JP2009244519A - Brain model - Google Patents

Brain model Download PDF

Info

Publication number
JP2009244519A
JP2009244519A JP2008089895A JP2008089895A JP2009244519A JP 2009244519 A JP2009244519 A JP 2009244519A JP 2008089895 A JP2008089895 A JP 2008089895A JP 2008089895 A JP2008089895 A JP 2008089895A JP 2009244519 A JP2009244519 A JP 2009244519A
Authority
JP
Japan
Prior art keywords
brain
component
brain model
model
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008089895A
Other languages
Japanese (ja)
Other versions
JP5219582B2 (en
Inventor
Takashi Nishino
孝 西野
Masaru Kodera
賢 小寺
Masayori Iwashita
真依 岩下
Shigeto Hayashi
成人 林
Eiji Komura
英二 甲村
Juichi Morita
寿一 森田
Yoshimi Okuma
良美 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Original Assignee
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC filed Critical Kobe University NUC
Priority to JP2008089895A priority Critical patent/JP5219582B2/en
Publication of JP2009244519A publication Critical patent/JP2009244519A/en
Application granted granted Critical
Publication of JP5219582B2 publication Critical patent/JP5219582B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instructional Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a brain model, in which not only the tactile impression but also the mechanical characteristics of a living brain, especially the recovery behavior after pressing are reproduced. <P>SOLUTION: The brain model has, in 10 seconds after being pressed by 10 mm in depth, the recovery rate of 80-95% with respect to the depth 10 mm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、生体脳の力学的特性、特に、押圧後の回復挙動を忠実に再現した脳モデルに関する。   The present invention relates to a brain model that faithfully reproduces the mechanical characteristics of a living brain, in particular, recovery behavior after pressing.

従来から脳モデルとして様々な脳の模型が知られている。しかし、実際の脳は、一般に、変形後、瞬時には戻らず、少なくとも10〜20秒間かけて原形へとゆっくり戻る力学的特性、すなわち、回復挙動を有する。従来の脳モデルは、脳の立体的な形状のみを再現した形状模型であり、実際の脳とは押圧後の回復挙動が大きく異なり、座学での使用には問題ないが、手術用器具を用いた教育および訓練には適していない。   Conventionally, various brain models are known as brain models. However, the actual brain generally has a mechanical property that does not return instantaneously after deformation, but slowly returns to its original shape over at least 10 to 20 seconds, that is, recovery behavior. The conventional brain model is a shape model that reproduces only the three-dimensional shape of the brain, and the recovery behavior after pressing is significantly different from the actual brain, and there is no problem in use in classrooms, but a surgical instrument is used. Not suitable for the education and training used.

当該分野では、外科手術の教育および訓練において、ヒト生体を用いることが最も望ましいが、実際にはヒト以外の動物(例えば、ブタ、サルなど)を用いる。しかし、これらの動物において、ヒトと同様の術部構造、すなわち、患部を再現することは非常に困難である。   In this field, it is most desirable to use a human living body in surgical education and training, but actually, non-human animals (eg, pigs, monkeys, etc.) are used. However, in these animals, it is very difficult to reproduce the same surgical site structure as humans, that is, the affected part.

また、現状では、ヒト生体脳を使用した外科手術の教育および訓練の機会はほぼ皆無であり、そのため、献体などによるヒト人体での教育および訓練を実施しているが、献体数には限りがあり、また、術感などは生体とは大きく異なる。従って、現在、医学生や経験が浅い外科医は、熟練医師の傍らで実際の手術を観察することによって、技能スキルの向上を図っている。   In addition, at present, there are almost no opportunities for education and training in surgical operations using human living brains.Therefore, education and training are conducted in the human body by means of dedication, but the number of donations is limited. Yes, and the feeling of operation is very different from the living body. Therefore, medical students and inexperienced surgeons are currently trying to improve their skill by observing actual surgery alongside skilled doctors.

このような状況下、医療技能の修得に適した人体模型が開発されている。例えば、特許文献1には、「人体の頭部の内部構造を、頭蓋骨から形状を採取し、CT画像データからの光造形モデルも参考にして再現した医療トレーニング用人体頭部模型であって、生体と類似した触感感覚を感じられるようにするために複数の材料を用いて複合させた構造であり、該人体頭部模型の一部又は複数部分を、前記部分と形状が同一又は異なる部品と交換可能であり、該交換可能部分とその周辺部分との間隙に圧力検知部を備え、該人体頭部模型に外部からかかる圧力を検出することを特徴とする医療トレーニング用人体頭部模型」が開示されている。   Under such circumstances, a human body model suitable for acquiring medical skills has been developed. For example, Patent Document 1 states that “the internal structure of the human head, the shape of the human head is collected from the skull, and the human head model for medical training reproduced with reference to the stereolithography model from the CT image data, A structure in which a plurality of materials are combined to allow a tactile sensation similar to that of a living body to be felt, and a part or a plurality of parts of the human head model are made of parts having the same or different shape from the part. A human head model for medical training characterized in that it is replaceable and has a pressure detector in the gap between the replaceable part and its peripheral part, and detects pressure applied to the human head model from the outside. '' It is disclosed.

しかしながら、特許文献1に開示の人体頭部模型は、内視鏡を用いた診断および手術などの高度な技能が要求される分野、特に、内視鏡による鼻腔内の診断および手術などの技能修得用トレーニングに用いるものであり、脳モデルに関するものではない。   However, the human head model disclosed in Patent Document 1 is a field where advanced skills such as diagnosis and surgery using an endoscope are required, particularly skill acquisition such as diagnosis and surgery in the nasal cavity using an endoscope. It is used for training and is not related to brain models.

また、当該分野では、実際の脳に近い触感、および、ある程度類似した押圧時の硬さ(圧縮弾性率)を有するポリアクリル酸ゲルを使用した脳モデルが知られているが、これは押圧後の回復挙動が実際の脳とは大きく異なる。
特許第3845746号公報
In addition, in this field, a brain model using a polyacrylic acid gel having a tactile sensation close to that of the actual brain and a hardness (compression elastic modulus) at the time of pressing somewhat similar is known. The recovery behavior of this is very different from that of the actual brain.
Japanese Patent No. 3845746

本発明は、触感だけでなく、生体脳の力学的特性、特に押圧後の回復挙動を忠実に再現した脳モデルの提供を課題とする。   An object of the present invention is to provide a brain model that faithfully reproduces not only the tactile sensation but also the mechanical characteristics of the living brain, particularly the recovery behavior after pressing.

本発明者らは、上記課題に鑑み鋭意検討した結果、ウレタンゲル層上にラテックス層を被覆してなる2層構造を有する脳モデルが、実際の生体脳とほぼ同一の力学的特性、特に押圧後の回復挙動を示すことを見出し、本発明を完成するに至った。従って、本発明は以下を提供する。   As a result of intensive studies in view of the above problems, the present inventors have found that a brain model having a two-layer structure in which a latex layer is coated on a urethane gel layer has substantially the same mechanical characteristics as an actual living brain, in particular, pressing. The inventors have found that the recovery behavior is shown later, and have completed the present invention. Accordingly, the present invention provides the following.

[1] 深さ10mmまで押圧し、10秒後の回復率が、該深さ10mmに対して、80〜95%である、脳モデル。
[2] 深さ10mmまで押圧し、20秒後の回復率が、該深さ10mmに対して、90〜95%である、上記[1]に記載の脳モデル。
[3] 深さ10mmまで押圧し、25秒後の回復率が、該深さ10mmに対して、90〜95%である、上記[1]または[2]に記載の脳モデル。
[4] ラテックス層およびウレタンゲル層を含む2層構造を有し、該ラテックス層が該ウレタンゲル層を被覆する、上記[1]〜[3]のいずれか1項に記載の脳モデル。
[5] 前記ウレタンゲル層が、
成分(A):ポリエステルポリオール、および
成分(B):ヘキサメチレンジイソシアネート
を混合して使用する2液ポリウレタンから形成される、上記[4]記載の脳モデル。
[6] 前記成分(A)および前記成分(B)の重量比が、100:45〜100:50[成分(A):成分(B)]である、上記[5]記載の脳モデル。
[7] 前記成分(A)および前記成分(B)の重量比が、100:47[成分(A):成分(B)]である、上記[6]記載の脳モデル。
[8] 前記成分(A)が、3−メチル−1,5−ペンタジオールおよびアジピン酸から形成されるポリエステルポリオールである、上記[5]〜[7]のいずれか1項に記載の脳モデル。
[9] ラテックス層の厚みが50〜300μmである、上記[4]〜[8]のいずれか1項に記載の脳モデル。
[1] A brain model that is pressed to a depth of 10 mm and a recovery rate after 10 seconds is 80 to 95% with respect to the depth of 10 mm.
[2] The brain model according to [1] above, wherein the brain model is pressed to a depth of 10 mm and a recovery rate after 20 seconds is 90 to 95% with respect to the depth of 10 mm.
[3] The brain model according to [1] or [2], wherein the brain model is pressed to a depth of 10 mm and a recovery rate after 25 seconds is 90 to 95% with respect to the depth of 10 mm.
[4] The brain model according to any one of [1] to [3], wherein the brain model has a two-layer structure including a latex layer and a urethane gel layer, and the latex layer covers the urethane gel layer.
[5] The urethane gel layer is
The brain model according to the above-mentioned [4], which is formed from a two-component polyurethane using a mixture of component (A): polyester polyol and component (B): hexamethylene diisocyanate.
[6] The brain model according to the above [5], wherein the weight ratio of the component (A) and the component (B) is 100: 45 to 100: 50 [component (A): component (B)].
[7] The brain model according to [6] above, wherein a weight ratio of the component (A) and the component (B) is 100: 47 [component (A): component (B)].
[8] The brain model according to any one of [5] to [7], wherein the component (A) is a polyester polyol formed from 3-methyl-1,5-pentadiol and adipic acid. .
[9] The brain model according to any one of [4] to [8] above, wherein the latex layer has a thickness of 50 to 300 μm.

本発明の脳モデルは、実際の生体脳とほぼ同一の力学的特性、特に押圧後の回復挙動を示すので、これまで実習が困難であったヒト生体脳の代替として非常に有用である。また、本発明の脳モデルは、既存のコンピュータグラフィックス等の仮想モデリングを遙かに凌駕し、実物に近い触感を再現することができるので、医学生および経験の浅い外科医等を対象とした実際に手術用器具を用いた教育および訓練が可能となった。さらに、本発明の脳モデルでは、ラテックス層を用いることによって、実際の脳の触感および形状を忠実に再現することができ、さらに、CT画像データを併用することによって、患部の状態をも容易に再現することができるので、非常に実用性および応用性がある。また、本発明の脳モデルは、例えば、医師が患者に対して症状や手術方法等を説明するインフォームド・コンセント用模型や、医師間での術前における手術戦略用の模型としても活用できる。また、本発明の脳モデルに使用したウレタン複合材料、すなわち、深さ10mmまで押圧し、10秒後の回復率が、押圧した深さ(すなわち、押し込み量)10mmに対して、80〜95%である材料は、その特殊な力学的特性から、低反発材、衝撃吸収材、緩衝材などの材料として利用することも可能である。   Since the brain model of the present invention shows almost the same mechanical characteristics as the actual living brain, particularly the recovery behavior after pressing, it is very useful as an alternative to the human living brain, which has been difficult to practice. In addition, the brain model of the present invention far surpasses virtual modeling such as existing computer graphics, and can reproduce a tactile sensation close to the real thing. Therefore, it is practical for medical students and inexperienced surgeons. Education and training using surgical instruments are now possible. Furthermore, in the brain model of the present invention, the actual tactile sensation and shape of the brain can be faithfully reproduced by using the latex layer, and the condition of the affected area can be easily achieved by using CT image data together. Since it can be reproduced, it is very practical and applicable. In addition, the brain model of the present invention can be used as, for example, a model for an informed consent in which a doctor explains symptoms and a surgical method to a patient, and a model for a surgical strategy before surgery between doctors. . In addition, the urethane composite material used in the brain model of the present invention, that is, pressing to a depth of 10 mm, the recovery rate after 10 seconds is 80 to 95% with respect to the pressed depth (that is, the pressing amount) of 10 mm. The material can be used as a material such as a low repulsion material, a shock absorbing material, and a shock absorbing material because of its special mechanical properties.

本発明の脳モデルは、図1に示す通り、ウレタンゲル層上にラテックス層を被覆してなる2層構造を有することを特徴とし、深さ10mmまで押圧した場合、10秒後の回復率が押圧した深さ10mmに対して80〜95%であり、実際の生体脳とほぼ同じ力学的特性、特に押圧後の回復挙動を示すことができる。   As shown in FIG. 1, the brain model of the present invention has a two-layer structure in which a latex layer is coated on a urethane gel layer. When pressed to a depth of 10 mm, the recovery rate after 10 seconds is It is 80 to 95% with respect to the pressed depth of 10 mm, and can show almost the same mechanical characteristics as the actual living brain, particularly recovery behavior after pressing.

本発明の脳モデルは、
脳組織表面の形状を再現した型にラテックス水溶液を塗布してラテックス層を形成する工程(以下、第1工程);および
2液ポリウレタンを充填してウレタンゲル層を形成する工程(以下、第2工程);
を包含する方法によって製造することができる。
The brain model of the present invention is:
Applying a latex aqueous solution to a mold that reproduces the shape of the brain tissue surface to form a latex layer (hereinafter referred to as a first step); and filling a two-component polyurethane to form a urethane gel layer (hereinafter referred to as a second layer). Process);
Can be produced by a method including:

第1工程:ラテックス層の形成
第1工程によって形成されるラテックス層は脳組織表面の形状および触感を忠実に再現することができる。第1工程に使用する型は、脳表面の溝の形状、深さ、表面下の空洞形状などを忠実に再現した型であれば特に制限はない。また、型を構成する材料としては、特に限定はないが、例えば、シリコーン樹脂、石膏などが挙げられ、特に、脳形状の再現性および操作性の観点から、シリコーン樹脂が特に好ましい。また、本発明において、凹型および凸型を使用してもよい。さらに、CT画像データを利用して型を作製することも可能であり、この場合、患者の術部を忠実に再現することができるので非常に有益である。
First Step: Formation of Latex Layer The latex layer formed by the first step can faithfully reproduce the shape and feel of the brain tissue surface. The mold used in the first step is not particularly limited as long as it accurately reproduces the shape and depth of the groove on the brain surface, the shape of the cavity below the surface, and the like. The material constituting the mold is not particularly limited, and examples thereof include silicone resin and gypsum, and silicone resin is particularly preferable from the viewpoint of reproducibility of brain shape and operability. In the present invention, a concave shape and a convex shape may be used. Furthermore, it is also possible to produce a mold using CT image data, and in this case, it is very useful because the surgical site of the patient can be faithfully reproduced.

ラテックス層の厚みは、好ましくは50〜300μmであり、ラテックス層の厚みが50〜300μmであると脳組織表面の形状および触感を忠実に再現することができる。   The thickness of the latex layer is preferably 50 to 300 μm, and when the thickness of the latex layer is 50 to 300 μm, the shape and feel of the brain tissue surface can be faithfully reproduced.

使用するラテックスは、水溶液を容易に形成することができれば特に限定はなく、市販のラテックス(例えば、(株)レジテックス製S−500(天然ゴム加硫型)、(株)レジテックス製NRLATEX(天然ゴム非加硫型)、市川ゴム工業(株)製ART−TEX(加硫剤入り)、クォー・ユー化成(有)製L−5000など)などが挙げられる。なかでも、(株)レジテックス製S−500(天然ゴム加硫型)を使用すると、脳組織表面の形状および触感をより忠実に再現することができるので好ましい。   The latex to be used is not particularly limited as long as an aqueous solution can be easily formed. Commercially available latexes (for example, S-500 (natural rubber vulcanization type) manufactured by Regex Corp., NRLATEX (Regitex Corp.) ( Natural rubber non-vulcanized type), Ichikawa Rubber Industrial Co., Ltd. ART-TEX (with vulcanizing agent), Qu Yu Kasei Co., Ltd. L-5000, etc.). Of these, S-500 (natural rubber vulcanization type) manufactured by Regex Corp. is preferable because the shape and feel of the brain tissue surface can be reproduced more faithfully.

均質なラテックス層を形成するためには、上記ラテックスを水溶液として塗布することが好ましい。   In order to form a homogeneous latex layer, it is preferable to apply the latex as an aqueous solution.

ラテックス水溶液を型に塗布し、室温(10℃〜35℃)で放置することによってラテックス層を形成する。このとき必要に応じて加温または風乾を行ってもよい。   An aqueous latex solution is applied to the mold and left at room temperature (10 ° C. to 35 ° C.) to form a latex layer. At this time, heating or air drying may be performed as necessary.

第2工程:ウレタンゲル層の形成
第1工程で形成したラテックス層上に、成分(A):ポリエステルポリオールおよび成分(B):ヘキサメチレンジイソシアネートを混合して使用する2液ポリウレタンを充填してウレタンゲル層を形成する。
Second Step: Formation of Urethane Gel Layer The latex layer formed in the first step is filled with a two-component polyurethane used by mixing component (A): polyester polyol and component (B): hexamethylene diisocyanate, and urethane. A gel layer is formed.

成分(A)のポリエステルポリオールとしては、特に限定はなく、例えば、3−メチル−1,5−ペンタジオールおよびアジピン酸から形成されるポリエステルポリオールが好ましい。また、当業者に公知の方法に従って合成してもよく、市販のポリエステルポリオールを使用してもよい。   There is no limitation in particular as a polyester polyol of a component (A), For example, the polyester polyol formed from 3-methyl- 1, 5-pentadiol and adipic acid is preferable. Moreover, it may synthesize | combine according to a method well-known to those skilled in the art, and may use commercially available polyester polyol.

成分(B)のヘキサメチレンジイソシアネートとしては、特に限定はなく、当業者に公知の方法に従って合成することもできるが、市販のヘキサメチレンジイソシアネートを使用してもよい。   The hexamethylene diisocyanate of component (B) is not particularly limited and may be synthesized according to a method known to those skilled in the art, but commercially available hexamethylene diisocyanate may be used.

なお、本発明で使用することのできる2液ポリウレタンは、成分(A)が主剤であり、成分(B)が硬化剤であり、形成されるウレタンゲルの力学的特性は、主に、成分(A)および成分(B)の配合量に依存する。   In the two-component polyurethane that can be used in the present invention, the component (A) is the main agent, the component (B) is the curing agent, and the mechanical properties of the formed urethane gel mainly include the component ( It depends on the blending amount of A) and component (B).

成分(A)および成分(B)の重量比は、100:45〜100:50が好ましく、最も好ましくは100:47[成分(A):成分(B)]である。成分(A)および成分(B)の重量比が100:47[成分(A):成分(B)]の場合、ヒト生体脳に最も近い力学的特性を与えることができる。なお、成分(A)および成分(B)の重量比が、100:43[成分(A):成分(B)]の場合、ブタ生体脳に最も近い力学的特性(特に、回復挙動)を与えることができる。   The weight ratio of the component (A) and the component (B) is preferably 100: 45 to 100: 50, and most preferably 100: 47 [component (A): component (B)]. When the weight ratio of the component (A) and the component (B) is 100: 47 [component (A): component (B)], the mechanical characteristics closest to the human living brain can be provided. In addition, when the weight ratio of the component (A) and the component (B) is 100: 43 [component (A): component (B)], the mechanical characteristics closest to the porcine living brain (particularly, recovery behavior) are given. be able to.

成分(A)および成分(B)を上記配合量で予備混合して混合液を調製し、上記ラテックス層が形成された型に混合液を充填する。予備混合の際、硬化の観点から、主剤である成分(A)に硬化剤である成分(B)を添加して均一に混合することが好ましい。また、予備混合の際、着色剤を添加してウレタンゲルを着色することも可能である。例えば、主剤である成分(A)に着色剤を添加し、その後、硬化剤である成分(B)を添加して混合することによって均一に着色することができる。着色剤としてはウレタン系着色剤が好ましく、2液ポリウレタン中に均一に混合することができる。   Component (A) and component (B) are premixed at the above blending amounts to prepare a mixed solution, and the mixed solution is filled into a mold on which the latex layer is formed. In the preliminary mixing, from the viewpoint of curing, it is preferable to add the component (B) as the curing agent to the component (A) as the main agent and mix them uniformly. Further, at the time of preliminary mixing, it is also possible to add a colorant to color the urethane gel. For example, it can color uniformly by adding a coloring agent to the component (A) which is a main ingredient, and then adding and mixing the component (B) which is a hardening | curing agent. The colorant is preferably a urethane colorant, and can be uniformly mixed in the two-component polyurethane.

