JP2009244230A - Sensor fiber convolutional turning direction displaying technique - Google Patents

Sensor fiber convolutional turning direction displaying technique Download PDF

Info

Publication number
JP2009244230A
JP2009244230A JP2008094181A JP2008094181A JP2009244230A JP 2009244230 A JP2009244230 A JP 2009244230A JP 2008094181 A JP2008094181 A JP 2008094181A JP 2008094181 A JP2008094181 A JP 2008094181A JP 2009244230 A JP2009244230 A JP 2009244230A
Authority
JP
Japan
Prior art keywords
measured
sensor fiber
current
fiber
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008094181A
Other languages
Japanese (ja)
Other versions
JP5136896B2 (en
Inventor
Kiyoshi Kurosawa
潔 黒澤
Tatsufumi Yamaguchi
達史 山口
Reishi Kondo
札志 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2008094181A priority Critical patent/JP5136896B2/en
Publication of JP2009244230A publication Critical patent/JP2009244230A/en
Application granted granted Critical
Publication of JP5136896B2 publication Critical patent/JP5136896B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus preventing mis-installation of convolutional turning direction of a sensor fiber in convolutional operation convolving a sensor fiber of a reflection-type fiber current measuring device around an measured object such as cables and the like. <P>SOLUTION: In order to implement convolutional turning of the sensor fiber 1 so as to conform a measuring direction of the sensor fiber 1 to a direction of the current flowing through the measured object, an indication 7 is installed, indicating a direction forced to agree with the flowing direction of measured current around periphery of the sensor fiber 1 turned conventionally around the measured object. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光ファイバを用いた電流計測装置のセンサファイバ部に被測定電流方向を表記する方法に関する。   The present invention relates to a method for indicating a measured current direction on a sensor fiber portion of a current measuring device using an optical fiber.

導体を流れる電流を計測する装置としては、測定対象である導体に流れる被測定電流により発生する磁界の作用によって、光ファイバの中を伝播する直線偏波光の偏波面が被測定電流の大きさに比例して回転するファラデー効果の原理を利用し、センサファイバに入射した直線偏波光の偏波面の回転角を測定することによって電流の大きさを求める光ファイバを用いた電流計測装置(以下、「光ファイバ電流計測装置」という。)がある。この光ファイバ電流計測装置は、センサ部が光学部品で構成され、電磁ノイズの影響を受けないなどの利点があるため、変電設備、送電設備などの高電圧設備における電流計測などに好適に用いられている。   As a device for measuring the current flowing through a conductor, the polarization plane of linearly polarized light propagating in an optical fiber is set to the magnitude of the measured current by the action of the magnetic field generated by the measured current flowing in the conductor to be measured. Using the principle of the Faraday effect that rotates proportionally, the current measurement device using an optical fiber (hereinafter referred to as “the optical fiber”) obtains the magnitude of the current by measuring the rotation angle of the polarization plane of the linearly polarized light incident on the sensor fiber. "Optical fiber current measuring device"). This optical fiber current measuring device is suitable for current measurement in high voltage equipment such as substation equipment and power transmission equipment because the sensor part is composed of optical components and has the advantage of not being affected by electromagnetic noise. ing.

図5にセンサファイバを通過する直線偏波光の偏波面が磁界の大きさに比例して回転するファラデー効果の原理を示す。センサファイバ1に入射した直線偏波光はセンサファイバ1の中で被測定電流によって発生する磁界Hの大きさに比例して偏波面が回転する。この偏波面の回転角度をファラデー回転角10という。   FIG. 5 shows the principle of the Faraday effect in which the plane of polarization of linearly polarized light passing through the sensor fiber rotates in proportion to the magnitude of the magnetic field. The plane of polarization of the linearly polarized light incident on the sensor fiber 1 rotates in proportion to the magnitude of the magnetic field H generated by the current to be measured in the sensor fiber 1. This rotation angle of the polarization plane is called Faraday rotation angle 10.

この光ファイバ電流計測装置には、センサファイバの一端から直線偏波光を入射し、その光をセンサファイバの他端の反射ミラーで反射させ、戻ってきた光(センサファイバの前記入射端から出射する光)の偏波面の回転角度を測定することで被測定電流を求めることができる反射型の光ファイバ電流計測装置がある。(以下、「反射型光ファイバ電流計測装置」という。)   In this optical fiber current measuring device, linearly polarized light is incident from one end of the sensor fiber, the light is reflected by a reflection mirror at the other end of the sensor fiber, and returned light (emits from the incident end of the sensor fiber). There is a reflection type optical fiber current measuring device capable of obtaining a current to be measured by measuring a rotation angle of a polarization plane of light. (Hereinafter referred to as “reflective optical fiber current measuring device”.)

また、反射型光ファイバ電流計測装置はセンサファイバを被測定物に巻き回すだけで被測定物の電流を測定できるため、簡易に電流を測定できるという特長がある。特に既設の設備に設置する場合は、センサファイバを設置するために被測定物である既設のケーブル等の電線を取り外す必要がなく、後付けが容易に行えるほか、測定箇所の変更も容易に行えるため、好適に用いられている。   In addition, the reflection type optical fiber current measuring device has a feature that the current can be easily measured because the current of the object to be measured can be measured simply by winding the sensor fiber around the object to be measured. Especially when installing in existing equipment, it is not necessary to remove the existing cable or other wire that is the object to be measured in order to install the sensor fiber, it can be easily retrofitted and the measurement location can be changed easily. Are preferably used.

反射型光ファイバ電流計測装置の構成例を図6に示す。反射型光ファイバ測定装置は センサファイバ1(鉛ガラスファイバ)、送光ファイバ2、受光ファイバ3、反射ミラー4、光学系装置5からなるセンサヘッド、および光源11、受光素子12、信号処理回路6からなる信号処理装置で構成されている。図6に示す反射型光ファイバ電流計測装置では、光源11から発せれた光は、送光ファイバ2を通過し、光学系装置5で直線偏波光に変換され、センサファイバ1に入射される。入射された直線偏波光はセンサファイバ他端の反射ミラー4で反射され、再び光学系装置5に戻ってくる。センサファイバ1は被測定電流に周回するように巻き回されており、直線偏波光はセンサファイバ通過時に被測定電流により発生する磁界Hによるファラデー回転を受けている。光学系装置5で取り出された直線偏波光は、受光ファイバ3を通過して、信号処理回路5で電気信号に変換され、ファラデー回転角を測定することで被測定電流を求めることができる。

特になし
A configuration example of the reflection type optical fiber current measuring device is shown in FIG. The reflection type optical fiber measuring device includes a sensor fiber 1 (lead glass fiber), a light transmitting fiber 2, a light receiving fiber 3, a reflecting mirror 4, a sensor head including an optical system device 5, a light source 11, a light receiving element 12, and a signal processing circuit 6. It is comprised with the signal processing apparatus which consists of. In the reflection type optical fiber current measuring device shown in FIG. 6, the light emitted from the light source 11 passes through the light transmission fiber 2, is converted into linearly polarized light by the optical system device 5, and enters the sensor fiber 1. The incident linearly polarized light is reflected by the reflection mirror 4 at the other end of the sensor fiber and returns to the optical system device 5 again. The sensor fiber 1 is wound around the current to be measured, and the linearly polarized light is subjected to Faraday rotation due to the magnetic field H generated by the current to be measured when passing through the sensor fiber. The linearly polarized light extracted by the optical system device 5 passes through the light receiving fiber 3, is converted into an electric signal by the signal processing circuit 5, and the current to be measured can be obtained by measuring the Faraday rotation angle.

nothing special

反射型光ファイバ電流計測装置を実設備に設置するためには、センサファイバをケーブル等の被測定物に巻きつける作業が必要になるが、従来のセンサファイバには、被測定物に巻き回す方向が表示されていないため、センサファイバを設置する作業員がセンサファイバをあらかじめ設定された巻き回し方向と逆の巻き回し方向で設置した場合、光ファイバ電流計測装置で計測した被測定電流の位相が実際の電流と比較して180度ずれて計測されてしまうおそれがあった。   In order to install the reflection type optical fiber current measuring device in the actual equipment, it is necessary to wrap the sensor fiber around the object to be measured such as a cable. However, the conventional sensor fiber is wound around the object to be measured. When the sensor fiber installation worker installs the sensor fiber in the winding direction opposite to the preset winding direction, the phase of the measured current measured by the optical fiber current measuring device is There was a possibility that the measurement would be shifted by 180 degrees compared to the actual current.

ここで、センサファイバの巻き回し方向の違いによって光ファイバ電流計測装置で計測した被測定電流の位相が実際の電流と比較して180度ずれて計測されてしまうことを説明する。   Here, it will be described that the phase of the current to be measured measured by the optical fiber current measuring device is shifted by 180 degrees compared to the actual current due to the difference in the winding direction of the sensor fiber.

図6において、光源11から発せられた光が送光ファイバ2で光学系装置5に送られ、直線偏波光に変換され、センサファイバ1に入射される。センサファイバ1に入射された直線偏波光はセンサファイバ他端の反射ミラー4で反射され、センサファイバ1を再び通過し、センサファイバ1から出射される。このセンサファイバ1を通過した直線偏波光には、被測定電流Iによって発生する磁界Hによるファラデー効果により、被測定電流Iの大きさに比例した偏波面の回転(ファラデー回転)が生じる。そして、この直線偏波光の回転角を信号処理装置で測定し、被測定電流Iを求めている。図6に示す状態では、センサファイバ1を被測定電流Iに対し時計回りの方向F1に巻き回しており、被測定電流Iにより発生する磁界Hの方向と、センサファイバの巻き回し方向F1は一致している。   In FIG. 6, light emitted from the light source 11 is sent to the optical system device 5 through the light transmission fiber 2, converted into linearly polarized light, and incident on the sensor fiber 1. The linearly polarized light incident on the sensor fiber 1 is reflected by the reflection mirror 4 at the other end of the sensor fiber, passes through the sensor fiber 1 again, and is emitted from the sensor fiber 1. In the linearly polarized light that has passed through the sensor fiber 1, rotation of the polarization plane (Faraday rotation) proportional to the magnitude of the measured current I occurs due to the Faraday effect caused by the magnetic field H generated by the measured current I. Then, the rotation angle of the linearly polarized light is measured by a signal processing device, and the measured current I is obtained. In the state shown in FIG. 6, the sensor fiber 1 is wound in the clockwise direction F1 with respect to the measured current I, and the direction of the magnetic field H generated by the measured current I and the winding direction F1 of the sensor fiber are one. I'm doing it.

一方、図7にセンサファイバ1を被測定電流Iに対し反時計回りの方向F2に巻き回した状態を示す。この状態では、被測定電流Iにより発生する磁界Hの方向と、センサファイバの巻き回し方向F2は一致していないため、センサファイバ中を通過する直線偏波光が受けるファラデー回転は図6の状態と比較して逆回転になり、光ファイバ電流計測装置で計測される被測定電流Iの方向も図6の状態と比較して逆向きになってしまい、被測定電流Iの位相が180度ずれた状態で計測されてしまう。   On the other hand, FIG. 7 shows a state in which the sensor fiber 1 is wound in the counterclockwise direction F2 with respect to the current I to be measured. In this state, since the direction of the magnetic field H generated by the current I to be measured and the winding direction F2 of the sensor fiber do not match, the Faraday rotation received by the linearly polarized light passing through the sensor fiber is as shown in FIG. Compared to the reverse rotation, the direction of the measured current I measured by the optical fiber current measuring device is also reversed compared to the state of FIG. 6, and the phase of the measured current I is shifted by 180 degrees. It will be measured in the state.

このようにセンサファイバの被測定物への巻き回し方向を逆にしてしまうと、光ファイバ電流計測装置で計測した被測定電流の位相が所定の電流と比較して180度ずれて計測される。
When the winding direction of the sensor fiber around the object to be measured is reversed as described above, the phase of the current to be measured measured by the optical fiber current measuring device is measured by being shifted by 180 degrees compared to the predetermined current.

そこで、上記の課題を解決するために、請求項1の発明は、反射型の光ファイバ電流計測装置において、被測定物に巻き回すセンサファイバに所定の巻き回し方向を指示する表示を設置したことを特徴としている。   Accordingly, in order to solve the above-described problem, the invention of claim 1 is a reflection type optical fiber current measuring device in which a display for instructing a predetermined winding direction is provided on a sensor fiber wound around an object to be measured. It is characterized by.

また、請求項2の発明は、前記反射型の光ファイバ電流計測装置において、センサファイバの巻き回し方向の表示は、センサファイバの外周に被測定物の所定の電流方向を表示し、前記電流方向の表示の方向と、被測定物の所定の電流方向が一致するようにセンサファイバを被測定物に巻き回すことを特徴としている。
According to a second aspect of the present invention, in the reflection-type optical fiber current measuring device, the sensor fiber winding direction is displayed on the outer circumference of the sensor fiber by displaying a predetermined current direction of the object to be measured. The sensor fiber is wound around the object to be measured so that the direction of the display and the predetermined current direction of the object to be measured coincide with each other.

本願発明によれば、反射型光ファイバ電流計測装置のセンサファイバをケーブル等の被測定物に巻きつける作業において、センサファイバを設置する作業員がセンサファイバに表示されている被測定電流の方向の表示と、被測定物に流れる所定の電流方向が一致するように、センサファイバを被測定物に巻き回すことにより、所定の巻き回し方向にセンサファイバを設置できるため、光ファイバ電流計測装置で計測した被測定電流の位相が実際の被測定電流の位相と180度ずれることを確実に防止できる。
According to the present invention, in the work of wrapping the sensor fiber of the reflection type optical fiber current measuring device around the object to be measured such as a cable, the worker installing the sensor fiber has the direction of the current to be measured displayed on the sensor fiber. The sensor fiber can be installed in the specified winding direction by winding the sensor fiber around the measured object so that the display and the specified current direction flowing through the measured object match. Thus, it is possible to reliably prevent the phase of the measured current from being shifted by 180 degrees from the actual phase of the measured current.

図1は本願発明の実施の形態を示す構成図である。図1において、被測定電流の方向表示7は、センサファイバ端部の反射ミラー4の収納部と、光学系装置5の収納部の2箇所に矢印によって表示されている。ただし、この表示はセンサファイバ1の巻き回す方向が確認できればよいため、必ずしも2箇所である必要はなく、センサファイバ1の巻き回し開始部からセンサファイバ端部の反射ミラー4の収納部の間に少なくとも1箇所あればよい。   FIG. 1 is a block diagram showing an embodiment of the present invention. In FIG. 1, the direction indication 7 of the current to be measured is indicated by arrows at two locations, that is, the storage portion of the reflection mirror 4 at the end of the sensor fiber and the storage portion of the optical system device 5. However, this display need only be able to confirm the direction in which the sensor fiber 1 is wound, so it does not necessarily have to be two places. Between the winding start portion of the sensor fiber 1 and the storage portion of the reflection mirror 4 at the end of the sensor fiber. There may be at least one place.

図2はセンサファイバの断面を示す図である。図2において、被測定電流の方向表示7は、センサファイバ1の外周面に沿って同一方向に複数箇所に表示している。この表示が複数箇所あれば、センサファイバ1が回転した場合でも被測定電流の方向表示7が被測定物の外側から確実に確認できる状態に設置できるが、センサファイバの巻き回し方向が確認できれば少なくとも1箇所でもよい。   FIG. 2 is a view showing a cross section of the sensor fiber. In FIG. 2, the direction indication 7 of the current to be measured is displayed at a plurality of locations in the same direction along the outer peripheral surface of the sensor fiber 1. If there are a plurality of such indications, the direction indicator 7 of the current to be measured can be installed in a state that can be reliably confirmed from the outside of the object to be measured even when the sensor fiber 1 is rotated, but at least if the winding direction of the sensor fiber can be confirmed. One place may be sufficient.

また、この被測定電流の方向表示7は、実用上耐候性等に問題がなければ、どのような形態でもよい。例えば、センサファイバの被覆部に直接矢印を描いてもよく、矢印をテープ状の物に表示して被測定物の外周に巻き回してもよい。また、金属製やプラスチック製の表示札に表示して被測定物の外周に固定してもよい。   Further, the direction display 7 of the current to be measured may take any form as long as there is no problem in practical weather resistance. For example, an arrow may be drawn directly on the covering portion of the sensor fiber, or the arrow may be displayed on a tape-like object and wound around the outer circumference of the object to be measured. Further, it may be displayed on a metal or plastic display tag and fixed to the outer periphery of the object to be measured.

図3は本願発明のセンサファイバ1を被測定物8に巻き回した状態を示す図である。図3において、被測定電流の方向表示7の方向と、被測定物8に流れる所定の電流方向が一致するようにセンサファイバ1を被測定物8に巻き回した状態を示しており、センサファイバ1を被測定物8に対し反時計周りに巻き回している。図3の巻き回し状態では、センサファイバの巻き回し方向と、被測定電流Iにより発生する磁界Hの方向が一致しており、この光ファイバ電流計測装置ではこの状態を所定の電流方向に規定している。   FIG. 3 is a view showing a state in which the sensor fiber 1 of the present invention is wound around the object 8 to be measured. FIG. 3 shows a state in which the sensor fiber 1 is wound around the device under test 8 so that the direction of the direction display 7 of the device under test and the direction of a predetermined current flowing through the device under test 8 coincide with each other. 1 is wound counterclockwise around the object 8 to be measured. In the winding state shown in FIG. 3, the winding direction of the sensor fiber coincides with the direction of the magnetic field H generated by the current I to be measured. This optical fiber current measuring apparatus defines this state as a predetermined current direction. ing.

図4は被測定電流の方向表示7の方向と、被測定物8の所定の電流方向Iが一致しないようにセンサファイバ1を被測定物8に巻き回した状態を示す図である。図4のように巻き回した状態では、センサファイバ1は被測定物に時計周りに巻き回されてしまい、センサファイバの巻き回し方向と、被測定電流Iにより発生する磁界Hの方向が図1で規定した方向とは逆方向となり、光ファイバ電流計測装置で測定される被測定物の電流は所定の方向に対して位相が180度ずれた状態となる。
FIG. 4 is a diagram showing a state in which the sensor fiber 1 is wound around the device under test 8 so that the direction of the direction display 7 of the current under test does not coincide with the predetermined current direction I of the device under test 8. In the wound state as shown in FIG. 4, the sensor fiber 1 is wound clockwise around the object to be measured, and the winding direction of the sensor fiber and the direction of the magnetic field H generated by the current I to be measured are shown in FIG. The direction of the current measured by the optical fiber current measuring device is in a state that is 180 degrees out of phase with the predetermined direction.

本発明の実施の形態を示す構成図Configuration diagram showing an embodiment of the present invention 本発明の実施例の電流方向表示方法を示す図The figure which shows the electric current direction display method of the Example of this invention. 本発明の実施例の電流方向表示の設置方法を示す図The figure which shows the installation method of the current direction display of the Example of this invention 本発明の実施例の電流方向表示の誤った設置方法を示す図The figure which shows the incorrect installation method of the current direction display of the Example of this invention ファラデー効果の原理を示す図Diagram showing the principle of the Faraday effect 反射型光ファイバ電流計測装置におけるセンサファイバの巻き回し方法(時計回り)とファラデー効果による磁界発生方向の関係を示す図The figure which shows the relationship between the winding method (clockwise) of the sensor fiber and the magnetic field generation direction by the Faraday effect in the reflection type optical fiber current measuring device 反射型光ファイバ電流計測装置におけるセンサファイバの巻き回し方法(反時計回り)とファラデー効果による磁界発生方向の関係を示す図The figure which shows the relation between the winding method (counterclockwise) of the sensor fiber and the magnetic field generation direction by the Faraday effect in the reflection type optical fiber current measuring device

符号の説明Explanation of symbols

1 センサファイバ
2 送光ファイバ
3 受光ファイバ
4 反射ミラー
5 光学系装置
6 信号処理回路
7 被測定電流の方向表示
8 被測定物
9 入射光(直線偏波光)
10 ファラデー回転角
11 光源
12 受光素子
F センサファイバの巻き回し方向
F1 センサファイバの巻き回し方向(時計回り)
F2 センサファイバの巻き回し方向(反時計回り)
I 被測定電流
H 被測定電流によって発生する磁界







DESCRIPTION OF SYMBOLS 1 Sensor fiber 2 Transmitting fiber 3 Receiving fiber 4 Reflecting mirror 5 Optical system apparatus 6 Signal processing circuit 7 Direction indication of measured current 8 Measured object 9 Incident light (linearly polarized light)
10 Faraday rotation angle 11 Light source 12 Light receiving element F Sensor fiber winding direction F1 Sensor fiber winding direction (clockwise)
F2 Sensor fiber winding direction (counterclockwise)
I Current to be measured H Magnetic field generated by the current to be measured







Claims (2)

反射射型の光ファイバ電流計測装置において、被測定物に巻き回すセンサファイバに所定の巻き回し方向を指示する表示を設置したことを特徴とする反射型の光ファイバ電流計測装置のセンサファイバの巻き回し方向の表示方法   In the reflection type optical fiber current measurement device, the sensor fiber winding of the reflection type optical fiber current measurement device is provided with an indication indicating a predetermined winding direction on the sensor fiber wound around the object to be measured. How to display the turning direction 上記センサファイバの巻き回し方向を指示する表示は、センサファイバの外周に被測定物の所定の電流方向を表示し、前記電流方向の表示の方向と、被測定物の所定の電流方向が一致するように前記センサファイバを前記被測定物に巻き回すことを特徴とする請求項1に記載の反射型の光ファイバ電流計測装置のセンサファイバの巻き回し方向の表示方法















The indication indicating the winding direction of the sensor fiber displays a predetermined current direction of the object to be measured on the outer periphery of the sensor fiber, and the display direction of the current direction coincides with the predetermined current direction of the object to be measured. The sensor fiber winding direction display method of the reflective optical fiber current measuring device according to claim 1, wherein the sensor fiber is wound around the object to be measured.















JP2008094181A 2008-03-31 2008-03-31 Sensor fiber winding direction display method Expired - Fee Related JP5136896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094181A JP5136896B2 (en) 2008-03-31 2008-03-31 Sensor fiber winding direction display method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094181A JP5136896B2 (en) 2008-03-31 2008-03-31 Sensor fiber winding direction display method

Publications (2)

Publication Number Publication Date
JP2009244230A true JP2009244230A (en) 2009-10-22
JP5136896B2 JP5136896B2 (en) 2013-02-06

Family

ID=41306273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094181A Expired - Fee Related JP5136896B2 (en) 2008-03-31 2008-03-31 Sensor fiber winding direction display method

Country Status (1)

Country Link
JP (1) JP5136896B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127017B2 (en) 2011-05-25 2015-09-08 American Dye Source, Inc. Compounds with oxime ester and/or acyl groups

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127017B2 (en) 2011-05-25 2015-09-08 American Dye Source, Inc. Compounds with oxime ester and/or acyl groups
US9382259B2 (en) 2011-05-25 2016-07-05 American Dye Source, Inc. Compounds with oxime ester and/or acyl groups

Also Published As

Publication number Publication date
JP5136896B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
KR101505754B1 (en) System for monitoring electrical power usage of a structure and method of same
JP6895542B2 (en) Alarm device to prevent accidental excavation of buried power cables
US20180045768A1 (en) Detecting Failure Locations in Power Cables
CN104220858B (en) For detection of the method for the distortion in cable, there is the cable of twist sensors and the method for the manufacture of described cable
US8922194B2 (en) Master-slave fiber optic current sensors for differential protection schemes
CN102713699A (en) Optical sensor assembly and method for measuring current in an electric power distribution system
US10135200B2 (en) Embedded platform in electrical cables
JP5136896B2 (en) Sensor fiber winding direction display method
JP6726033B2 (en) Current detector
US20210072045A1 (en) Multi-Turn Measurement System
JP2019200157A (en) Magnetic substance inspection system and program
US20120126804A1 (en) Apparatus and method for detecting faulty concentric neutrals in a live power distribution cable
JP2013093971A (en) Internal current monitoring apparatus for rotary electric machine, internal current monitoring method and rotary electric machine
JP2008256366A (en) Optical fiber current sensor and current measuring method
Ferdous et al. Cable fault detection: optical fiber current sensor cable link noise reduction
KR101094365B1 (en) Attaching apparatus for fiber-optic current sensor and attaching method thereof
TWI432739B (en) Optical converter for electronic equipment
JP2007174597A (en) Optical cable line with line monitoring device, optical cable line, and fusing point detection method for optical cable line
JPH073346Y2 (en) Zero-phase current measuring device
JP2012229954A (en) Optical fiber current sensor
CN206584074U (en) A kind of polarizer based on polarization maintaining optical fibre
JP2537381Y2 (en) Fault section detection device for long power cable lines
JPH06242149A (en) Optical current sensor
CN102933972B (en) single-phase optical current transformer
JP2006119059A (en) Current measuring device of high tension cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees