JP2009241535A - Multi-shaft mechanical device and its control method - Google Patents

Multi-shaft mechanical device and its control method Download PDF

Info

Publication number
JP2009241535A
JP2009241535A JP2008093990A JP2008093990A JP2009241535A JP 2009241535 A JP2009241535 A JP 2009241535A JP 2008093990 A JP2008093990 A JP 2008093990A JP 2008093990 A JP2008093990 A JP 2008093990A JP 2009241535 A JP2009241535 A JP 2009241535A
Authority
JP
Japan
Prior art keywords
regenerative
power
motor
state
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008093990A
Other languages
Japanese (ja)
Other versions
JP5210687B2 (en
JP2009241535A5 (en
Inventor
Yasuharu Odachi
泰治 大立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yushin Precision Equipment Co Ltd
Yushin Seiki KK
Original Assignee
Yushin Precision Equipment Co Ltd
Yushin Seiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yushin Precision Equipment Co Ltd, Yushin Seiki KK filed Critical Yushin Precision Equipment Co Ltd
Priority to JP2008093990A priority Critical patent/JP5210687B2/en
Publication of JP2009241535A publication Critical patent/JP2009241535A/en
Publication of JP2009241535A5 publication Critical patent/JP2009241535A5/ja
Application granted granted Critical
Publication of JP5210687B2 publication Critical patent/JP5210687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-shaft mechanical device which makes effective use of a regenerative power by reducing a loss of the regenerative power as much as possible than before. <P>SOLUTION: A connection switching circuit 11 for switching a connection between each of motor control circuits 1 to 3 and a power source 10 so that when at least one drive motor is in a regenerative state, the regenerative power is used as a driving power of at least one power-running drive motor of other drive motors is disposed between the power source 10 and the motor control circuits 1 to 3. An operation timing output part 6 outputs an operation timing constituted so as to include an overlapping period where at least one power-running drive motor of other drive motors is in an acceleration state, when at least one drive motor is in the regenerative state. The connection switching circuit 11 performs the switching operation so as to supply, as a load current, a regenerative current generated by the regenerative drive motor to the power-running drive motor. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数の軸を駆動する複数の駆動用モータを、設定された動作タイミングに従って制御する多軸機械装置及びその制御方法並びに成型品取出機に関するものである。   The present invention relates to a multi-axis mechanical device that controls a plurality of drive motors that drive a plurality of shafts according to set operation timings, a control method therefor, and a molded product take-out machine.

特開2000−141440号公報(特許文献1)には、駆動源としてのモータの減速期間に発生する回生電力を蓄電手段に蓄え、蓄電手段に蓄えた電力(電荷)を、モータの加速期間にモータの駆動電力の一部として放電する射出成形機のモータ駆動装置が開示されている。
特開2000−141440号公報
Japanese Patent Laid-Open No. 2000-141440 (Patent Document 1) stores regenerative power generated during a deceleration period of a motor as a drive source in a power storage unit, and stores power (charge) stored in the power storage unit during a motor acceleration period. A motor driving device of an injection molding machine that discharges as a part of motor driving power is disclosed.
JP 2000-141440 A

従来、成形品取出機のようにX軸、Y軸、Z軸のように複数の軸を複数の駆動用モータで動かす場合に、駆動用モータの駆動電力の一部として蓄電手段に蓄えた電力(電荷)を利用することは考えられる。しかしながら蓄電手段に蓄電する過程及び蓄電手段から電荷を放電する過程のいずれにおいても、回生電力は抵抗損となって損失する。そのため蓄電手段からのエネルギを利用する場合には、回生電力を必ずしも有効に活用しているとは言えなかった。   Conventionally, when a plurality of shafts such as the X-axis, Y-axis, and Z-axis are moved by a plurality of drive motors like a molded product take-out machine, the power stored in the power storage means as part of the drive power of the drive motor It is conceivable to use (charge). However, in both the process of storing power in the power storage means and the process of discharging charges from the power storage means, the regenerative power is lost as a resistance loss. Therefore, when using the energy from the power storage means, it cannot be said that the regenerative power is always effectively utilized.

本発明の目的は、回生電力の損出をできるだけ少なくして回生電力を従来よりも有効に活用することができる多軸機械装置及びその制御方法を提供することにある。   An object of the present invention is to provide a multi-axis machine apparatus and a control method thereof that can reduce the loss of regenerative power as much as possible and can effectively use the regenerative power as compared with the conventional art.

具体的な本発明の目的は、回生電力の損出をできるだけ少なくして回生電力を従来よりも有効に活用することができる成形品取出機を提供することにある。   A specific object of the present invention is to provide a molded product take-out machine that can reduce the loss of regenerative power as much as possible and can use the regenerative power more effectively than in the past.

本発明は、複数の軸を駆動する複数の駆動用モータを、設定された動作タイミングに従って制御する多軸機械装置の制御方法を対象とする。本発明の方法では、動作タイミングを、少なくとも1つの駆動用モータが回生状態にあるときに、他の少なくとも1つの駆動用モータが力行状態における加速状態にある重合期間を含むように構成する。そして重合期間において、回生状態にある駆動用モータが発生する回生電流を力行状態にある駆動用モータに負荷電流(有効電流)として供給する。すなわち回生電流を、加速状態にある他の駆動用モータに直接供給して、回生電流の一部を他の駆動用モータを駆動するために利用する。したがって本発明によれば、回生電力の損出をできるだけ少なくして回生電力を有効利用することができる。特に、本発明では、加速時に回生電流を利用するため、回生電流の供給を受ける他の駆動用モータの回転動作に大きな影響が生じることはない。   The present invention is directed to a control method for a multi-axis mechanical device that controls a plurality of drive motors that drive a plurality of axes in accordance with set operation timings. In the method of the present invention, the operation timing is configured to include a superposition period in which at least one of the driving motors is in the acceleration state in the power running state when the at least one driving motor is in the regenerative state. In the polymerization period, the regenerative current generated by the drive motor in the regenerative state is supplied as a load current (effective current) to the drive motor in the power running state. That is, the regenerative current is directly supplied to the other driving motor in the acceleration state, and a part of the regenerative current is used to drive the other driving motor. Therefore, according to the present invention, it is possible to effectively use the regenerative power while minimizing the loss of the regenerative power. In particular, in the present invention, since the regenerative current is used at the time of acceleration, there is no significant influence on the rotational operation of other drive motors that are supplied with the regenerative current.

なお重合期間以外において回生状態にある1以上の駆動用モータが発生する回生電力を利用して、蓄電手段を充電する。このようにすると他の駆動用モータの駆動に利用しない回生電力を熱として消費することなく、有効利用することができる。   Note that the power storage means is charged using regenerative power generated by one or more drive motors in a regenerative state outside the polymerization period. In this way, regenerative power that is not used for driving other drive motors can be effectively used without consuming it as heat.

本発明の方法を実施する本発明の多軸機械装置は、複数の軸を駆動する複数の駆動用モータと、複数の駆動用モータを動作タイミングに基づいてそれぞれ制御する複数のモータ制御回路と、設定された動作タイミングを記憶部に記憶して複数のモータ制御回路に動作タイミングを出力する動作タイミング出力部とを備えている。本発明の多軸機械装置では、電源と複数のモータ制御回路との間に、少なくとも1つの駆動用モータが回生状態にあるときに、他の少なくとも1つの力行状態にある駆動用モータの駆動用電力として回生電力を利用するように複数のモータ制御回路相互と電源との間の接続関係を切り換える接続関係切換回路を備えている。そして動作タイミングは、少なくとも1つの駆動用モータが回生状態にあるときに、他の少なくとも1つの駆動用モータが力行状態における加速状態にある重合期間を含むように構成されている。接続関係切換回路は、重合期間において、回生状態にある駆動用モータが発生する回生電流を力行状態にある駆動用モータに負荷電流として供給するように切換動作をする。接続関係切換回路は、複数の半導体スイッチング素子を利用して構成することができる。   A multi-axis mechanical device of the present invention that implements the method of the present invention includes a plurality of drive motors that drive a plurality of axes, a plurality of motor control circuits that respectively control the plurality of drive motors based on operation timing, An operation timing output unit that stores the set operation timing in a storage unit and outputs the operation timing to a plurality of motor control circuits. In the multi-axis mechanical device of the present invention, when at least one drive motor is in the regenerative state between the power source and the plurality of motor control circuits, the drive motor is driven in at least one other power running state. A connection relationship switching circuit is provided for switching the connection relationship between the plurality of motor control circuits and the power source so as to use regenerative power as power. The operation timing is configured to include a superposition period in which at least one other drive motor is in the acceleration state in the power running state when at least one drive motor is in the regenerative state. The connection relation switching circuit performs a switching operation so as to supply a regenerative current generated by the driving motor in the regenerative state as a load current to the driving motor in the power running state during the polymerization period. The connection relationship switching circuit can be configured using a plurality of semiconductor switching elements.

なお蓄電手段と、回生電力を利用して蓄電手段を充電する充電回路とをさらに備えていてもよい。これらの手段を用いる場合には、接続関係切換回路は重合期間以外において回生状態にある1以上の駆動用モータが発生する回生電力を利用して、充電回路が蓄電手段を充電するように充電回路と複数のモータ制御回路との接続関係を切り換えるように構成する。このようにすると回生電力を有効利用することができる。例えば、蓄電手段を少なくとも動作タイミング出力部の駆動用電源として用いてもよい。また本発明は、成形品を取り出すために複数のモータを備えた成型品取出機に適用することができるのは勿論である。   In addition, you may further provide the electrical storage means and the charging circuit which charges an electrical storage means using regenerative electric power. When using these means, the connection relationship switching circuit uses the regenerative power generated by one or more drive motors in a regenerative state other than during the polymerization period so that the charging circuit charges the power storage means. And a plurality of motor control circuits. If it does in this way, regenerative electric power can be used effectively. For example, the power storage unit may be used as at least a driving power source for the operation timing output unit. Of course, the present invention can be applied to a molded product take-out machine including a plurality of motors for taking out a molded product.

本発明によれば、回生電力の損出をできるだけ少なくして回生電力を有効利用することができ、特に、加速時に回生電流を利用するため、回生電流の供給を受ける他の駆動用モータの動作に大きな影響が生じることがないという利点が得られる。   According to the present invention, it is possible to effectively use the regenerative power while minimizing the loss of the regenerative power. In particular, since the regenerative current is used during acceleration, the operation of the other drive motor that receives the regenerative current is used. The advantage is that there is no significant effect on the system.

以下図面を参照して、本発明の実施の形態の一例を詳細に説明する。図1は、本発明の方法を実施する本発明の多軸機械装置の具体例としての成形品取出機の動作制御回路の主要部の構成を概略的に示す図である。また図2は、動作タイミングの一部を示す図である。図1の回路構成を説明する前に、本発明を適用する成形品取出機Aのハードウエアの構成の一例を図3を用いて説明する。図3には、「トラバース」タイプと呼ばれる成形品取出機Aの斜視図を示してある。「トラバース」タイプと呼ばれる成形品取出機Aは一般的に、図示しない成形機固定盤に載置され、XYZ3軸方向に進退移動可能にするX駆動用モータMx、Y軸駆動用モータMy及びZ軸駆動用モータMzを備えている。また成形品取出機Aは、成形機(金型)から成形品を挟持あるいは吸着により取出す成形品把持部を備える。成形品取出機Aは、成形機の所定の成形動作に連動して成形品を取出した後、所定の位置に成形品を搬送後開放し、待機位置への移動、待機位置での待機、取出しという所定の動作を反復することで、成形機と連動して自動運転がなされるものである。X,Y,Zの各軸を進退移動可能にする機器の部位名称は、横行部、引抜部、昇降部と呼ばれる。図3には、昇降部を2本備えるものが示されている。この成形品取出機Aでは、成形品取出機Aの横行部を構成する横行フレームBに沿って引抜フレームC(引抜部、昇降部)を直線移動させるための動力源として用いられるX軸駆動用モータMxを駆動制御する。横行フレームB内の一方の端部(X軸駆動用モータMx側の端部)には、ギヤボックスD内に収納された歯車機構を介してX軸駆動用モータMxによって回転駆動される1つのプーリが設置され、横行フレームB内の他端には無端のタイミングベルトEを張設可能にする別のプーリを備えている。タイミングベルトEは、横行サーボモータMを駆動源として横行フレームB内にて回動される。タイミングベルトEの一部が貼設固定される引抜フレームCの引抜部は、横行フレームB内の直動案内機構により(直線的に)往復進退移動可能に構成されている。符号Fを付した制御ボックス内にX軸駆動用モータMxのサーボアンプ(図1のX軸モータ制御回路1)が配置されている。また製品側昇降機Gとランナ側昇降機Hにも、それぞれ引き抜き用サーボモータ(Y軸駆動用モータMy)と昇降用サーボモータ(Z軸駆動用モータMz)とが装着されている。これらのサーボモータ(図1のY軸駆動用モータMy及びZ軸駆動用モータMz)についてのサーボアンプ(図1のY軸モータ制御回路2及びZ軸モータ制御回路3)は制御ボックスI内に収納されている。さらにこの成形品取出機Aには、図示していないが、成形品把持装置が付属しており、この成形品把持装置では、エアーバルブの制御により成形品のエア吸着またはエア把持が実行される。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram schematically showing a configuration of a main part of an operation control circuit of a molded product take-out machine as a specific example of the multi-axis machine device of the present invention that implements the method of the present invention. FIG. 2 is a diagram showing a part of the operation timing. Before explaining the circuit configuration of FIG. 1, an example of the hardware configuration of a molded product take-out machine A to which the present invention is applied will be described with reference to FIG. 3. FIG. 3 shows a perspective view of a molded product take-out machine A called a “traverse” type. An article take-out machine A called a “traverse” type is generally placed on a molding machine fixing plate (not shown) and is capable of moving forward and backward in the XYZ three-axis directions, an X driving motor Mx, a Y axis driving motor My and Z A shaft driving motor Mz is provided. Further, the molded product take-out machine A includes a molded product gripping part that takes out the molded product from the molding machine (mold) by clamping or suction. The molded product take-out machine A takes out the molded product in conjunction with a predetermined molding operation of the molding machine, then transfers the molded product to a predetermined position, opens it, moves to the standby position, waits at the standby position, and takes out. By repeating the predetermined operation, automatic operation is performed in conjunction with the molding machine. The part names of the devices that enable the X, Y, and Z axes to move forward and backward are called the traversing part, the drawing part, and the lifting part. FIG. 3 shows one having two lifting parts. In this molded product take-out machine A, the X-axis drive is used as a power source for linearly moving the drawing frame C (drawing unit, elevating unit) along the horizontal frame B constituting the horizontal unit of the molded product taking-out machine A. Drive control of the motor Mx is performed. One end portion in the transverse frame B (the end portion on the X-axis drive motor Mx side) is rotated by the X-axis drive motor Mx via a gear mechanism housed in the gear box D. A pulley is installed, and another pulley that enables an endless timing belt E to be stretched is provided at the other end in the transverse frame B. The timing belt E is rotated in the transverse frame B by using the transverse servomotor M as a drive source. The extraction portion of the extraction frame C to which a part of the timing belt E is attached and fixed is configured to be able to reciprocate back and forth (linearly) by the linear motion guide mechanism in the transverse frame B. A servo amplifier (X-axis motor control circuit 1 in FIG. 1) of the X-axis drive motor Mx is arranged in a control box labeled F. The product-side elevator G and the runner-side elevator H are also equipped with a pulling servo motor (Y-axis driving motor My) and a lifting servo motor (Z-axis driving motor Mz), respectively. Servo amplifiers (Y-axis motor control circuit 2 and Z-axis motor control circuit 3 in FIG. 1) for these servo motors (Y-axis drive motor My and Z-axis drive motor Mz in FIG. 1) are provided in control box I. It is stored. Further, although not shown, the molded product take-out machine A is attached with a molded product gripping device, and in this molded product gripping device, air adsorption or air gripping of the molded product is executed by controlling an air valve. .

図1に示すように、前述のX軸駆動用モータMxの駆動を制御するX軸モータ制御回路1、Y軸駆動用モータMyの駆動を制御するY軸モータ制御回路2及びZ軸駆動用モータMzの駆動を制御するZ軸モータ制御回路3は、制御部4内のCPU5によって構成される動作タイミング出力部6から出力される動作タイミングに基づいて各モータを制御する。CPU5は第1メモリ7に記憶された動作プログラムによって動作タイミング出力部6を実現している。そし動作タイミング出力部6は、コントローラ9からの入力により第2メモリ8(記憶部)に記憶した動作タイミングデータに基づいて動作タイミングを出力する。   As shown in FIG. 1, an X-axis motor control circuit 1 that controls the drive of the aforementioned X-axis drive motor Mx, a Y-axis motor control circuit 2 that controls the drive of the Y-axis drive motor My, and a Z-axis drive motor The Z-axis motor control circuit 3 that controls the drive of Mz controls each motor based on the operation timing output from the operation timing output unit 6 constituted by the CPU 5 in the control unit 4. The CPU 5 realizes the operation timing output unit 6 by an operation program stored in the first memory 7. The operation timing output unit 6 outputs the operation timing based on the operation timing data stored in the second memory 8 (storage unit) by the input from the controller 9.

本実施の形態では、電源10とX軸モータ制御回路1、Y軸モータ制御回路2及びZ軸モータ制御回路3との間に、少なくとも1つの駆動用モータ(Mx,MyまたはMz)が回生状態にあるときに、他の少なくとも1つの力行状態にある駆動用モータ(Mx,MyまたはMz)の駆動用電力として回生電力を利用するようにX軸モータ制御回路1、Y軸モータ制御回路2及びZ軸モータ制御回路3間の接続関係を切り換える接続関係切換回路11を備えている。電源10とX軸モータ制御回路1、Y軸モータ制御回路2及びZ軸モータ制御回路3に含まれる電力変換回路は、回生電力を回生できる構成になっている。   In the present embodiment, at least one drive motor (Mx, My or Mz) is in a regenerative state between the power supply 10 and the X-axis motor control circuit 1, the Y-axis motor control circuit 2, and the Z-axis motor control circuit 3. The X-axis motor control circuit 1, the Y-axis motor control circuit 2, and the like so that the regenerative power is used as drive power for the drive motor (Mx, My or Mz) in at least one other power running state. A connection relationship switching circuit 11 for switching the connection relationship between the Z-axis motor control circuits 3 is provided. The power conversion circuit included in the power source 10, the X-axis motor control circuit 1, the Y-axis motor control circuit 2, and the Z-axis motor control circuit 3 is configured to regenerate regenerative power.

そして動作タイミング出力部6が出力する動作タイミングは、少なくとも1つの駆動用モータが回生状態にあるときに、他の少なくとも1つの駆動用モータが力行状態における加速状態にある重合期間(回生状態と力行状態における加速状態とが重なり合う期間)とを含むように構成されている。そして接続関係切換回路11は、動作タイミング出力部6が出力する動作タイミングに基づいて、前述の重合期間において、回生状態にある駆動用モータが発生する回生電流を力行状態にある駆動用モータに負荷電流(有効電流)として供給するように切換動作をする。接続関係切換回路11の具体的な回路構成は任意である。例えば、複数の電力用半導体スイッチング素子を利用して構成することができる。   The operation timing output from the operation timing output unit 6 is a polymerization period (the regeneration state and the power running) in which the at least one drive motor is in the regenerative state and the other at least one drive motor is in the acceleration state in the power running state. The period in which the acceleration state in the state overlaps) is included. The connection relation switching circuit 11 loads the regenerative current generated by the drive motor in the regenerative state to the drive motor in the power running state during the above-described polymerization period based on the operation timing output from the operation timing output unit 6. The switching operation is performed so that the current (effective current) is supplied. The specific circuit configuration of the connection relationship switching circuit 11 is arbitrary. For example, it can be configured using a plurality of power semiconductor switching elements.

図2には、動作時におけるあるときのX軸駆動用モータMx、Y軸駆動用モータMy及びZ軸駆動用モータMzの動作タイミングを示してある。この例では、X軸駆動用モータMxが減速状態にある期間(時刻t2と時刻t3の間)において、Y軸駆動用モータMyが力行状態における加速状態になる期間(時刻t4と時刻t5の間)が重なっている。両期間が重なる期間(時刻t4〜時刻t3)が重合期間である。この期間では、X軸駆動用モータMxが発生する回生電流が、Y軸駆動用モータMyの加速のための駆動電流(負荷電流)として利用される。またY軸駆動用モータMyが減速状態にある期間(時刻t6と時刻t7の間)において、Z軸駆動用モータMzが力行状態における加速状態になる期間(時刻t8と時刻t9の間)が重なっている。両期間が重なる期間(時刻t8〜時刻t7)が重合期間である。この期間では、Y軸駆動用モータMyが発生する回生電流が、Z軸駆動用モータMzの加速のための駆動電流(負荷電流)として利用される。   FIG. 2 shows operation timings of the X-axis drive motor Mx, the Y-axis drive motor My, and the Z-axis drive motor Mz at a certain time during operation. In this example, during a period in which the X-axis drive motor Mx is in a deceleration state (between time t2 and time t3), a period in which the Y-axis drive motor My is in an acceleration state in the power running state (between time t4 and time t5). ) Are overlapping. The period (time t4 to time t3) where both periods overlap is the polymerization period. During this period, the regenerative current generated by the X-axis drive motor Mx is used as a drive current (load current) for accelerating the Y-axis drive motor My. In addition, during the period in which the Y-axis driving motor My is in the decelerating state (between time t6 and time t7), the period in which the Z-axis driving motor Mz is in the acceleration state in the power running state (between time t8 and time t9) overlaps. ing. A period (time t8 to time t7) where both periods overlap is a polymerization period. In this period, the regenerative current generated by the Y-axis drive motor My is used as a drive current (load current) for accelerating the Z-axis drive motor Mz.

本実施の形態では、蓄電手段12と、回生電力を利用して蓄電手段12を充電する充電回路13とをさらに備えている。そのため接続関係切換回路11は、前述の重合期間以外において回生状態にある1以上の駆動用モータ(Mx,MyまたはMz)が発生する回生電力を利用して、充電回路13が蓄電手段12を充電するように充電回路13とX軸モータ制御回路1、Y軸モータ制御回路2及びZ軸モータ制御回路3との接続関係を切り換えるように構成されている。図2の例でみれば、Z軸駆動用モータMzが減速している期間(時刻t9〜時刻t10)にZ軸駆動用モータMzが発生する回生電流が、接続関係切換回路11の切換動作により、充電回路13を通して蓄電手段12に供給されて、蓄電手段12が充電される。なお充電回路13は、接続関係切換回路11の切換動作により、回生時以外は電源10に接続されている。したがって本実施の形態によれば、回生電力を有効に利用することができる。なお蓄電手段12を何の電源として利用するかは任意であり、例えば制御部4の電源として用いることができる。   In the present embodiment, power storage means 12 and charging circuit 13 that charges power storage means 12 using regenerative power are further provided. For this reason, the connection switching circuit 11 uses the regenerative power generated by one or more drive motors (Mx, My, or Mz) that are in a regenerative state outside the above-described polymerization period, and the charging circuit 13 charges the power storage unit 12. Thus, the connection relationship between the charging circuit 13, the X-axis motor control circuit 1, the Y-axis motor control circuit 2, and the Z-axis motor control circuit 3 is switched. In the example of FIG. 2, the regenerative current generated by the Z-axis drive motor Mz during the period during which the Z-axis drive motor Mz is decelerating (time t9 to time t10) is caused by the switching operation of the connection relationship switching circuit 11. Then, it is supplied to the power storage means 12 through the charging circuit 13, and the power storage means 12 is charged. The charging circuit 13 is connected to the power source 10 except during regeneration by the switching operation of the connection relationship switching circuit 11. Therefore, according to the present embodiment, regenerative power can be used effectively. In addition, it is arbitrary as what power supply the electrical storage means 12 is utilized, For example, it can be used as a power supply of the control part 4.

上記実施の形態では、本発明を成形品取出機に適用したが、本発明はその他の多軸機械装置にも当然にして適用できる。   In the above embodiment, the present invention is applied to a molded product take-out machine, but the present invention can naturally be applied to other multi-axis machine devices.

以下、本願明細書及び図面に開示した各種の発明の構成要件を列挙する。   The constituent requirements of various inventions disclosed in this specification and the drawings will be listed below.

(1)成形品を取り出す際に動作する複数の軸を駆動する複数の駆動用モータと、前記複数の駆動用モータを動作タイミングに基づいてそれぞれ制御する複数のモータ制御回路と、設定された前記動作タイミングを記憶部に記憶して前記複数のモータ制御回路に前記動作タイミングを出力する動作タイミング出力部とを備えた成形品取出機であって、
電源と前記複数のモータ制御回路との間に設けられて、少なくとも1つの前記駆動用モータが回生状態にあるときに、他の少なくとも1つの力行状態にある前記駆動用モータの駆動用電力として回生電力を利用するように前記複数のモータ制御回路相互と電源との間の接続関係を切り換える接続関係切換回路を備え、
前記動作タイミングは、少なくとも1つの前記駆動用モータが回生状態にあるときに、他の少なくとも1つの前記駆動用モータが力行状態における加速状態にある重合期間を含むように構成され、
前記接続関係切換回路が、前記重合期間において、前記回生状態にある前記駆動用モータが発生する回生電流を前記力行状態にある前記駆動用モータに負荷電流として供給するように切換動作をすることを特徴とする成形品取出機。
(1) A plurality of drive motors that drive a plurality of shafts that operate when taking out a molded product, a plurality of motor control circuits that respectively control the plurality of drive motors based on operation timing, and the set An operation timing output unit that stores an operation timing in a storage unit and outputs the operation timing to the plurality of motor control circuits;
Provided between a power source and the plurality of motor control circuits, when at least one of the drive motors is in a regenerative state, regenerative power is used as drive power for the drive motor in at least one other power running state. A connection relationship switching circuit for switching a connection relationship between the plurality of motor control circuits and the power source so as to use electric power;
The operation timing is configured to include a polymerization period in which at least one other driving motor is in an acceleration state in a power running state when at least one of the driving motors is in a regenerative state,
The connection relationship switching circuit performs a switching operation so as to supply a regenerative current generated by the driving motor in the regenerative state as a load current to the driving motor in the power running state during the polymerization period. The featured product take-out machine.

(2)蓄電手段と、前記回生電力を利用して前記蓄電手段を充電する充電回路とをさらに備え、前記接続関係切換回路は前記重合期間以外において回生状態にある1以上の前記駆動用モータが発生する回生電力を利用して、前記充電回路が前記蓄電手段を充電するように前記充電回路と前記複数のモータ制御回路との接続関係を切り換えるように構成されていることを特徴とする(1)に記載の成形品取出機。   (2) The battery further includes a power storage unit and a charging circuit that charges the power storage unit using the regenerative power, and the connection relationship switching circuit includes one or more driving motors in a regenerative state other than the polymerization period. The regenerative power generated is used to switch the connection relationship between the charging circuit and the plurality of motor control circuits so that the charging circuit charges the power storage means (1). ) Molded product take-out machine as described in).

(3)前記重合期間以外において回生状態にある1以上の前記駆動用モータが発生する回生電力を利用して、蓄電手段を充電することを特徴とする(1)に記載の成形品取出機。   (3) The molded article take-out machine according to (1), wherein the power storage means is charged using regenerative electric power generated by one or more of the driving motors in a regenerative state outside the polymerization period.

発明の方法を実施する本発明の多軸機械装置の具体例としての成形品取出機の動作制御回路の主要部の構成を概略的に示す図である。It is a figure which shows roughly the structure of the principal part of the operation control circuit of the molded article take-out machine as a specific example of the multi-axis machine apparatus of this invention which implements the method of invention. 動作タイミングの一部を示す図である。It is a figure which shows a part of operation timing. 成形品取出機の一例を射出成形機に設置する場合の成形機射出ノズル側から見たときの斜視図である。It is a perspective view when it sees from the molding machine injection nozzle side in the case of installing an example of a molded article extraction machine in an injection molding machine.

符号の説明Explanation of symbols

1 X軸モータ制御回路
2 Y軸モータ制御回路
3 Z軸モータ制御回路
4 制御部
5 CPU
6 動作タイミング出力部
7 第1メモリ
8 第2メモリ
9 コントローラ
10 電源
11 接続関係切換回路
12 蓄電手段
13 充電回路
DESCRIPTION OF SYMBOLS 1 X-axis motor control circuit 2 Y-axis motor control circuit 3 Z-axis motor control circuit 4 Control part 5 CPU
6 Operation Timing Output Unit 7 First Memory 8 Second Memory 9 Controller 10 Power Supply 11 Connection Relationship Switching Circuit 12 Power Storage Unit 13 Charging Circuit

Claims (2)

複数の軸を駆動する複数の駆動用モータを、設定された動作タイミングに従って制御する多軸機械装置の制御方法であって、
前記動作タイミングを、少なくとも1つの前記駆動用モータが回生状態にあるときに、他の少なくとも1つの前記駆動用モータが力行状態における加速状態にある重合期間を含むように構成し、
前記重合期間において、前記回生状態にある前記駆動用モータが発生する回生電流を前記力行状態にある前記駆動用モータに負荷電流として供給することを特徴とする多軸機械装置の制御方法。
A control method for a multi-axis mechanical device for controlling a plurality of drive motors for driving a plurality of axes according to set operation timings,
The operation timing is configured to include a polymerization period in which at least one other driving motor is in an acceleration state in a power running state when at least one of the driving motors is in a regenerative state,
A control method for a multi-axis machine apparatus, wherein a regenerative current generated by the drive motor in the regenerative state is supplied as a load current to the drive motor in the power running state during the polymerization period.
複数の軸を駆動する複数の駆動用モータと、前記複数の駆動用モータを動作タイミングに基づいてそれぞれ制御する複数のモータ制御回路と、設定された前記動作タイミングを記憶部に記憶して前記複数のモータ制御回路に前記動作タイミングを出力する動作タイミング出力部とを備えた多軸機械装置であって、
電源と前記複数のモータ制御回路との間に設けられて、少なくとも1つの前記駆動用モータが回生状態にあるときに、他の少なくとも1つの力行状態にある前記駆動用モータの駆動用電力として回生電力を利用するように前記複数のモータ制御回路相互と前記電源との間の接続関係を切り換える接続関係切換回路を備え、
前記動作タイミングは、少なくとも1つの前記駆動用モータが回生状態にあるときに、他の少なくとも1つの前記駆動用モータが力行状態における加速状態にある重合期間を含むように構成され、
前記接続関係切換回路が、前記重合期間において、前記回生状態にある前記駆動用モータが発生する回生電流を前記力行状態にある前記駆動用モータに負荷電流として供給するように切換動作をすることを特徴とする多軸機械装置。
A plurality of drive motors for driving a plurality of shafts; a plurality of motor control circuits for controlling the plurality of drive motors based on operation timings; respectively, the set operation timings stored in a storage unit; A multi-axis mechanical device comprising an operation timing output unit for outputting the operation timing to the motor control circuit of
Provided between a power source and the plurality of motor control circuits, when at least one of the drive motors is in a regenerative state, regenerative power is used as drive power for the drive motor in at least one other power running state. A connection relationship switching circuit for switching a connection relationship between the plurality of motor control circuits and the power source so as to use electric power;
The operation timing is configured to include a polymerization period in which at least one other driving motor is in an acceleration state in a power running state when at least one of the driving motors is in a regenerative state,
The connection relation switching circuit performs a switching operation so as to supply a regenerative current generated by the driving motor in the regenerative state as a load current to the driving motor in the power running state during the polymerization period. Features multi-axis machinery.
JP2008093990A 2008-03-31 2008-03-31 Mold take-out machine Expired - Fee Related JP5210687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008093990A JP5210687B2 (en) 2008-03-31 2008-03-31 Mold take-out machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008093990A JP5210687B2 (en) 2008-03-31 2008-03-31 Mold take-out machine

Publications (3)

Publication Number Publication Date
JP2009241535A true JP2009241535A (en) 2009-10-22
JP2009241535A5 JP2009241535A5 (en) 2011-05-19
JP5210687B2 JP5210687B2 (en) 2013-06-12

Family

ID=41303999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008093990A Expired - Fee Related JP5210687B2 (en) 2008-03-31 2008-03-31 Mold take-out machine

Country Status (1)

Country Link
JP (1) JP5210687B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130640A (en) * 2011-01-25 2011-07-20 南京雪曼机电科技有限公司 Multishaft synchronous servo driving system and synchronous control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322630A (en) * 1993-05-13 1994-11-22 Tsudakoma Corp Device for driving motor of warper or the like, stoppage control device using the same
JP2001037080A (en) * 1999-07-22 2001-02-09 Keiogijuku Method for recycling energy for system constituted of machine group
JP2005022321A (en) * 2003-07-04 2005-01-27 Sumitomo Heavy Ind Ltd Molding machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322630A (en) * 1993-05-13 1994-11-22 Tsudakoma Corp Device for driving motor of warper or the like, stoppage control device using the same
JP2001037080A (en) * 1999-07-22 2001-02-09 Keiogijuku Method for recycling energy for system constituted of machine group
JP2005022321A (en) * 2003-07-04 2005-01-27 Sumitomo Heavy Ind Ltd Molding machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130640A (en) * 2011-01-25 2011-07-20 南京雪曼机电科技有限公司 Multishaft synchronous servo driving system and synchronous control method thereof

Also Published As

Publication number Publication date
JP5210687B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5665882B2 (en) Motor control device
CN102245010B (en) Component mounter
JP5164540B2 (en) Method and apparatus for controlling motor drive device
JP2007062639A5 (en)
JP2010240832A (en) Industrial robot and control method
US8400098B2 (en) Device and method of determining and defining a travel profile of a time-critical axle
JP5210688B2 (en) Molded product manufacturing equipment
JP2009241540A5 (en)
US10133249B2 (en) Servomotor controller for reducing power peak
JP5210687B2 (en) Mold take-out machine
JP2013154475A (en) Injection molding machine system and injection molding machine and power distribution apparatus
JP2009241535A5 (en)
CN207226352U (en) A kind of linear transmission module of product conveyer
JP2004154961A (en) Drive control device of electromotive injection molding machine having regenerative function
JP2008254224A (en) Peripheral equipment of molding machine
Wu et al. Iterative learning variable structure controller for high-speed and high-precision point-to-point motion
JP5512584B2 (en) Control device for injection molding machine and power converter
JP5532140B2 (en) Transfer device for discretely arranged linear motor
JP4425237B2 (en) Motor control device
JP4654063B2 (en) Mold take-out device
JP2010133333A5 (en)
JP2005096470A (en) Motor controller for injection molding machine
JPH1177484A (en) Nc machine tool
KR102007533B1 (en) Manipulator arrangement and method for operating the manipulator arrangement
JP2015214106A (en) Control method of injection molding machine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5210687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees