JP2009243859A - Indirect heating pyrolysis device - Google Patents

Indirect heating pyrolysis device Download PDF

Info

Publication number
JP2009243859A
JP2009243859A JP2008093893A JP2008093893A JP2009243859A JP 2009243859 A JP2009243859 A JP 2009243859A JP 2008093893 A JP2008093893 A JP 2008093893A JP 2008093893 A JP2008093893 A JP 2008093893A JP 2009243859 A JP2009243859 A JP 2009243859A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
pyrolysis
plastic
diameter portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008093893A
Other languages
Japanese (ja)
Other versions
JP5184943B2 (en
Inventor
Makoto Yamamoto
山本  誠
Satoru Okada
悟 岡田
Takahiro Umemoto
隆宏 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2008093893A priority Critical patent/JP5184943B2/en
Publication of JP2009243859A publication Critical patent/JP2009243859A/en
Application granted granted Critical
Publication of JP5184943B2 publication Critical patent/JP5184943B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To securely obtain self-cleaning effect against plastic adhesion by setting a space between adjacent heat transfer pipes to have a dimension for letting a processing object easily pass through the space in an area where a problem of plastic fusion/adhesion likely generates. <P>SOLUTION: The heat transfer pipes 2, 2', each of which has a small diameter part in one third area equivalent to a center part in the whole area from an inlet to an outlet of a pyrolysis drum 1 and has large diameter parts in one third area on the inlet side and in one third area of the outlet side, are provided in the pyrolysis drum 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、廃棄物(処理対象物)を熱分解処理する熱分解装置に関し、特にカーシュレッダーダスト等のプラスチック含有割合の高い廃棄物の熱分解処理に適した間接加熱式の熱分解装置に関するものである。   The present invention relates to a thermal decomposition apparatus for thermally decomposing waste (object to be treated), and more particularly to an indirect heating type thermal decomposition apparatus suitable for thermal decomposition of waste with a high plastic content such as car shredder dust. It is.

プラスチック含有割合の高い廃棄物の熱分解処理に適した熱分解装置として、例えば特許文献1に記載されるものが挙げられる。この熱分解装置はロータリーキルンを備えている。   As a thermal decomposition apparatus suitable for thermal decomposition treatment of waste having a high plastic content, for example, the one described in Patent Document 1 can be cited. This thermal decomposition apparatus is equipped with a rotary kiln.

図5に、熱分解装置の一例としてのロータリーキルンの概略の縦断面図を示す。ロータリーキルンは、横型回転ドラム式の熱分解炉であって、処理対象物Aに対して熱分解処理を行う熱分解ドラム3と、この熱分解ドラム3を回転可能に支持する支持体13、14と、加熱処理によって生じた熱分解ガス及び熱分解残渣を排出する排出装置18と、を備えて構成されている。熱分解ドラム3の入口4側から投入された処理対象物Aは、該熱分解ドラム3の回転に伴ってゆっくりと出口5側に移動しながら加熱されることにより熱分解される。   FIG. 5 shows a schematic longitudinal sectional view of a rotary kiln as an example of a thermal decomposition apparatus. The rotary kiln is a horizontal rotary drum type pyrolysis furnace, and comprises a pyrolysis drum 3 that performs a pyrolysis process on the processing object A, and supports 13 and 14 that rotatably support the pyrolysis drum 3. And a discharge device 18 that discharges the pyrolysis gas and the pyrolysis residue generated by the heat treatment. The processing object A introduced from the inlet 4 side of the pyrolysis drum 3 is pyrolyzed by being heated while slowly moving to the outlet 5 side as the pyrolysis drum 3 rotates.

熱分解ドラム3は、その内壁面17に沿って多数の伝熱管16を有している。この伝熱管16には、加熱媒体である高温の加熱ガスGが処理対象物Aの移動方向に対して対向流で流れるように構成されている。すなわち、加熱ガスGは、熱分解ドラム3の出口5側が加熱ガス入口8となり、該熱分解ドラム3の入口4側が加熱ガス出口9となっている。この対向流で高温の加熱ガスGが伝熱管16内を通ることにより、内部の処理対象物Aは間接的に加熱され、熱分解されるようになっている。
特開2003−321573号公報
The pyrolysis drum 3 has a large number of heat transfer tubes 16 along the inner wall surface 17 thereof. The heat transfer tube 16 is configured such that a high-temperature heating gas G that is a heating medium flows in a counterflow with respect to the moving direction of the processing object A. That is, the heating gas G has a heating gas inlet 8 on the outlet 5 side of the pyrolysis drum 3 and a heating gas outlet 9 on the inlet 4 side of the pyrolysis drum 3. When the high-temperature heating gas G passes through the heat transfer tube 16 in this counterflow, the internal processing object A is indirectly heated and thermally decomposed.
JP 2003-321573 A

ここで、都市ゴミ等の一般廃棄物を処理する場合に比して、産業廃棄物、その中でも特にカーシュレッダーダスト(以下「ASR」と言う)を処理する場合には、以下の様な不具合が生じる。即ち、ASRは、自動車のシートやインパネ等の部品を構成するプラスチック、繊維、発泡ウレタン等の可燃物と、金属やガラス等の不燃物とからなるが、都市ゴミ等と比べてプラスチックの比率が大きいという性質を有している。   Here, in the case of processing industrial waste, especially car shredder dust (hereinafter referred to as “ASR”), compared with the case of processing general waste such as municipal waste, there are the following problems. Arise. In other words, ASR consists of combustible materials such as plastics, fibers, urethane foam, and other non-combustible materials such as metal and glass, which constitute parts such as automobile seats and instrument panels. It has the property of being large.

加熱分解のために加熱管16内を流される加熱ガスは、その温度が加熱管16の前記入口8側(熱分解ドラム3の出口5側)で通常500℃〜550℃程度である。この加熱ガスGの温度は、加熱管16内をその出口9(熱分解ドラム3の入口4側)に向かって流れ、その間に処理対象物Aに熱を吸収されて次第に温度が下がり、図6に示したような温度プロファイルL1となる。すなわち、出口9(熱分解ドラム3の入口4側)において280℃〜300℃程度に温度が下がる。   The temperature of the heated gas flowing through the heating tube 16 for the thermal decomposition is usually about 500 ° C. to 550 ° C. on the inlet 8 side of the heating tube 16 (the outlet 5 side of the thermal decomposition drum 3). The temperature of the heated gas G flows through the heating pipe 16 toward the outlet 9 (the inlet 4 side of the thermal decomposition drum 3), and during that time, the heat is absorbed by the processing object A, and the temperature gradually decreases. The temperature profile L1 as shown in FIG. That is, the temperature drops to about 280 ° C. to 300 ° C. at the outlet 9 (the inlet 4 side of the pyrolysis drum 3).

一方、処理対象物Aは、熱分解ドラム3の入口4から室温(20℃程度)で熱分解ドラム3内に投入され、伝熱管16内を流れる対向流の加熱ガスGによって間接加熱され、次第に温度が上昇し、熱分解ドラム3の出口5では430℃〜500℃程度になる。図6に、処理対象物Aの温度プロファイルL2を示した。   On the other hand, the processing object A is introduced into the pyrolysis drum 3 from the inlet 4 of the pyrolysis drum 3 at room temperature (about 20 ° C.) and indirectly heated by the counterflowing heating gas G flowing in the heat transfer tube 16 and gradually. The temperature rises and reaches about 430 ° C. to 500 ° C. at the outlet 5 of the pyrolysis drum 3. FIG. 6 shows a temperature profile L2 of the processing object A.

図6に示したように、熱分解ドラム3の入口4から出口5までの全領域におけるほぼ中央部の約3分の1の領域Mにおいて、処理対象物Aの温度が200℃〜400℃になる。処理対象物AがASR等のプラスチックの比率の多いものである場合、この温度の領域Mにおいて、熱分解ドラム3の内壁面17(伝熱管16の表面)にプラスチックが分解しきれずに付着し、成長する問題が発生する。この問題は熱分解処理の効率を低下させ、運転継続を困難にする。   As shown in FIG. 6, the temperature of the object A to be processed is 200 ° C. to 400 ° C. in a region M that is approximately one third of the central portion in the entire region from the inlet 4 to the outlet 5 of the pyrolysis drum 3. Become. In the case where the processing object A has a large proportion of plastic such as ASR, in this temperature region M, the plastic adheres to the inner wall surface 17 (surface of the heat transfer tube 16) of the pyrolysis drum 3 without being completely decomposed, A growing problem occurs. This problem reduces the efficiency of the pyrolysis process and makes it difficult to continue operation.

そのため、伝熱管16同士の間隔を広くとり、すなわち伝熱管16自体を細くすることによって、伝熱管16に固着したプラスチックを他の廃棄物、例えば金属などで剥ぎ取るようにしている(セルフクリーニング機能)。つまり、伝熱管16同士の間隔を広くとることで、大きくて硬い金属が伝熱管16同士の間を通過できるようにして、金属と伝熱管16に固着したプラスチックとを接触させプラスチックを伝熱管16から剥ぎ取るようにしている。   Therefore, the interval between the heat transfer tubes 16 is increased, that is, the heat transfer tubes 16 themselves are narrowed, so that the plastic fixed to the heat transfer tubes 16 is peeled off with other wastes such as metal (self-cleaning function). ). That is, by making the interval between the heat transfer tubes 16 wide, a large and hard metal can pass between the heat transfer tubes 16, and the metal and the plastic fixed to the heat transfer tubes 16 are brought into contact with each other to make the plastic the heat transfer tubes 16. I'm trying to peel it off.

ところが、上記のように伝熱管16同士の間隔を広くとると、すなわち伝熱管16自体を細くすると、伝熱管16へのプラスチックの固着は減少するが、伝熱管16自体が細くなるため、大きな伝熱面積を確保することができず、熱分解装置自体の処理能力を低下させてしまうという欠点を有している。   However, if the interval between the heat transfer tubes 16 is increased as described above, that is, if the heat transfer tubes 16 themselves are made thinner, the sticking of the plastic to the heat transfer tubes 16 is reduced, but the heat transfer tubes 16 themselves become thinner, so that a large The thermal area cannot be ensured, and the processing capacity of the thermal decomposition apparatus itself is reduced.

また、伝熱管16同士の間隔を広くとれば伝熱管16同士を密に配列することができなくなり、熱分解装置が大型化するという欠点も有している。   Moreover, if the space | interval of the heat exchanger tubes 16 is taken wide, it will become impossible to arrange heat exchanger tubes 16 closely, and also has the fault that a thermal decomposition apparatus enlarges.

本発明はこのような事情に鑑みなされたもので、その目的は、プラスチック溶融付着の問題が発生しやすい領域において、隣り合う伝熱管同士の間隔を処理対象物が通過しやすい寸法に設定して、プラスチック付着に対するセルフクリーニング効果が確実に得られるようにすることにある。   The present invention has been made in view of such circumstances, and its purpose is to set the interval between adjacent heat transfer tubes to a size that allows the object to be processed to easily pass in an area where the problem of plastic melt adhesion is likely to occur. An object of the present invention is to ensure the self-cleaning effect on the adhesion of plastic.

上記課題を解決するために、本発明の第1の態様は、熱分解ドラムと、該熱分解ドラムの内壁面に沿って設けられた複数の伝熱管と、を備えた間接加熱式の熱分解装置であって、
前記伝熱管は小径部と大径部を有する異径管で構成されていることを特徴とするものである。
In order to solve the above problems, a first aspect of the present invention is an indirect heating type pyrolysis comprising a pyrolysis drum and a plurality of heat transfer tubes provided along an inner wall surface of the pyrolysis drum. A device,
The heat transfer tube is composed of a different diameter tube having a small diameter portion and a large diameter portion.

本発明によれば、小径部と大径部を有する伝熱管を用いたので、各一本の伝熱管の周囲には、隣り合う伝熱管との間隔において、その全長において大きい領域(小径部)と小さい領域(大径部)とができる。従って、間隔の小さい領域に処理対象物が引っかかったりプラスチックが付着することがあっても、処理対象物熱分解ドラム内を入口から出口に向かって移動する力によって、前記引っかかり物や付着プラスチックは長手方向に移動して間隔の大きい領域に移動することができ、そこで、容易に外れることができる。これにより、伝熱面積を向上しつつ(大径部)、引っかかりやプラスチック付着の問題を低減することができる(小径部)という効果が得られる。   According to the present invention, since the heat transfer tube having the small diameter portion and the large diameter portion is used, a region (small diameter portion) having a large overall length in the interval between the adjacent heat transfer tubes is provided around each one heat transfer tube. And a small region (large diameter portion) can be formed. Therefore, even if the object to be processed gets stuck or the plastic adheres to an area where the interval is small, the object to be caught or the attached plastic is elongated by the force moving from the inlet to the outlet in the object to be decomposed. It can move in a direction and move to a region with a large interval, where it can be easily removed. Thereby, while improving a heat transfer area (large diameter part), the effect of being able to reduce the problem of a catch and plastic adhesion (small diameter part) is acquired.

本発明の第2の態様は、熱分解ドラムと、該熱分解ドラムの内壁面に沿って設けられた複数の伝熱管と、を備えた間接加熱式の熱分解装置であって、前記伝熱管は、熱分解ドラムの入口から出口までの全領域における中央部の約3分の1の領域が小径部であり、前記入口側の約3分の1の領域と前記出口側の約3分の1の領域は大径部である異径管であることを特徴とするものである。   According to a second aspect of the present invention, there is provided an indirect heating type pyrolysis apparatus comprising a pyrolysis drum and a plurality of heat transfer tubes provided along an inner wall surface of the pyrolysis drum, wherein the heat transfer tube In the entire region from the inlet to the outlet of the pyrolysis drum, about one third of the central portion is a small diameter portion, about one third of the inlet side and about three minutes of the outlet side. The region 1 is a different diameter tube which is a large diameter portion.

熱分解ドラムの入口から出口までの全領域における中央部の約3分の1の領域において、プラスチックの溶融付着の問題が発生する。
しかし、本発明によれば、この領域では伝熱管の外径が小さく形成されているので、隣り合う伝熱管同士の間隔を処理対象物が通過しやすい寸法に容易に設定することができ、プラスチック付着に対するセルフクリーニング効果が確実に得られるようにすることができる。
The problem of plastic melt adhesion occurs in the region about one third of the central portion of the entire region from the inlet to the outlet of the pyrolysis drum.
However, according to the present invention, since the outer diameter of the heat transfer tubes is formed small in this region, the interval between the adjacent heat transfer tubes can be easily set to a dimension that allows easy passage of the processing object. A self-cleaning effect against adhesion can be reliably obtained.

一方、前記入口側の約3分の1の領域と前記出口側の約3分の1の領域はプラスチックの溶融付着の問題がほとんど発生しない。従って、各伝熱管の外径寸法を大きく設定して、伝熱効率を高めることができ、以て、熱分解装置全体としての分解能力を、プラスチック付着の問題を低減しつつ、従来よりも高めることができる。   On the other hand, about one third of the region on the inlet side and about one third of the region on the outlet side hardly cause the problem of plastic melt adhesion. Therefore, the heat transfer efficiency can be increased by setting the outer diameter dimension of each heat transfer tube to be large, so that the decomposition ability of the entire thermal decomposition apparatus can be increased as compared with the conventional one while reducing the problem of plastic adhesion. Can do.

本発明の第3の態様は、前記第1または第2の態様の間接加熱式の熱分解装置であって、前記小径部の範囲は、伝熱管の温度が約200℃〜400℃の領域であることを特徴とするものである。   A third aspect of the present invention is the indirect heating type thermal decomposition apparatus according to the first or second aspect, wherein the range of the small diameter portion is a region where the temperature of the heat transfer tube is about 200 ° C to 400 ° C. It is characterized by being.

プラスチック溶融付着の問題は伝熱管の温度が約200℃〜400℃の領域で生じる。本発明によれば、この温度領域部分において伝熱管同士の間隔が大きくなっているので、プラスチック付着に対するセルフクリーニング効果を確実に得ることができる。   The problem of plastic melt adhesion occurs in the region where the temperature of the heat transfer tube is about 200 ° C to 400 ° C. According to the present invention, since the interval between the heat transfer tubes is large in this temperature region portion, the self-cleaning effect against the plastic adhesion can be reliably obtained.

以下、本発明の実施の形態を図1から図4に沿って説明する。なお、本発明は以下の実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. In addition, this invention is not limited to the following embodiment.

[第1の実施形態]
図1は本発明に係る熱分解装置の熱分解ドラム1の長手方向における縦断面図、図2は本発明に係る熱分解装置の図1におけるD、Eの部分の伝熱管2の拡大図、図3(A)は図1におけるX−Xの断面図、図3(B)は図1におけるY−Yの断面図である。
[First embodiment]
1 is a longitudinal sectional view in the longitudinal direction of a thermal decomposition drum 1 of a thermal decomposition apparatus according to the present invention, FIG. 2 is an enlarged view of a heat transfer tube 2 at portions D and E in FIG. 1 of the thermal decomposition apparatus according to the present invention, 3A is a cross-sectional view taken along the line XX in FIG. 1, and FIG. 3B is a cross-sectional view taken along the line YY in FIG.

図1において、被処理物は図面の左側から投入され熱分解装置内で処理され、右側へ排出される。
熱分解ドラム1は、A〜Cの3つのゾーンに分かれている。ここで、A及びCのゾーンはプラスチックが伝熱管2に付着しにくい部分であり、Bゾーンはプラスチックが伝熱管2’に付着し易いゾーンである。
In FIG. 1, an object to be processed is input from the left side of the drawing, processed in a thermal decomposition apparatus, and discharged to the right side.
The pyrolysis drum 1 is divided into three zones A to C. Here, the zones A and C are portions where the plastic hardly adheres to the heat transfer tube 2, and the B zone is a zone where the plastic easily adheres to the heat transfer tube 2 '.

Aゾーンにおいては、処理温度が低いため、プラスチックがまだ融けている状態にない。そのため伝熱管2にプラスチックが付着しにくい。
Bゾーンにおいては、処理温度が次第に上昇しプラスチックの融点を超える温度になる。そのため、伝熱管2にプラスチックが付着しやすくなる。
Cゾーンにおいては、処理温度が最も高くなり、既にプラスチックが分解する温度となるので、伝熱管2にプラスチックが付着しにくい。
なお、熱分解ドラム1の長さに対してBゾーンは全体の中央部の約1/3の長さを占める。AおよびCゾーンは、それぞれ入り口側の約1/3、出口側の約1/3の長さを占めている。
In the A zone, since the processing temperature is low, the plastic is not yet melted. Therefore, it is difficult for plastic to adhere to the heat transfer tube 2.
In the B zone, the processing temperature gradually rises to a temperature exceeding the melting point of the plastic. For this reason, the plastic easily adheres to the heat transfer tube 2.
In the C zone, the processing temperature is the highest and the temperature at which the plastic has already decomposed is reached, so that it is difficult for the plastic to adhere to the heat transfer tube 2.
In addition, B zone occupies about 1/3 of the center part of the whole with respect to the length of the pyrolysis drum 1. The A and C zones occupy about 1/3 on the entrance side and about 1/3 on the exit side, respectively.

従って、AおよびCのゾーンでは、伝熱管2にプラスチックが付着しにくいので、伝熱管2同士の間隔bは広く取らなくてもよい。このゾーンでは、従来の熱分解装置で使用されている伝熱管2よりも太い管を用いて伝熱面積を大きくしている。   Therefore, in the zones A and C, plastic does not easily adhere to the heat transfer tube 2, so that the interval b between the heat transfer tubes 2 does not have to be wide. In this zone, the heat transfer area is increased by using a tube thicker than the heat transfer tube 2 used in the conventional pyrolysis apparatus.

これに対し、Bゾーンでは、伝熱管2にプラスチックが付着しやすいので、伝熱管2’同士の間隔cを広く取る必要がある。従って、このゾーンでは、従来の熱分解装置で使用されている細い伝熱管2’をそのまま使用している。   On the other hand, in the B zone, plastic easily adheres to the heat transfer tube 2, so that it is necessary to widen the interval c between the heat transfer tubes 2 '. Therefore, in this zone, the thin heat transfer tube 2 'used in the conventional pyrolysis apparatus is used as it is.

細い伝熱管2’を使用することにより、プラスチックの伝熱管2’への付着を防止することができ、仮に、伝熱管2’にプラスチックが付着しても、セルフクリーニング機能によって、伝熱管2’からプラスチックを剥ぎ取ることが可能となる。   By using the thin heat transfer tube 2 ′, it is possible to prevent the plastic from adhering to the heat transfer tube 2 ′. Even if the plastic adheres to the heat transfer tube 2 ′, the heat transfer tube 2 ′ is obtained by the self-cleaning function. It becomes possible to peel the plastic from.

図2のDにはAゾーンとBゾーンの境界部分の伝熱管2、2’の拡大図が、図2のEにはBゾーンとCゾーンの境界部分の伝熱管2、2’の拡大図が示されている。
DとEについては、寸法・形状が同一なので、Dについてのみ説明しEについての説明は省略する。
2D is an enlarged view of the heat transfer tubes 2 and 2 ′ at the boundary between the A zone and the B zone, and FIG. 2E is an enlarged view of the heat transfer tubes 2 and 2 ′ at the boundary between the B zone and the C zone. It is shown.
Since D and E have the same dimensions and shape, only D will be described and description of E will be omitted.

伝熱管2と2’は、例えば大径部を有する伝熱管2(外径89.1mm)の場合、小径部を有する伝熱管2’(外径76.3mm)を差し込むことによって繋ぎ合わされている。   For example, in the case of the heat transfer tube 2 (outer diameter 89.1 mm) having the large diameter portion, the heat transfer tubes 2 and 2 ′ are connected by inserting the heat transfer tube 2 ′ (outer diameter 76.3 mm) having the small diameter portion. .

隣接する伝熱管同士の間隔を具体的な数値で示すと、a=112.5mm、b=23.4mm、c=36.2mmである。   When the interval between adjacent heat transfer tubes is indicated by specific numerical values, a = 12.5 mm, b = 23.4 mm, and c = 36.2 mm.

よって、Aゾーンにおける大径の伝熱管2同士の間隔bは、Bゾーンにおける小径の伝熱管同士cの間隔よりも小さくなっており、Aゾーンにおいては伝熱面積を大きくすることができ、Bゾーンにおいては、プラスチックの付着を防止することができる構造となっている。   Therefore, the interval b between the large-diameter heat transfer tubes 2 in the A zone is smaller than the interval between the small-diameter heat transfer tubes c in the B zone, and the heat transfer area can be increased in the A zone. The zone has a structure capable of preventing adhesion of plastic.

ここで、熱分解ドラム1の全長に前述の小径部を有する伝熱管2’(外径76.3mm)を使用した場合と、本発明のように、プラスチックが付着しやすいBゾーン(全長の中央部分約30%の部分の長さ)に従来の小径部を有する伝熱管2’(外径76.3mm)を使用し、プラスチックが付着しにくいAおよびCゾーン(全長からBゾーンの長さを除いた残りの約70%の部分の長さ)に大径部を有する伝熱管2(外径89.1mm)を使用した際の伝熱面積の比較を行う。   Here, when the heat transfer tube 2 ′ (outer diameter 76.3 mm) having the above-mentioned small diameter portion is used for the entire length of the pyrolysis drum 1, and the B zone (the center of the total length) where the plastic easily adheres as in the present invention. Heat transfer tube 2 '(outer diameter 76.3mm) with a conventional small diameter part is used for the length of about 30% of the part), and the A and C zones where the plastic is difficult to adhere (from the total length to the B zone length) Comparison of the heat transfer area when using the heat transfer tube 2 (outer diameter 89.1 mm) having a large diameter portion (the length of the remaining portion of about 70%) is performed.

伝熱面積は伝熱管の外径に比例するので、大径部を有する伝熱管2(外径89.1mm)は、小径部を有する伝熱管2’(外径76.3mm)の1.168倍(89.1/76.3)
の伝熱面積を有している。
Since the heat transfer area is proportional to the outer diameter of the heat transfer tube, the heat transfer tube 2 (outer diameter 89.1 mm) having the large diameter portion is 1.168 of the heat transfer tube 2 ′ (outer diameter 76.3 mm) having the small diameter portion. Double (89.1 / 76.3)
It has the heat transfer area.

そして、熱分解ドラム1の全長に前述の小径部を有する伝熱管2’(外径76.3mm)を使用した場合を1とすると、本発明の場合は、全長の中央部分約30%(計算では0.3とする)を占めるBゾーンに小径部を有する伝熱管2’(外径76.3mm)を使用し、全長の約70%(計算では0.7とする)を占めるAおよびCゾーンに大径部を有する伝熱管2(外径89.1mm)を使用するのであるから、
0.3×1+0.7×1.168=1.12となり、全長に従来の小径部を有する伝熱管2’(外径76.3mm)を使用した場合より、約10%伝熱面積を増加させることができる。
When the heat transfer tube 2 ′ having the above-mentioned small diameter portion (outer diameter 76.3 mm) is used for the entire length of the pyrolysis drum 1, the case of the present invention has a central portion of about 30% (calculation). The heat transfer tube 2 '(outer diameter 76.3 mm) having a small diameter portion in the B zone that occupies 0.3) is used, and A and C occupy about 70% of the total length (0.7 in the calculation). Since the heat transfer tube 2 (outer diameter 89.1 mm) having a large diameter portion in the zone is used,
0.3 × 1 + 0.7 × 1.168 = 1.12, increasing the heat transfer area by about 10% compared to the case of using a heat transfer tube 2 ′ (outer diameter 76.3 mm) with a conventional small-diameter portion over its entire length. Can be made.

すなわち、伝熱管の長さを約10%短くしても、従来の熱分解ドラムと同等の性能を保つことができるので、装置自体を小型化することが可能となる。   That is, even if the length of the heat transfer tube is shortened by about 10%, the performance equivalent to that of the conventional pyrolysis drum can be maintained, so that the apparatus itself can be downsized.

[第2の実施形態]
第2の実施形態としては、図4に記載したように、第1の実施の形態における例えば大径部を有する伝熱管2(外径89.1mm)と小径部を有する伝熱管2’(外径76.3mm)の結合部分を無くし、伝熱管2、2’を一体成形した伝熱管を使用する形態である。
この態様であれば、結合部分がないので伝熱管の強度を増すことが可能となる。
[Second Embodiment]
As the second embodiment, as described in FIG. 4, for example, the heat transfer tube 2 (outer diameter 89.1 mm) having a large diameter portion and the heat transfer tube 2 ′ (outside diameter) having a small diameter portion in the first embodiment. This is a form in which a heat transfer tube in which the heat transfer tubes 2 and 2 ′ are integrally formed is used without a connecting portion having a diameter of 76.3 mm.
If it is this aspect, since there is no coupling | bond part, it will become possible to increase the intensity | strength of a heat exchanger tube.

なお、1、第2の実施の形態にかかわらず、伝熱管のザイズ、伝熱管の小径部、大径部の位置は装置の規模や処理物の種類等により適宜設定することができる。   Regardless of the first and second embodiments, the size of the heat transfer tube, the position of the small-diameter portion and the large-diameter portion of the heat transfer tube can be appropriately set depending on the scale of the apparatus and the type of the processed material.

キルン熱分解装置の熱分解ドラム1の長手方向における縦断面図。The longitudinal cross-sectional view in the longitudinal direction of the thermal decomposition drum 1 of a kiln thermal decomposition apparatus. 係るキルン分解装置の図1におけるD、Eの部分の伝熱管2の拡大図。The enlarged view of the heat exchanger tube 2 of the part of D and E in FIG. 1 of the kiln decomposition | disassembly apparatus which concerns. 図1におけるX−Xの断面図およびY−Yの断面図。Sectional drawing of XX in FIG. 1, and sectional drawing of YY. 第2の実施形態における伝熱管の長手方向における縦断面図。The longitudinal cross-sectional view in the longitudinal direction of the heat exchanger tube in 2nd Embodiment. ロータリーキルンの概略の縦断面図。The schematic longitudinal cross-sectional view of a rotary kiln. 温度プロファイルTemperature profile

符号の説明Explanation of symbols

1 熱分解ドラム 2、2’ 伝熱管
10 熱分解ドラム
1 Pyrolysis drum 2, 2 'Heat transfer tube
10 Pyrolysis drum

Claims (3)

熱分解ドラムと、該熱分解ドラムの内壁面に沿って設けられた複数の伝熱管と、を備えた間接加熱式の熱分解装置であって、
前記伝熱管は小径部と大径部を有する異径管で構成されていることを特徴とする間接加熱式の熱分解装置。
An indirect heating type pyrolysis apparatus comprising a pyrolysis drum and a plurality of heat transfer tubes provided along an inner wall surface of the pyrolysis drum,
The indirect heating type thermal decomposition apparatus, wherein the heat transfer tube is composed of a different diameter tube having a small diameter portion and a large diameter portion.
熱分解ドラムと、該熱分解ドラムの内壁面に沿って設けられた複数の伝熱管と、を備えた間接加熱式の熱分解装置であって、
前記伝熱管は、熱分解ドラムの入口から出口までの全領域における中央部の約3分の1の領域が小径部であり、前記入口側の約3分の1の領域と前記出口側の約3分の1の領域は大径部である異径管であることを特徴とする間接加熱式の熱分解装置。
An indirect heating type pyrolysis apparatus comprising a pyrolysis drum and a plurality of heat transfer tubes provided along an inner wall surface of the pyrolysis drum,
In the heat transfer tube, a region of about one third of the central portion in the entire region from the inlet to the outlet of the pyrolysis drum is a small diameter portion, and a region of about one third of the inlet side and about a portion of the outlet side. An indirect heating type thermal decomposition apparatus characterized in that a third of the region is a different diameter pipe having a large diameter portion.
請求項1又は2に記載に間接加熱式の熱分解装置であって、
前記小径部の範囲は、伝熱管の温度が約200℃〜400℃の領域であることを特徴とする間接加熱式の熱分解装置。
An indirect heating type pyrolysis apparatus according to claim 1 or 2,
The range of the small diameter portion is an area where the temperature of the heat transfer tube is about 200 ° C. to 400 ° C.
JP2008093893A 2008-03-31 2008-03-31 Indirect heating type thermal decomposition equipment Expired - Fee Related JP5184943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008093893A JP5184943B2 (en) 2008-03-31 2008-03-31 Indirect heating type thermal decomposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008093893A JP5184943B2 (en) 2008-03-31 2008-03-31 Indirect heating type thermal decomposition equipment

Publications (2)

Publication Number Publication Date
JP2009243859A true JP2009243859A (en) 2009-10-22
JP5184943B2 JP5184943B2 (en) 2013-04-17

Family

ID=41305960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008093893A Expired - Fee Related JP5184943B2 (en) 2008-03-31 2008-03-31 Indirect heating type thermal decomposition equipment

Country Status (1)

Country Link
JP (1) JP5184943B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345687A (en) * 1991-05-22 1992-12-01 Kawasaki Steel Corp Indirect heating rotary dryer for powder
JPH08510502A (en) * 1993-09-03 1996-11-05 シーメンス アクチエンゲゼルシヤフト Solid heating chamber
JPH09310073A (en) * 1996-05-22 1997-12-02 Takuma Co Ltd Thermal decomposition through dry distillation of waste and unit therefor
JP2002156105A (en) * 2000-11-17 2002-05-31 Ishikawajima Harima Heavy Ind Co Ltd External heat type kiln

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345687A (en) * 1991-05-22 1992-12-01 Kawasaki Steel Corp Indirect heating rotary dryer for powder
JPH08510502A (en) * 1993-09-03 1996-11-05 シーメンス アクチエンゲゼルシヤフト Solid heating chamber
JPH09310073A (en) * 1996-05-22 1997-12-02 Takuma Co Ltd Thermal decomposition through dry distillation of waste and unit therefor
JP2002156105A (en) * 2000-11-17 2002-05-31 Ishikawajima Harima Heavy Ind Co Ltd External heat type kiln

Also Published As

Publication number Publication date
JP5184943B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
TNSN08360A1 (en) Cyclone separator
US20100046317A1 (en) Worm extruder comprising a cooling device in the feed zone
JP5184943B2 (en) Indirect heating type thermal decomposition equipment
WO2016192681A1 (en) Heat exchange tube
JP2008292017A (en) Heat exchanger
MXPA03002302A (en) PROCESS TO PRODUCE AND COOL TITANIUM DIOXIDE.
JP2009127946A (en) Rotary kiln
JP5179030B2 (en) Combustion gas extraction probe
EP1812608A1 (en) Method and arrangement for heating extended steel products.
JP2008106173A (en) Pyrolysis furnace system
US20210396471A1 (en) Device for producing expanded mineral granulated material
JP4157438B2 (en) Pyrolysis system
JP6652313B2 (en) Arrangement structure of honeycomb structure
CN202734497U (en) Rotary heat treatment furnace
CN104930878A (en) Heat exchanger and heat energy recovery device
JP2009233627A (en) Pyrolysis furnace, and surface processing method for pyrolysis furnace
JP2001041681A (en) Heat exchanger
JPH1026336A (en) High-temperature heat exchanger for removing dioxin and combustion furnace device employing the same
CN105219902B (en) Blast furnace cooling stave pressure testing snap joint and application method
CN205024308U (en) Cooling device of nitriding furnace cooling zone
JP2005283063A (en) Feeder in ash drier
JP5753378B2 (en) Organic pyrolysis equipment
EP4306209A1 (en) Gas piping system, arrangement, use of the gas piping system, and method of operating a gas piping system
JP2001324289A (en) High temperature heat exchanger
JP6781384B2 (en) Hot repair lance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

R150 Certificate of patent or registration of utility model

Ref document number: 5184943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees