JP2009244711A - Exposure device - Google Patents

Exposure device Download PDF

Info

Publication number
JP2009244711A
JP2009244711A JP2008092802A JP2008092802A JP2009244711A JP 2009244711 A JP2009244711 A JP 2009244711A JP 2008092802 A JP2008092802 A JP 2008092802A JP 2008092802 A JP2008092802 A JP 2008092802A JP 2009244711 A JP2009244711 A JP 2009244711A
Authority
JP
Japan
Prior art keywords
support
imaging lens
linear expansion
projection imaging
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008092802A
Other languages
Japanese (ja)
Other versions
JP5403933B2 (en
Inventor
Shoichi Doi
章一 土井
Kazuo Kobayashi
和夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Via Mechanics Ltd filed Critical Hitachi Via Mechanics Ltd
Priority to JP2008092802A priority Critical patent/JP5403933B2/en
Publication of JP2009244711A publication Critical patent/JP2009244711A/en
Application granted granted Critical
Publication of JP5403933B2 publication Critical patent/JP5403933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exposure device capable of maintaining exposure precision even when an ambient temperature is changed. <P>SOLUTION: In the exposure device wherein a projection imaging lens 30 is held on holders 50 and a plurality of holders 50 holding the projection imaging lens are arranged in a direction perpendicular to the moving direction of a substrate 6, a support includes a first support 60A having a very low coefficient of linear expansion and a second support 60B having a coefficient of linear expansion of β, and the holders 50 are held by the first support 60A and are arranged in the direction perpendicular to the moving direction of the substrate 6, and the first support 60A is supported by the second support 60B disposed in the moving direction of the substrate 6, and the second support 60B is fixed to a device body, and expression cα≈nβ is satisfied in α, β, c, n wherein: α is a coefficient of linear expansion of the holders 50; c is a distance from the first support 60A to a pupil A0 of the projection imaging lens 30; and n is a length from the device body fixing position of the second support 60B to the support position of the first support 60A. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、パターンマスクを使用することなく空間的光変調器(Digital Micromirror
Device−以下、「DMD」という。)を用いてプリント基板、半導体、液晶表面の感光性
ドライフィルムまたは液状レジスト等の露光対象物(以下、「基板」という。)に紫外光
等の光により電気回路等を露光(描画)するマスクレス露光装置に関する。
The present invention provides a spatial light modulator (Digital Micromirror) without using a pattern mask.
Device—hereinafter referred to as “DMD”. ) To expose (draw) an electrical circuit or the like with light such as ultraviolet light on an object to be exposed (hereinafter referred to as “substrate”) such as a printed circuit board, a semiconductor, a photosensitive dry film on a liquid crystal surface, or a liquid resist. The present invention relates to a less exposure apparatus.

プリント基板、液晶ディスプレイのTFT基板或いはカラーフィルタ基板或いはプラズ
マディスプレイの基板にパターンを露光するため、従来はパターンの原版となるマスクを
製作し、このマスク原版を用いたマスク露光装置で基板を露光していた。しかし、基板毎
にマスクを制作すると、製品化までに要する時間が長くなる等の問題があった。この問題
を解決するため、近年、DMDを用いて、所望のパターンを基板に直接描画(露光)する
露光装置(Direct Exposure Machine、以下、「DE」という。)が普及し始めている。
In order to expose a pattern on a printed circuit board, a liquid crystal display TFT substrate, a color filter substrate, or a plasma display substrate, conventionally, a mask as a pattern original is manufactured, and the substrate is exposed by a mask exposure apparatus using the mask original. It was. However, when a mask is produced for each substrate, there is a problem that the time required for commercialization becomes long. In order to solve this problem, in recent years, an exposure apparatus (Direct Exposure Machine, hereinafter referred to as “DE”) that directly draws (exposes) a desired pattern on a substrate using DMD has begun to spread.

図3は、従来の露光装置の構成図である。   FIG. 3 is a block diagram of a conventional exposure apparatus.

複数のLDからなる光源系11の中心光の光軸O上には、第1の集光レンズ12、ガラス円板13、インテグレータ14、第2の集光レンズ15、ミラー16及びDMD3が配置されている。DMD3の図示を省略するミラーMの反射側にはレンズ81、82から構成される拡大投影系80、マイクロレンズアレイ91、ピンホールアレイ92及びレンズ101と102とから構成される結像光学系100が配置されている。そして、拡大投影系80、マイクロレンズアレイ91、ピンホールアレイ92及び結像光学系100により投影結像レンズ30を構成している。
A first condenser lens 12, a glass disc 13, an integrator 14, a second condenser lens 15, a mirror 16 and DMD3 are arranged on the optical axis O of the central light of the light source system 11 composed of a plurality of LDs. ing. On the reflection side of the mirror M (not shown) of the DMD 3, an image forming optical system 100 composed of an enlarged projection system 80 composed of lenses 81 and 82, a microlens array 91, a pinhole array 92, and lenses 101 and 102. Is arranged. Then, the projection imaging lens 30 is configured by the enlargement projection system 80, the microlens array 91, the pinhole array 92, and the imaging optical system 100.

テーブル7は直線案内装置20によりベース21上を直交する2軸方向に移動自在である。テーブル7には図示を省略するリニアスケールが取り付けられている。基板6はテーブル7に設けられた図示を省略する吸着穴により真空吸着されて、テーブル7上に固定されている。   The table 7 can be moved in two orthogonal directions on the base 21 by a linear guide device 20. A linear scale (not shown) is attached to the table 7. The substrate 6 is vacuum-sucked by a suction hole (not shown) provided on the table 7 and fixed on the table 7.

次に、各構成要素について説明する。   Next, each component will be described.

光源系11には、青(紫)色のレーザダイオード(以下、「LD」という。)が2次元状に配列されている。LDの配置領域はDMD3のミラーMの配置領域とほぼ相似形である。個々のLDは405nmの波長の光を60mW程度の出力で出射する。第1の集光レンズ12の前側焦点はLDの虚像位置、後側焦点はインテグレータ14の入射端である。ガラス円板13は透明なガラスで形成され、表面には数μmの凹凸がmm単位の周期で円周方向に形成されている。ガラス円板13は光源系11の中心軸である光軸Oと交差するように配置され、光軸Oに平行な軸線の回りに回転する。モータ31はガラス円板13を回転させる。   In the light source system 11, blue (purple) laser diodes (hereinafter referred to as “LD”) are two-dimensionally arranged. The arrangement region of the LD is almost similar to the arrangement region of the mirror M of the DMD 3. Each LD emits light having a wavelength of 405 nm with an output of about 60 mW. The front focal point of the first condenser lens 12 is the virtual image position of the LD, and the rear focal point is the incident end of the integrator 14. The glass disk 13 is made of transparent glass, and unevenness of several μm is formed on the surface in the circumferential direction with a period of mm units. The glass disk 13 is disposed so as to intersect with the optical axis O that is the central axis of the light source system 11, and rotates around an axis parallel to the optical axis O. The motor 31 rotates the glass disk 13.

インテグレータ14は、断面が方形で長さLの複数のロッドレンズを光軸Oと直角な2方向に積層したものであり、各ロッドレンズの入射側及び出射側の端面はそれぞれ曲率半径がRの球凸面である。ロッドレンズを構成するガラスの屈折率をnとすると、ロッドレンズ131の長さLは
L=nR/(n−1)
に定められている。
The integrator 14 is formed by laminating a plurality of rod lenses having a square cross section and a length L in two directions perpendicular to the optical axis O, and the end surfaces on the entrance side and the exit side of each rod lens each have a radius of curvature R. It is a spherical convex surface. When the refractive index of the glass constituting the rod lens is n, the length L of the rod lens 131 is L = nR / (n−1)
It is stipulated in.

前端面(光が入射する面)が第1の集光レンズ12の後側焦点面に位置決めされたインテグレータ14の後端面(光が出射する面)は、集光レンズ15の前側焦点に位置決めされている。   The rear end surface (surface from which light is emitted) of the integrator 14 whose front end surface (surface on which light is incident) is positioned on the rear focal plane of the first condenser lens 12 is positioned at the front focal point of the condenser lens 15. ing.

また、インテグレータ14の後端面(出射位置)は、集光レンズ15を介して投影結像レンズ30の入射瞳と結像関係にある。すなわち、インテグレータ14の後端面は集光レンズ14の前側焦点であり、集光レンズ14の後側焦点は投影結像レンズ30の前側焦点の位置に位置決めされている。   Further, the rear end surface (exit position) of the integrator 14 is in an imaging relationship with the entrance pupil of the projection imaging lens 30 via the condenser lens 15. That is, the rear end surface of the integrator 14 is the front focal point of the condenser lens 14, and the rear focal point of the condenser lens 14 is positioned at the front focal point of the projection imaging lens 30.

DMD3には反射面の1辺が13μmである正方形の微小なミラーMが横方向にm個、縦方向にn列(例えば、1024×768個)配列されている。隣接するミラーM間には1μmの隙間が設けられている。それぞれのミラーMは、対角線方向の1対の端部を支点とし、他方の端部が10度程度回転可能である。DMD3の各ミラーMは個別にオンオフ制御(回転制御)される。そして、ミラーMがオンの場合、ミラーMに入射した光は拡大投影系80に向けて反射され、オフの場合は拡大投影系80から離れた位置に入射する。なお、市販されているDMD3は、ミラーMが直交方向に整列されて配列されているので、通常、DMD3をY方向に傾けて配置する。   The DMD 3 includes m square mirrors M each having a reflecting surface of 13 μm arranged in the horizontal direction and n rows (for example, 1024 × 768) in the vertical direction. A gap of 1 μm is provided between adjacent mirrors M. Each mirror M has a pair of ends in the diagonal direction as a fulcrum, and the other end can rotate about 10 degrees. Each mirror M of the DMD 3 is individually turned on / off (rotation controlled). When the mirror M is on, the light incident on the mirror M is reflected toward the enlargement projection system 80, and when it is off, the light enters the position away from the enlargement projection system 80. In the DMD 3 that is commercially available, the mirrors M are arranged in an orthogonal direction, and therefore, the DMD 3 is usually arranged to be inclined in the Y direction.

次に、従来の露光装置の動作を説明する。   Next, the operation of the conventional exposure apparatus will be described.

光源系11のLDから出力された光はそれぞれの光軸が光軸Oと平行、広がり角1度程度で広がりながら第1の集光レンズ12に入射し、ほぼ平行ビームになって第1の集光レンズ12から出射する。そして、ほぼ平行ビームの状態でガラス円板13を透過してインテグレータ14の前面の中心に一致する位置にほぼ平行光で入射する。ガラス円板13が回転している場合、露光時間内における各平行ビームの位相が2π以上変えられる。このため、干渉性が高い(スペクトル幅が狭い)LDからの出力光であっても、光束間で生じる干渉縞の位置が高速に変化し、露光時間内で平均化されてその存在がほとんど目立たなくなる。なお、ガラス円板13が回転している場合の各平行ビームの光路の傾きは実用上無視できる程度である。   The light output from the LD of the light source system 11 is incident on the first condenser lens 12 with the respective optical axes being parallel to the optical axis O and spreading at a divergence angle of about 1 degree to form a substantially parallel beam. The light is emitted from the condenser lens 12. Then, the light passes through the glass disk 13 in a substantially parallel beam state and is incident on the position coincident with the center of the front surface of the integrator 14 with substantially parallel light. When the glass disk 13 is rotating, the phase of each parallel beam within the exposure time can be changed by 2π or more. For this reason, even in the case of output light from an LD with high coherence (spectrum width is narrow), the position of interference fringes generated between the light beams changes at high speed, averaged within the exposure time, and its presence is almost noticeable. Disappear. The inclination of the optical path of each parallel beam when the glass disk 13 is rotating is negligible in practice.

インテグレータ14のロッドレンズに入射したビームは入射面の球凸レンズの効果により、出射端面に絞り込まれる。すなわち、ロッドレンズの出射側の端面には、光源系11を構成する総てのLDがLDの配置に合わせて絞り込まれる(結像される)。ロッドレンズの出射端面から出射するビームは出射面の球凸レンズの効果により、入射光の入射角に依存せず、総て光軸(ロッドレンズの軸に平行)に平行な主光線を持つ出射光となる。   The beam incident on the rod lens of the integrator 14 is narrowed down to the exit end surface by the effect of the spherical convex lens on the incident surface. That is, all the LDs constituting the light source system 11 are narrowed down (imaged) in accordance with the arrangement of the LDs on the end surface on the exit side of the rod lens. Due to the effect of the spherical convex lens on the exit surface, the beam exiting from the exit end surface of the rod lens does not depend on the incident angle of the incident light, and all the emitted light has a principal ray parallel to the optical axis (parallel to the rod lens axis). It becomes.

そして、インテグレータ14から出射した出射光は第2の集光レンズ15に入射し、ほぼ平行ビームになって集光レンズ15から出射し、ほぼ平行ビームの状態でDMD3に入射する。すなわち、インテグレータ14を構成する各ロッドレンズから出射するどの光もDMD3の表示領域全体を照明する。   Then, the outgoing light emitted from the integrator 14 enters the second condenser lens 15, becomes a substantially parallel beam, exits from the condenser lens 15, and enters the DMD 3 in a substantially parallel beam state. That is, any light emitted from each rod lens constituting the integrator 14 illuminates the entire display area of the DMD 3.

DMD3の各ミラーMで反射された光は、拡大光学系80で拡大され(ここでは3倍)、それぞれ位置が対応するマイクロレンズ91a上に結像する。そして、マイクロレンズ91aで集光された光は光軸O上のピンホールPが配置された位置に円形に結像する。ピンホールアレイ92を通過した光は投影レンズ100を透過し、基板6上で結像する。露光エリア51の露光が終了したら、テーブル20を露光方向と直角の方向に移動させ、次の露光エリア51を投影レンズ3に対して位置決めする(特許文献1)。また、以下においては、光源系11から光源系11に対応する投影結像レンズ30までをまとめて、「照射系」と呼ぶ。
The light reflected by each mirror M of the DMD 3 is magnified by the magnifying optical system 80 (three times here), and forms an image on the micro lens 91a corresponding to each position. Then, the light condensed by the micro lens 91a forms an image in a circle at the position where the pinhole P on the optical axis O is disposed. The light that has passed through the pinhole array 92 passes through the projection lens 100 and forms an image on the substrate 6. When the exposure of the exposure area 51 is completed, the table 20 is moved in a direction perpendicular to the exposure direction, and the next exposure area 51 is positioned with respect to the projection lens 3 (Patent Document 1). Further, hereinafter, the light source system 11 to the projection imaging lens 30 corresponding to the light source system 11 are collectively referred to as an “irradiation system”.

ところで、照射系が1組の場合、露光できる巾すなわち露光巾は60〜70mm程度である。そこで、1台の露光装置に照射系を複数組設け、作業能率を向上させるようにしている。
By the way, when there is one set of irradiation system, the exposure width, that is, the exposure width is about 60 to 70 mm. Therefore, a plurality of irradiation systems are provided in one exposure apparatus to improve work efficiency.

図4は、ホルダの側面図であり、図5は照射系を4組設けた場合の投影結像レンズ30近傍の平面図である。

投影結像レンズ30は筒状のホルダ50に収納されている。ホルダ50の材質はアルミニウムである。ホルダ50は側面に設けられた座部50aを介して図示を省略するボルトによりサポート60の内面側に固定されている。図中のA0は投影結像レンズ30の瞳の位置であり、投影結像レンズ30の光軸(中心軸)上にある。そして、点Bに垂直に入射した光は瞳A0を通り、点Cから垂直に入射する。
FIG. 4 is a side view of the holder, and FIG. 5 is a plan view of the vicinity of the projection imaging lens 30 when four sets of irradiation systems are provided.

The projection imaging lens 30 is accommodated in a cylindrical holder 50. The material of the holder 50 is aluminum. The holder 50 is fixed to the inner surface side of the support 60 by a bolt (not shown) through a seat portion 50a provided on the side surface. A0 in the figure is the position of the pupil of the projection imaging lens 30 and is on the optical axis (center axis) of the projection imaging lens 30. The light incident perpendicularly to the point B passes through the pupil A0 and enters perpendicularly from the point C.

ホルダ50の外形は露光領域のX方向の巾より大きい(外径は露光巾の1.5倍程度である)ので、隣接するホルダ50をY方向にずらせて配置することにより、隣接する2つの露光領域のX方向に隙間ができないようにしている。サポート60は断面が四角の角パイプ状であり、両端に設けられた左右の取り付け座51に設けられた穴52を用いて図示を省略するボルトにより装置本体に固定されている。サポート60の材質は、線膨張係数が極めて小さい(例えば、1×10−6〔1/°C〕程度)材質の材料で形成されている。 露光精度を維持するため、露光装置は通常、周囲温度が変化しないように温度管理がされた環境で使用される。

特開2004−039871号公報
Since the outer shape of the holder 50 is larger than the width of the exposure region in the X direction (the outer diameter is about 1.5 times the exposure width), the two adjacent holders 50 are arranged in a shifted manner in the Y direction. A gap is not formed in the X direction of the exposure area. The support 60 has a square pipe shape in cross section, and is fixed to the apparatus main body by bolts (not shown) using holes 52 provided in left and right mounting seats 51 provided at both ends. The support 60 is made of a material having a very small linear expansion coefficient (for example, about 1 × 10 −6 [1 / ° C]). In order to maintain the exposure accuracy, the exposure apparatus is usually used in an environment in which the temperature is controlled so that the ambient temperature does not change.

JP 2004-039871 A

しかし、周囲温度の許容温度巾を小さくすればするほど、管理が面倒になる。

また、例えば、ホルダ50の外形が80mmの場合、温度が1度C変化しただけで、露光精度が2μm程度低下する場合があった。
However, the smaller the allowable temperature range of the ambient temperature, the more complicated the management becomes.

For example, when the outer diameter of the holder 50 is 80 mm, the exposure accuracy may be reduced by about 2 μm even if the temperature is changed by 1 ° C.

本発明の目的は、周囲温度が変化しても露光精度を維持することができる露光装置を提供するにある。
An object of the present invention is to provide an exposure apparatus that can maintain exposure accuracy even when the ambient temperature changes.

本発明者は、露光精度が低下する原因が、後述するように、ホルダ50の延びに起因するものであることを見出した。

以上の知見から、本発明は、入射光の断面積を予め定める倍率で拡大または縮小させて出射させる投影結像レンズをホルダに保持させると共に、投影結像レンズを保持した前記ホルダを被露光対象物の移動方向と直角の方向に複数個並べてサポートに支持させ、前記サポートを装置本体に保持させた露光装置において、前記サポートを線膨張係数が極めて小さい第1のサポートと線膨張係数がβの第2のサポートとで構成し、前記ホルダを前記第1のサポートに保持させると共に前記被露光対象物の移動方向と直角の方向配置し、前記被露光対象物の移動方向に配置した前記第2のサポートで前記第1のサポートを支持させると共に前記第2のサポートを装置本体に固定するようにしておき、前記ホルダの線膨張係数をα、前記投影結像レンズの瞳の前記第1のサポートからの距離をc、前記第2のサポートの前記装置本体固定位置から前記第1のサポート支持位置までの長さnとするとき、前記α、β、c、nが式cα≒nβを満たすようにしたことを特徴とする。
The present inventor has found that the cause of the reduction in exposure accuracy is due to the extension of the holder 50 as will be described later.

Based on the above knowledge, the present invention holds the projection imaging lens that emits the cross-sectional area of incident light by enlarging or reducing it at a predetermined magnification, and holding the projection imaging lens in the holder. In an exposure apparatus in which a plurality of arrangements are arranged in a direction perpendicular to the moving direction of an object and supported by a support, and the support is held by the apparatus main body, the support has a first linear expansion coefficient and a linear expansion coefficient of β. A second support, the holder is held by the first support, and the second support is arranged in a direction perpendicular to the moving direction of the object to be exposed and arranged in the moving direction of the object to be exposed. The first support is supported by the support and the second support is fixed to the apparatus main body, the linear expansion coefficient of the holder is α, and the projection imaging lens Α, β, c, n where c is the distance from the first support of the pupil of the lens and c is the length from the device main body fixing position of the second support to the first support support position. Satisfies the expression cα≈nβ.

周囲温度が変化しても、露光精度を維持することができる。また、周囲温度の許容巾を大きくできるので、温度管理が容易になる。
Even if the ambient temperature changes, the exposure accuracy can be maintained. Moreover, since the allowable range of the ambient temperature can be increased, temperature management becomes easy.

図1は本発明に係る露光装置におけるサポートの平面図であり、図2は本発明の原理を説明する図である。
FIG. 1 is a plan view of a support in an exposure apparatus according to the present invention, and FIG. 2 is a diagram for explaining the principle of the present invention.

始めに、図2により、本発明の原理を説明する。

投影結像レンズ30の上端(入射側)から瞳A0の光軸方向の距離はa、瞳A0から投影結像レンズ30の下端(出射側)間での距離はbである。

今、周囲温度が変化することにより、瞳A0が点A1に移動したとする。瞳A0と点A1の距離をm、点Bから点Cまの距離をKとすると、距離Kは式1により求められる。 K=(a+b)m/a ・・・(式1)
First, the principle of the present invention will be described with reference to FIG.

The distance in the optical axis direction of the pupil A0 from the upper end (incident side) of the projection imaging lens 30 is a, and the distance from the pupil A0 to the lower end (exit side) of the projection imaging lens 30 is b.

Now, it is assumed that the pupil A0 moves to the point A1 due to the change in the ambient temperature. If the distance between the pupil A0 and the point A1 is m, and the distance from the point B to the point C is K, the distance K is obtained by Equation 1. K = (a + b) m / a (Formula 1)

すなわち、例えば、投影結像レンズ30が3倍の拡大レンズ系(b=3a)であり、サポート60から 瞳A0間での距離cが40mm、ホルダ50の材質がアルミニウムである場合に、周囲温度が1°C上昇したとする。いま、アルミニウムの線膨張係数αalが20×10−6〔1/°C〕であるとすると、Kは2.4μmになる。ホルダ50の配置が図5に示すものである場合、隣接するホルダ50の瞳は互いに逆方向に移動する。この結果、隣接する露光領域のY方向の露光結果は一方を基準にして他方は5μm程度ずれる。なお、X方向に関してはサポート60が延びないので、隣接する露光領域が重複することはない。
That is, for example, when the projection imaging lens 30 is a 3 × magnification lens system (b = 3a), the distance c from the support 60 to the pupil A0 is 40 mm, and the holder 50 is made of aluminum, the ambient temperature Is raised by 1 ° C. Now, assuming that the linear expansion coefficient αal of aluminum is 20 × 10 −6 [1 / ° C], K is 2.4 μm. When the arrangement of the holders 50 is as shown in FIG. 5, the pupils of the adjacent holders 50 move in opposite directions. As a result, the exposure result in the Y direction of the adjacent exposure region is deviated by about 5 μm from the other as a reference. Since the support 60 does not extend in the X direction, adjacent exposure areas do not overlap.


次に、本発明について説明する。

図1において、サポート60は1対のサポート60Aと、1対のサポート60Bとから構成されており、図示を省略するボルトにより互いに固定されている。穴52はサポート60Aの中央に位置決めされている。サポート60Aの材質は線膨張係数が極めて小さい(1×10−6〔1/°C〕程度)材質の材料で形成されている。一方、サポート60Bの材質は鉄で形成されている。

Next, the present invention will be described.

In FIG. 1, a support 60 is composed of a pair of supports 60A and a pair of supports 60B, which are fixed to each other by bolts not shown. The hole 52 is positioned at the center of the support 60A. The support 60A is made of a material having a very small linear expansion coefficient (about 1 × 10 −6 [1 / ° C]). On the other hand, the support 60B is made of iron.

いま、ホルダ50の材質が線膨張係数αal=20×10−6〔1/°C〕のアルミニウム、サポート60Bの線膨張係数αfeがαfe=10×10−6〔1/°C〕、距離cが40mmであるとする。また、サポート60Bの全長は160mm(すなわち、n=80mm)であるとして、周囲温度が1°C上昇したとする。

ここで、ホルダ50Aに着目すると、瞳A0は0.8μm図の下方に移動する。一方、サポート60Bの端部はサポート60Aが温度上昇に伴って延びることにより穴52を基準として0.8μm図の上方に移動する。この結果、周囲温度が1°C上昇しても、瞳A0の位置が変化することはない。この場合、周囲温度の変化量が他の温度t°Cの場合も、瞳A0の位置が変化しないことは明らかである。

また、例えば、Lの長さを88mmにするとしても、ずれ量を従来の1/10にすることができる。
Now, the material of the holder 50 is aluminum having a linear expansion coefficient αal = 20 × 10 −6 [1 / ° C], the linear expansion coefficient αfe of the support 60B is αfe = 10 × 10 −6 [1 / ° C], and the distance c Is 40 mm. Further, it is assumed that the total length of the support 60B is 160 mm (that is, n = 80 mm), and the ambient temperature has increased by 1 ° C.

Here, paying attention to the holder 50A, the pupil A0 moves downward in the figure of 0.8 μm. On the other hand, the end of the support 60B moves upward in the figure of 0.8 μm with respect to the hole 52 as the support 60A extends as the temperature rises. As a result, even if the ambient temperature increases by 1 ° C., the position of the pupil A0 does not change. In this case, it is clear that the position of the pupil A0 does not change even when the change amount of the ambient temperature is another temperature t ° C.

For example, even if the length of L is 88 mm, the shift amount can be reduced to 1/10 of the conventional amount.

なお、一般に、瞳A0のサポートAからの距離がc、ホルダ50の線膨張係数をα、また、サポートBの装置固定点からサポートAまでの長さnを、サポートBの線膨張係数をβとするとき、c、α、n、βは式2の関係がある。

cα=nβ ・・・(式2)

したがって、式2におけるc、α、n、βのいずれか3つの値を決めれば、残り1つ値を決定することができる。
In general, the distance from the support A of the pupil A0 is c, the linear expansion coefficient of the holder 50 is α, the length n from the device fixing point of the support B to the support A, the linear expansion coefficient of the support B is β Where c, α, n, and β have the relationship of Equation 2.

cα = nβ (Formula 2)

Therefore, if any three values of c, α, n, and β in Equation 2 are determined, the remaining one value can be determined.

本発明に係る露光装置におけるサポートの平面図である。It is a top view of the support in the exposure apparatus which concerns on this invention. 本発明の原理を説明する図である。It is a figure explaining the principle of this invention. 従来の露光装置の構成図である。It is a block diagram of the conventional exposure apparatus. ホルダの側面図である。従来技術の説明図である。It is a side view of a holder. It is explanatory drawing of a prior art. 従来技術の説明図である。It is explanatory drawing of a prior art.

符号の説明Explanation of symbols

6 基板(被露光対象物)
30 投影結像レンズ
50 ホルダ
60A 第1のサポート
60B 第2のサポート
A0 投影結像レンズの瞳
c 距離
n 第2のサポートの装置本体固定位置から第1のサポート支持位置までの長さ
α ホルダ50の線膨張係数
β 第2のサポートの線膨張係数
6 Substrate (object to be exposed)
30 Projection Imaging Lens 50 Holder 60A First Support 60B Second Support A0 Pupil of Projection Imaging Lens c Distance n Length from Device Body Fixing Position of Second Support to First Support Support Position α Holder 50 Linear expansion coefficient of the second support linear expansion coefficient

Claims (1)

入射光の断面積を予め定める倍率で拡大または縮小させて出射させる投影結像レンズをホルダに保持させると共に、投影結像レンズを保持した前記ホルダを被露光対象物の移動方向と直角の方向に複数個並べてサポートに支持させ、前記サポートを装置本体に保持させた露光装置において、

前記サポートを線膨張係数が極めて小さい第1のサポートと線膨張係数がβの第2のサポートとで構成し、

前記ホルダを前記第1のサポートに保持させると共に前記被露光対象物の移動方向と直角の方向配置し、

前記被露光対象物の移動方向に配置した前記第2のサポートで前記第1のサポートを支持させると共に前記第2のサポートを装置本体に固定するようにしておき、

前記ホルダの線膨張係数をα、前記投影結像レンズの瞳の前記第1のサポートからの距離をc、前記第2のサポートの前記装置本体固定位置から前記第1のサポート支持位置までの長さnとするとき、前記α、β、c、nが式cα≒nβを満たすようにしたことを特徴とする露光装置。
The projection imaging lens for emitting the cross-sectional area of incident light by enlarging or reducing at a predetermined magnification is held by the holder, and the holder holding the projection imaging lens is held in a direction perpendicular to the moving direction of the object to be exposed. In an exposure apparatus in which a plurality of supports are supported by a support and the support is held in the apparatus main body,

The support is composed of a first support having a very small coefficient of linear expansion and a second support having a coefficient of linear expansion of β,

The holder is held by the first support and arranged in a direction perpendicular to the moving direction of the object to be exposed,

The first support is supported by the second support arranged in the moving direction of the object to be exposed and the second support is fixed to the apparatus main body,

The linear expansion coefficient of the holder is α, the distance of the pupil of the projection imaging lens from the first support is c, and the length of the second support from the apparatus body fixing position to the first support support position An exposure apparatus characterized in that α, β, c, n satisfy the expression cα≈nβ where n is n.
JP2008092802A 2008-03-31 2008-03-31 Exposure equipment Active JP5403933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008092802A JP5403933B2 (en) 2008-03-31 2008-03-31 Exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008092802A JP5403933B2 (en) 2008-03-31 2008-03-31 Exposure equipment

Publications (2)

Publication Number Publication Date
JP2009244711A true JP2009244711A (en) 2009-10-22
JP5403933B2 JP5403933B2 (en) 2014-01-29

Family

ID=41306644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008092802A Active JP5403933B2 (en) 2008-03-31 2008-03-31 Exposure equipment

Country Status (1)

Country Link
JP (1) JP5403933B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054816B2 (en) 2009-11-12 2018-08-21 Toyo Boseki Kabushiki Kaisha Method for improving visibility of liquid crystal display device, and liquid crystal display device using same
US10503016B2 (en) 2010-06-22 2019-12-10 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269618A (en) * 1985-09-24 1987-03-30 Nippon Kogaku Kk <Nikon> Optical device for projection
WO1999027570A1 (en) * 1997-11-25 1999-06-03 Nikon Corporation Projection exposure system
JP2004039871A (en) * 2002-07-03 2004-02-05 Hitachi Ltd Illuminating method, exposure method and equipment for the methods
JP2005189403A (en) * 2003-12-25 2005-07-14 Fuji Photo Film Co Ltd Exposure apparatus for image forming and method for correcting misalignment of image
JP2005189365A (en) * 2003-12-25 2005-07-14 Fuji Photo Film Co Ltd Suction fixing apparatus and image forming apparatus
JP2005208283A (en) * 2004-01-22 2005-08-04 Fuji Photo Film Co Ltd Stage circulating apparatus and image forming apparatus
JP2005209837A (en) * 2004-01-22 2005-08-04 Fuji Photo Film Co Ltd Stage circulator and image forming device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269618A (en) * 1985-09-24 1987-03-30 Nippon Kogaku Kk <Nikon> Optical device for projection
WO1999027570A1 (en) * 1997-11-25 1999-06-03 Nikon Corporation Projection exposure system
JP2004039871A (en) * 2002-07-03 2004-02-05 Hitachi Ltd Illuminating method, exposure method and equipment for the methods
JP2005189403A (en) * 2003-12-25 2005-07-14 Fuji Photo Film Co Ltd Exposure apparatus for image forming and method for correcting misalignment of image
JP2005189365A (en) * 2003-12-25 2005-07-14 Fuji Photo Film Co Ltd Suction fixing apparatus and image forming apparatus
JP2005208283A (en) * 2004-01-22 2005-08-04 Fuji Photo Film Co Ltd Stage circulating apparatus and image forming apparatus
JP2005209837A (en) * 2004-01-22 2005-08-04 Fuji Photo Film Co Ltd Stage circulator and image forming device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054816B2 (en) 2009-11-12 2018-08-21 Toyo Boseki Kabushiki Kaisha Method for improving visibility of liquid crystal display device, and liquid crystal display device using same
US10948764B2 (en) 2009-11-12 2021-03-16 Keio University Method for improving visibility of liquid crystal display device, and liquid crystal display device using the same
US10503016B2 (en) 2010-06-22 2019-12-10 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film

Also Published As

Publication number Publication date
JP5403933B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
KR100703110B1 (en) Illuminating method, exposing device and modulator
JP5582287B2 (en) Illumination optical apparatus and exposure apparatus
US20100265557A1 (en) Optical Systems Configured to Generate More Closely Spaced Light Beams and Pattern Generators Including the Same
JP6236095B2 (en) Microlithography equipment
JP6459082B2 (en) Measuring apparatus and measuring method, exposure apparatus and exposure method, and device manufacturing method
JP2006514441A5 (en)
KR20070117488A (en) Mirror array for lithography
JP7124212B2 (en) Apparatus and method for measuring mark position
JP7071436B2 (en) Illumination optics and illumination system for EUV projection lithography
JP6889103B2 (en) Faceted mirror for illumination optics unit for projection lithography
EP2645404B1 (en) Exposure apparatus
JP2008210814A (en) Modulator
JP2008242238A (en) Exposure apparatus
JP5403933B2 (en) Exposure equipment
JP2007234717A (en) Exposure apparatus
KR102631210B1 (en) Faceted mirrors for EUV projection lithography and illumination optical units containing such faceted mirrors
KR20170096216A (en) Exposure apparatus, exposure method, and device manufacturing method
JP2015520418A (en) Lithographic apparatus and device manufacturing method
US8089614B2 (en) Device for changing pitch between light beam axes, and substrate exposure apparatus
JP6457754B2 (en) Illumination optics unit for projection lithography
JP2007080953A (en) Lighting system and exposure apparatus
JP4376227B2 (en) Projection apparatus for lithographic apparatus
JP2014146660A (en) Illumination optical device, exposure device, and method of manufacturing device
JP2011114041A (en) Luminous flux splitting apparatus, spatial optical modulation unit, lighting optical system, exposure apparatus, and device manufacturing method
JP2021518927A (en) Level sensor and lithography equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R150 Certificate of patent or registration of utility model

Ref document number: 5403933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250