充填後、加熱硬化(40〜80℃、好ましくは約60℃)することによってウレタンゲル層を形成することができる。硬化後、型を取り外すことによって、本発明の脳モデル(本願明細書中、ウレタン複合材料と呼ぶ場合もある)を得ることができる。   After filling, a urethane gel layer can be formed by heat curing (40 to 80 ° C., preferably about 60 ° C.). By removing the mold after curing, the brain model of the present invention (sometimes referred to as urethane composite material in the present specification) can be obtained.

以下、本発明の脳モデルの力学的特性の評価について詳細に説明する。   Hereinafter, the evaluation of the mechanical characteristics of the brain model of the present invention will be described in detail.

力学的特性の評価:回復挙動測定
本発明の脳モデルの力学的特性は、主に、回復挙動測定によって評価することができる。図2は、本発明で採用する回復挙動測定方法を模式的に示す図である。回復挙動測定では、まず、円筒形ジグ(直径:20mm、長さ:12mm、重さ:2.26g)を用いて本発明の脳モデルを押圧し、ジグの底面が深さ10mmにまで達した時点、すなわち、押し込み量が10mmの時点で荷重負荷を停止し、レーザー変位計(例えば、キーエンス製 LC2100など)を用いて、変形した脳モデルの形状の回復に伴う押し込み量の変化を経時的に測定する。
Evaluation of mechanical properties: measurement of recovery behavior The mechanical properties of the brain model of the present invention can be evaluated mainly by measurement of recovery behavior. FIG. 2 is a diagram schematically showing the recovery behavior measurement method employed in the present invention. In the recovery behavior measurement, first, the brain model of the present invention was pressed using a cylindrical jig (diameter: 20 mm, length: 12 mm, weight: 2.26 g), and the bottom surface of the jig reached a depth of 10 mm. At the time, that is, when the pushing amount is 10 mm, the load is stopped, and the change in the pushing amount with the recovery of the shape of the deformed brain model is measured over time using a laser displacement meter (for example, LC2100 manufactured by Keyence). taking measurement.

脳モデルの回復挙動は、押し込み量(mm)の変化から、回復率(%)として表すことができる。
回復率(%)=[測定時の押し込み量(mm)]/
[測定開始時(0秒)での押し込み量(すなわち10mm)]×100
The recovery behavior of the brain model can be expressed as a recovery rate (%) from a change in the push-in amount (mm).
Recovery rate (%) = [Pushing amount during measurement (mm)] /
[Pushing amount at the start of measurement (0 seconds) (ie 10 mm)] × 100

一般に、ヒト生体脳は、変形後、瞬時には戻らず、少なくとも10〜20秒間かけて原形へと戻る力学的特性を有する。本発明の脳モデルは、深さ10mmまで押圧し、上述の通り回復挙動を測定すると、10秒後の回復率は、深さ10mmに対して、80〜95%であり、ヒト生体脳に近い回復挙動を示す。   In general, the human living brain does not return instantaneously after deformation, but has a mechanical characteristic that returns to its original shape over at least 10 to 20 seconds. When the brain model of the present invention is pressed to a depth of 10 mm and the recovery behavior is measured as described above, the recovery rate after 10 seconds is 80 to 95% with respect to the depth of 10 mm, which is close to the human living brain. Shows recovery behavior.

本発明の脳モデルは、上述ウレタンゲルの使用によって生体脳の力学的特性、特に押圧後の回復挙動を忠実に再現することができる。ただし、本発明の脳モデルではウレタンゲルが実際の生体脳とは異なる粘着性(タック感)を有するので、ラテックス層による被覆が必要である。このようにウレタンゲル層上にラテックス層を被覆することによって、実際の生体脳の力学的特性だけでなく、触感および形状をも忠実に再現することができる。また、本発明の脳モデルは、より忠実に生体脳を再現するために、適切な弾力性および触感を有する市販のシリコーンチューブを用いて脳血管を作製して設置してもよく、さらに着色してもよい。   The brain model of the present invention can faithfully reproduce the mechanical characteristics of the living brain, particularly the recovery behavior after pressing, by using the urethane gel. However, in the brain model of the present invention, the urethane gel has an adhesiveness (tack feeling) different from that of the actual living brain, so that it needs to be coated with a latex layer. By coating the latex layer on the urethane gel layer in this way, not only the actual mechanical characteristics of the living brain but also the tactile sensation and shape can be faithfully reproduced. In addition, the brain model of the present invention may be prepared by installing a cerebral blood vessel using a commercially available silicone tube having appropriate elasticity and touch to reproduce the living brain more faithfully, and further colored. May be.

本発明を以下の実施例でさらに詳細に説明するが、本発明はこれらに限定されない。   The present invention is described in more detail in the following examples, but the present invention is not limited thereto.

製造例1:型の作製
ヒト頭蓋骨から形状を採取し、CT画像データからの光造形モデルを用いて、脳組織表面形状を再現した型を作製した。このとき、脳組織表面形状に現れる多数の溝(脳表面における溝の幅よりも、脳内部の溝の底部の幅が大きく、表面からなだらかに幅が大きくなるような構造をしている)を忠実に再現した。
Production Example 1: Production of a mold A shape was collected from a human skull, and a mold in which the shape of the brain tissue surface was reproduced using an optical modeling model from CT image data was produced. At this time, many grooves appearing on the brain tissue surface shape (the structure is such that the width of the bottom of the groove inside the brain is larger than the width of the groove on the brain surface, and the width gradually increases from the surface). Reproduced faithfully.

製造例2:ラテックス水溶液の調製
(株)レジテックス製S−500(天然ゴム加硫型ラテックス)を水に溶解してラテックス水溶液を調製した。
Production Example 2: Preparation of aqueous latex solution S-500 (natural rubber vulcanized latex) manufactured by Regex Corp. was dissolved in water to prepare an aqueous latex solution.

製造例3:2液ポリウレタンの調製
2液ポリウレタンとして、以下の成分(A)および成分(B)を使用した。
成分(A):3−メチル−1,5−ペンタジオールとアジピン酸からなるポリエステルポリオール(分子量:1000)
成分(B):ヘキサメチレンジイソシアネートプレポリマー(溶剤として、マレイン酸 ジ2−エチルヘキシルを含有)
Production Example 3: Preparation of two-component polyurethane As the two-component polyurethane, the following components (A) and (B) were used.
Component (A): Polyester polyol comprising 3-methyl-1,5-pentadiol and adipic acid (molecular weight: 1000)
Component (B): Hexamethylene diisocyanate prepolymer (containing di-2-ethylhexyl maleate as solvent)

実施例1:脳モデルの作製
製造例1で作製した型に製造例2で調製したラテックス水溶液を薄く均一に塗布し、室温(約20℃)にて自然乾燥させ、外皮のラテックス層(厚み:50〜300μm)を形成した。
製造例3の2液ポリウレタンを成分(A):成分(B)=100:45の重量比で混合し、上記のラテックス皮膜処理した型に流し込み、60℃で30分間硬化させた。混合の際、主剤である成分(A)に対してウレタン系着色剤(ミクニペイント株式会社製、ポリデュール)を添加し、その後、硬化剤である成分(B)を添加し、混合することによって均一に着色した(肌色)。
硬化後、型を外して脳モデルを得た。
実施例2:脳モデルの作製
製造例3の2液ポリウレタンを成分(A):成分(B)=100:47の重量比で混合したことを除いて、実施例1と同様に脳モデルを作製した。
実施例3:脳モデルの作製
製造例3の2液ポリウレタンを成分(A):成分(B)=100:50の重量比で混合したことを除いて、実施例1と同様に脳モデルを作製した。
比較例1:脳モデルの作製
製造例3の2液ポリウレタンを成分(A):成分(B)=100:43の重量比で混合したことを除いて、実施例1と同様に脳モデルを作製した。
Example 1: Preparation of a brain model The latex aqueous solution prepared in Production Example 2 was thinly and uniformly applied to the mold produced in Production Example 1, and naturally dried at room temperature (about 20 ° C), and the latex layer (thickness: 50-300 μm) was formed.
The two-component polyurethane of Production Example 3 was mixed at a weight ratio of component (A): component (B) = 100: 45, poured into the above-mentioned mold treated with a latex film, and cured at 60 ° C. for 30 minutes. During mixing, a urethane colorant (manufactured by Mikuni Paint Co., Ltd., Polydur) is added to the main component (A), and then the curing agent (B) is added and mixed uniformly. Colored (skin color).
After curing, the mold was removed to obtain a brain model.
Example 2: Preparation of a brain model A brain model was prepared in the same manner as in Example 1 except that the two-component polyurethane of Production Example 3 was mixed in a weight ratio of component (A): component (B) = 100: 47. did.
Example 3: Preparation of a brain model A brain model was prepared in the same manner as in Example 1 except that the two-component polyurethane of Production Example 3 was mixed in a weight ratio of component (A): component (B) = 100: 50. did.
Comparative Example 1: Preparation of Brain Model A brain model was prepared in the same manner as in Example 1 except that the two-component polyurethane of Production Example 3 was mixed at a weight ratio of component (A): component (B) = 100: 43. did.

比較例2:従来の脳モデル(ポリアクリル酸ゲル製)
モノマー溶液濃度が10重量%となるようにアクリル酸(ナカライテスク株式会社製)を蒸留水に溶解した。次いで、架橋剤としてN,N’−メチレンビスアクリルアミド(MBA、ナカライテスク株式会社製)をモノマーに対して0.75モル%加え、さらに開始剤として過硫酸アンモニウム(APS、和光純薬工業株式会社製)を0.5モル%加え、モノマー溶液を調製した。
上記で調製したモノマー溶液を製造例1で作製した型に流し込み、70℃に保った恒温水槽中で4時間重合反応を行った。重合反応によって生成したポリアクリル酸ゲルを型から取り出し、蒸留水で洗浄して未反応モノマーおよび開始剤残渣を除去した。その後、ポリアクリル酸ゲルを蒸留水中に浸漬し、平衡に達するまで膨潤させて脳モデルを作製した。
Comparative example 2: Conventional brain model (polyacrylic acid gel)
Acrylic acid (manufactured by Nacalai Tesque Co., Ltd.) was dissolved in distilled water so that the monomer solution concentration was 10% by weight. Next, N, N′-methylenebisacrylamide (MBA, manufactured by Nacalai Tesque Co., Ltd.) is added as a crosslinking agent to the monomer in an amount of 0.75 mol%, and ammonium persulfate (APS, manufactured by Wako Pure Chemical Industries, Ltd.) is used as an initiator. ) Was added at 0.5 mol% to prepare a monomer solution.
The monomer solution prepared above was poured into the mold prepared in Production Example 1 and subjected to a polymerization reaction for 4 hours in a constant temperature water bath maintained at 70 ° C. The polyacrylic acid gel produced by the polymerization reaction was removed from the mold and washed with distilled water to remove unreacted monomers and initiator residues. Thereafter, the polyacrylic acid gel was immersed in distilled water and swollen until equilibrium was reached, thereby producing a brain model.

触感評価
ベテラン脳神経外科医(合計17名)が実施例および比較例の脳モデルに触れ、その触感が最もヒト生体脳に近いものを選択した。結果を以下の表に示す。
Evaluation of tactile sensation Experienced neurosurgeons (total of 17 people) touched the brain models of the examples and comparative examples, and selected the tactile sensations closest to the human living brain. The results are shown in the table below.

Figure 2009244519
Figure 2009244519

結果、実施例1〜3の脳モデル[成分(A):成分(B)=100:45〜100:50(重量比)]は、ヒト生体脳に近い触感を有し、特に、実施例2[成分(A):成分(B)=100:47(重量比)]の脳モデルは最もヒト生体脳に近い触感を有することが分かった。   As a result, the brain models of Examples 1 to 3 [component (A): component (B) = 100: 45 to 100: 50 (weight ratio)] have a tactile sensation similar to that of a human living brain. It was found that the brain model of [component (A): component (B) = 100: 47 (weight ratio)] has the tactile sensation closest to the human living brain.

力学的特性評価:回復挙動測定(回復率(%)と時間(秒)との関係)
ヒト生体脳は、一般に、変形後、瞬時には戻らず、少なくとも10〜20秒間かけて原形へと戻る力学的特性を有する。本発明の実施例1〜3および比較例1〜2の脳モデルについて、力学的特性を上述の回復挙動測定に基づいて評価した。
Mechanical property evaluation: Recovery behavior measurement (Relationship between recovery rate (%) and time (seconds))
The human living brain generally has a mechanical property that does not return instantaneously after deformation, but returns to its original shape over at least 10 to 20 seconds. For the brain models of Examples 1 to 3 and Comparative Examples 1 and 2 of the present invention, the mechanical characteristics were evaluated based on the above-described recovery behavior measurement.

図2に示す通り、円筒形ジグ(直径:20mm、長さ:12mm、重さ:2.26g)を用いて脳モデルを押圧し、ジグの底面が深さ10mmにまで達した時点、すなわち、押し込み量が10mmの時点で荷重負荷を停止し、レーザー変位計(キーエンス製 LC2100)を用いて、形状の回復に伴う押し込み量の変化を経時的に測定した。   As shown in FIG. 2, when the brain model is pressed using a cylindrical jig (diameter: 20 mm, length: 12 mm, weight: 2.26 g), the bottom of the jig reaches a depth of 10 mm, that is, When the indentation amount was 10 mm, the load load was stopped, and the change in the indentation amount accompanying the shape recovery was measured over time using a laser displacement meter (LC2100 manufactured by Keyence).

図3において、実施例1〜3および比較例1〜2の脳モデルの回復挙動を回復率(%)と時間(秒)との関係に基いて示す(縦軸:回復率(%)、横軸:時間(秒)、実施例1(・)(小丸)、実施例2(●)(大丸)および実施例3(◆)ならびに比較例1(▲)および比較例2(■))。   In FIG. 3, the recovery behavior of the brain models of Examples 1 to 3 and Comparative Examples 1 to 2 is shown based on the relationship between the recovery rate (%) and time (seconds) (vertical axis: recovery rate (%), horizontal Axis: Time (seconds), Example 1 (•) (small circle), Example 2 (●) (large circle) and Example 3 (♦), and Comparative Example 1 (▲) and Comparative Example 2 (■)).

従来の脳モデル(比較例2)では、0.04秒後の回復率がほぼ100%であり、実際のヒト生体脳の回復挙動とは大きく異なる。   In the conventional brain model (Comparative Example 2), the recovery rate after 0.04 seconds is almost 100%, which is significantly different from the actual recovery behavior of the human brain.

本発明の脳モデル(実施例1〜3)では、図3のグラフに示す通り、5秒後の回復率が75〜90%、10秒後の回復率が80〜95%、15秒後の回復率が85〜95%、20秒後の回復率が90〜95%、25秒後の回復率も90〜95%であり、特に、10秒後の回復率が80〜95%、20秒後の回復率が90〜95%であり、少なくとも10〜20秒間かけてゆっくりとその形状が回復することから、本発明の脳モデルはヒト生体脳に近い回復挙動を示すことが分かった。また、このことから、10〜25秒間に回復率が90%に達する脳モデルがヒト生体脳に最も近いことも分かった。また、比較例1の脳モデルは、10秒後の回復率が75%未満であり、25秒後の回復率が約80%であり、25秒後でさえも回復率が90%に届かず、ヒト生体脳とは異なる回復挙動を示すことが分かった。   In the brain model of the present invention (Examples 1 to 3), as shown in the graph of FIG. 3, the recovery rate after 5 seconds is 75 to 90%, the recovery rate after 10 seconds is 80 to 95%, and after 15 seconds. Recovery rate is 85-95%, recovery rate after 20 seconds is 90-95%, recovery rate after 25 seconds is also 90-95%, especially recovery rate after 10 seconds is 80-95%, 20 seconds The later recovery rate was 90 to 95%, and the shape slowly recovered over at least 10 to 20 seconds. Thus, it was found that the brain model of the present invention exhibited a recovery behavior close to that of a human living brain. This also indicates that the brain model whose recovery rate reaches 90% in 10 to 25 seconds is closest to the human living brain. The brain model of Comparative Example 1 has a recovery rate of less than 75% after 10 seconds, a recovery rate of about 80% after 25 seconds, and the recovery rate does not reach 90% even after 25 seconds. It was found that the recovery behavior is different from that of the human living brain.

押圧後の回復挙動:荷重(g)と押し込み量(mm)との関係
本発明では、さらに、脳モデルの押圧後の回復挙動を荷重(g)と押し込み量(mm)との関係に基づいて検証した。鉛直下方に可動する円筒形ロッドを備えた圧縮試験装置(ロッド断面積:7.07mm、圧縮速度:0.996mm/秒)(図6)を用いて実施例1〜3および比較例1〜2の脳モデルの押圧後の回復挙動を測定した。図4は、実施例1〜3および比較例1〜2の脳モデルの押圧後の回復挙動を示すグラフである(y軸:荷重(g)、x軸:押し込み量(mm))。
実施例1(・)の脳モデルは、二次関数:y=2.2133x+0.5107x、
実施例2(●)の脳モデルは、二次関数:y=0.9502x+2.3596x、
実施例3(◆)の脳モデルは、二次関数:y=1.3411x+4.441x、
比較例1(▲)の脳モデルは、二次関数:y=0.8137x−0.3013x、
比較例2(■)の脳モデルは、一次関数:y=1.2228x
で示される挙動を有することが分かった(ただし、x=0〜10)。
Recovery behavior after pressing: relationship between load (g) and indentation amount (mm) In the present invention, the recovery behavior after pressing of the brain model is further based on the relationship between load (g) and indentation amount (mm). Verified. Examples 1 to 3 and Comparative Examples 1 to 3 using a compression test apparatus (rod cross-sectional area: 7.07 mm 2 , compression speed: 0.996 mm / sec) (FIG. 6) provided with a cylindrical rod movable vertically downward. The recovery behavior after pressing of the two brain models was measured. FIG. 4 is a graph showing recovery behavior after pressing of the brain models of Examples 1 to 3 and Comparative Examples 1 and 2 (y axis: load (g), x axis: indentation amount (mm)).
The brain model of Example 1 (•) has a quadratic function: y = 2.2133x 2 + 0.5107x,
The brain model of Example 2 (●) has a quadratic function: y = 0.9502x 2 + 2.3596x,
The brain model of Example 3 (♦) is a quadratic function: y = 1.34111 × 2 + 4.441x,
The brain model of Comparative Example 1 (▲) has a quadratic function: y = 0.8137x 2 −0.3013x,
The brain model of Comparative Example 2 (■) has a linear function: y = 1.228x
(Where x = 0 to 10).

実際のヒト生体脳の押圧後の回復挙動に関して、荷重(g)をy軸にとり、押し込み量(mm)をx軸にとると、両者の関係は一般に二次関数で示される。上述の通り、実施例1〜3の脳モデルの押圧後の回復挙動はすべて二次関数で表され、実際のヒト生体脳の挙動に酷似していることが分かった。なお、比較例2の脳モデルは、従来の脳モデルであり、その押圧後の回復挙動は一次関数で表され、実際のヒト生体脳の挙動とは全く異なることが分かった。   Regarding the actual recovery behavior of the human living brain after pressing, if the load (g) is taken on the y axis and the pushing amount (mm) is taken on the x axis, the relationship between them is generally expressed by a quadratic function. As described above, the recovery behaviors after pressing of the brain models of Examples 1 to 3 were all expressed by quadratic functions, and it was found that they were very similar to the behavior of an actual human living brain. The brain model of Comparative Example 2 is a conventional brain model, and the recovery behavior after pressing is represented by a linear function, and it was found that the behavior of an actual human living brain is completely different.

また、比較例1の脳モデルも二次関数(y=0.8137x−0.3013x)で示される回復挙動を示すが、これは、ブタ生体脳の回復挙動(y=0.9968x−1.1416x)に酷似していることが分かった(図4、比較例1(▲)、ブタ生体脳(○)(白丸))。 In addition, the brain model of Comparative Example 1 also exhibits a recovery behavior represented by a quadratic function (y = 0.8137x 2 -0.3013x), which is a recovery behavior of a porcine living brain (y = 0.9968x 2 − 1.1416x) (Fig. 4, Comparative Example 1 (▲), porcine living brain (◯) (white circle)).

押圧時の挙動:荷重(g)と押し込み量(mm)との関係
本発明では脳モデルの押圧時(押し込み時)の挙動についても検証した。実施例1〜3および比較例1〜2の脳モデルの押圧時の挙動を上記の圧縮試験装置(ロッド断面積:7.07mm、圧縮速度:0.996mm/秒)を用いて測定した。図5は、実施例1〜3および比較例1〜2の脳モデルの押圧時の挙動を示すグラフである(y軸:荷重(g)、x軸:押し込み量(mm))。
実施例1(・)の脳モデルは、二次関数:y=0.4514x+1.6266x、
実施例2(●)の脳モデルは、二次関数:y=0.6648x+1.8708x、
実施例3(◆)の脳モデルは、二次関数:y=0.6307x+4.7606x、
比較例1(▲)の脳モデルは、二次関数:y=0.4511x+0.1603x、
比較例2(■)の脳モデルは、一次関数:y=1.0624x
で示される挙動を有することが分かった(ただし、x=0〜10)。
Behavior at the time of pressing: relationship between load (g) and pressing amount (mm) In the present invention, the behavior at the time of pressing the brain model (at the time of pressing) was also verified. The behavior during pressing of the brain models of Examples 1 to 3 and Comparative Examples 1 to 2 was measured using the above compression test apparatus (rod cross-sectional area: 7.07 mm 2 , compression speed: 0.996 mm / sec). FIG. 5 is a graph showing the behavior during pressing of the brain models of Examples 1 to 3 and Comparative Examples 1 and 2 (y axis: load (g), x axis: push-in amount (mm)).
The brain model of Example 1 (•) has a quadratic function: y = 0.4514x 2 + 1.6266x,
The brain model of Example 2 (●) has a quadratic function: y = 0.6648x 2 + 1.8708x,
The brain model of Example 3 (♦) is a quadratic function: y = 0.6307x 2 + 4.7606x,
The brain model of Comparative Example 1 (▲) has a quadratic function: y = 0.511x 2 + 0.1603x,
The brain model of Comparative Example 2 (■) has a linear function: y = 1.0624x
(Where x = 0 to 10).

実際のヒト生体脳の押圧時の挙動は二次関数で示される。上述の通り、実施例1〜3の脳モデルの押圧時の挙動はすべて二次関数で表され、実際のヒト生体脳の押圧時の挙動に酷似していることが分かった。なお、比較例2の脳モデルは、従来の脳モデルであり、その押圧時の挙動は一次関数で表され、実際のヒト生体脳の押圧時の挙動とは全く異なることが分かった。   The actual behavior of the human living brain when pressed is expressed by a quadratic function. As described above, it was found that the behaviors of the brain models of Examples 1 to 3 when pressed were all expressed by quadratic functions and were very similar to the actual behavior of the human living brain when pressed. The brain model of Comparative Example 2 is a conventional brain model, and its behavior when pressed is expressed by a linear function, and it was found that the behavior of an actual human living brain when pressed was completely different.

本発明の脳モデルは、上述の通り、実際の生体脳とほぼ同一の力学的特性、特に押圧時の挙動および押圧後の回復挙動を示すので、これまで実習が困難であったヒト生体脳の代替として非常に有用である。また、本発明の脳モデルは、既存のコンピュータグラフィックス等の仮想モデリングを遙かに凌駕し、実物に近い触感を再現することができるので、医学生および経験の浅い外科医等を対象とした実際に手術用器具を用いた教育および訓練が可能となる。さらに、本発明の脳モデルでは、ラテックス層を用いることによって、実際の脳の触感および形状を忠実に再現することができ、さらに、CT画像データを併用することによって、患部の状態をも容易に再現することができるので、非常に実用性および応用性がある。また、本発明の脳モデルは、例えば、医師が患者に対して症状や手術方法等を説明するインフォームド・コンセント用模型や、医師間での術前における手術戦略用の模型としても活用できる。また、本発明の脳モデルに使用したウレタン複合材料、すなわち、深さ10mmまで押圧し、10秒後の回復率が、押圧した深さ(すなわち、押し込み量)10mmに対して、80〜95%である材料は、その特殊な力学的特性から、低反発材、衝撃吸収材、緩衝材などの材料として利用することも可能である。   As described above, the brain model of the present invention shows almost the same mechanical characteristics as the actual living brain, in particular, the behavior during pressing and the recovery behavior after pressing. It is very useful as an alternative. In addition, the brain model of the present invention far surpasses virtual modeling such as existing computer graphics, and can reproduce a tactile sensation close to the real thing. Therefore, it is practical for medical students and inexperienced surgeons. Education and training using surgical instruments are possible. Furthermore, in the brain model of the present invention, the actual tactile sensation and shape of the brain can be faithfully reproduced by using the latex layer, and the condition of the affected area can be easily achieved by using CT image data together. Since it can be reproduced, it is very practical and applicable. In addition, the brain model of the present invention can be used as, for example, a model for an informed consent in which a doctor explains symptoms and a surgical method to a patient, and a model for a surgical strategy before surgery between doctors. . In addition, the urethane composite material used in the brain model of the present invention, that is, pressing to a depth of 10 mm, the recovery rate after 10 seconds is 80 to 95% with respect to the pressed depth (that is, the pressing amount) of 10 mm. The material can be used as a material such as a low repulsion material, a shock absorbing material, and a shock absorbing material because of its special mechanical properties.

図1は、本発明の脳モデルの概略図である。FIG. 1 is a schematic diagram of the brain model of the present invention. 図2は、本発明の脳モデルの力学的特性を評価するための回復挙動測定方法を示す模式図である。FIG. 2 is a schematic diagram showing a recovery behavior measurement method for evaluating the mechanical characteristics of the brain model of the present invention. 図3は、実施例1〜3および比較例1〜2の脳モデルの回復挙動を回復率(%)と時間(秒)との関係で示すグラフである(実施例1(・)(小丸)、実施例2(●)(大丸)および実施例3(◆)ならびに比較例1(▲)および比較例2(■))。FIG. 3 is a graph showing the recovery behavior of the brain models of Examples 1 to 3 and Comparative Examples 1 and 2 in relation to the recovery rate (%) and time (seconds) (Example 1 (•) (small circle). Example 2 (●) (Daimaru) and Example 3 (♦) and Comparative Example 1 (▲) and Comparative Example 2 (■)). 図4は、実施例1〜3および比較例1〜2の脳モデルの回復挙動を荷重(g)と押し込み量(mm)との関係で示すグラフである(実施例1(・)(小丸)、実施例2(●)(大丸)および実施例3(◆)ならびに比較例1(▲)および比較例2(■))。FIG. 4 is a graph showing the recovery behavior of the brain models of Examples 1 to 3 and Comparative Examples 1 and 2 in relation to the load (g) and the push-in amount (mm) (Example 1 (•) (small circle). Example 2 (●) (Daimaru) and Example 3 (♦) and Comparative Example 1 (▲) and Comparative Example 2 (■)). 図5は、実施例1〜3および比較例1〜2の脳モデルの押圧時(押し込み時)の挙動を荷重(g)と押し込み量(mm)との関係で示すグラフである(実施例1(・)(小丸)、実施例2(●)(大丸)および実施例3(◆)ならびに比較例1(▲)および比較例2(■))。FIG. 5 is a graph showing the behavior of the brain models of Examples 1 to 3 and Comparative Examples 1 and 2 when pressed (during pressing) in relation to the load (g) and the pressing amount (mm) (Example 1). (•) (small circle), Example 2 (●) (Daimaru) and Example 3 (♦) and Comparative Example 1 (▲) and Comparative Example 2 (■)). 図6は、圧縮試験装置の概略図である。FIG. 6 is a schematic view of a compression test apparatus.

Claims (9)

深さ10mmまで押圧し、10秒後の回復率が、該深さ10mmに対して、80〜95%である、脳モデル。   A brain model that is pressed to a depth of 10 mm, and a recovery rate after 10 seconds is 80 to 95% with respect to the depth of 10 mm. 深さ10mmまで押圧し、20秒後の回復率が、該深さ10mmに対して、90〜95%である、請求項1に記載の脳モデル。   The brain model according to claim 1, wherein the brain model is pressed to a depth of 10 mm, and a recovery rate after 20 seconds is 90 to 95% with respect to the depth of 10 mm. 深さ10mmまで押圧し、25秒後の回復率が、該深さ10mmに対して、90〜95%である、請求項1または2に記載の脳モデル。   The brain model according to claim 1 or 2, wherein the brain model is pressed to a depth of 10 mm and a recovery rate after 25 seconds is 90 to 95% with respect to the depth of 10 mm. ラテックス層およびウレタンゲル層を含む2層構造を有し、該ラテックス層が該ウレタンゲル層を被覆する、請求項1〜3のいずれか1項に記載の脳モデル。   The brain model according to any one of claims 1 to 3, wherein the brain model has a two-layer structure including a latex layer and a urethane gel layer, and the latex layer covers the urethane gel layer. 前記ウレタンゲル層が、
成分(A):ポリエステルポリオール、および
成分(B):ヘキサメチレンジイソシアネート
を混合して使用する2液ポリウレタンから形成される、請求項4記載の脳モデル。
The urethane gel layer is
The brain model according to claim 4, wherein the brain model is formed from a two-component polyurethane used by mixing component (A): polyester polyol and component (B): hexamethylene diisocyanate.
前記成分(A)および前記成分(B)の重量比が、100:45〜100:50[成分(A):成分(B)]である、請求項5記載の脳モデル。   The brain model according to claim 5, wherein a weight ratio of the component (A) and the component (B) is 100: 45 to 100: 50 [component (A): component (B)]. 前記成分(A)および前記成分(B)の重量比が、100:47[成分(A):成分(B)]である、請求項6記載の脳モデル。   The brain model according to claim 6, wherein a weight ratio of the component (A) and the component (B) is 100: 47 [component (A): component (B)]. 前記成分(A)が、3−メチル−1,5−ペンタジオールおよびアジピン酸から形成されるポリエステルポリオールである、請求項5〜7のいずれか1項に記載の脳モデル。   The brain model according to any one of claims 5 to 7, wherein the component (A) is a polyester polyol formed from 3-methyl-1,5-pentadiol and adipic acid. ラテックス層の厚みが50〜300μmである、請求項4〜8のいずれか1項に記載の脳モデル。   The brain model according to any one of claims 4 to 8, wherein the latex layer has a thickness of 50 to 300 µm.
JP2008089895A 2008-03-31 2008-03-31 Brain model Expired - Fee Related JP5219582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008089895A JP5219582B2 (en) 2008-03-31 2008-03-31 Brain model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008089895A JP5219582B2 (en) 2008-03-31 2008-03-31 Brain model

Publications (2)

Publication Number Publication Date
JP2009244519A true JP2009244519A (en) 2009-10-22
JP5219582B2 JP5219582B2 (en) 2013-06-26

Family

ID=41306486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008089895A Expired - Fee Related JP5219582B2 (en) 2008-03-31 2008-03-31 Brain model

Country Status (1)

Country Link
JP (1) JP5219582B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113706983A (en) * 2021-07-22 2021-11-26 北京协同创新研究院 Brain model and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001013869A (en) * 1999-06-30 2001-01-19 Shimadzu Corp Phantom for surgical operation navigation device and its production
JP2003070866A (en) * 2001-08-30 2003-03-11 Lee Shun Eun Brain-shaped portable vibrator
JP2005232219A (en) * 2004-02-17 2005-09-02 Dai Ichi Kogyo Seiyaku Co Ltd Antistatic polyurethane prepolymer aqueous dispersion and antistatic processing method using the same
JP2007286416A (en) * 2006-04-18 2007-11-01 Univ Nihon Abdomen medical examination simulator for medicine education

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001013869A (en) * 1999-06-30 2001-01-19 Shimadzu Corp Phantom for surgical operation navigation device and its production
JP2003070866A (en) * 2001-08-30 2003-03-11 Lee Shun Eun Brain-shaped portable vibrator
JP2005232219A (en) * 2004-02-17 2005-09-02 Dai Ichi Kogyo Seiyaku Co Ltd Antistatic polyurethane prepolymer aqueous dispersion and antistatic processing method using the same
JP2007286416A (en) * 2006-04-18 2007-11-01 Univ Nihon Abdomen medical examination simulator for medicine education

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113706983A (en) * 2021-07-22 2021-11-26 北京协同创新研究院 Brain model and preparation method thereof

Also Published As

Publication number Publication date
JP5219582B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
Garcia et al. 3D printing materials and their use in medical education: a review of current technology and trends for the future
Tai et al. Development of a 3D-printed external ventricular drain placement simulator
US7255565B2 (en) Anthropomorphic phantoms and method
WO2005038751A1 (en) Three-dimensional model
WO2006138669A2 (en) Life-like anatomic feature for testing injection of soft tissue fillers
JP2020535043A (en) Anatomical silicone model and its additional manufacturing
US20170145202A1 (en) Method, apparatus and formulation for an interpenetrating network polymer
US10864659B1 (en) Methods and systems for creating anatomical models
Yin et al. 3D printed multi-material medical phantoms for needle-tissue interaction modelling of heterogeneous structures
Yi et al. Development and evaluation of a craniocerebral model with tactile-realistic feature and intracranial pressure for neurosurgical training
JP5176055B2 (en) Brain model for surgical training
JP5219582B2 (en) Brain model
Zhang et al. Validity of a soft and flexible 3D-printed nissen fundoplication model in surgical training
JP2017107189A (en) Three-dimensional entity model and method for manufacturing the model
KR102232226B1 (en) Artificial vascular model including lubricating layer and elastic layer, and fabricating method thereof
RU172037U1 (en) SIMULATOR FOR DEVELOPMENT OF MANUAL SURGICAL SKILLS IN THE BRAIN HEAD DEPARTMENT IN A REAL TOPOGRAPHY ANATOMICAL ENVIRONMENT
JPH11169390A (en) Artificial skin
JP7437826B2 (en) Organ model for surgical practice
Emiliani et al. Post-printing processing and aging effects on Polyjet materials intended for the fabrication of advanced surgical simulators
Riedle et al. Experimental mechanical examination of artificial 3D printed and post processed vascular silicone models
Thiong’o et al. Application of 3D printing support material for neurosurgical simulation
Marconi et al. 3D printing technologies and materials in the medical field
CN108359242A (en) A kind of transparent silicone rubber die material and preparation method
JP2017149086A (en) Three dimensional molded article capable of being measured by medical imaging device, manufacturing method and manufacturing device therefor
Nieva-Esteve et al. Developing tuneable viscoelastic silicone gel-based inks for precise 3D printing of clinical phantoms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees