間t1までの計算結果から求められるA(t)は無視し、時間t1以降のA(t)の値の最大値が20%を越えない条件を用いて、塗工機および塗工試験機の条件を設定し塗工することを特徴とする。
(In the formula, S o represents the area of the coated substrate outlet cross section, and G i (t) represents the area ratio of the gas portion in the minute area dS at a certain time t. At this time, dS represents the coated substrate outlet cross section. Is the area of the small area element that constitutes
Further, when performing a simulation calculation by the numerical fluid analysis method, A (t) obtained from the calculation result from the initially set coating liquid state to the time t 1 when the coating state is stabilized is ignored, and the time t Coating is performed by setting the conditions of the coating machine and the coating testing machine using conditions where the maximum value of A (t) after 1 does not exceed 20%.

本発明の方法によって、実際の塗工機または実際の塗工機に近い実験機を用いて塗工し、塗工物を評価した結果を基に塗工条件を設定したり、塗液の物性を調整したりするのではなく、シミュレーションによって数値を求めその数値を基に塗工条件を設定し、塗液物性の最適化を行うことが可能となり、新しい塗工機を設置する場合や新しい塗液を塗工する場合に、より簡便な方法で塗工条件や塗液物性を設定することができるようになった。   Using the method of the present invention, coating is performed using an actual coating machine or an experimental machine close to the actual coating machine, and the coating conditions are set based on the result of evaluating the coated material. Rather than adjusting the value, it is possible to obtain numerical values by simulation and set coating conditions based on the numerical values to optimize the coating liquid properties. When coating a liquid, it has become possible to set coating conditions and coating liquid physical properties by a simpler method.

まず、本発明で使用するスロットダイ形式のコーターヘッドにより塗工する塗工機とは、具体的には、ダイコーター、リップコーター等が例示できる。   First, specific examples of the coating machine for coating with the slot die type coater head used in the present invention include a die coater and a lip coater.

本発明者等は研究を重ねた結果、塗液をスロットダイ形式で塗工する際に、塗工速度を上げると、塗液によっては塗膜中に気泡が多数存在してしまうことが確認され、さらには塗液が全く存在しない部分が発生してしまうことがわかった。塗液によっては最終的な塗膜の特性を重視しなければならないため、濡れ性や粘度特性の点で塗工に適した特性を付与することができないものもあり、塗工速度を上げると塗工基材入口において塗液が塗工基材に接する部分で、塗工基材の導入とともに空気が塗工基材に付随してスロットダイ内部に流入する空気同伴現象を起こしやすいと考えられる。この流入した空気がスロットダイ内部で寄り集まり、ある程度の大きさの気泡に成長し、塗工基材の出口部分から流出すると、乾燥とともに塗膜内に気泡が封じ込められてしまったり、塗液が全く存在しない部分が発生したり、塗工物表面に筋上の跡が残る塗工筋が発生したりすると考えられる。特に粘着剤を塗工する場合には剥離性基材に塗工することが一般的であり、塗液と剥離性基材の接触角が大きいことから空気同伴現象が起こりやすい。さらに水性の塗液を塗工する場合も基材との接触角が大きくなるため空気同伴現象が起こりやすい。   As a result of repeated research, the present inventors have confirmed that, when the coating liquid is applied in the slot die format, if the coating speed is increased, a large number of bubbles may exist in the coating film depending on the coating liquid. Further, it was found that a portion where no coating liquid was present was generated. Depending on the coating solution, the final coating properties must be emphasized, so some properties cannot be imparted in terms of wettability and viscosity properties. It is considered that an air entrainment phenomenon is likely to occur in the portion where the coating liquid comes into contact with the coated base material at the entrance of the coated base material and air flows into the slot die along with the coated base material. When the air that has flowed in gathers inside the slot die and grows into bubbles of a certain size and flows out from the exit part of the coating substrate, the bubbles are trapped in the coating as it dries, or the coating liquid It is considered that a portion that does not exist at all occurs or a coating streak that leaves a trace on the surface of the coated product is generated. In particular, when an adhesive is applied, it is generally applied to a peelable substrate, and an air entrainment phenomenon is likely to occur because the contact angle between the coating liquid and the peelable substrate is large. Further, when an aqueous coating liquid is applied, an air entrainment phenomenon is likely to occur because the contact angle with the substrate is increased.

一般的にこの空気同伴現象を抑えるためには塗液供給圧力を増加させ塗工基材入り口部分の気液界面を安定させることで改善できるが、圧力を増加させすぎると塗工基材入り口部分から塗液が逆流し漏洩したり、塗液が塗工基材入り口部分の間隙に入り込み滞留することによって乾燥した皮膜が発生し、塗工不良の原因となったりする不具合が発生するため細かい調整が必要となる。また、この気液界面の挙動には塗液供給圧力以外にも塗液の粘度、動的表面張力、接触角などのパラメータによって変化するため実験的に条件を求めるのは困難である。   In general, in order to suppress this air entrainment phenomenon, it can be improved by increasing the coating liquid supply pressure and stabilizing the gas-liquid interface at the coating substrate entrance, but if the pressure is increased too much, the coating substrate entrance Since the coating liquid flows back and leaks from the surface, or when the coating liquid enters and stays in the gap at the entrance of the coating substrate, a dry film is generated, causing problems such as coating failure. Is required. In addition to the coating liquid supply pressure, the behavior of the gas-liquid interface varies depending on parameters such as the viscosity of the coating liquid, the dynamic surface tension, and the contact angle, so it is difficult to experimentally determine the conditions.

本発明者等は更に研究を重ねた結果、数値流体解析法を用いて塗工の際の条件をシミュレーションした結果を特定の方法で評価する事により、空気同伴現象の起こりやすさを予測できることがわかった。   As a result of further research, the present inventors can predict the likelihood of the air entrainment phenomenon by evaluating the result of simulating the coating conditions using a numerical fluid analysis method using a specific method. all right.

すなわち本発明は数値流体解析法によるシミュレーション結果から求められる下記式(1)で示される係数A(t)を用いて塗工条件を設定して塗工することを特徴とする塗工物の製造方法を提供する。   That is, the present invention provides a coated product characterized in that coating is performed by setting coating conditions using a coefficient A (t) represented by the following formula (1) obtained from a simulation result by a numerical fluid analysis method. Provide a method.

(式中、Soは塗工基材出口断面の面積、Gi(t)は時間tにおける微小面積dS中の気体部分の占める面積比率を表す。このときdSは塗工基材出口断面を構成する微小面積要素とする。)
本発明では、このような数値流体解析法として、空気および塗料の流路を微小な計算格子に分割し、有限要素法、有限体積法および差分法等の数値解析手法を利用して、塗工基材に塗料が転移する流動挙動を解析する。
(In the formula, So represents the area of the coated substrate outlet cross section, and Gi (t) represents the area ratio occupied by the gas portion in the minute area dS at time t. At this time, dS constitutes the coated substrate outlet cross section. (It is a small area element.)
In the present invention, as such a numerical fluid analysis method, the flow path of air and paint is divided into fine calculation grids, and a numerical analysis method such as a finite element method, a finite volume method, or a difference method is used to perform coating. Analyze the flow behavior of the paint on the substrate.

数値流体解析を行う方法は特に限定されるものではないが、市販の流体解析ソフトを使用するのが簡便である。例としてANSYS社の流体解析ソフト「FLUENT」、「GAMBIT」を用いて解析を行うことが可能である。   The method for performing the numerical fluid analysis is not particularly limited, but it is convenient to use commercially available fluid analysis software. For example, the analysis can be performed using fluid analysis software “FLUENT” and “GAMBIT” manufactured by ANSYS.

「GAMBIT」を用いて解析に使用する塗工機内部の形状モデルを作成する際には、全体を3次元形状のままモデル化して計算を行っても良いが、計算負荷を低減させるために、一部または全ての塗工基材出口断面を含む特定の部分を切り出してモデルを作成する、または幅方向に対して垂直な面のみを抜き出した2次元のモデルを作成する、等の手法を用いて計算を行った方が短時間で解を求めることができ効率的である。   When creating a shape model inside the coating machine to be used for analysis using “GAMBIT”, the entire model may be calculated as a three-dimensional shape, but in order to reduce the calculation load, Use a method such as creating a model by cutting out a specific part including the cross section of some or all coated substrates, or creating a two-dimensional model by extracting only the plane perpendicular to the width direction. It is more efficient to calculate in this way because the solution can be obtained in a short time.

また、塗工機の基材入口および出口の間隙は任意に調整可能のものが多いため、必要な間隙に設定されたモデルを複数計算してもよい。さらに、塗工基材の厚みによって間隙は狭まるため、実際の塗液の流路形状には塗工基材入口および出口と塗工基材の厚みの差をとるという補正が必要となる。   In addition, since the gap between the substrate inlet and the outlet of the coating machine can be arbitrarily adjusted, a plurality of models set to necessary gaps may be calculated. Furthermore, since the gap is narrowed depending on the thickness of the coating substrate, it is necessary to correct the difference in thickness between the coating substrate inlet and outlet and the coating substrate in the actual flow path shape of the coating solution.

塗液流路のモデルを作成した後に、モデル内部に計算格子を設定する。本発明で重要な塗工基材出口断面に、計算格子が平滑に整列するように設定すると計算誤差が少なくなり、精度良く係数A(t)が求められる。このとき、計算格子を構成する面のうち、塗工基材出口断面に接している面の面積を微小面積要素dSとする。   After creating a model of the coating liquid flow path, a calculation grid is set inside the model. If the calculation grid is set so as to be smoothly aligned with the cross section of the coated substrate outlet that is important in the present invention, the calculation error is reduced and the coefficient A (t) is obtained with high accuracy. At this time, the area of the surface which is in contact with the coated substrate outlet cross section among the surfaces constituting the calculation grid is defined as a minute area element dS.

次に「FLUENT」を用いて解析を行う際には、使用する塗液の粘度、塗液の密度、表面張力、塗工基材に対する接触角、塗工機内部材質に対する接触角を物性値として設定し、塗工機その他の設定条件として、塗工速度、塗液の供給圧力または供給流量、空気の粘度、空気の密度、大気圧を設定する。その後、非加熱の等温系を仮定し、粘度モデルとして層流モデル、混相流モデルとして塗液と空気の2相を指定した自由表面モデルを使用し、非定常解析を行う。離散化された時間の単位であるタイムステップは、通常計算格子サイズを塗工速度で割った値以下に設定するが、計算が安定している場合はこの限りではない。また、タイムステップは固定でも良いし、計算の過程で徐々に変化させても良い。   Next, when performing analysis using “FLUENT”, the viscosity of the coating liquid to be used, the density of the coating liquid, the surface tension, the contact angle with respect to the coating substrate, and the contact angle with respect to the internal material of the coating machine are used as physical property values. Set the coating speed, supply pressure or supply flow rate of the coating liquid, air viscosity, air density, and atmospheric pressure as the coating machine and other setting conditions. Then, assuming an unheated isothermal system, unsteady analysis is performed using a laminar flow model as a viscosity model and a free surface model in which two phases of coating liquid and air are designated as a multiphase flow model. The time step, which is a unit of time that is discretized, is usually set to a value that is equal to or less than the value obtained by dividing the calculation grid size by the coating speed, but this is not the case when the calculation is stable. Further, the time step may be fixed or may be gradually changed in the calculation process.

本発明ではこのようにして設定した微小面積要素 dS、および時間tにおけるdS中の気体部分の占める面積比率 Gi(t)から、式(1)で示される係数 A(t)を求める。   In the present invention, the coefficient A (t) represented by the equation (1) is obtained from the minute area element dS set in this way and the area ratio Gi (t) occupied by the gas portion in dS at time t.

ここで、計算初期は塗工機内部の流速分布が初期化されているため流動状態が不安定となり、気液界面のバランスが崩れて大量の空気が塗工機内部に進入することがある。塗工安定性を評価するには、気液界面が安定した後の状態を評価する必要があるため、初期に設定した塗液の状態から塗工状態が安定するまでの計算結果から求められるA(t)は無視し、それ以降のA(t)の値を評価する。本発明者らは鋭意検討の結果、塗工幅方向全てに渡って塗液が塗工基材に転移し、塗工基材出口から排出された時間を起点とし、そこからコーターヘッドの塗工基材入り口から塗工基材出口まで塗工基材が通過する距離を、塗工基材の移動速度で除した値の3倍の時間が経過した後に気液界面が安定することを見いだし、この時間をt1とした。   Here, since the flow velocity distribution in the coating machine is initialized at the initial stage of the calculation, the flow state becomes unstable, the balance of the gas-liquid interface may be lost, and a large amount of air may enter the coating machine. In order to evaluate the coating stability, it is necessary to evaluate the state after the gas-liquid interface is stabilized. Therefore, A obtained from the calculation result until the coating state is stabilized from the initially set state of the coating liquid. (T) is ignored and the subsequent value of A (t) is evaluated. As a result of intensive studies, the inventors have determined that the coating liquid has been transferred to the coating base material over the entire coating width direction and discharged from the coating base material outlet, from which the coating of the coater head is performed. Found that the gas-liquid interface is stable after the time of three times the value obtained by dividing the distance that the coated substrate passes from the substrate inlet to the coated substrate outlet divided by the moving speed of the coated substrate, This time was set to t1.


以下に、実施例により、本発明をさらに詳細に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。また、下記実施例および比較例中、「部」および「%」は、それぞれ「重量部」および「重量%」を表す。また、ポリエチレンオキサイド構造のエチレンオキサイドの繰り返し数を「EO数」とする。
(実施例−1)
ラジカル重合性モノマーとしてアクリル酸2−エチルヘキシル:50.5部、アクリル酸ブチル:40.3部、アクリル酸エチル:5部、メタクリル酸メチル:3部、アクリル酸:1部、アセトアセトキシエチルメタクリレート:0.2部、粘着付与樹脂としてロジン系樹脂である「スーパーエステルA−125」(荒川化学(株)製):10部、テルペン系樹脂である「YSレジンPX1250」(ヤスハラケミカル(株)製):5部を混合し、ラジカル重合性モノマーに粘着付与樹脂を溶解し、両者の混合物を得た。

EXAMPLES The present invention will be described in more detail with reference to the following examples. However, the following examples do not limit the scope of rights of the present invention. In the following examples and comparative examples, “parts” and “%” represent “parts by weight” and “% by weight”, respectively. In addition, the number of ethylene oxide having a polyethylene oxide structure is referred to as “EO number”.
(Example-1)
As radical polymerizable monomers, 2-ethylhexyl acrylate: 50.5 parts, butyl acrylate: 40.3 parts, ethyl acrylate: 5 parts, methyl methacrylate: 3 parts, acrylic acid: 1 part, acetoacetoxyethyl methacrylate: 0.2 part, “Superester A-125” (made by Arakawa Chemical Co., Ltd.) which is a rosin resin as a tackifying resin: 10 parts, “YS resin PX1250” (made by Yasuhara Chemical Co., Ltd.) which is a terpene resin : 5 parts were mixed, the tackifying resin was dissolved in the radical polymerizable monomer, and a mixture of both was obtained.

この混合物に水溶性の非反応性界面活性剤であるアルキル炭素数12、EO数18のポリオキシエチレンアルキルエーテルサルフェート:1部と脱イオン水50部を加え、ホモミキサーにて撹拌し、50%粒子径が1.2μm(日機装(株)製「マイクロトラック」にて測定)のモノマー含有組成物エマルジョンを得、該モノマー含有組成物エマルジョンを滴下槽に仕込んだ。   To this mixture, 1 part of polyoxyethylene alkyl ether sulfate having 12 alkyl carbon atoms and 18 EO number, which is a water-soluble non-reactive surfactant, and 50 parts of deionized water are added, followed by stirring with a homomixer. A monomer-containing composition emulsion having a particle size of 1.2 μm (measured with “Microtrack” manufactured by Nikkiso Co., Ltd.) was obtained, and the monomer-containing composition emulsion was charged into a dropping tank.

加熱装置、撹拌機、還流冷却装置、温度計、窒素導入管および滴下槽を備えた重合用容器に脱イオン水:49部とアルキル炭素数12、EO数18のポリオキシエチレンアルキルエーテルサルフェート:0.1部を仕込み、窒素雰囲気下で撹拌して内温78℃まで昇温させて、5%過硫酸カリウム水溶液を固形分として0.105部を入れた。5分後に上記モノマー含有組成物エマルジョンと、5%過硫酸アンモニウム水溶液を固形分として0.315部をそれぞれ別の滴下槽から4時間かけて滴下して重合を行った。   In a polymerization vessel equipped with a heating device, a stirrer, a reflux cooling device, a thermometer, a nitrogen introduction tube and a dropping tank, deionized water: 49 parts, polyoxyethylene alkyl ether sulfate having 12 alkyl carbons and 18 EOs: 0 .1 part was charged, stirred under a nitrogen atmosphere and heated to an internal temperature of 78 ° C., and 0.105 part of 5% potassium persulfate aqueous solution was added as a solid content. After 5 minutes, the above monomer-containing composition emulsion and 5% ammonium persulfate aqueous solution were used as solids, and 0.315 parts were added dropwise from separate dropping tanks over 4 hours to carry out polymerization.

滴下終了後30分間80℃に保ち、次いで30分かけて内温を60〜65℃に設定し、t−ブチルハイドロパーオキサイド:0.1部とロンガリット:0.12部を10分おきに3回に分けて添加した。更に撹拌しながら1時間反応させた後、アンモニア水で中和し、175メッシュのナイロン濾布で濾過して不揮発分50.1%、粘度120mPa・sであるアクリル系ポリマー含有組成物エマルジョンを得た。   After completion of dropping, the temperature is kept at 80 ° C. for 30 minutes, and then the internal temperature is set to 60 to 65 ° C. over 30 minutes, and t-butyl hydroperoxide: 0.1 part and Rongalite: 0.12 part are added every 10 minutes. Added in batches. The mixture was further reacted with stirring for 1 hour, neutralized with aqueous ammonia, and filtered through a 175 mesh nylon filter cloth to obtain an acrylic polymer-containing composition emulsion having a nonvolatile content of 50.1% and a viscosity of 120 mPa · s. It was.

上記で得たアクリル系ポリマー含有組成物エマルジョン100部に、消泡剤:0.1部(50重量%が水溶性成分)、濡れ剤として水溶性であるナトリウムジオクチルスルホサクシネート:1部を加え、さらに増粘剤(サンノプコ(株)製SNシックナー630):1部で5000mPa・s(BL型粘度計、25℃で#4ロータ/60rpmにて測定。)に増粘させてエマルジョン型水性粘着組成物を得た。
また、得られた水性粘着剤組成物を熊谷精機(株)製ハーキュレス粘度計にて測定温度25℃で測定した粘度は、剪断速度1.0s-1の時7.1Pa・s、剪断速度100s-1の時2.7Pa・s、剪断速度100000s-1の時0.65Pa・sであり、75%水希釈液とした時の動的表面張力は、10Hzにおいて48mN/m(クルス社製BP2バブルプレッシャー動的表面張力計を用いて測定)であり、被塗工基材である市販のセパレーターに対する接触角は84度(協和界面科学株式会社製DM100接触角計にて測定)、塗工機内部の材質であるSUS304への接触角は58度(同)であった。
得られた水性粘着剤組成物をヒラノテクシード(株)製リップコーターにより400m/分の速度で厚さ60μmの市販のグラシン紙セパレーターを支持体とする剥離性シート上に乾燥塗膜量が18g/m2になるように塗工し、厚さ68μmのPETフィルムとラミネートして巻き取り粘着剤塗工物を得た。このとき塗工物出口部分の間隙は平均110μmであり、塗工物入り口部分の間隙は平均160μmであった。また、塗液供給ポンプ出口部の圧力はゲージ圧で30kPaであった。その後得られた塗工物を目視で検査し塗工状態を判定した。
リップコーターの断面形状(図1)から流体が充填される部分及び気相の一部分について「GAMBIT」を用いて2次元の形状モデルを作成した。このときの塗工基材出口部分の間隙はセパレーターの厚みを補正して50μmとし、塗工基材入り口の間隙は同様に100μmとした。このモデルの計算格子数は6304個であり、塗工基材出口断面を構成する微小面積要素は10個だった。(図2)
このメッシュモデルを「FLUENT」にて読み込み、水性粘着剤組成物の物性値を持つ流体及び、一般的な空気の物性を定義した流体の二相を設定した自由表面モデルを選択した。次に、塗工速度を400m/分、塗液の供給圧力を30kPa、粘度モデルを層流モデルとして非定常計算を行った。タイムステップは2e−6秒に設定し0.064秒間の挙動を解析した。このとき、塗工基材入口から塗工基材出口までの距離は32mmであり、t1は0.0144秒であった。
(実施例−2)
アクリル酸ブチル48部、アクリル酸2エチルヘキシル48部、アクリル酸1部、メタクリル酸3部、チオグリコール酸オクチル0.08部、株式会社ADEKA製アデカリアソープSE−10Nと、ノニオン性乳化剤として第一工業製薬社製アクアロンRN−50を、上記モノマー全量に対して固形分比で各々1.0%と1.2%添加し、固形分70%になるようにイオン交換水を添加し、乳化して滴下ロートに仕込んだ。
攪拌器、温度計、滴下ロート、還流器を備えた重合槽に、所定のイオン交換水を仕込み窒素ガスで飽和させて攪拌し、反応系を80℃に昇温し、5%過硫酸アンモニウム水溶液を固形分比で全単量体の0.075%添加した。5分後に予め乳化した上記滴下ロート中のエマルションを滴下して反応を開始させると共に、これと平行して、過硫酸アンモニウム水溶液(固形分比でモノマー全量に対して0.225%)を3時間かけて滴下した。
滴下終了後、過硫酸アンモニウム水溶液(固形分比でモノマー全量の0.04%)を30分おきに2回に分けて添加した。さらに攪拌しながら80℃で2時間熟成した後、冷却してアンモニアで中和し、水性樹脂分散体を得た。
得られた水性樹脂分散体100重量部に対して消泡剤(サンノプコ(株)製デフォーマー777)0.1部および防腐剤(昌栄化学(株)製FX−80)0.1部を加え、さらにアンモニウムとイオン交換水を加えて固形分を60.5%に調整し、粘着剤を得た。粘着剤の粘度をBL型粘度系、#4ロータを用いて60rpmで測定したところ、450mPa・sであった。また粘着剤のpHは、7.2であった。
Antifoaming agent: 0.1 part (50% by weight is a water-soluble component) and water-soluble sodium dioctylsulfosuccinate: 1 part are added to 100 parts of the acrylic polymer-containing composition emulsion obtained above. Furthermore, thickener (San Nopco Co., Ltd. SN thickener 630): 1 part by 5000 mPa · s (BL type viscometer, measured at 25 ° C. with # 4 rotor / 60 rpm) to increase emulsion type aqueous adhesive A composition was obtained.
The viscosity of the obtained aqueous pressure-sensitive adhesive composition measured at 25 ° C. with a Hercules viscometer manufactured by Kumagaya Seiki Co., Ltd. was 7.1 Pa · s at a shear rate of 1.0 s −1 and a shear rate of 100 s. -1 at 2.7 Pa · s, shear rate at 100,000 s- 1 at 0.65 Pa · s, and a dynamic surface tension of 75% water dilution is 48 mN / m at 10 Hz (BP2 manufactured by Cruz) The measurement is performed using a bubble pressure dynamic surface tension meter), and the contact angle with respect to a commercially available separator as a substrate to be coated is 84 degrees (measured with a DM100 contact angle meter manufactured by Kyowa Interface Science Co., Ltd.). The contact angle with the internal material SUS304 was 58 degrees (same).
The obtained aqueous pressure-sensitive adhesive composition was dried on a release sheet having a support of a commercially available glassine paper separator having a thickness of 60 μm at a rate of 400 m / min using a lip coater manufactured by Hirano Techseed Co., Ltd. And laminated with a 68 μm thick PET film to obtain a wound pressure-sensitive adhesive coated product. At this time, the gap at the exit portion of the coated product was 110 μm on average, and the gap at the entrance portion of the coated product was 160 μm on average. The pressure at the outlet of the coating liquid supply pump was 30 kPa as a gauge pressure. Thereafter, the obtained coated product was visually inspected to determine the coating state.
A two-dimensional shape model was created using “GAMBIT” for a portion filled with fluid and a part of the gas phase from the cross-sectional shape of the lip coater (FIG. 1). The gap at the coating substrate outlet at this time was 50 μm after correcting the thickness of the separator, and the gap at the coating substrate inlet was also 100 μm. The number of calculation lattices of this model was 6304, and the number of minute area elements constituting the coated substrate outlet cross section was 10. (Figure 2)
This mesh model was read by “FLUENT”, and a free surface model in which two phases of a fluid having physical property values of an aqueous pressure-sensitive adhesive composition and a fluid defining general physical properties of air was set was selected. Next, unsteady calculation was performed using a coating speed of 400 m / min, a coating liquid supply pressure of 30 kPa, and a viscosity model as a laminar flow model. The time step was set to 2e-6 seconds and the behavior for 0.064 seconds was analyzed. At this time, the distance from the coating substrate inlet to the coating substrate outlet was 32 mm, and t1 was 0.0144 seconds.
(Example-2)
48 parts of butyl acrylate, 48 parts of 2-ethylhexyl acrylate, 1 part of acrylic acid, 3 parts of methacrylic acid, 0.08 part of octyl thioglycolate, Adeka Soap SE-10N manufactured by ADEKA Corporation, and the first as a nonionic emulsifier Aquaron RN-50 manufactured by Kogyo Seiyaku Co., Ltd. was added at 1.0% and 1.2%, respectively, in a solid content ratio with respect to the total amount of the above monomers, and ion-exchanged water was added so as to obtain a solid content of 70%, followed by emulsification. To prepare a dropping funnel.
In a polymerization tank equipped with a stirrer, a thermometer, a dropping funnel, and a reflux condenser, predetermined ion-exchanged water is charged, saturated with nitrogen gas and stirred, the reaction system is heated to 80 ° C., and a 5% ammonium persulfate aqueous solution is added. 0.075% of the total monomer was added at a solid content ratio. 5 minutes later, the emulsion in the dropping funnel previously emulsified was added dropwise to start the reaction, and in parallel with this, an aqueous ammonium persulfate solution (0.225% of the total amount of monomers in terms of solid content) was taken over 3 hours. And dripped.
After completion of the dropwise addition, an aqueous ammonium persulfate solution (0.04% of the total amount of monomers in terms of solid content) was added in two portions every 30 minutes. The mixture was further aged at 80 ° C. for 2 hours with stirring, then cooled and neutralized with ammonia to obtain an aqueous resin dispersion.
To 100 parts by weight of the obtained aqueous resin dispersion, 0.1 part of an antifoaming agent (Deformer 777 manufactured by San Nopco Co., Ltd.) and 0.1 part of an antiseptic (FX-80 manufactured by Shoei Chemical Co., Ltd.) were added, Further, ammonium and ion-exchanged water were added to adjust the solid content to 60.5% to obtain an adhesive. The viscosity of the adhesive was measured at 60 rpm using a BL type viscosity system, # 4 rotor, and was found to be 450 mPa · s. The pH of the pressure-sensitive adhesive was 7.2.

また、得られた水性粘着剤組成物を熊谷精機(株)製ハーキュレス粘度計にて測定温度25℃で測定した粘度は、剪断速度1.0s-1の時3.2Pa・s、剪断速度100s-1の時0.69Pa・s、剪断速度100000s-1の時0.057Pa・sであり、75%水希釈液とした時の動的表面張力は、10Hzにおいて62mN/m(クルス社製BP2バブルプレッシャー動的表面張力計を用いて測定)であり、被塗工基材である市販のセパレーターに対する接触角は80度(協和界面科学株式会社製DM100接触角計にて測定)、塗工機内部の材質であるSUS304への接触角は52度(同)であった。
得られた水性粘着剤組成物をヒラノテクシード(株)製リップコーターにより400m/分の速度で厚さ60μmの市販のグラシン紙セパレーターを支持体とする剥離性シート上に乾燥塗膜量が18g/m2になるように塗工し、厚さ68μmのPETフィルムとラミネートして巻き取り粘着剤塗工物を得た。このとき塗工基材出口部分の間隙は平均110μmであり、塗工基材入口部分の間隙は平均160μmであった。また、塗液供給ポンプ出口部の圧力はゲージ圧で20kPaであった。その後得られた塗工物を目視で検査し塗工状態を判定した。
The viscosity of the obtained aqueous pressure-sensitive adhesive composition measured at 25 ° C. with a Hercules viscometer manufactured by Kumagaya Seiki Co., Ltd. was 3.2 Pa · s at a shear rate of 1.0 s −1 and a shear rate of 100 s. 0.69 Pa · s at −1 , 0.057 Pa · s at a shear rate of 100,000 s −1 , and dynamic surface tension at 75 Hz water dilution is 62 mN / m at 10 Hz (BP2 manufactured by Cruz) The contact angle is 80 degrees (measured with a DM100 contact angle meter manufactured by Kyowa Interface Science Co., Ltd.), a coating machine. The contact angle with the internal material SUS304 was 52 degrees (same).
The obtained aqueous pressure-sensitive adhesive composition was dried on a release sheet having a support of a commercially available glassine paper separator having a thickness of 60 μm at a rate of 400 m / min using a lip coater manufactured by Hirano Techseed Co., Ltd. And laminated with a 68 μm thick PET film to obtain a wound pressure-sensitive adhesive coated product. At this time, the gap at the coated substrate outlet portion was 110 μm on average, and the gap at the coated substrate inlet portion was 160 μm on average. The pressure at the outlet of the coating liquid supply pump was 20 kPa as a gauge pressure. Thereafter, the obtained coated product was visually inspected to determine the coating state.

実施例−1と同様に「GAMBIT」を用いて2次元の形状モデルを作成し、「FLUENT」にて読み込み、解析を行った。このとき水性粘着剤組成物の物性値を持つ流体及び、一般的な空気の物性を定義した流体の二相を設定した自由表面モデルを選択した。次に、塗工速度を400m/分、塗液の供給圧力を20kPa、粘度モデルを層流モデルとして非定常計算を行った。タイムステップは2e−6秒に設定し0.064秒間の挙動を解析した。このとき、塗工基材入口から塗工基材出口までの距離は32mmであり、t1は0.0144秒であった。   A two-dimensional shape model was created using “GAMBIT” in the same manner as in Example-1 and read and analyzed using “FLUENT”. At this time, a free surface model in which two phases of a fluid having physical property values of an aqueous pressure-sensitive adhesive composition and a fluid defining general physical properties of air was set was selected. Next, unsteady calculation was performed using a coating speed of 400 m / min, a coating liquid supply pressure of 20 kPa, and a viscosity model as a laminar flow model. The time step was set to 2e-6 seconds and the behavior for 0.064 seconds was analyzed. At this time, the distance from the coating substrate inlet to the coating substrate outlet was 32 mm, and t1 was 0.0144 seconds.

比較例Comparative example

(比較例−1)
実施例−1と同様にしてエマルジョン型水性粘着組成物を得た後、実施例−1と同様にして塗工を行った。塗工条件は実施例−1と比較して、塗工基材出口部分の間隙は平均130μmであり、塗液供給ポンプ出口部の圧力はゲージ圧で20kPaである以外は同様であった。その後得られた塗工物を目視で検査し塗工状態を判定した。
(Comparative Example-1)
After obtaining an emulsion-type aqueous pressure-sensitive adhesive composition in the same manner as in Example-1, coating was carried out in the same manner as in Example-1. The coating conditions were the same as in Example 1 except that the gap at the coating substrate outlet was 130 μm on average and the pressure at the coating liquid supply pump outlet was 20 kPa in terms of gauge pressure. Thereafter, the obtained coated product was visually inspected to determine the coating state.

「GAMBIT」を用いて2次元の形状モデルを作成した。このとき、塗工基材出口部分の間隙は70μmである以外は実施例−1と同様であった。このモデルを「FLUENT」にて読み込み、解析を行った。このとき水性粘着剤組成物の物性値を持つ流体及び、一般的な空気の物性を定義した流体の二相を設定した自由表面モデルを選択した。次に、塗工速度を400m/分、塗液の供給圧力を20kPa、粘度モデルを層流モデルとして非定常計算を行った。タイムステップは2e−6秒に設定し0.064秒間の挙動を解析した。このとき、塗工基材入口から塗工基材出口までの距離は32mmであり、t1は0.0144秒であった。
以上、実施例と比較例の結果を表1に示す。
A two-dimensional shape model was created using “GAMBIT”. At this time, the gap at the exit portion of the coated substrate was the same as Example-1 except that the gap was 70 μm. This model was read by “FLUENT” and analyzed. At this time, a free surface model in which two phases of a fluid having physical property values of an aqueous pressure-sensitive adhesive composition and a fluid defining general physical properties of air was set was selected. Next, unsteady calculation was performed using a coating speed of 400 m / min, a coating liquid supply pressure of 20 kPa, and a viscosity model as a laminar flow model. The time step was set to 2e-6 seconds and the behavior for 0.064 seconds was analyzed. At this time, the distance from the coating substrate inlet to the coating substrate outlet was 32 mm, and t1 was 0.0144 seconds.
The results of Examples and Comparative Examples are shown in Table 1 above.

比較例−1はA(t)の最大値が20%を越えており、実施例−1および実施例−2と比較すると塗膜の状態が悪く、ヌケが発生している。また、すべての実施例、比較例ともt1以前のA(t)の最大値は20%を越えていた。
In Comparative Example-1, the maximum value of A (t) exceeds 20%. Compared with Example-1 and Example-2, the state of the coating film is poor and the occurrence of leakage is observed. In all of the examples and comparative examples, the maximum value of A (t) before t1 exceeded 20%.

実施例−1、実施例−2、比較例−1で使用した塗工機断面の概略図Schematic of the cross section of the coating machine used in Example-1, Example-2, and Comparative Example-1. 実施例−1、実施例−2、比較例−1で使用した解析モデルの概略図Schematic diagram of analysis model used in Example-1, Example-2, and Comparative Example-1. 実施例−1、実施例−2、比較例−1で使用した解析モデル中の塗工基材出口部分の拡大図Enlarged view of the coated substrate outlet portion in the analysis model used in Example-1, Example-2, and Comparative Example-1. 実施例−1の解析結果から求めたA(t)A (t) obtained from the analysis result of Example-1 比較例−1の解析結果から求めたA(t)A (t) obtained from the analysis result of Comparative Example-1

Claims (2)

塗液が充填された塗液室に開口部を形成し、該開口部に塗工基材を一方向に搬送しつつ摺接させることにより該塗工基材に上記塗液を塗布するようにしたスロットダイ形式のコーターヘッドにより塗工する塗工機を用いて塗工物を製造する方法において、数値流体解析法によるシミュレーション結果から求められる式(1)で示される係数A(t)を用いて塗工条件を設定して塗工することを特徴とする塗工物の製造方法。


(式中、Soは塗工基材出口断面積、tは計算開始を0としたシミュレーション上の時間、Gi(t)は時間tにおける微小面積dS中の気体部分の占める面積比率を表す。このときdSは塗工基材出口断面を構成する微小面積要素の面積とする。)
An opening is formed in the coating liquid chamber filled with the coating liquid, and the coating liquid is applied to the coating base by bringing the coating base into sliding contact with the coating in one direction. In a method of manufacturing a coated product using a coating machine that coats with a slot die type coater head, a coefficient A (t) represented by Expression (1) obtained from a simulation result by a numerical fluid analysis method is used. A method for producing a coated product, characterized in that coating is performed by setting coating conditions.


(In the formula, S o is the coating substrate outlet cross-sectional area, t is the simulation time when the calculation start is 0, and G i (t) represents the area ratio occupied by the gas portion in the minute area dS at time t. (At this time, dS is the area of a minute area element constituting the cross section of the coated substrate outlet.)
塗工基材が塗工基材入口から塗工基材出口に移動するまでの時間を3倍した時間をt1としたとき、t>t1が成り立つ時間帯で式(1)で示される係数A(t)の最大値が20%以下である、請求項1記載の製造方法。   The coefficient A represented by the equation (1) in a time zone where t> t1 is satisfied, where t1 is a time obtained by multiplying the time required for the coating substrate to move from the coating substrate inlet to the coating substrate outlet by t3. The manufacturing method of Claim 1 whose maximum value of (t) is 20% or less.
JP2008097655A 2008-04-04 2008-04-04 Manufacturing method of coated article Pending JP2009247964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008097655A JP2009247964A (en) 2008-04-04 2008-04-04 Manufacturing method of coated article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008097655A JP2009247964A (en) 2008-04-04 2008-04-04 Manufacturing method of coated article

Publications (1)

Publication Number Publication Date
JP2009247964A true JP2009247964A (en) 2009-10-29

Family

ID=41309150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008097655A Pending JP2009247964A (en) 2008-04-04 2008-04-04 Manufacturing method of coated article

Country Status (1)

Country Link
JP (1) JP2009247964A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202558A (en) * 2012-03-29 2013-10-07 Nitto Denko Corp Die coater and method of producing coating film
JP2019050172A (en) * 2017-09-12 2019-03-28 トヨタ自動車株式会社 Electrode plate manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202558A (en) * 2012-03-29 2013-10-07 Nitto Denko Corp Die coater and method of producing coating film
KR20130111386A (en) * 2012-03-29 2013-10-10 닛토덴코 가부시키가이샤 Die coater and manufacturing method of coat film
KR102005585B1 (en) * 2012-03-29 2019-07-30 닛토덴코 가부시키가이샤 Die coater and manufacturing method of coat film
JP2019050172A (en) * 2017-09-12 2019-03-28 トヨタ自動車株式会社 Electrode plate manufacturing method

Similar Documents

Publication Publication Date Title
Tasoglu et al. Impact of a compound droplet on a flat surface: A model for single cell epitaxy
Lee et al. Minimum wet thickness in extrusion slot coating
Vafaei et al. Nanofluid surface wettability through asymptotic contact angle
Nooranidoost et al. Droplet formation in a flow focusing configuration: Effects of viscoelasticity
JPWO2006095826A1 (en) Polytetrafluoroethylene aqueous dispersion composition, polytetrafluoroethylene resin film, and polytetrafluoroethylene resin impregnated body
Bhamidipati et al. Wetting phenomena during processing of high-viscosity shear-thinning fluid
JP2008523373A (en) Methods and equipment and corresponding identification methods for determining rheological properties of fluids
Xu et al. Particle-induced viscous fingering
Moon et al. Dynamic behavior of non-Newtonian droplets impinging on solid surfaces
CN108314938A (en) Tetrafluoro resin and high fluoro-acrylate copolymer composite coating and preparation method thereof
CN107573794A (en) A kind of dumb light finishing varnish acrylic emulsion and preparation method thereof
JP5554428B2 (en) Process for preparing latex from chlorinated vinyl polymers
JP2009247964A (en) Manufacturing method of coated article
Barwari et al. Hydrodynamic instabilities of adhering droplets due to a shear flow in a rectangular channel
Zhang et al. Surface tension and viscosity dependence of slip length over irregularly structured superhydrophobic surfaces
KR102519414B1 (en) Coating Compositions with Improved Liquid Stain Repellency
Smolka et al. Fingering instability down the outside of a vertical cylinder
Liu et al. Mechanisms of dynamic wetting failure in the presence of soluble surfactants
Gundabala et al. Lateral surface nonuniformities in drying latex films
Chan et al. Surfactant-assisted spreading of a liquid drop on a smooth solid surface
Ajaev et al. Fingering instability of partially wetting evaporating liquids
Jönsson et al. A concentration polarization model for the ultrafiltration of nonionic surfactants
CN103525328B (en) A kind of can the pressure sensitive adhesive composition of silk screen printing
Palmer et al. How particle deformability influences the surfactant distribution in colloidal polymer films
JP6398080B2 (en) Ink defoaming apparatus and ink defoaming method