JP2009244545A - Optical connection structure and optical connection method - Google Patents

Optical connection structure and optical connection method Download PDF

Info

Publication number
JP2009244545A
JP2009244545A JP2008090214A JP2008090214A JP2009244545A JP 2009244545 A JP2009244545 A JP 2009244545A JP 2008090214 A JP2008090214 A JP 2008090214A JP 2008090214 A JP2008090214 A JP 2008090214A JP 2009244545 A JP2009244545 A JP 2009244545A
Authority
JP
Japan
Prior art keywords
optical
optical transmission
connection
adhesive
mechanical splice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008090214A
Other languages
Japanese (ja)
Inventor
Yuki Furue
友樹 古江
Takeshi Sukegawa
健 助川
Nobuhiro Hashimoto
展宏 橋本
Makoto Goto
誠 後藤
Masayoshi Suzuki
正義 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2008090214A priority Critical patent/JP2009244545A/en
Publication of JP2009244545A publication Critical patent/JP2009244545A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical connection structure and an optical connection method for achieving quick and accurate connection without requiring a series of work for forming the adhesive connection members in an end part of an optical transmission medium at every connection. <P>SOLUTION: In this optical connection structure in which the optical transmission mediums are inserted through both ends of a mechanical splice to connect the optical transmission mediums optically, the mechanical splice includes a massive adhesive connection members, and each optical transmission medium is abutted and connected on/with the adhesive connection members, respectively. In this optical connection method, the optical transmission mediums are inserted through both ends of the mechanical splice to connect the optical transmission mediums optically. The massive adhesive connection member is held in the inside of the mechanical splice, and the optical transmission mediums are inserted through both ends of the mechanical splice and are abutted on the adhesive connection members. Preferably, the adhesive connection member contains a basic material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光伝送媒体同士を接続する光学接続構造および光学接続方法に関するものである。   The present invention relates to an optical connection structure and an optical connection method for connecting optical transmission media.

従来より、光ファイバ等の光伝送媒体同士を接続する方法としては、光伝送媒体同士を突き合わせたり、光伝送媒体を挿入したフェルール同士を突き合わせることによって、物理的に接続する方法が一般的に採用されてきた。   Conventionally, as a method of connecting optical transmission media such as optical fibers, a method of physically connecting the optical transmission media by matching the optical transmission media or by matching the ferrules inserted with the optical transmission media is generally used. Has been adopted.

光伝送媒体の接続が永久的に行われ変更がない場合は、融着接続の他、対向する光伝送媒体同士を挟持して固定するメカニカルスプライスが用いられ(例えば、特許文献1または2参照)、接続が頻繁に着脱される場合は、光伝送媒体端部をフェルールで保護した上で光コネクタ接続を行っている。これらの場合において、対向する光伝送媒体は、端部が物理的に接触することで接続されている。   When the optical transmission medium is permanently connected and is not changed, a mechanical splice that sandwiches and fixes the opposite optical transmission media is used in addition to the fusion connection (see, for example, Patent Document 1 or 2). When the connection is frequently attached and detached, the optical connector connection is performed after protecting the end of the optical transmission medium with a ferrule. In these cases, the opposite optical transmission media are connected by physically contacting the ends.

しかしながら、光伝送媒体同士を直接接触させて接続を行うと、微細な傷等接続特性に大きな影響を及ぼすという問題があった。また、仮に端面が平滑であっても、微視的には対向する端部間に空隙があり、この部分における接続損失も無視することができない。さらに、光伝送媒体は強度が低いため、端部への押圧力が増大すると光伝送媒体を破損してしまうおそれがあった。 However, when the connection by contacting the optical transmission medium between direct, fine scratches or the like has a problem that a large influence on the connection characteristics. Even if the end surface is smooth, there is a gap between the opposing ends microscopically, and the connection loss at this portion cannot be ignored. Furthermore, since the strength of the optical transmission medium is low, there is a possibility that the optical transmission medium may be damaged when the pressing force to the end portion is increased.

上述した方法のうちメカニカルスプライスを用いる技術として、接続される光伝送媒体の端部に粘着性接続部材を設け、続いて光伝送媒体同士を対向させて接続する方法が開示されている(例えば、特許文献3参照)。この方法では、一方の光伝送媒体の端部を粘着性接続部材シートに当接させ、押し破ることによって、光伝送媒体の端部に粘着性接続部材層を設け、続いて、他方の光伝送媒体を対向させ、接続を行っている。この接続を、メカニカルスプライス内で行うこともできる旨、開示されている。   Among the methods described above, as a technique using a mechanical splice, a method is disclosed in which an adhesive connection member is provided at an end of an optical transmission medium to be connected, and then the optical transmission media are opposed to each other (for example, (See Patent Document 3). In this method, the end of one optical transmission medium is brought into contact with the adhesive connecting member sheet, and is pressed to form an adhesive connecting member layer on the end of the optical transmission medium, followed by the other optical transmission medium. Connection is made with the medium facing each other. It is disclosed that this connection can also be made in a mechanical splice.

特開2000−241660号公報JP 2000-241660 A 特開2002−22997号公報JP 2002-22997 A 特開2005−274839号公報JP 2005-274839 A

しかしながら、上記の光学接続構造では、光伝送媒体の接続が必要とされる際に、光伝送媒体を粘着性接続部材に押し当てて密着させたまま、粘着性接続部材を移動させて切り離し、粘着性接続部材層を光伝送媒体の端部に設けるといった一連の工程をその都度行わなければならず非効率的であり、光学回路を作製する際の作業環境によっては、そのような一連の工程を現場で行うことが困難である場合もあり、より簡易的かつ正確な接続のための改善が求められていた。   However, in the optical connection structure described above, when the optical transmission medium is required to be connected, the adhesive connection member is moved and disconnected while the optical transmission medium is pressed against the adhesive connection member to be adhered. A series of processes such as providing a conductive connecting member layer at the end of the optical transmission medium must be performed each time, which is inefficient, and depending on the working environment when manufacturing the optical circuit, such a series of processes may be performed. There are cases where it is difficult to carry out on site, and improvements for simpler and more accurate connection have been demanded.

本発明は、以上のような問題点に鑑みてなされたものであり、その目的とするところは、メカニカルスプライス構造を用いる光伝送媒体同士の接続において、接続が行われる度に光伝送媒体端部に粘着性接続部材を形成する一連の作業を必要とせず、迅速かつ正確に接続を行うことができる光学接続構造および光学接続方法を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an end portion of an optical transmission medium every time connection is made in connection between optical transmission media using a mechanical splice structure. It is an object of the present invention to provide an optical connection structure and an optical connection method that can perform a quick and accurate connection without requiring a series of operations for forming an adhesive connection member.

本発明は、光伝送媒体がメカニカルスプライスの両端からそれぞれ挿入され光伝送媒体同士が互いに光学的に接続されている光学接続構造であって、メカニカルスプライスは、内部に塊状の粘着性接続部材を備え、各光伝送媒体は、それぞれ粘着性接続部材に当接して接続されていることを特徴としている。   The present invention is an optical connection structure in which optical transmission media are respectively inserted from both ends of a mechanical splice, and the optical transmission media are optically connected to each other, and the mechanical splice includes a massive adhesive connection member inside. Each optical transmission medium is characterized in that it is connected in contact with an adhesive connecting member.

塊状の粘着性接続部材は、その内部に基材を備えることを好ましい態様としている。   The lump-like adhesive connecting member is preferably provided with a substrate therein.

また、塊状の粘着性接続部材は、硬度がJIS(A型)5〜100であることを好ましい態様としている。   Moreover, the block-shaped adhesive connection member makes it a preferable aspect that hardness is JIS (A type) 5-100.

さらに、塊状の粘着性接続部材は、球状の粘着性接続部材であることを好ましい態様としている。   Furthermore, it is preferable that the massive adhesive connecting member is a spherical adhesive connecting member.

また、本発明は、光伝送媒体をメカニカルスプライスの両端からそれぞれ挿入して光伝送媒体同士を互いに光学的に接続する光学接続方法であって、塊状の粘着性接続部材をメカニカルスプライスの内部に挟持させ、光伝送媒体をメカニカルスプライスの両端から挿入して粘着性接続部材に当接させることを特徴としている。   The present invention also relates to an optical connection method in which an optical transmission medium is inserted from both ends of a mechanical splice to optically connect the optical transmission media to each other, and a massive adhesive connection member is sandwiched inside the mechanical splice. The optical transmission medium is inserted from both ends of the mechanical splice and brought into contact with the adhesive connecting member.

塊状の粘着性接続部材は、その内部に基材を備えることを好ましい態様としている。   The lump-like adhesive connecting member is preferably provided with a substrate therein.

本発明の光学接続構造および光学接続方法によれば、光伝送媒体同士を接続する際に、光伝送媒体の端部へ粘着性接続部材を設ける工程を省略することができ、当該メカニカルスプライスの両端から光伝送媒体を挿入して粘着性接続部材に当接させるだけで、正確かつ迅速に接続を完了することが可能となる。また、空気混入のない接続が可能となる。さらに、粘着性接続部材の硬度を規定することで、メカニカルスプライスでありながら再接続可能とすることもできる。   According to the optical connection structure and the optical connection method of the present invention, when connecting the optical transmission media, the step of providing the adhesive connection member on the end of the optical transmission medium can be omitted, and both ends of the mechanical splice can be omitted. Then, it is possible to complete the connection accurately and quickly only by inserting the optical transmission medium and bringing it into contact with the adhesive connection member. In addition, connection without air mixing becomes possible. Furthermore, by defining the hardness of the adhesive connecting member, it is possible to reconnect it while being a mechanical splice.

以下、図面を用いて本発明の光学接続構造の実施形態について具体的に説明する。
図1は、メカニカルスプライス構造を模式的に示した斜視図である。メカニカルスプライス1は、押さえ基板11と、V溝基板12とを接合することによってなり、その外周部に断面コ字状のクランプスプリング14を取り付けて、両基板を固定する。V溝基板12には、光伝送媒体21を挿入する一方の端面から他方の端面に貫通する、断面V字状の溝13が切ってあり、この溝13によって光伝送媒体21がガイドされる。また、押さえ基板11によって、光伝送媒体21は、溝13内に固定される。また、符号22は、光伝送媒体21の被覆部であり、必要に応じて光伝送媒体21から除去される。
Hereinafter, embodiments of the optical connection structure of the present invention will be specifically described with reference to the drawings.
FIG. 1 is a perspective view schematically showing a mechanical splice structure. The mechanical splice 1 is formed by joining a holding substrate 11 and a V-groove substrate 12, and a clamp spring 14 having a U-shaped cross section is attached to the outer peripheral portion thereof to fix both substrates. The V-groove substrate 12 has a groove 13 having a V-shaped cross section penetrating from one end face into which the optical transmission medium 21 is inserted into the other end face, and the optical transmission medium 21 is guided by the groove 13. Further, the optical transmission medium 21 is fixed in the groove 13 by the holding substrate 11. Reference numeral 22 denotes a covering portion of the optical transmission medium 21 and is removed from the optical transmission medium 21 as necessary.

図2は、本発明のメカニカルスプライス構造を用いた光学接続構造の第1実施形態を示す模式断面図である。図に示すように、本実施形態では、まず、塊状の粘着性接続部材3をメカニカルスプライス1の内部に予め備える。次に、光伝送媒体21をメカニカルスプライス1の両端から挿入して、粘着性接続部材3に当接させる。これら工程によって、光伝送媒体の接続を行う。   FIG. 2 is a schematic cross-sectional view showing a first embodiment of an optical connection structure using the mechanical splice structure of the present invention. As shown in the figure, in the present embodiment, first, a lump-like adhesive connecting member 3 is provided in advance inside the mechanical splice 1. Next, the optical transmission medium 21 is inserted from both ends of the mechanical splice 1 and brought into contact with the adhesive connecting member 3. By these steps, the optical transmission medium is connected.

このような塊状の粘着性接続部材を挟持するメカニカルスプライスを予め作製しておくことで、光伝送媒体の接続が必要とされる際には、両端から光伝送媒体を挿入するという簡便な工程のみによって、光伝送媒体の接続を完了することができて、好適である。   By preparing in advance a mechanical splice that sandwiches such a massive adhesive connection member, when it is necessary to connect the optical transmission medium, only a simple process of inserting the optical transmission medium from both ends is required. Thus, the connection of the optical transmission medium can be completed, which is preferable.

図3は、本発明のメカニカルスプライス構造を用いた光学接続構造の第2実施形態を示す模式断面図である。図に示すように、本実施形態では、まず、球形基材23の表面に粘着性接続部材を形成し、塊状の粘着性接続部材3を作製し、これをメカニカルスプライス1の内部に予め備える。次に、光伝送媒体21をメカニカルスプライス1の両端から挿入して、粘着性接続部材3に当接させる。第2実施形態においても、第1実施形態と同様、これら工程によって光伝送媒体の接続を行うことができる。   FIG. 3 is a schematic cross-sectional view showing a second embodiment of an optical connection structure using the mechanical splice structure of the present invention. As shown in the drawing, in the present embodiment, first, an adhesive connecting member is formed on the surface of the spherical base material 23 to produce a massive adhesive connecting member 3, which is provided in advance in the mechanical splice 1. Next, the optical transmission medium 21 is inserted from both ends of the mechanical splice 1 and brought into contact with the adhesive connecting member 3. In the second embodiment, similarly to the first embodiment, the optical transmission medium can be connected through these steps.

第1実施形態においては、塊状の粘着性接続部材を介しているので、光伝送媒体同士を直接付き合わせる従来の接続方法と比べ、光伝送媒体の端面が傷つくことが防止される。また、光伝送媒体と粘着性接続部材が密着するので、光伝送媒体が脱落することなく好適に接続を行うことができる。   In the first embodiment, since the bulky adhesive connection member is interposed, it is possible to prevent the end face of the optical transmission medium from being damaged as compared with the conventional connection method in which the optical transmission media are directly attached to each other. In addition, since the optical transmission medium and the adhesive connection member are in close contact with each other, the connection can be suitably performed without dropping the optical transmission medium.

さらに、第2実施形態においては、粘着性接続部材の内部に基材を含んでいるので、光伝送媒体の接続解除および再接続を繰り返し行っても、粘着性接続部材の形状を保ち、粘着性接続部材の変形が防止される。   Furthermore, in 2nd Embodiment, since the base material is included in the inside of an adhesive connection member, even if it repeats connection cancellation | release and reconnection of an optical transmission medium, the shape of an adhesive connection member is maintained, and adhesiveness is carried out. The deformation of the connecting member is prevented.

本発明の塊状の粘着性接続部材は、球状、楕円球状、卵状、直方体状などの形状とすることができる。その中でも光伝送媒体のコアと空気混入せず当接しやすい球状が好ましい。   The massive adhesive connecting member of the present invention can have a spherical shape, an elliptical spherical shape, an egg shape, a rectangular parallelepiped shape, or the like. Among them, a spherical shape that is easy to come into contact with the core of the optical transmission medium without being mixed with air is preferable.

本発明の球状の粘着性接続部材を単独で用いる場合、粘着性接続部材の直径は30〜125μmが好ましい。125μmを越えると、接続特性に問題が生じ、30μm未満では、粘着性接続部材の量が不足して光伝送媒体の接続を十分に行うことができない。好ましくは40〜110μmであり、特に好ましくは100μm程度である。   When the spherical adhesive connecting member of the present invention is used alone, the diameter of the adhesive connecting member is preferably 30 to 125 μm. If it exceeds 125 μm, a problem arises in connection characteristics. If it is less than 30 μm, the amount of the adhesive connecting member is insufficient, and the optical transmission medium cannot be sufficiently connected. Preferably it is 40-110 micrometers, Most preferably, it is about 100 micrometers.

球状の粘着性接続部材の内部に球形基材を含む場合は、粘着性接続部材の直径は30〜125μmが好ましく、特に好ましくは100μm程度である。また、その際、球形基材の直径は10〜50μmが好ましく、粘着性接続部材層の厚さは5〜100μmが好ましい。   When a spherical base material is included inside the spherical adhesive connecting member, the diameter of the adhesive connecting member is preferably 30 to 125 μm, particularly preferably about 100 μm. At that time, the diameter of the spherical base material is preferably 10 to 50 μm, and the thickness of the adhesive connecting member layer is preferably 5 to 100 μm.

なお、粘着性接続部材が直方体状である場合には、その膜厚は10〜125μmが好ましく、より好ましくは15〜100μm、特に好ましくは20μm程度である。   In addition, when an adhesive connection member is a rectangular parallelepiped shape, the film thickness is preferably 10 to 125 μm, more preferably 15 to 100 μm, and particularly preferably about 20 μm.

粘着性接続部材3としては、光伝送媒体21に接触した際、適度なタック性を伴って密着する屈折率整合体であればよい。   The adhesive connecting member 3 may be any refractive index matching body that comes into close contact with the optical transmission medium 21 with appropriate tackiness.

適度なタック性を有するには、粘着力が1〜100gf/25mmであることが好ましく、より好ましくは5〜50gf/25mm、特に好ましくは10〜30gf/25mmである。   In order to have an appropriate tackiness, the adhesive strength is preferably 1 to 100 gf / 25 mm, more preferably 5 to 50 gf / 25 mm, and particularly preferably 10 to 30 gf / 25 mm.

粘着力が1gf/25mm未満だと接続が安定せず、100gf/25mmを超えると取り外した光伝送媒体21に粘着性物質が付着して好ましくない。   If the adhesive strength is less than 1 gf / 25 mm, the connection is not stable, and if it exceeds 100 gf / 25 mm, an adhesive substance adheres to the removed optical transmission medium 21, which is not preferable.

なお、上記の粘着力はJIS Z 0237の90度引きはがし粘着力に準拠して測定した値である。   In addition, said adhesive force is the value measured based on 90 degree peeling peel strength of JISZ0237.

次に、屈折率整合体であるには、光伝送媒体21と屈折率が近ければよい。具体的には、フレネル反射の回避による伝送損失の面から屈折率の差が±0.1以内であることが好ましく、特に0.05以内であることが好ましい。なお、接続される2つの光伝送媒体の屈折率差が大きい場合には、これらの屈折率の平均値と粘着性接続部材の屈折率とが上記範囲内であることが好ましい。なお、上記屈折率は20℃での値であり、測定には波長1310nmの光源を用いる。   Next, in order to be a refractive index matching body, it is sufficient that the refractive index is close to that of the optical transmission medium 21. Specifically, in terms of transmission loss due to avoidance of Fresnel reflection, the difference in refractive index is preferably within ± 0.1, and particularly preferably within 0.05. In addition, when the refractive index difference of the two optical transmission media connected is large, it is preferable that the average value of these refractive indexes and the refractive index of an adhesive connection member are in the said range. The refractive index is a value at 20 ° C., and a light source having a wavelength of 1310 nm is used for measurement.

また、粘着性接続部材3は、硬度がJIS(A型)5〜100であれば凝集破壊が起こり難く、そのまま再接続可能となるので好ましい。さらに好ましくは20〜90である。上記の硬度はJIS K−6253に準拠して測定した値である。なお、粘着性接続部材3を交換して再接続することもできる。   Further, the adhesive connecting member 3 is preferably JIS (A type) 5 to 100, since cohesive failure hardly occurs and reconnection is possible as it is. More preferably, it is 20-90. The above hardness is a value measured according to JIS K-6253. In addition, the adhesive connection member 3 can be replaced and reconnected.

粘着性接続部材3には、高分子材料、例えばアクリル系、エポキシ系、ビニル系、シリコーン系、ゴム系、ウレタン系、メタクリル系、ナイロン系、ビスフェノール系、ジオール系、ポリイミド系、フッ素化エポキシ系、フッ素化アクリル系等の各種粘着材料を用いることが好ましい。   The adhesive connecting member 3 includes a polymer material such as acrylic, epoxy, vinyl, silicone, rubber, urethane, methacrylic, nylon, bisphenol, diol, polyimide, and fluorinated epoxy. It is preferable to use various adhesive materials such as fluorinated acrylic.

中でも、耐環境性及び接着性の面から、シリコーン系及びアクリル系の粘着材料が特に好ましい。また、適宜架橋剤、添加剤、軟化剤、粘着調整剤等の添加により接着力、濡れ性を調節してもよく、耐水性や耐湿性、耐熱性を付加してもよい。   Of these, silicone-based and acrylic pressure-sensitive adhesive materials are particularly preferable in terms of environmental resistance and adhesiveness. Moreover, adhesive force and wettability may be adjusted by adding a crosslinking agent, an additive, a softening agent, a tackifier, and the like, and water resistance, moisture resistance, and heat resistance may be added.

本発明の基材としては、光伝送媒体と屈折率が近似している物質を選択することが好ましい。そして、ファイバ間のギャップを埋め、空気混入を防げる観点から変形するものが好ましい。また、再接続を可能とする観点から接続を解除すると元の形状に復元するものがさらに好ましい。   As the substrate of the present invention, it is preferable to select a substance having a refractive index close to that of the optical transmission medium. And what deform | transforms from a viewpoint which fills the gap between fibers and can prevent air mixing is preferable. Further, it is more preferable to restore the original shape when the connection is canceled from the viewpoint of enabling reconnection.

また、変形する基材は硬度がJIS(A型)5〜100であればよく、元の形状に復元する基材は硬度がJIS(A型)25〜100であればよい。なお、上記の硬度はJIS K−6253に準拠して測定した値である。   The base material to be deformed may have a hardness of JIS (A type) 5 to 100, and the base material to be restored to the original shape may have a hardness of JIS (A type) 25 to 100. In addition, said hardness is the value measured based on JISK-6253.

基材には、高分子材料、例えばアクリル系、エポキシ系、ビニル系、シリコーン系、ゴム系、ウレタン系、メタクリル系、ナイロン系、ビスフェノール系、ジオール系、ポリイミド系、フッ素化エポキシ系、フッ素化アクリル系等の各種材料を用いることが好ましい。なお、石英や化合物ガラス等の無機材料を用いることもできる。   For the base material, polymer materials such as acrylic, epoxy, vinyl, silicone, rubber, urethane, methacryl, nylon, bisphenol, diol, polyimide, fluorinated epoxy, fluorinated It is preferable to use various materials such as acrylic. An inorganic material such as quartz or compound glass can also be used.

基材の外周に粘着性接続部材を設ける工程は、スピンコート法、ディップコート法、スプレーコート法などの各種コーティング技法に代表される公知の任意の方法を用いることができる。   For the step of providing the adhesive connecting member on the outer periphery of the substrate, any known method typified by various coating techniques such as spin coating, dip coating and spray coating can be used.

また、本発明における光伝送媒体21は、単心の光ファイバに限られず、光ファイバを複数本テープ化したテープ心線等でもよく、一度に接続される光伝送媒体の数量に制限はない。光伝送媒体21を複数本の光ファイバとする場合は、その本数に対応した個数の粘着性接続部材を設けるか、その本数に対応した直径を有する粘着性接続部材をメカニカルスプライス内に予め収納することとなる。   In addition, the optical transmission medium 21 in the present invention is not limited to a single optical fiber, but may be a tape core or the like in which a plurality of optical fibers are taped, and the number of optical transmission media connected at one time is not limited. When the optical transmission medium 21 is a plurality of optical fibers, the number of adhesive connecting members corresponding to the number of optical fibers is provided, or the adhesive connecting members having a diameter corresponding to the number of optical fibers are previously stored in the mechanical splice. It will be.

また、光伝送媒体21としては、石英ファイバ、プラスチックファイバ等を好適に用いることができるが、その材料は限定されない。なお、ホーリーファイバ等のフォトニック結晶型ファイバも適用できる。また、光伝送媒体として、光導波路を用いることができ、その形状および材質は、適宜選択して使用することができる。さらに、光伝送媒体における屈折率分布は、ステップ分布やグレーテッド分布等、使用目的により適宜選択することができる。   Moreover, as the optical transmission medium 21, a quartz fiber, a plastic fiber, etc. can be used suitably, However, The material is not limited. A photonic crystal fiber such as a holey fiber can also be applied. Moreover, an optical waveguide can be used as the optical transmission medium, and the shape and material thereof can be appropriately selected and used. Furthermore, the refractive index distribution in the optical transmission medium can be appropriately selected depending on the purpose of use, such as a step distribution or a graded distribution.

また、本発明におけるメカニカルスプライスの押さえ基板やV溝基板に用いられる材料は、接続される光伝送媒体の材料や、要求される強度や位置合わせ精度により適宜選択されるが、特に熱的寸法変化が小さいプラスチック、セラミック、金属等で作製されたものが好ましく使用される。プラスチック材料としては、ガラス混入エポキシ材料、PPS(ポリフェニルサルファイド)、PEEK(ポリエーテルエーテルケトン)等の結晶性高分子が好ましく使用される。   In addition, the material used for the holding substrate of the mechanical splice and the V-groove substrate in the present invention is appropriately selected depending on the material of the optical transmission medium to be connected, the required strength and alignment accuracy, but in particular the thermal dimensional change Those made of small plastic, ceramic, metal, etc. are preferably used. As the plastic material, a glassy epoxy material, a crystalline polymer such as PPS (polyphenyl sulfide), PEEK (polyether ether ketone) is preferably used.

本発明のV溝基板12に形成されている溝13は、押さえ基板と共に光伝送媒体を固定するものであればV字状に限定されず、U字状、半円や矩形であってもよく、これらの溝は、接続される光伝送媒体と同数形成されており、それぞれに仲介光伝送媒体が収納される。   The groove 13 formed in the V-groove substrate 12 of the present invention is not limited to a V shape as long as the optical transmission medium is fixed together with the pressing substrate, and may be a U shape, a semicircle, or a rectangle. These grooves are formed in the same number as the optical transmission media to be connected, and the intermediate optical transmission media are accommodated in each of the grooves.

次に、本発明の光学接続構造について、実施例を用いてさらに詳細に説明する。
<実施例1>
まず、粘着性接続部材の材料として、屈折率を1.46に調整したアクリル系粘着材料を用意した。このアクリル系粘着材料は、n−ブチルアクリレート/メチルアクリレート/アクリル酸/2−ヒドロキシエチルメタクリレート共重合体(配合重量比=82/15/2.7/0.3)の30%酢酸エチル溶液100部に、コロネートL(日本ポリウレタン工業社製、トリメチロールプロパンのトリレンジイソシアネートアダクト)1.0部を配合して混合してなる溶液である。なお、当該溶液の粘度は0.1Pa・s程度である。
Next, the optical connection structure of the present invention will be described in more detail using examples.
<Example 1>
First, an acrylic adhesive material having a refractive index adjusted to 1.46 was prepared as a material for the adhesive connection member. This acrylic pressure-sensitive adhesive material is a 30% ethyl acetate solution of n-butyl acrylate / methyl acrylate / acrylic acid / 2-hydroxyethyl methacrylate copolymer (blending weight ratio = 82/15 / 2.7 / 0.3) 100 It is a solution obtained by mixing 1.0 part of Coronate L (manufactured by Nippon Polyurethane Industry Co., Ltd., tolylene diisocyanate adduct of trimethylolpropane) with mixing. The viscosity of the solution is about 0.1 Pa · s.

そして、当該溶液をディスペンサー(武蔵エンジニアリング社製、ML606GX)から吐出させてニードルの先端で液滴状に数分保持することで球状に形成した。そして、これを100℃のオーブンに1.5時間入れ、アクリル系粘着材料を固化させて球状の粘着性接続部材を作製した。なお、粘着性接続部材の粘着力は、30gf/25mm、屈折率は1.46、硬度は25、直径は100μmであった。   Then, the solution was discharged from a dispenser (manufactured by Musashi Engineering Co., Ltd., ML606GX) and held in the form of a droplet for several minutes at the tip of the needle to form a sphere. And this was put into 100 degreeC oven for 1.5 hours, the acrylic adhesive material was solidified, and the spherical adhesive connection member was produced. The adhesive strength of the adhesive connecting member was 30 gf / 25 mm, the refractive index was 1.46, the hardness was 25, and the diameter was 100 μm.

次に、該粘着性接続部材をメカニカルスプライス内部のV溝にセッティングした。そして、組み立て冶具(単心メカニカルスプライス、接続工具「H」、型番:HOT−HMS−CRC)を用いてクランプスプリングに押さえ基板とV溝基板を嵌め込み、メカニカルスプライス(単心メカニカルスプライス「H」、型式:HOT−HMS−1−125)を組み立てた。   Next, the adhesive connecting member was set in a V groove inside the mechanical splice. Then, using the assembly jig (single core mechanical splice, connecting tool “H”, model number: HOT-HMS-CRC), the holding substrate and the V-groove substrate are fitted into the clamp spring, and the mechanical splice (single core mechanical splice “H”, Model: HOT-HMS-1-125) was assembled.

次に、一端にFCコネクタを有する石英系シングルモードの光ファイバF2(住友電工社製、外径0.25mm、20℃での屈折率1.452、長さ3.5m)を2本用意した。そして、FCコネクタのない側の端面を光ファイバカッタ(古河電工社製 商品名:「S325A」)により鏡面カットして前記メカニカルスプライスの両側からそれぞれ挿入し、粘着性接続部材に当接させて実施例1の光学接続構造を作製した。   Next, two silica-based single-mode optical fibers F2 (manufactured by Sumitomo Electric Industries, outer diameter 0.25 mm, refractive index 1.452 at 20 ° C., length 3.5 m) having an FC connector at one end were prepared. . Then, the end face without the FC connector is mirror-cut with an optical fiber cutter (trade name: “S325A” manufactured by Furukawa Electric Co., Ltd.), inserted from both sides of the mechanical splice, and brought into contact with the adhesive connecting member. The optical connection structure of Example 1 was produced.

<実施例2>
基材として、球状のアクリルビーズを用いた。なお、基材の屈折率は1.45、硬度は50、直径は25μmであった。当該基材の周囲に上記溶液をディスペンサー(武蔵エンジニアリング社製、ML606GX)から吐出させて、ビーズに塗布することで球状に形成した。それ以外は実施例1と同様にして、実施例2の光学接続構造を作製した。なお、内部に基材を備える粘着性接続部材全体の粘着力は30gf/25mm、屈折率は1.46、直径は50μm(粘着性接続部材層の厚さは12.5μm)であった。
<Example 2>
Spherical acrylic beads were used as the substrate. The base material had a refractive index of 1.45, a hardness of 50, and a diameter of 25 μm. The solution was discharged from a dispenser (manufactured by Musashi Engineering Co., Ltd., ML606GX) around the base material and applied to beads to form a spherical shape. Other than that was carried out similarly to Example 1, and produced the optical connection structure of Example 2. FIG. In addition, the adhesive force of the whole adhesive connection member provided with a base material was 30 gf / 25 mm, the refractive index was 1.46, and the diameter was 50 μm (the thickness of the adhesive connection member layer was 12.5 μm).

<比較例1>
粘着性接続部材を用いなかったことを除き、実施例1と同様にして比較例1の光学接続構造を作製した。
<Comparative Example 1>
The optical connection structure of Comparative Example 1 was produced in the same manner as Example 1 except that the adhesive connection member was not used.

<比較例2>
予め粘着性接続部材シート(粘着力は、30gf/25mm、屈折率は1.46、硬度は25、膜厚は20μm)を用意した。2本の光ファイバF2のうちの1本について、当該粘着性接続部材シートに当接させ、押し破ることによって端部に粘着性接続部材層を設けてからメカニカルスプライスへ挿入した。それ以外は比較例1と同様にして比較例2の光学接続構造を作製した。実施例および比較例の主な条件を表1に示す。
<Comparative Example 2>
An adhesive connecting member sheet (adhesive strength was 30 gf / 25 mm, refractive index was 1.46, hardness was 25, and film thickness was 20 μm) was prepared in advance. One of the two optical fibers F2 was brought into contact with the adhesive connecting member sheet, and an adhesive connecting member layer was provided at the end portion by pushing and then inserted into the mechanical splice. Otherwise, the optical connection structure of Comparative Example 2 was produced in the same manner as Comparative Example 1. Table 1 shows the main conditions of Examples and Comparative Examples.

Figure 2009244545
Figure 2009244545

<接続に要する時間>
まず、実施例および比較例の光学接続構造について、メカニカルスプライスが組み立てられた状態から接続に要する時間を測定した。具体的には、実施例1、実施例2および比較例1については光ファイバF2を挿入する時間を測定した。比較例2については、端部に粘着性接続部材層を設けて光ファイバF2を挿入する時間を測定した。なお、接続に要する時間は300秒以上だと実用上問題がある。
<Time required for connection>
First, for the optical connection structures of Examples and Comparative Examples, the time required for connection was measured from the state where the mechanical splice was assembled. Specifically, for Example 1, Example 2, and Comparative Example 1, the time for inserting the optical fiber F2 was measured. For Comparative Example 2, the time for inserting the optical fiber F2 with the adhesive connecting member layer provided at the end was measured. Note that there is a practical problem if the time required for connection is 300 seconds or more.

<接続損失>
次に、実施例および比較例の光学接続構造について接続損失の評価を行った。
[基準実験]
まず、接続箇所がない状態で接続損失0の標準状態を示すために基準実験を行った。図4は、基準実験の回路図である。符号100は光パワーメータ(ADVANTEST社製、商品名:OPTICAL MULTI POWER METER 「Q8221」)、CはFCコネクタ、F1は両端にFCコネクタを有する石英系シングルモードの光ファイバ(住友電工社製、FCコネクタ付光ファイバ250μm心線、長さ1mである。なお、光パワーメータ100は、センサーユニットとして「Q82208」、1.55μmLDユニットとして「Q81212」を用いた。
<Connection loss>
Next, connection loss was evaluated about the optical connection structure of the Example and the comparative example.
[Reference experiment]
First, a reference experiment was performed in order to show a standard state with zero connection loss in the absence of a connection point. FIG. 4 is a circuit diagram of the reference experiment. Reference numeral 100 represents an optical power meter (trade name: OPTICAL MULTI POWER METER “Q8221” manufactured by ADVANTEST), C represents an FC connector, F1 represents a silica-based single mode optical fiber having an FC connector at both ends (manufactured by Sumitomo Electric Industries, FC The optical fiber with connector is 250 μm core wire, and the length is 1 m The optical power meter 100 uses “Q82208” as the sensor unit and “Q81212” as the 1.55 μmL D unit.

光ファイバF1の両端のFCコネクタを、それぞれ光パワーメータ100の入射用端子および出射用端子に接続した。この状態で波長1550nmの光を入射用端子から5回入射させ、出射用端子から出射された光パワーを測定した。そして、5回の平均値を基準値とした。   The FC connectors at both ends of the optical fiber F1 were connected to the incident terminal and the emission terminal of the optical power meter 100, respectively. In this state, light having a wavelength of 1550 nm was incident from the incident terminal five times, and the optical power emitted from the emission terminal was measured. And the average value of 5 times was made into the reference value.

[実施例および比較例の評価]
次に実施例および比較例の光学接続構造について接続損失を評価した。図5は、実施例および比較例の回路図である。符号F2は、一端にFCコネクタを有する石英系シングルモードの光ファイバである。
[Evaluation of Examples and Comparative Examples]
Next, connection loss was evaluated about the optical connection structure of the Example and the comparative example. FIG. 5 is a circuit diagram of an example and a comparative example. Reference numeral F2 is a quartz single-mode optical fiber having an FC connector at one end.

まず、実施例1の光学接続構造について、2つのFCコネクタをそれぞれ光パワーメータ100の入射用端子および出射用端子に接続した。この状態で波長1550nmの光を入射用端子から5回入射させ、出射用端子から出射された光パワーを測定した。そして、5回の平均値と基準値との差異を実施例1の接続損失とした。その後、組み立て冶具を用いてメカニカルスプライスを分解し、再度そのメカニカルスプライスを組み立てて再接続させた。この状態で波長1550nmの光を入射用端子から5回入射させ、出射用端子から出射された光パワーを測定し、5回の平均値と基準値との差異を実施例1の再接続損失とした。そして、実施例2、比較例1および比較例2の光学接続構造についても同様に評価した。なお、接続損失は、0.25dB以上だと実用上問題があり、0.15dB未満だと特に優れている。結果を表2に示す。   First, regarding the optical connection structure of Example 1, two FC connectors were connected to the incident terminal and the emission terminal of the optical power meter 100, respectively. In this state, light having a wavelength of 1550 nm was incident from the incident terminal five times, and the optical power emitted from the emission terminal was measured. And the difference between the average value of 5 times and the reference value was defined as the connection loss of Example 1. Thereafter, the mechanical splice was disassembled using an assembly jig, and the mechanical splice was reassembled and reconnected. In this state, light having a wavelength of 1550 nm is incident from the incident terminal five times, the optical power emitted from the output terminal is measured, and the difference between the average value of the five times and the reference value is determined as the reconnection loss of Example 1. did. The optical connection structures of Example 2, Comparative Example 1 and Comparative Example 2 were similarly evaluated. The connection loss is practically problematic when it is 0.25 dB or more, and particularly excellent when it is less than 0.15 dB. The results are shown in Table 2.

Figure 2009244545
Figure 2009244545

[評価結果]
表2から明らかなように、実施例1および実施例2の光学接続構造は接続に要する時間、接続損失、再接続損失のいずれも実用上問題なく、実施例1の接続損失は特に優れている。これに対し、比較例1の光学接続構造は、接続に要する時間は実用上問題ないが、接続損失、再接続損失は実用上問題がある。また、比較例2の光学接続構造は、接続損失、再接続損失は実用上問題ないが、接続に要する時間は実用上問題がある。
[Evaluation results]
As is apparent from Table 2, the optical connection structures of Example 1 and Example 2 have no practical problems in connection time, connection loss, and reconnection loss, and the connection loss of Example 1 is particularly excellent. . On the other hand, the optical connection structure of Comparative Example 1 has practically no problem with the time required for connection, but there are practical problems with connection loss and reconnection loss. Further, in the optical connection structure of Comparative Example 2, there is no practical problem in connection loss and reconnection loss, but the time required for connection has a practical problem.

メカニカルスプライス構造を示す斜視図である。It is a perspective view which shows a mechanical splice structure. 本発明の光学接続構造の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the optical connection structure of this invention. 本発明の光学接続構造の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the optical connection structure of this invention. 基準実験の回路図である。It is a circuit diagram of a reference experiment. 実施例および比較例の回路図である。It is a circuit diagram of an example and a comparative example.

符号の説明Explanation of symbols

1…メカニカルスプライス、11…押さえ基板、12…V溝基板、13…溝、
14…クランプスプリング、21…光伝送媒体、22…被覆部、23…基材、
3…粘着性接続部材、100…光パワーメータ、C…FCコネクタ、
F1…両端にFCコネクタを有する光ファイバ、
F2…一端にFCコネクタを有する光ファイバ
DESCRIPTION OF SYMBOLS 1 ... Mechanical splice, 11 ... Holding substrate, 12 ... V-groove substrate, 13 ... Groove,
14 ... Clamp spring, 21 ... Optical transmission medium, 22 ... Covering part, 23 ... Base material,
3 ... Adhesive connection member, 100 ... Optical power meter, C ... FC connector,
F1 ... an optical fiber having FC connectors at both ends,
F2: Optical fiber having an FC connector at one end

Claims (6)

光伝送媒体がメカニカルスプライスの両端からそれぞれ挿入され上記光伝送媒体同士が互いに光学的に接続されている光学接続構造であって、
上記メカニカルスプライスは、内部に塊状の粘着性接続部材を備え、
上記各光伝送媒体は、それぞれ上記粘着性接続部材に当接して接続されていることを特徴とする光学接続構造。
An optical connection structure in which optical transmission media are inserted from both ends of the mechanical splice, and the optical transmission media are optically connected to each other,
The mechanical splice includes a massive adhesive connecting member inside,
Each of the optical transmission media is in contact with and connected to the adhesive connecting member.
前記塊状の粘着性接続部材は、その内部に基材を備えることを特徴とする請求項1に記載の光学接続構造。   The optical connection structure according to claim 1, wherein the massive adhesive connection member includes a base material therein. 上記塊状の粘着性接続部材は、硬度がJIS(A型)5〜100であることを特徴とする請求項1または2に記載の光学接続構造。   The optical connection structure according to claim 1 or 2, wherein the lump-like adhesive connection member has a hardness of JIS (A type) 5 to 100. 上記塊状の粘着性接続部材は、球状の粘着性接続部材であることを特徴とする請求項1〜3のいずれかに記載の光学接続構造。   The optical connection structure according to claim 1, wherein the massive adhesive connection member is a spherical adhesive connection member. 光伝送媒体をメカニカルスプライスの両端からそれぞれ挿入して上記光伝送媒体同士を互いに光学的に接続する光学接続方法であって、
塊状の粘着性接続部材を上記メカニカルスプライスの内部に挟持させ、
上記光伝送媒体を上記メカニカルスプライスの両端から挿入して上記粘着性接続部材に当接させることを特徴とする光学接続方法。
An optical connection method for optically connecting the optical transmission media to each other by inserting optical transmission media from both ends of the mechanical splice,
A lump-like adhesive connecting member is sandwiched inside the mechanical splice,
An optical connection method, wherein the optical transmission medium is inserted from both ends of the mechanical splice and brought into contact with the adhesive connection member.
前記塊状の粘着性接続部材は、その内部に基材を備えることを特徴とする請求項5に記載の光学接続方法。   The optical connection method according to claim 5, wherein the massive adhesive connection member includes a base material therein.
JP2008090214A 2008-03-31 2008-03-31 Optical connection structure and optical connection method Pending JP2009244545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008090214A JP2009244545A (en) 2008-03-31 2008-03-31 Optical connection structure and optical connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008090214A JP2009244545A (en) 2008-03-31 2008-03-31 Optical connection structure and optical connection method

Publications (1)

Publication Number Publication Date
JP2009244545A true JP2009244545A (en) 2009-10-22

Family

ID=41306509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008090214A Pending JP2009244545A (en) 2008-03-31 2008-03-31 Optical connection structure and optical connection method

Country Status (1)

Country Link
JP (1) JP2009244545A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167759A (en) * 2012-02-15 2013-08-29 Nippon Telegr & Teleph Corp <Ntt> Optical fiber connection mechanism and method thereof
CN108495721A (en) * 2016-02-01 2018-09-04 株式会社巴川制纸所 Cleaner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047071A (en) * 1998-05-27 2000-02-18 Sharp Corp Optical signal transmission and reception module, optical signal transmission and reception repeater and optical signal transmission and reception system using them
JP2007093647A (en) * 2005-09-27 2007-04-12 Tomoegawa Paper Co Ltd Optical connecting structure and method
JP2007178786A (en) * 2005-12-28 2007-07-12 Photonic Science Technology Inc Mechanical splice and splicing method of optical fiber
JP2008070545A (en) * 2006-09-13 2008-03-27 Hitachi Cable Ltd Mechanical splice
JP2009042335A (en) * 2007-08-07 2009-02-26 Nippon Telegr & Teleph Corp <Ntt> Splicing structure of optical fiber and method of splicing optical fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047071A (en) * 1998-05-27 2000-02-18 Sharp Corp Optical signal transmission and reception module, optical signal transmission and reception repeater and optical signal transmission and reception system using them
JP2007093647A (en) * 2005-09-27 2007-04-12 Tomoegawa Paper Co Ltd Optical connecting structure and method
JP2007178786A (en) * 2005-12-28 2007-07-12 Photonic Science Technology Inc Mechanical splice and splicing method of optical fiber
JP2008070545A (en) * 2006-09-13 2008-03-27 Hitachi Cable Ltd Mechanical splice
JP2009042335A (en) * 2007-08-07 2009-02-26 Nippon Telegr & Teleph Corp <Ntt> Splicing structure of optical fiber and method of splicing optical fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167759A (en) * 2012-02-15 2013-08-29 Nippon Telegr & Teleph Corp <Ntt> Optical fiber connection mechanism and method thereof
CN108495721A (en) * 2016-02-01 2018-09-04 株式会社巴川制纸所 Cleaner
JPWO2017135079A1 (en) * 2016-02-01 2018-10-04 株式会社巴川製紙所 Cleaner
CN108495721B (en) * 2016-02-01 2021-07-23 株式会社巴川制纸所 Cleaning device

Similar Documents

Publication Publication Date Title
EP1686402B1 (en) Optical connection structure and optical connection method
KR100997816B1 (en) Cohesive connection member, optical connection structure using the same and sticking jig having cohesive connection member
JP4332490B2 (en) Optical connection structure and optical connection method thereof
JP2006221031A (en) Optical connection structure
JP5574960B2 (en) Optical transmission medium, ferrule and optical terminal connector
JP2007093647A (en) Optical connecting structure and method
JP4109653B2 (en) Optical connector, and split sleeve for connection, support member and adapter used therefor
JP4043448B2 (en) OPTICAL CONNECTION STRUCTURE AND METHOD FOR MANUFACTURING THE SAME
JP5228037B2 (en) Rubber member, adhesive connection member and optical connection structure
JP5150201B2 (en) Adhesive connection member and optical connection structure using the same
JP2009265243A (en) Optical connection structure and optical connection method
JP2007225722A (en) Optical connector
JP2009244545A (en) Optical connection structure and optical connection method
JP4167498B2 (en) Optical transmission component connection structure and optical connection method
JP4872551B2 (en) Mechanical splice
JP2009244556A (en) Optical connection structure and method
JP2009271312A (en) Optical connection structure and optical connection method
JP2007225743A (en) Optical connector
JP2011064779A (en) Ferrule with optical fiber and optical connector using the same
JP2011033784A (en) Ferrule with optical fiber, and optical connector employing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101108

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20110913

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A02 Decision of refusal

Effective date: 20120202

Free format text: JAPANESE INTERMEDIATE CODE: A02