JP2009243486A - Laminated support - Google Patents

Laminated support Download PDF

Info

Publication number
JP2009243486A
JP2009243486A JP2008087350A JP2008087350A JP2009243486A JP 2009243486 A JP2009243486 A JP 2009243486A JP 2008087350 A JP2008087350 A JP 2008087350A JP 2008087350 A JP2008087350 A JP 2008087350A JP 2009243486 A JP2009243486 A JP 2009243486A
Authority
JP
Japan
Prior art keywords
γmax
laminated support
rubber layer
rigid
shear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008087350A
Other languages
Japanese (ja)
Other versions
JP4959618B2 (en
Inventor
Nobuo Murota
伸夫 室田
Takashi Kikuchi
隆志 菊地
Noriyuki Okutsu
宣幸 奥津
Shigenobu Suzuki
重信 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008087350A priority Critical patent/JP4959618B2/en
Publication of JP2009243486A publication Critical patent/JP2009243486A/en
Application granted granted Critical
Publication of JP4959618B2 publication Critical patent/JP4959618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated support 10 supporting a load with no rubber layer buckled even during large deformation without deteriorating the super high damping performance of a rubber layer 1. <P>SOLUTION: In this laminated support 10, the rubber material of the rubber layer 1 has a shearing distortion half amplitude γmax wherein G (γmax) becomes equal to G (100%) corresponding to a 100% shearing distortion half amplitude not existing in an area exceeding 100% or existing in an area exceeding 250% even if it exists, when the gradient of a straight line connecting a point corresponding to the distortion of +γmax in the shearing distortion-shearing stress of a curve in a third cycle when inputting such vibration that the shearing distortion half amplitude is set to γmax, to a point corresponding to the distortion of -γmax. Thicknesses Ta of rigid plates 11 positioned at one side or both ends in a height direction are thicker than thicknesses Tb of rigid plates 12 positioned closer to the center in the height direction than the rigid plates 11. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、建物等の構造物を支持するための積層支持体に関する。   The present invention relates to a laminated support for supporting a structure such as a building.

地震等によって建物等の構造物に作用する加振力を低減するため、この構造物をにゴム層と剛性板とを積層してなる積層支持体で支持することが行われており、図1は、このような積層支持体を、水平方向の加振力が作用して大きく剪断変形した状態において示す断面図であり、図において、符号91はゴム層を、符号92は剛性板を、そして、符号90は積層体全体を表していて、このような積層支持体90は、垂直荷重を支持するとともに、水平方向の加振力に対してゴム層91の有する弾性力で加振力が構造物へ伝達するのを抑えるよう機能するが、このような機能に加えて、ゴム層91の有する減衰特性によって加振エネルギを熱に変換して減衰させることが求められていて、そのため、昨今、ゴム層91に用いられるゴム材料として、極めて高い減衰特性を有するものが種々開発されている(例えば特許文献1参照。)   In order to reduce the excitation force acting on a structure such as a building due to an earthquake or the like, this structure is supported by a laminated support body in which a rubber layer and a rigid plate are laminated. Is a cross-sectional view showing such a laminated support in a state in which it is greatly sheared and deformed by a horizontal excitation force, in which a reference numeral 91 denotes a rubber layer, a reference numeral 92 denotes a rigid plate, and Reference numeral 90 represents the entire laminate, and such a laminate support 90 supports a vertical load, and the excitation force is structured by the elastic force of the rubber layer 91 with respect to the excitation force in the horizontal direction. Although it functions to suppress transmission to an object, in addition to such a function, it is demanded to attenuate the vibration energy by converting it into heat by the damping characteristic of the rubber layer 91. As a rubber material used for the rubber layer 91 , Those having a very high damping characteristics have been developed (e.g., see Patent Document 1.)

一方、積層支持体90は、水平方向の加振力を受けて、図1に示すように大きく剪断変形するが、同時に大きな垂直荷重も支持しており、このように大きく剪断変形した状態において垂直荷重が作用すると、下向きの垂直荷重Fの作用点が上フランジの中心Cであるのに対して、この反力としての上向きの垂直荷重Fは、点Cから水平方向にずれた、下フランジの中心Dに作用するので、積層支持体90の各点には大きな曲げモーメントが作用し、この曲げモーメントの高さ方向分布は、図2に示すように、高さ方向中心でゼロであるが両端にゆくほど増加し、両端で最大となる。   On the other hand, the laminated support 90 receives a horizontal excitation force and undergoes a large shear deformation as shown in FIG. 1, but also supports a large vertical load at the same time. When a load is applied, the point of action of the downward vertical load F is the center C of the upper flange, whereas the upward vertical load F as a reaction force is shifted horizontally from the point C of the lower flange. Since it acts on the center D, a large bending moment acts on each point of the laminated support 90, and the height distribution of this bending moment is zero at the center in the height direction as shown in FIG. Increasingly, it increases at both ends.

したがって、両端近傍に位置するゴム層91には大きな曲げモーメントが作用し、このような状態において、ゴム層の弾性率が低いとゴム層91が座屈し荷重を支えることができなくなってしまうため、ゴム層91のゴム特性が求められている。
特開2007−126560号公報
Therefore, a large bending moment acts on the rubber layer 91 located in the vicinity of both ends, and in such a state, if the elastic modulus of the rubber layer is low, the rubber layer 91 will buckle and cannot support the load. The rubber characteristics of the rubber layer 91 are required.
JP 2007-126560 A

しかしながら、先ほど説明した高減衰特性を有するゴム材料は、伸長結晶性の小さい合成ゴムを主成分とし、かつ高減衰性を発現させるために樹脂系充填剤を多く用いているため、ハードニング特性は低く、座屈しないように積層支持体を構成しようとすると減衰特性を高めることができないという問題があった。   However, the rubber material having a high damping characteristic described above is mainly composed of a synthetic rubber having a small elongation crystallinity, and a large amount of resin filler is used to develop a high damping characteristic. There is a problem in that the damping characteristics cannot be improved if an attempt is made to configure the laminated support body so as not to buckle.

本発明は、このような問題点に鑑みてなされたものであり、ゴム層が有する超高減衰性能を損なわせることなく、大変形時においてもゴム層が座屈しないで荷重を支持できるようにすることのできる積層支持体を提供することを目的とする。   The present invention has been made in view of such problems, and can support a load without buckling the rubber layer even during large deformation without impairing the ultrahigh damping performance of the rubber layer. An object of the present invention is to provide a laminated support that can be used.

請求項1に記載の発明は、ゴム層および剛性板を交互に積層してなる積層支持体において、
前記ゴム層のゴム材料は、剪断歪み片振幅がγmaxとなるような振動を入力したときの3サイクル目の、剪断歪−剪断応力曲線図における+γmaxの歪みに対応する点と、−γmaxの歪みに対応する点とを結んだ直線の勾配を等価剪断弾性率G(γmax)としたとき、G(γmax)が、100%の剪断歪み片振幅に対応するG(100%)と等しくなる剪断歪片振幅γmaxは、100%を越える領域には存在しないか、もしくは、存在したとしても250%を越える領域にあり、
片方もしくは両方の高さ方向端側に位置する剛性板の厚さTaは、これらの剛性板より高さ方向中央側に位置する剛性板の厚さTbより大きいことを特徴とする積層支持体である。
The invention according to claim 1 is a laminated support formed by alternately laminating rubber layers and rigid plates.
The rubber material of the rubber layer has a point corresponding to the strain of + γmax in the shear strain-shear stress curve diagram in the third cycle when a vibration is input such that the amplitude of the shear strain piece is γmax, and the strain of −γmax. When the slope of the straight line connecting the points corresponding to is defined as the equivalent shear modulus G (γmax), G (γmax) is equal to G (100%) corresponding to the shear strain piece amplitude of 100%. The half amplitude γmax does not exist in the region exceeding 100%, or even if it exists, it exists in the region exceeding 250%,
The thickness Ta of the rigid plate located on one or both height direction end sides is larger than the thickness Tb of the rigid plate located on the center side in the height direction than these rigid plates. is there.

請求項2に記載の発明は、請求項1に記載したところにおいて、mを、前記剛体板の全枚数を5で除した整数(除した値が整数でない場合は小数点以下を切り上げる)とするとき、前記高さ方向端側の剛性板の枚数は、片側当たり1枚以上m枚以下であり、これらの剛性板の厚さは、式(1)を満足することを特徴とする積層支持体である。

1.3≦Ta/Tb≦3.0 (1)
The invention described in claim 2 is the invention described in claim 1, wherein m is an integer obtained by dividing the total number of rigid plates by 5 (if the divided value is not an integer, the decimal part is rounded up). The number of rigid plates at the end in the height direction is 1 to m per side, and the thickness of these rigid plates satisfies the formula (1). is there.

1.3 ≦ Ta / Tb ≦ 3.0 (1)

請求項3に記載の発明は、請求項1もしくは2に記載したところにおいて、前記剛性板を鋼板製としてなる積層支持体である。   A third aspect of the present invention is the laminated support according to the first or second aspect, wherein the rigid plate is made of a steel plate.

請求項4に記載の発明は、請求項1〜3のいずれかに記載したところにおいて、ゴム層の総厚さに対する剛性板の直径が5.0未満であることを特徴とする積層支持体である。   The invention according to claim 4 is the laminated support according to any one of claims 1 to 3, wherein the rigid plate has a diameter of less than 5.0 with respect to the total thickness of the rubber layer.

請求項1に記載の積層支持体によれば、ゴム層のゴム材料は、G(γmax)が100%の剪断歪み片振幅に対応するG(100%)と等しくなる剪断歪片振幅γmaxは、100%を越える領域には存在しないか、もしくは、存在したとしても250%を越える領域にあるという要件を満たすので、極めて高い減衰特性を保持することができ、しかも、この特性と引き替えにハードニングが低く座屈しやすいという弱点に対しては、両端に近い側の剛性板を中央側に位置する剛性板ようりも厚くしたので、最も剪断応力が高くなる両端部付近で剛性板が降伏してゴム層の座屈を発生させるのを防止することができる。   According to the laminated support of claim 1, the rubber material of the rubber layer has a shear strain piece amplitude γmax in which G (γmax) is equal to G (100%) corresponding to a shear strain piece amplitude of 100%, It satisfies the requirement that it does not exist in the region exceeding 100%, or exists in the region exceeding 250% even if it exists, so it can maintain extremely high attenuation characteristics, and it is hardened in exchange for this characteristic. For the weakness of being low and easy to buckle, the rigid plate on the side close to both ends is made thicker so that the rigid plate yields near both ends where the shear stress is highest. Generation of buckling of the rubber layer can be prevented.

請求項2に記載の積層支持体によれば、前記片方もしくは両方の高さ方向端側の剛性板の枚数を片側当たり1枚以上m枚以下とするとともに、これらの剛性板の厚さが前記式(1)を満足するようにしたので、一層確実にゴム層の座屈を防止することができる。   According to the laminated support of claim 2, the number of rigid plates on one or both height direction ends is set to 1 to m per side, and the thickness of these rigid plates is Since the expression (1) is satisfied, buckling of the rubber layer can be more reliably prevented.

請求項3に記載の積層支持体によれば、前記剛性板を鋼板としたので、剛性板の弾性率を高め座屈の発生を一層効果的に防止することができる。   According to the laminated support body of the third aspect, since the rigid plate is a steel plate, the elastic modulus of the rigid plate can be increased and the occurrence of buckling can be more effectively prevented.

請求項4に記載の積層支持体によれば、ゴム層の断面形状を、総厚さに対する剛性板の直径が5.0未満となるようにしたのでゴム層の座屈をさらに確実に抑えることができる。   According to the laminated support of claim 4, since the cross-sectional shape of the rubber layer is such that the diameter of the rigid plate with respect to the total thickness is less than 5.0, buckling of the rubber layer can be further reliably suppressed. .

本発明に係る実施形態の積層支持体について図を参照して、以下に説明する。図3は、この実施形態の積層支持体を、水平方向の加振力が作用していない状態において示す断面図であり、図4は、この積層支持体を、加振力によって剪断変形させた状態において示す断面図であり、積層支持体10は、ゴム層1と剛性板11、12とを交互に積層して構成され、積層面内方向に作用する加振力を吸収するとともに、高さ方向(垂直方向)に作用する荷重を支持するよう機能する。   The laminated support of the embodiment according to the present invention will be described below with reference to the drawings. FIG. 3 is a cross-sectional view showing the laminated support of this embodiment in a state where no horizontal excitation force is acting, and FIG. 4 is a diagram showing a case where the laminated support is shear-deformed by the excitation force. It is sectional drawing shown in a state, and the lamination | stacking support body 10 is comprised by laminating | stacking the rubber layer 1 and the rigid boards 11 and 12 alternately, and while absorbing the exciting force which acts on a lamination | stacking in-plane direction, it is height. It functions to support loads acting in the direction (vertical direction).

なお、図3、図4において、符号4は、積層支持体10を取り付けるためのフランジであり、符号5は、雰囲気からゴム層1や剛性板11、12を保護するためのカバーゴム層であり、符号6は、この積層支持体10によって支持される構造物を表す。   3 and 4, reference numeral 4 is a flange for attaching the laminated support 10, and reference numeral 5 is a cover rubber layer for protecting the rubber layer 1 and the rigid plates 11 and 12 from the atmosphere. Reference numeral 6 represents a structure supported by the laminated support 10.

本発明の積層支持体10のゴム層1は、外部からの加振力を効果的に減衰させることができる点が大きな特長の一つであり、しかし、一方で、このようなゴム層1は、同時に、高剪断変形時における剪断弾性率が十分高くない(低ハードニング)という弱点を有していて、この弱点を、積層支持体10の構造を改良することによって対処することが本発明の狙いであり、この点において、本発明は、ゴム層1のゴム材料は、高剪断変形時の剪断弾性率が十分高くないということを前提にしていて、これが本発明を構成する要件の一つである。   The rubber layer 1 of the laminated support 10 of the present invention is one of the great features in that it can effectively attenuate the external excitation force. At the same time, the present invention has a weak point that the shear elastic modulus at the time of high shear deformation is not sufficiently high (low hardening), and this weak point is addressed by improving the structure of the laminated support 10. In this respect, the present invention is based on the premise that the rubber material of the rubber layer 1 does not have a sufficiently high shear modulus at the time of high shear deformation, and this is one of the requirements constituting the present invention. It is.

こ要件を定量的に表すと次のようになる。すなわち、この要件は、剪断歪み片振幅がγmaxとなるような振動を入力したときの3サイクル目の、剪断歪−剪断応力曲線図における+γmaxの歪みに対応する点と、−γmaxの歪みに対応する点とを結んだ直線の勾配を等価剪断弾性率G(γmax)としたとき、G(γmax)が、100%の剪断歪み片振幅に対応するG(100%)と等しくなる剪断歪片振幅γmaxは、100%を越える領域には存在しないか、もしくは、存在したとしても250%を越える領域にあるということであり、以下に、具体的に説明する。   This requirement is expressed quantitatively as follows. In other words, this requirement corresponds to the point corresponding to the strain of + γmax in the shear strain-shear stress curve diagram in the third cycle when the vibration having the shear strain piece amplitude of γmax is input and the strain of −γmax. When the slope of the straight line connecting the points to be used is the equivalent shear modulus G (γmax), G (γmax) is equal to G (100%) corresponding to 100% shear strain piece amplitude. γmax does not exist in the region exceeding 100%, or even if it exists, it exists in the region exceeding 250%, and will be described in detail below.

図5は、このようなゴム材料の剪断歪−剪断応力曲線図を模式的に示すものであり、横軸に剪断歪みγを、縦軸に剪断応力τをとって表していて、これに、剪断歪み片振幅がγmaxとなるような振動を入力したとき、1サイクル目はカーブ21を描き、2サイクル目、3サイクル目とそのカーブは変化してゆくが、剪断歪−剪断応力曲線図における3サイクル目のカーブ22の+γmax歪みに対応する点P1と、−γmax歪みに対応する点P2とを結んだ直線Lをとり、直線Lの勾配tanφを等価剪断弾性率G(γmax)と呼ぶこととする。例えば、最大歪みγmaxを100%としたときの等価剪断弾性率はG(100%)と表すことができる。   FIG. 5 schematically shows a shear strain-shear stress curve diagram of such a rubber material. The horizontal axis represents the shear strain γ and the vertical axis represents the shear stress τ. When vibration is input so that the amplitude of the shear strain piece becomes γmax, the curve 21 is drawn in the first cycle, and the curve changes in the second cycle, the third cycle, and in the shear strain-shear stress curve diagram. The straight line L connecting the point P1 corresponding to the + γmax strain and the point P2 corresponding to the −γmax strain of the curve 22 in the third cycle is taken, and the gradient tanφ of the straight line L is called an equivalent shear modulus G (γmax). And For example, the equivalent shear elastic modulus when the maximum strain γmax is 100% can be expressed as G (100%).

図6は、横軸に剪断歪片振幅γmaxをとり、縦軸にG(γmax)/G(100%)をとって、これらの関係を表すグラフであり、このグラフは、大きな剪断歪み振幅の入力に対して、等価剪断弾性率が回復するかどうか表していて、例えば、カーブ1は、γmaxの増加に伴ってG(γmax)は低下してゆくが、γmaxが約200%あたりで回復し始め、γmaxが300%前後でG(γmax)がG(100%)と等しくなる。   FIG. 6 is a graph showing the relationship between the shear strain piece amplitude γmax on the horizontal axis and G (γmax) / G (100%) on the vertical axis. This graph shows a large shear strain amplitude. For example, curve 1 shows whether G (γmax) decreases as γmax increases, but γmax recovers around 200%. First, G (γmax) becomes equal to G (100%) when γmax is around 300%.

また、カーブ2は、γmaxの増加に伴ってG(γmax)も単調減少しG(100%)と等しくなるまで回復することはない。   Curve 2 does not recover until G (γmax) monotonously decreases and becomes equal to G (100%) as γmax increases.

一方、カーブ3は、γmaxの増加に伴ってG(γmax)は低下するが、γmaxが150%を越えた付近で回復し始め、γmaxが250%に達する前にG(γmax)がG(100%)と等しくなる。   On the other hand, in curve 3, G (γmax) decreases as γmax increases, but begins to recover when γmax exceeds 150%, and before γmax reaches 250%, G (γmax) becomes G (100 %).

以上の3例においては、カーブ3は、G(γmax)がG(100%)となる剪断歪片振幅γmaxは、100〜250%の領域内に存在し、250%を越える高歪み領域では等価剪断弾性率がG(100%)より大きいので、前記要件は満たさないが、カーブ1とカーブ2とは、G(γmax)がG(100%)となる剪断歪片振幅γmaxが100〜250%の領域内に存在しないので前記要件を満たすものとなる。そして、カーブ1、カーブ2に例示されるゴム材料は、250%を越える高歪み領域にはいっても、等価剪断弾性率G(γmax)はG(100%)よりも低く座屈を生じる可能性があり、このようなゴム材料を有する積層支持体に構造的な対処を施して座屈を防止するのが本発明の狙いである。   In the above three examples, the curve 3 shows that the shear strain amplitude γmax where G (γmax) is G (100%) exists in the region of 100 to 250%, and is equivalent in the high strain region exceeding 250%. Since the shear modulus is larger than G (100%), the above requirement is not satisfied. However, in Curve 1 and Curve 2, the shear strain piece amplitude γmax where G (γmax) is G (100%) is 100 to 250%. Therefore, the above requirement is satisfied. The rubber materials exemplified in Curve 1 and Curve 2 may buckle if the equivalent shear modulus G (γmax) is lower than G (100%) even in a high strain region exceeding 250%. Therefore, it is an aim of the present invention to prevent buckling by giving structural measures to the laminated support having such a rubber material.

ここで、高歪み領域を規定する、剪断歪み振幅の下限値として250%を設定したのは、一般的に、積層支持体におけるゴム層のゴム材料の線形性を定義する際の指標として100%歪み時に対する250%歪み時のバネ比率を用いるからである。   Here, 250% was set as the lower limit value of the shear strain amplitude, which prescribes the high strain region, and is generally 100% as an index for defining the linearity of the rubber material of the rubber layer in the laminated support. This is because the spring ratio at 250% strain with respect to the strain is used.

上記のような特性を表すゴム材料として、G(100%)が0.4MPの天然ゴム系積層ゴム等、低弾性のゴム材料を挙げることができる。   Examples of the rubber material exhibiting the above characteristics include low-elasticity rubber materials such as natural rubber-based laminated rubber having G (100%) of 0.4 MP.

次に、このような減衰特性に優れるゴム材料はハードニングが低いという問題を克服する方策が本発明を構成する第2の要件であり、これは、図3、図4に示すように、片方もしくは両方の高さ方向端側に位置する剛性板11(図3、4において、Aの領域に配置された剛性板)の厚さTaは、これらの剛性板11より高さ方向中央側に位置する剛性板12(図3、4において、Bの領域に配置された剛性板)の厚さTbより大きくするという点であり、好ましくは、前記高さ方向端側の剛性板の枚数は、片側当たり1枚以上かつ全枚数の1/5以下であり、これらの剛性板の厚さは、式(1)を満足するのがよい。

1.3≦Ta/Tb≦3.0 (1)
Next, the second requirement that constitutes the present invention is a method for overcoming the problem that such a rubber material having excellent damping characteristics has low hardening, and this is one of the requirements of the present invention, as shown in FIGS. Alternatively, the thickness Ta of the rigid plates 11 (the rigid plates disposed in the region A in FIGS. 3 and 4) located on both height direction end sides is located on the center side in the height direction from these rigid plates 11. The thickness of the rigid plate 12 (the rigid plate arranged in the region B in FIGS. 3 and 4) is larger than the thickness Tb. Preferably, the number of rigid plates on the height direction end side is one side. It is preferable that the thickness of these rigid plates satisfies the formula (1).

1.3 ≦ Ta / Tb ≦ 3.0 (1)

ここで、剛性板の枚数は全枚数の1/5以下としたが、全枚数を5で除した値が整数でない場合にはこれを切り上げるものを枚数の上限とすることとする。   Here, the number of rigid plates is 1/5 or less of the total number, but when the value obtained by dividing the total number by 5 is not an integer, the upper limit of the number is determined by rounding up this value.

剛性板11の厚さTaを、剛性板12の厚さTbより大きくしたのは、次の理由による。すなわち、積層支持体の全高さが固定されているとき、必要な剪断変形量を得るためにはゴム層の総厚さが厚い方が有利であり、そのためには剛性板はできるだけ薄いほうが好ましいが、一方、先に説明したように曲げモーメントは端部において最大で高さ方向中央に向かうに従って小さくなり、このため、曲げモーメントに支配的な役割を担う剛性板の厚さも中央で薄く端部に向かうほど厚くするのが好ましいからであり、もし、端部の剛性板が薄い場合には座屈しやくなってしまう。   The reason why the thickness Ta of the rigid plate 11 is made larger than the thickness Tb of the rigid plate 12 is as follows. That is, when the total height of the laminated support is fixed, in order to obtain a necessary amount of shear deformation, it is advantageous that the total thickness of the rubber layer is thick. For that purpose, it is preferable that the rigid plate is as thin as possible. On the other hand, as described above, the bending moment becomes maximum at the end portion and becomes smaller toward the center in the height direction. Therefore, the thickness of the rigid plate, which plays a dominant role in the bending moment, is also thinned at the end portion. This is because it is preferable to increase the thickness as it goes, and if the rigid plate at the end is thin, it tends to buckle.

また、厚さをTaとする端部の剛性板の枚数を1枚以上かつ全枚数の1/5以下としたのは、これ以上増やして高さ方向中央に近い部分の剛性板を厚くしても、端部で大きく中央部で小さい曲げモーメントに対しては効果がほとんど変わらないからであり、そして、Ta/Tbを1.3〜3.0とするのが好ましいとしたのは、Ta/Tbを1.3未満とした場合には、座屈を防止する効果が十分ではなく、また、これを3.0を越えるものとした場合には、端部の鋼板が厚くなりすぎてその分ゴム層による免震効果を犠牲にすることになるからである。   In addition, the number of rigid plates at the end with Ta as one or more and 1/5 or less of the total number is increased by increasing the thickness of the rigid plate near the center in the height direction. However, the effect is almost unchanged for a bending moment that is large at the end and small at the center, and that Ta / Tb is preferably set to 1.3 to 3.0 because Ta / Tb is less than 1.3. In this case, the effect of preventing buckling is not sufficient, and if this exceeds 3.0, the steel plate at the end becomes too thick and the seismic isolation effect by the rubber layer is sacrificed accordingly. Because it will be.

高減衰性能ゴムはハードニングが低いという問題への対処として、剛性板の厚さを端部で厚くするこのほかに、剛性板の材質を剛性の高いものを用いることも重要であり、例えば、コストも考慮して、鋼板製とするのが好ましい。   In addition to increasing the thickness of the rigid plate at the end, it is also important to use a material with high rigidity as a countermeasure against the problem that high damping performance rubber has low hardening, for example, Considering the cost, it is preferable to use a steel plate.

さらに、この問題への対処として、ゴム層1の形状を座屈しにくい形状にすることが好ましく、定量的には、図7にゴム層と剛性板とを積層した部分を拡大した断面図で示すように、ゴム層1の高さHrに対する剛性板の直径Drの比を5.0以上とするのが好ましい。   Furthermore, as a countermeasure to this problem, it is preferable that the rubber layer 1 has a shape that is not easily buckled. Quantitatively, FIG. 7 shows an enlarged cross-sectional view of a portion where the rubber layer and the rigid plate are laminated. As described above, the ratio of the diameter Dr of the rigid plate to the height Hr of the rubber layer 1 is preferably 5.0 or more.

図4に示した積層支持体において、剛性板として鋼板を用い、それらの剛性板の厚さを異ならせた3種類の積層支持体を作成しこれらを実施例1、2、および比較例とした。実施例については、両端側の剛性板を同じ枚数だけ厚くし残りを薄くし、比較例については剛性板の厚さはすべて同じであるとした。それらについて、ISO22762(Ultimate Shear Properties)の試験法に基づいて剪断歪み−剪断応力曲線図を描かせ座屈発生の有無を調査した。   In the laminated support shown in FIG. 4, steel plates were used as the rigid plates, and three types of laminated supports having different thicknesses of the rigid plates were prepared, and these were used as Examples 1, 2 and Comparative Examples. . In the example, the same number of rigid plates on both ends were made thicker and the rest were made thinner. In the comparative example, all the rigid plates had the same thickness. Based on the test method of ISO22762 (Ultimate Shear Properties), a shear strain-shear stress curve diagram was drawn to investigate the occurrence of buckling.

実施例1、2、および比較例について、高さ方向端部側および中央側のそれぞれについて、剛性板の枚数(端部側については片側当たりの枚数)剛性板の厚さ、および、座屈発生の有無について表1に示す。また、このとき得られた剪断歪み−剪断応力曲線図を、図8に示す。なお、剪断歪み片振幅γmaxは最大350%として試験を行ったが、これは、剪断歪み350%時における上下のフランジ4の受圧部の重なり(図4における寸法D)がゼロとなり、使用限界となるからである。   For Examples 1 and 2 and Comparative Example, the number of rigid plates (the number per end on the end side) for the height direction end side and the center side, the thickness of the rigid plate, and the occurrence of buckling The presence or absence of is shown in Table 1. Moreover, the shear strain-shear stress curve obtained at this time is shown in FIG. The test was carried out with a shear strain piece amplitude γmax of 350% at the maximum. This is because the overlap of the pressure receiving portions of the upper and lower flanges 4 (dimension D in FIG. 4) when the shear strain is 350% is zero. Because it becomes.

なお、剛性板の枚数は28枚、直径は225mmとし、ゴム層は、全てのサンプルについて2.2mmの同じ厚さとした。剛性板の厚さが均一な比較例の積層支持体の全高さ(図4におけるH寸法)は91.8mmであった。また、ゴムの材料としては、G(100%)が0.4MPaであり、G(250%)/ G(100%)が約0.92の天然ゴム系積層ゴムを用いた。このゴム材料のG(γmax)がG(100%)となる剪断歪片振幅γmaxは約310%であった。   The number of rigid plates was 28, the diameter was 225 mm, and the rubber layer had the same thickness of 2.2 mm for all samples. The total height (H dimension in FIG. 4) of the comparative laminated support having a uniform rigid plate thickness was 91.8 mm. As a rubber material, a natural rubber-based laminated rubber having G (100%) of 0.4 MPa and G (250%) / G (100%) of about 0.92 was used. The shear strain amplitude γmax at which G (γmax) of this rubber material becomes G (100%) was about 310%.

Figure 2009243486
Figure 2009243486

図8から明からかなように、比較例のものは、330%歪みで剪断弾性率が負に転じておりこの点において座屈が発生していることが分かる。一方、実施例1、2は、このような座屈減少は発生していない。   As apparent from FIG. 8, the comparative example has a 330% strain and the shear elastic modulus turned negative, and it can be seen that buckling occurs at this point. On the other hand, Examples 1 and 2 do not cause such buckling reduction.

従来の積層支持体を、加振力が作用した状態において示す断面図である。It is sectional drawing which shows the conventional laminated support body in the state to which the excitation force acted. 積層支持体に作用する曲げモーメントの分布を示すモーメント分布図である。It is a moment distribution diagram which shows distribution of the bending moment which acts on a laminated support body. 本発明に係る実施形態の積層支持体を、水平方向の加振力が作用していない状態において示す断面図である。It is sectional drawing which shows the lamination | stacking support body of embodiment which concerns on this invention in the state which the horizontal excitation force is not acting. 本発明に係る実施形態の積層支持体を、加振力が作用して大きく剪断変形した状態において示す断面図である。It is sectional drawing which shows the lamination | stacking support body of embodiment which concerns on this invention in the state which carried out the exciting force and was greatly sheared and deformed. ゴム材料の剪断歪−剪断応力曲線を模式的に示す図である。It is a figure which shows typically the shear strain-shear stress curve of a rubber material. 剪断歪片振幅γmaxとG(γmax)/G(100%)との関係を模式的に示す図である。FIG. 6 is a diagram schematically showing the relationship between shear strain piece amplitude γmax and G (γmax) / G (100%). ゴム層と剛性板とを積層した部分を拡大して示す断面図である。It is sectional drawing which expands and shows the part which laminated | stacked the rubber layer and the rigid board. 実施例について測定して得られた剪断歪み−剪断応力曲線図である。It is the shear strain-shear stress curve figure obtained by measuring about an Example.

符号の説明Explanation of symbols

1 ゴム層
2 剛性板
3 積層体
4 フランジ
5 カバーゴム層
6 構造物
10 積層支持体
11、12 剛性板
DESCRIPTION OF SYMBOLS 1 Rubber layer 2 Rigid board 3 Laminated body 4 Flange 5 Cover rubber layer 6 Structure 10 Laminated support 11, 12 Rigid board

Claims (4)

ゴム層および剛性板を交互に積層してなる積層支持体において、
前記ゴム層のゴム材料は、剪断歪み片振幅がγmaxとなるような振動を入力したときの3サイクル目の、剪断歪−剪断応力曲線図における+γmaxの歪みに対応する点と、−γmaxの歪みに対応する点とを結んだ直線の勾配を等価剪断弾性率G(γmax)としたとき、G(γmax)が、100%の剪断歪み片振幅に対応するG(100%)と等しくなる剪断歪片振幅γmaxは、100%を越える領域には存在しないか、もしくは、存在したとしても250%を越える領域にあり、
片方もしくは両方の高さ方向端側に位置する剛性板の厚さTaは、これらの剛性板より高さ方向中央側に位置する剛性板の厚さTbより大きいことを特徴とする積層支持体。
In a laminated support formed by alternately laminating rubber layers and rigid plates,
The rubber material of the rubber layer has a point corresponding to the strain of + γmax in the shear strain-shear stress curve diagram in the third cycle when a vibration is input such that the amplitude of the shear strain piece is γmax, and the strain of −γmax. When the slope of the straight line connecting the points corresponding to is defined as the equivalent shear modulus G (γmax), G (γmax) is equal to G (100%) corresponding to the shear strain piece amplitude of 100%. The half amplitude γmax does not exist in the region exceeding 100%, or even if it exists, it exists in the region exceeding 250%,
A laminated support characterized in that the thickness Ta of the rigid plate located on one or both of the height direction ends is larger than the thickness Tb of the rigid plate located on the center side in the height direction from these rigid plates.
mを、前記剛体板の全枚数を5で除した整数(除した値が整数でない場合は小数点以下を切り上げる)とするとき、前記高さ方向端側の剛性板の枚数は、片側当たり1枚以上m枚以下であり、これらの剛性板の厚さは、式(1)を満足することを特徴とする請求項1に記載の積層支持体。

1.3≦Ta/Tb≦3.0 (1)
When m is an integer obtained by dividing the total number of rigid plates by 5 (if the divided value is not an integer, the number after the decimal point is rounded up), the number of rigid plates at the end in the height direction is 1 per side. The laminated support according to claim 1, wherein the number is m or less and the thickness of the rigid plates satisfies the formula (1).

1.3 ≦ Ta / Tb ≦ 3.0 (1)
前記剛性板を鋼板製としてなる請求項1もしくは2に記載の積層支持体。   The laminated support according to claim 1 or 2, wherein the rigid plate is made of a steel plate. ゴム層の総厚さに対する剛性板の直径が5.0未満であることを特徴とする請求項1〜3のいずれかに記載の積層支持体。   The laminated support according to any one of claims 1 to 3, wherein the diameter of the rigid plate with respect to the total thickness of the rubber layer is less than 5.0.
JP2008087350A 2008-03-28 2008-03-28 Laminated support Active JP4959618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008087350A JP4959618B2 (en) 2008-03-28 2008-03-28 Laminated support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008087350A JP4959618B2 (en) 2008-03-28 2008-03-28 Laminated support

Publications (2)

Publication Number Publication Date
JP2009243486A true JP2009243486A (en) 2009-10-22
JP4959618B2 JP4959618B2 (en) 2012-06-27

Family

ID=41305644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008087350A Active JP4959618B2 (en) 2008-03-28 2008-03-28 Laminated support

Country Status (1)

Country Link
JP (1) JP4959618B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220360A (en) * 2010-04-02 2011-11-04 Bridgestone Corp Rubber bearing body
JP2016169770A (en) * 2015-03-11 2016-09-23 株式会社ブリヂストン Seismic isolation structure
CN110656704A (en) * 2019-10-25 2020-01-07 衡水震泰隔震器材有限公司 Sliding plate support
JP2020190322A (en) * 2019-05-23 2020-11-26 株式会社ブリヂストン Base isolation device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101740A (en) * 1992-08-07 1994-04-12 Sumitomo Rubber Ind Ltd Lamination rubber support
JPH116326A (en) * 1997-06-19 1999-01-12 Kajima Corp Dynamically rigid structure
JP2000027941A (en) * 1998-07-13 2000-01-25 Yokohama Rubber Co Ltd:The Layered rubber bearing body
JP2002188687A (en) * 2000-12-20 2002-07-05 Bando Chem Ind Ltd Base-isolation device
JP2004035648A (en) * 2002-07-01 2004-02-05 Yokohama Rubber Co Ltd:The Vibration damping elastomer composition for building
JP2006143849A (en) * 2004-11-18 2006-06-08 Yokohama Rubber Co Ltd:The Rubber composition for high damping laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101740A (en) * 1992-08-07 1994-04-12 Sumitomo Rubber Ind Ltd Lamination rubber support
JPH116326A (en) * 1997-06-19 1999-01-12 Kajima Corp Dynamically rigid structure
JP2000027941A (en) * 1998-07-13 2000-01-25 Yokohama Rubber Co Ltd:The Layered rubber bearing body
JP2002188687A (en) * 2000-12-20 2002-07-05 Bando Chem Ind Ltd Base-isolation device
JP2004035648A (en) * 2002-07-01 2004-02-05 Yokohama Rubber Co Ltd:The Vibration damping elastomer composition for building
JP2006143849A (en) * 2004-11-18 2006-06-08 Yokohama Rubber Co Ltd:The Rubber composition for high damping laminate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220360A (en) * 2010-04-02 2011-11-04 Bridgestone Corp Rubber bearing body
JP2016169770A (en) * 2015-03-11 2016-09-23 株式会社ブリヂストン Seismic isolation structure
JP2020190322A (en) * 2019-05-23 2020-11-26 株式会社ブリヂストン Base isolation device
JP7148459B2 (en) 2019-05-23 2022-10-05 株式会社ブリヂストン Seismic isolation device
CN110656704A (en) * 2019-10-25 2020-01-07 衡水震泰隔震器材有限公司 Sliding plate support

Also Published As

Publication number Publication date
JP4959618B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
KR101353949B1 (en) Earthquake isolation device
JP4959618B2 (en) Laminated support
JP5275230B2 (en) Damper device
WO2008035774A1 (en) Vibration-proof structure
US8864115B2 (en) Vibration isolation structure
JP5301337B2 (en) Anisotropic reinforced metal flat plate
JP2010180962A (en) Base isolation device
US20120186191A1 (en) Rolled h-section steel
JP6400000B2 (en) Roll forming square steel pipe
JP2016216906A (en) Base isolation structure
JP6532712B2 (en) Seismic isolation structure
JP5984012B2 (en) Laminated rubber support
JP6171596B2 (en) Wall panels
JP2002188687A (en) Base-isolation device
JP2010180936A (en) Layer structure object for damping device
CN111810568A (en) Steady-state controllable composite pressure lever and transient vibration suppression structure based on same
JP6482974B2 (en) Laminated rubber bearing
JP2007216754A (en) Vehicle body structure and vehicle
WO2023100422A1 (en) Battery case and battery-case cross member
JP6628988B2 (en) Seismic isolation device
JP2010261484A (en) Base isolation device
JP2005265165A (en) Laminated rubber bearing
JP7264204B1 (en) Automotive battery case protection structure and floor cross member
JP5524683B2 (en) Rubber bearing
JP4604828B2 (en) Seismic isolation rubber laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4959618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250