JP2009240203A - Method for raising temperature of frozen dough - Google Patents

Method for raising temperature of frozen dough Download PDF

Info

Publication number
JP2009240203A
JP2009240203A JP2008089754A JP2008089754A JP2009240203A JP 2009240203 A JP2009240203 A JP 2009240203A JP 2008089754 A JP2008089754 A JP 2008089754A JP 2008089754 A JP2008089754 A JP 2008089754A JP 2009240203 A JP2009240203 A JP 2009240203A
Authority
JP
Japan
Prior art keywords
temperature
dough
average
frozen
raising
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008089754A
Other languages
Japanese (ja)
Other versions
JP4932771B2 (en
Inventor
Naotaka Kida
直孝 喜田
Masami Takahashi
正美 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Original Assignee
Japan Tobacco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc filed Critical Japan Tobacco Inc
Priority to JP2008089754A priority Critical patent/JP4932771B2/en
Publication of JP2009240203A publication Critical patent/JP2009240203A/en
Application granted granted Critical
Publication of JP4932771B2 publication Critical patent/JP4932771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide such a method for raising the temperature of frozen dough that, while keeping the quality of a bakery product after baked through making the temperature unevenness of dough minimum irrespective of the kind, shape, etc. of the dough, the workability of the steps of thawing/raising the temperature of the dough is improved to enable the times needed for the steps. <P>SOLUTION: The method for raising the temperature of frozen dough for bread or pie comprises the first step of raising the temperature of the frozen dough so as to come to 2-15°C in average dough temperature and the second step of raising the temperature of the resultant dough to an average temperature of higher than 15°C but not higher than 28°C, wherein the average rate of temperature rise in the second step is 0.01-0.35°C/s. A bakery product produced by raising the temperature of the above frozen dough by the above method followed by fermentation and baking is also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷凍貯蔵しておいたパン類又はパイ類の生地を、品質の劣化を抑制しつつ迅速に昇温する方法、及び、該方法を用いて昇温した生地を焼成することにより製造されるベーカリー製品に関する。   The present invention relates to a method for quickly heating a dough of bread or pie that has been stored frozen, while suppressing deterioration in quality, and by baking the dough that has been heated using the method Related to bakery products.

近年、パン類やパイ類の製造において、凍結貯蔵された冷凍生地を利用する方法が汎用されている。一般的には、冷凍パン生地は、通常の製パン工程をホイロ(焙炉)工程の直前まで進めた後、凍結貯蔵することにより製造され、解凍後はホイロに投入して発酵させた後、焼成することにより、ベーカリー製品が製造される。   In recent years, methods for using frozen dough stored frozen have been widely used in the manufacture of breads and pies. In general, frozen bread dough is manufactured by storing in a frozen state after a normal bread-making process just before the proofing (roasting) process. By doing so, a bakery product is manufactured.

一般的なパン類の冷凍生地は、解凍後、イーストが覚醒、活性化する温度域まで昇温した後、ホイロに投入して発酵する。ホイロ投入前の生地温度が高くなりすぎたり、生地に温度ムラがあると、イーストの活性化の始まるタイミングが生地の部位ごとに異なり、ホイロ投入前に生地中で発酵が部分的に進行してしまう結果、ホイロ投入後に均一な発酵が行われず、焼成後のベーカリー製品の品質が不均一になる。また、ペストリー類やパイ類のように、冷凍生地に油脂を折り込んで生地と油脂の多層構造を形成する場合には、この油脂層が焼成前まで均質に保持されることが重要であるが、焼成前の解凍工程において生地温度が高くなりすぎると、この油脂層が溶けてしまい、本来の外観、食感が損なわれ、品質的に好ましくない。つまり、冷凍生地の解凍においては、解凍時間短縮のために環境温度を30℃程度以上と高く設定することは困難である。   The general frozen dough for bread is heated to a temperature range where the yeast is awakened and activated after thawing, and then put into a proofer for fermentation. If the dough temperature is too high or the dough is uneven in temperature, the timing of yeast activation will vary from site to site, and fermentation will partially progress in the dough before loading. As a result, uniform fermentation is not performed after proofing, and the quality of the baked product after baking becomes non-uniform. Also, when pasting fats and oils into frozen doughs to form a multilayer structure of dough and fats and oils, such as pastries and pies, it is important that the fat and oil layers be kept homogeneous until firing, If the dough temperature becomes too high in the thawing step before baking, the oil and fat layer is melted and the original appearance and texture are impaired, which is not preferable in terms of quality. That is, in thawing frozen dough, it is difficult to set the environmental temperature as high as about 30 ° C. or more in order to shorten the thawing time.

一方で、このような冷凍生地からのベーカリー製品は、梨肌と呼ばれる白い斑点や大きな気泡がクラスト(表皮)に出来る、クラストが厚くなる、大きさがばらついてパサつく、焼成したベーカリー製品の老化が早い、等の欠点があり、冷凍パン生地からなるベーカリー製品は、凍結冷凍をしない通常のスクラッチ製法によるベーカリー製品よりも品質が劣る傾向にあった。このような品質劣化の主原因として、冷凍生地の解凍・昇温工程における生地内外部温度差(生地の温度ムラ)や、水分移行による生地内部での水分の不均一化等が挙げられている。   On the other hand, bakery products made from such frozen dough have white spots called pear skin and large bubbles in the crust (skin), the crust becomes thick, the size varies, and the aging of the baked bakery products However, the bakery product made of frozen bread dough tended to be inferior in quality to the bakery product produced by the ordinary scratch manufacturing method without freezing and freezing. The main causes of such quality deterioration include the temperature difference inside and outside the dough (temperature variation in the dough) in the process of thawing and raising the temperature of the frozen dough, and the unevenness of moisture inside the dough due to moisture transfer. .

冷凍生地の解凍・昇温は、冷凍生地を冷凍庫から取り出し、これを成形や発酵(ホイロ)工程に適した昇温完了温度帯まで環境温度下に放置する自然解凍法が、最も一般的に行われている。また、雰囲気温度、湿度を調節した発酵室を利用して10分間〜4時間で解凍させる発酵室解凍法も一般的に行われている。その他、リターダーを利用し、0℃〜5℃の庫内で6〜24時間かけて解凍するリターダー解凍法も行われ、リターダーにコンピューターを組み込み、解凍・昇温・発酵を自動的に行うことができるドウコンディショナーも普及して一般的に使用されるようになった。さらに、近年では、マイクロ波による内部加熱により、5〜10℃付近まで解凍・昇温し、その後、環境温度下で目標温度まで10〜90分間かけて昇温させる方法も実用化されてきている。   The most common method for thawing and raising the temperature of frozen dough is the natural thawing method in which the frozen dough is removed from the freezer and left at ambient temperature until the temperature rise completion temperature range suitable for the molding and fermentation process. It has been broken. In addition, a fermentation chamber thawing method in which thawing is performed for 10 minutes to 4 hours using a fermentation chamber in which the atmospheric temperature and humidity are adjusted is generally performed. In addition, using a retarder, a retarder thawing method is also performed in which thawing is performed for 6 to 24 hours in a chamber at 0 ° C. to 5 ° C., and a computer is built into the retarder to automatically perform thawing, heating and fermentation. Dough conditioners that can be used have become widespread and commonly used. Furthermore, in recent years, a method of thawing and raising the temperature to around 5 to 10 ° C. by internal heating by microwaves, and then raising the temperature to the target temperature under the environmental temperature over 10 to 90 minutes has been put into practical use. .

自然解凍法における20℃雰囲気下での昇温速度は、生地の重量、形状にもよるが、一般的に0.0001〜0.0035℃/秒である。このように、低温及び低昇温速度で、長時間かけてゆっくりと解凍・昇温することにより、生地の温度ムラを抑えられると考えられている。しかしながら、自然解凍法のように、環境を利用した外部からの伝熱による方法では、季節や時間帯等により雰囲気温度や湿度等が異なるため、解凍時間や解凍状態が不安定であり、焼成のタイミングを合わせることが難しいために、作業工程が標準化できず、作業効率が悪いという問題がある。また、解凍・昇温が長時間に渡るため、大量に製造する場合にはラック数台分のスペースが必要とされることに加え、生地中の氷結晶が溶解時に、より大きな水分集合体に吸収されて、中心部に比べて外側の方に水分が集まりやすくなり、生地内部において水分の移行が生じる結果、焼成後の気泡の均質性が失われ、きめが荒く、パサついた、老化の早い製品となる等、焼成後のベーカリー製品の品質は十分ではない。さらに、生地と雰囲気温度の差により、生地表面に凝縮水が付着するため、生地玉では解凍・昇温後の成形作業が困難となる、表面の凝集付着水が発酵後まで残り、卵塗前に乾かすラックタイムが必要となる等、作業性が低下するという問題もある。   The rate of temperature increase under a 20 ° C. atmosphere in the natural thawing method is generally 0.0001 to 0.0035 ° C./second, although it depends on the weight and shape of the dough. Thus, it is considered that the temperature unevenness of the dough can be suppressed by slowly thawing and raising the temperature over a long time at a low temperature and a low temperature increase rate. However, methods such as natural thawing that use external heat transfer using the environment have different thawing times and thawing conditions because the ambient temperature, humidity, etc. vary depending on the season and time of day, etc. Since it is difficult to adjust the timing, there is a problem that the work process cannot be standardized and work efficiency is poor. In addition, since thawing and heating takes a long time, space for several racks is required when manufacturing in large quantities, and ice crystals in the dough become larger moisture aggregates when dissolved. As a result of the absorption, moisture tends to gather outside compared to the center, and moisture transfer occurs inside the dough.As a result, the homogeneity of bubbles after baking is lost, the texture is rough, rough and aging. The quality of the baked product after baking is not sufficient, such as becoming an early product. In addition, because condensed water adheres to the surface of the dough due to the difference between the dough and the ambient temperature, the dough ball makes it difficult to form after thawing and raising the temperature. In addition, there is a problem that workability is lowered, for example, rack time for drying is required.

発酵室解凍法や、リターダー、ドウコンディショナーを使用する方法では、雰囲気温度、湿度が調節されているため、作業工程は比較的標準化可能であるが、設備が必要となって経済的に負荷が大きい。その上、自然解凍と同様に、解凍・昇温に長時間必要であり、自然解凍法と同様に、焼成後のベーカリー製品の品質は十分ではない。   In the fermentation room thawing method and the method using a retarder and dough conditioner, the atmospheric temperature and humidity are adjusted, so the work process can be relatively standardized, but the equipment is required and the burden is high economically. . In addition, as with natural thawing, it takes a long time for thawing / heating, and the quality of the baked product after baking is not sufficient as with the natural thawing method.

一方、マイクロ波等の内部加熱方式による解凍方法では、環境状態に左右されずに速やかに冷凍生地の解凍が可能であるが、マイクロ波の特性上、誘電体損失係数(−12℃の氷で0.00028、5℃の水では22.0)が大きいと、その部分にマイクロ波が集中する局部加熱(Runaway heating)現象が生じたり、突起部にマイクロ波電界が集中する端面効果(Edge effect)による部分的な過加熱が生じ易くなるため、生地の温度ムラを解決することができない。そこで、品質を安定させるために、平均生地温度を5〜10℃付近まで上昇させた後、雰囲気温度で目標温度まで10〜90分間かけて昇温させる方法が採用されており、解凍・昇温の効果的短縮と品質の安定化を両立することは困難であった。   On the other hand, in the thawing method using an internal heating method such as microwaves, the frozen dough can be quickly thawed regardless of the environmental conditions. However, due to the characteristics of the microwave, the dielectric loss factor (with ice at -12 ° C) When 0.02.0 and 22.0 (5 ° C water) are large, the local heating (runaway heating) phenomenon in which the microwaves concentrate on the portion, or the edge effect (edge effect) in which the microwave electric field concentrates on the protrusions. ) Is likely to cause partial overheating, so that the temperature unevenness of the fabric cannot be solved. Therefore, in order to stabilize the quality, a method is adopted in which the average dough temperature is raised to around 5 to 10 ° C., and then the temperature is raised to the target temperature over 10 to 90 minutes at the ambient temperature. It has been difficult to achieve both effective shortening and quality stabilization.

これらの問題を解決すべく、様々な方法が提案されてきた。例えば、(1)オーブンにマグネトロン及びヒーターを設け、庫内温度センサを備えた加熱調理装置において、冷凍パン生地をオーブン内に収納した後、操作パネルを操作して、上記マグネトロン及びヒーターで交互に、しかも、断続的に庫内温度を解凍温度で解凍時間だけ加熱して解凍し、しかる後、上記ヒーターのみで断続的に庫内温度を発酵温度で発酵時間だけ加熱して発酵させ、次に、上記ヒーターで連続的に庫内温度を焼温度で焼時間だけ加熱して焼成するようにしたことを特徴とする冷凍パン生地の加熱調理方法が開示されている(例えば、特許文献1参照。)。また、(2)マイクロ波、常圧過熱水蒸気、遠赤外線から成る加熱手段のうちの少なくとも2つの加熱手段を経時的に組み合わせ、プログラム制御する冷凍食品の加熱解凍方法が開示されている(例えば、特許文献2参照。)。さらに、(3)解凍時間の短縮化を図る為、(i)冷凍パン生地を温度15〜25℃、湿度55〜80%、風速0.1〜1.0m/sで30〜90分解凍する工程と、(ii)その後、湿度50〜90%、風速0.1〜1.0m/sで温度20〜35℃まで10〜30分かけて昇温させる余熱工程と、(iii)温度30〜42℃、湿度55〜100%、風速1.0m/s以下で10〜90分間発酵させるホイロ工程からなる冷凍パン生地の解凍と発酵方法(例えば、特許文献3参照。)や、(4)(i)冷凍パン生地を温度−5〜+10℃、湿度90〜100%、風速0.2m/s以下で10分〜72時間かけてリタードしながら解凍する工程と、(ii)湿度90〜100%、風速0.2m/s以下で温度15〜20℃まで1時間20分〜2時間10分かけて余熱する工程と、(iii)湿度70〜100%、風速0.2m/s以下で温度22〜40℃まで20分〜1時間10分かけて昇温する工程と、(iv)温度22〜40℃、湿度65〜100%、風速0.2m/s以下の状態を保持する工程からなる冷凍パン生地の解凍と発酵方法(例えば、特許文献4参照。)、(5)冷凍貯蔵したパン生地を平均昇温スピード0.07〜0.28℃/分、湿度70〜100%で温度10℃まで2〜6時間で昇温させ、さらに10〜20℃、湿度70〜100%で10分〜6時間保持することを特徴とする冷凍パン生地の解凍方法(例えば、特許文献5参照。)等が開示されている。
特開平3−194317号公報 特開2000−279148号公報 特開平7−79690号公報 特許第3066168号公報 特公平6−36707号公報
Various methods have been proposed to solve these problems. For example, (1) In a cooking device equipped with a magnetron and a heater in an oven and equipped with an internal temperature sensor, after storing frozen bread dough in the oven, the operation panel is operated, and alternately with the magnetron and the heater, In addition, the internal temperature is intermittently heated at the thawing temperature for the thawing time, and then thawed, and then the internal temperature is intermittently heated only at the fermentation temperature for the fermentation time, and then fermented. There is disclosed a method of heating and cooking frozen bread dough, characterized in that the inside temperature is continuously heated by the above heater at the baking temperature for the baking time (see, for example, Patent Document 1). Further, (2) a method for heating and thawing frozen foods in which at least two heating means among heating means consisting of microwaves, atmospheric superheated steam, and far infrared rays are combined over time and controlled by a program is disclosed (for example, (See Patent Document 2). Further, (3) in order to shorten the thawing time, (i) a step of thawing the frozen bread dough at a temperature of 15 to 25 ° C., a humidity of 55 to 80%, and a wind speed of 0.1 to 1.0 m / s for 30 to 90 minutes. And (ii) a preheating step in which the temperature is raised to a temperature of 20 to 35 ° C. over 10 to 30 minutes at a humidity of 50 to 90% and a wind speed of 0.1 to 1.0 m / s, and (iii) a temperature of 30 to 42 Defrosting and fermenting method of frozen bread dough comprising a proofing process in which fermentation is carried out for 10 to 90 minutes at a temperature of 55 ° C., a humidity of 55 to 100%, and a wind speed of 1.0 m / s or less (see, for example, Patent Document 3), (4) (i) A step of thawing the frozen bread dough while retarding for 10 minutes to 72 hours at a temperature of -5 to + 10 ° C, a humidity of 90 to 100%, and a wind speed of 0.2 m / s or less; and (ii) a humidity of 90 to 100% and a wind speed of 0 .2 m / s or less, temperature 15 to 20 ° C., 1 hour 20 minutes to 2 hours 10 And (iii) a step of heating up to a temperature of 22 to 40 ° C. over 20 minutes to 1 hour and 10 minutes at a humidity of 70 to 100% and a wind speed of 0.2 m / s, and (iv) a temperature of 22 -40 ° C, humidity 65% to 100%, and a method of thawing frozen fermented bread dough comprising a step of maintaining a wind speed of 0.2 m / s or less (see, for example, Patent Document 4), (5) The temperature is raised to an average temperature increase rate of 0.07 to 0.28 ° C./min and a humidity of 70 to 100% to a temperature of 10 ° C. in 2 to 6 hours, and further 10 to 20 ° C. and a humidity of 70 to 100% for 10 minutes to 6 A method for thawing frozen bread dough (see, for example, Patent Document 5) characterized by holding the time is disclosed.
Japanese Patent Laid-Open No. 3-194317 JP 2000-279148 A JP 7-79690 A Japanese Patent No. 3066168 Japanese Examined Patent Publication No. 6-36707

しかしながら、上記(1)の方法により、庫内温度の調整と、低出力のマグネトロンによる内部加熱の併用により、比較的迅速に解凍することができるが、一定時間、一定間隔における制御であり、多種多様な配合、形状、大きさの冷凍パン生地に対応することは困難な上、生地の昇温特性を考慮したものではない。また、上記(2)の方法は、調理済み冷凍食材を概ね90℃以上に加熱解凍し、短時間で提供することを目的としたものであり、パン生地のように15〜28℃の低温範囲における迅速な解凍・昇温については考慮されていない。   However, the method (1) can be defrosted relatively quickly by adjusting the internal temperature and using internal heating with a low-power magnetron. It is difficult to deal with frozen bread doughs of various blends, shapes and sizes, and the temperature rise characteristics of the dough are not taken into consideration. In addition, the method (2) is intended to heat and thaw cooked frozen foods to approximately 90 ° C. or more and provide them in a short time, and in a low temperature range of 15 to 28 ° C. like bread dough. Rapid thawing / heating is not considered.

一方で、上記(3)〜(5)の方法は、雰囲気条件を微調整することにより、品質の劣化を防止しようとする試みである。しかしながら、いずれも、解凍・昇温の所要時間の大幅な短縮は達成されていない上、焼成後のベーカリー製品の品質も満足できるものではない。   On the other hand, the above methods (3) to (5) are attempts to prevent quality degradation by finely adjusting the atmospheric conditions. However, neither of them has achieved a significant reduction in the time required for thawing / heating, and the quality of the baked product after baking is not satisfactory.

本発明は、生地の種類、形状等に関わらず、生地の温度ムラを最小限にして焼成後のベーカリー製品の品質を損なわないようにしつつ、解凍・昇温工程の作業性を改善し、所要時間を短縮することができる冷凍生地の昇温方法を提供することを目的とする。   The present invention improves the workability of the thawing / heating process while minimizing the temperature unevenness of the dough and not damaging the quality of the baked product after baking, regardless of the type, shape, etc. of the dough. It aims at providing the temperature rising method of the frozen dough which can shorten time.

本発明者は、上記課題を解決すべく鋭意研究した結果、パン類又はパイ類の冷凍生地を、生地温度−30〜―12℃の冷凍状態から、生地温度15〜28℃の昇温完了状態とする工程を、該冷凍状態から生地温度2〜15℃の冷蔵状態とする第一工程と、該冷蔵状態から該昇温完了状態とする第二工程とに分け、該第二工程の平均昇温速度を最適化することにより、生地の温度ムラを効果的に抑制しつつ、従来法よりも大幅に冷凍生地の解凍・昇温時間を短縮することができることを見出し、本発明を完成させた。   As a result of diligent research to solve the above-mentioned problems, the present inventor has made a frozen dough for breads or pies from a frozen state at a dough temperature of −30 to −12 ° C. to a state in which the temperature of the dough has been raised to 15 to 28 ° C. Are divided into a first step in which the dough temperature is 2 to 15 ° C. from the frozen state and a second step in which the temperature rise is completed from the refrigerated state. By optimizing the temperature rate, it was found that the temperature unevenness of the dough was effectively suppressed, and the thawing / heating time of the frozen dough could be greatly shortened compared to the conventional method, and the present invention was completed. .

すなわち、本発明は、パン類又はパイ類の冷凍生地を昇温する方法であって、パン類又はパイ類の冷凍生地を、平均生地温度2〜15℃となるように昇温する第一工程と、第一工程により得られた平均生地温度2〜15℃の生地を、平均生地温度15℃超28℃以下まで昇温する第二工程と、を有し、前記第二工程における平均昇温速度が0.01〜0.35℃/秒であることを特徴とする、冷凍生地の昇温方法を提供するものである。
また、本発明は、前記第一工程が、平均生地温度−30〜―12℃の冷凍生地を、0.05〜2.00℃/秒の平均昇温速度で昇温することを特徴とする冷凍生地の昇温方法を提供するものである。
また、本発明は、前記第一工程と前記第二工程の合計所要時間が1〜20分間であることを特徴とする冷凍生地の昇温方法を提供するものである。
また、本発明は、前記第二工程における平均昇温速度が、前記第一工程における平均昇温速度よりも遅いことを特徴とする冷凍生地の昇温方法を提供するものである。
また、本発明は、パン類の冷凍生地を、前記いずれか記載の冷凍生地の昇温方法を用いて昇温した後、発酵し、焼成することにより製造されたベーカリー製品を提供するものである。
また、本発明は、パイ類の冷凍生地を、前記いずれか記載の冷凍生地の昇温方法を用いて昇温した後、焼成することにより製造されたベーカリー製品を提供するものである。
That is, the present invention is a method for raising the temperature of frozen dough for breads or pie, which is a first step of raising the temperature of frozen dough for breads or pie so that the average dough temperature is 2 to 15 ° C. And a second step of heating the dough having an average dough temperature of 2 to 15 ° C. obtained in the first step to an average dough temperature of more than 15 ° C. and not more than 28 ° C., and the average temperature rise in the second step The present invention provides a method for heating a frozen dough, characterized in that the speed is 0.01 to 0.35 ° C./second.
In the present invention, the first step raises the temperature of the frozen dough having an average dough temperature of −30 to −12 ° C. at an average heating rate of 0.05 to 2.00 ° C./sec. A method for raising the temperature of frozen dough is provided.
Moreover, this invention provides the temperature increase method of frozen dough characterized by the total required time of said 1st process and said 2nd process being 1 to 20 minutes.
Moreover, this invention provides the temperature rising method of the frozen dough characterized by the average temperature rising rate in said 2nd process being slower than the average temperature rising rate in said 1st process.
In addition, the present invention provides a bakery product produced by heating and baking a frozen dough for breads after heating the frozen dough according to any one of the methods described above. .
Moreover, this invention provides the bakery product manufactured by baking after baking the frozen dough of pie, using the temperature rising method of any one of the said frozen dough.

本発明の冷凍生地の昇温方法を用いることにより、生地の種類、形状等に関わらず、生地の温度ムラを効果的に抑制しつつ、パン類又はパイ類の冷凍生地の解凍・昇温時間を大幅に短縮することができる。また、昇温後の生地は、生地表面への凝集水の付着がほとんど発生しないため、その後の製造工程における作業性が良好である。さらに、昇温後の生地を焼成して得られたベーカリー製品は、スクラッチ製法によるベーカリー製品とほぼ同等の品質を有し、かつ、焼成後の老化が遅いという優れた特性を有する。   By using the frozen dough temperature rising method of the present invention, regardless of the type, shape, etc. of the dough, while effectively suppressing the temperature unevenness of the dough, the thawing / heating temperature time of the frozen dough for breads or pie Can be greatly shortened. Further, since the dough after the temperature rise hardly adheres condensed water to the dough surface, the workability in the subsequent manufacturing process is good. Furthermore, the bakery product obtained by baking the dough after the temperature rise has an excellent characteristic that it has almost the same quality as the bakery product by the scratch manufacturing method and is slow to age after baking.

本発明において、パン類とは、粉原料に、イーストと食塩、水を加えて練り上げた生地を発酵後焼成したものである。生地には、副原料として、砂糖、油脂、卵、牛乳を添加してもよい。また、イーストを用いない無発酵パンであってもよい。粉原料としては、パン用穀物粉として用いられるものであれば、特に限定されるものではなく、例えば、小麦、ライ麦、大麦、米、トウモロコシ等の粉が挙げられる。また、油脂としては、バター、マーガリン、ショートニング等が挙げられる。その他、タピオカ、コーン、馬鈴薯等の様々な原料から精製して得られる澱粉類、これらの澱粉類を適宜化学的に加工して得られる加工澱粉類、脱脂粉乳、全脂粉乳等の乳加工品類、オリゴ糖、液糖等の澱粉を分解して得られる糖類、レーズン等のドライフルーツ、アーモンド等のナッツ類、チョコチップ、ココアパウダー、シナモンやバニラエッセンス等の香料、生地物性を改良する為に用いられる酵素やイーストフード等の生地改良剤、種々の増粘多糖類、乳酸菌等の発酵に用いられる微生物類、乳化剤、着色剤、保存料等の食品添加物等を加えてもよい。また、食パン類等のように、練り上げた生地のみからなるものであってもよく、生地にフィリング類を内包させたものであってもよい。フィリング類としては、例えば、餡子、カスタードクリーム等のクリーム類、ジャム類、煮リンゴ等の果物類、カレー等の惣菜類等が挙げられる。また、2種類以上の生地を用いて成型したものであってもよく、ビスケット生地等の他の生地と組み合わせて成型したものであってもよい。具体的には、食パン類、あんぱん、クリームパン、ジャムパン、カレーパン等の包餡類、クロワッサン、デニッシュ等のペストリー類、くるみパン、メロンパン等が挙げられる。   In the present invention, bread refers to a dough obtained by adding yeast, salt and water to a flour raw material and then kneading and baking the dough. Sugar, fats, eggs, and milk may be added to the dough as auxiliary ingredients. Moreover, the non-fermented bread which does not use a yeast may be sufficient. The flour raw material is not particularly limited as long as it is used as a cereal flour for bread. Examples thereof include flours such as wheat, rye, barley, rice and corn. In addition, examples of fats and oils include butter, margarine, shortening, and the like. In addition, starches obtained by refining from various raw materials such as tapioca, corn, potato, etc., processed starches obtained by chemically processing these starches as appropriate, skim milk powder, whole milk powder products such as whole milk powder To improve sugar, sugars obtained by decomposing starches such as oligosaccharides and liquid sugars, dried fruits such as raisins, nuts such as almonds, chocolate chips, cocoa powder, fragrances such as cinnamon and vanilla essence, and dough physical properties Food additives such as enzymes used, dough improving agents such as yeast food, various thickening polysaccharides, microorganisms used for fermentation of lactic acid bacteria, emulsifiers, colorants, preservatives, and the like may be added. Moreover, it may consist only of kneaded dough, such as breads, or may contain fillings in the dough. Examples of the fillings include creams such as eggplant and custard cream, fruits such as jams and boiled apples, and side dishes such as curry. Moreover, what was shape | molded using 2 or more types of cloth | dough may be used, and what was shape | molded in combination with other cloth | fabrics, such as biscuit cloth | dough, may be used. Specific examples include breads such as breads, anpans, cream breads, jam breads and curry breads, pastries such as croissants and Danish, walnut breads and melon breads.

本発明において、パイ類とは、粉原料に、油脂と食塩、水を加えて練り上げた生地をシート状にし、多層構造に成型した後、焼成したものである。油脂は、生地に練り込まずに、生地の層の間に油脂層を設けた多層構造に成型したものであってもよい。粉原料としては、通常パイの原料として用いられるものであれば、特に限定されるものではないが、主に小麦粉が挙げられる。生地には、副原料として、砂糖、油脂、卵、牛乳、食品添加物、香料等の、パン類の生地に添加し得るものとして挙げられたものと同様のものを加えてもよい。また、生地にフィリング類を内包させたものであってもよく、フィリング類としては、パン類と同様のものが挙げられる。   In the present invention, the pie is a material obtained by adding fats and oils, salt and water to a powder raw material, kneading it into a sheet shape, molding it into a multilayer structure, and baking it. The fats and oils may be molded into a multilayer structure in which an oil and fat layer is provided between layers of the dough without being kneaded into the dough. Although it will not specifically limit if it is normally used as a raw material of pie as a flour raw material, Wheat flour is mainly mentioned. You may add the thing similar to what was mentioned as what can be added to dough of breads, such as sugar, fats and oils, an egg, milk, a food additive, a fragrance | flavor, as an auxiliary material. Moreover, the thing which included the fillings in the dough may be included, and the thing similar to breads is mentioned as fillings.

本発明において、冷凍生地とは、パン類又はパイ類の製造工程の途中で生地を凍結処理したものを意味する。具体的には、粉原料に他の原料を加えて練り上げたパン類又はパイ類の生地を、焼成前に凍結貯蔵したものである。通常、パン類は、粉原料等を練り上げた生地を、一次発酵させた後、適当な大きさに分割し、成型する。その後、ホイロ発酵(二次発酵)した後、焼成することにより、製造される。本発明の昇温方法に供されるパン類の冷凍生地としては、ホイロ発酵前に凍結貯蔵されたものであってもよく、ホイロ発酵後に凍結貯蔵されたものであってもよい。作業効率化の点から、本発明の昇温方法に供されるパン類の冷凍生地としては、ホイロ発酵前に凍結貯蔵されたものであることが好ましい。なお、成型前に凍結貯蔵され、昇温後に成型作業を要する生地玉であってもよく、成型後ホイロ発酵前に凍結貯蔵されたものであってもよい。同様に、パイ類の冷凍生地としては、成型後に凍結貯蔵されたものであることが好ましい。   In the present invention, the frozen dough means one obtained by freezing the dough during the manufacturing process of breads or pie. Specifically, bread or pie dough that has been kneaded by adding other raw materials to the flour raw material is frozen and stored before baking. Usually, breads are formed by dividing dough into a suitable size after first fermenting a dough prepared by kneading flour raw materials and the like. Then, after carrying out proof fermentation (secondary fermentation), it manufactures by baking. The frozen dough for bread used in the temperature raising method of the present invention may be frozen and stored before proofing, or may be stored frozen after proofing. From the viewpoint of improving work efficiency, it is preferable that the frozen dough for breads used in the temperature raising method of the present invention is frozen and stored before proofing. In addition, it may be a dough ball that is stored frozen before molding and requires a molding operation after temperature rise, or may be frozen and stored after molding and before proofing. Similarly, the frozen dough for pie is preferably frozen and stored after molding.

本発明の昇温方法に供される冷凍生地の組成、重量、形状は、特に限定されるものではなく、製造するベーカリー食品の種類等を考慮して、適宜決定することができる。例えば、成型前の生地玉であってもよく、成型されたものであってもよい。成型後の形状も特に限定されるものではなく、丸め成型されたものであってもよく、クロワッサン等のように凹凸のある形状に成型されたものであってもよい。また、フィリング類を包餡しているものであってもよく、ナッツ類等の副原料を生地全体に分散させたものであってもよい。フィリング類等の組成や、冷凍生地とフィリング類の重量比等も、特に限定されるものではなく、製造するベーカリー食品の種類等を考慮して、適宜決定することができる。なお、本発明の昇温方法に供される冷凍生地としては、常法により製造されたものを用いることができ、また、市販されているものであってもよい。   The composition, weight, and shape of the frozen dough used in the temperature raising method of the present invention are not particularly limited, and can be appropriately determined in consideration of the type of bakery food to be produced. For example, it may be a dough ball before molding or may be molded. The shape after molding is not particularly limited, either, it may be rounded and may be molded into an uneven shape such as croissant. Further, it may be one that wraps fillings, or may be one in which auxiliary materials such as nuts are dispersed throughout the dough. The composition of the fillings and the like, the weight ratio of the frozen dough and the fillings and the like are not particularly limited, and can be appropriately determined in consideration of the type of bakery food to be produced. In addition, as frozen dough used for the temperature rising method of this invention, what was manufactured by the conventional method can be used and what is marketed may be used.

本発明の昇温方法に供される冷凍生地の重量は、30g以上であることが好ましい。従来の自然解凍法等では昇温に長時間を要するような、重量の大きい冷凍生地に供することにより、本発明の昇温方法の昇温時間短縮効果がより効果的に発揮されるためである。   The weight of the frozen dough used in the temperature raising method of the present invention is preferably 30 g or more. This is because when the conventional natural thawing method or the like is used for frozen dough with a large weight, which takes a long time for temperature increase, the temperature increase time shortening effect of the temperature increase method of the present invention is more effectively exhibited. .

また、本発明の昇温方法に供される冷凍生地の形状は、シート状のように体積に対する比表面積が大きく凹凸の少ない形状よりも、体積に対する比表面積が比較的小さい形状や、凹凸のある形状であることが好ましい。従来の自然解凍法等では生地の温度ムラが生じ易い、比表面積が小さい形状や凹凸のある形状の冷凍生地に供することにより、本発明の昇温方法の生地の温度ムラ抑制効果がより効果的に発揮されるためである。   In addition, the shape of the frozen dough used in the temperature raising method of the present invention has a shape with a relatively small specific surface area with respect to the volume or an uneven shape rather than a shape with a large specific surface area with respect to the volume and less unevenness like a sheet shape. The shape is preferred. In the conventional natural thawing method, etc., the temperature unevenness of the dough is likely to be generated, and the effect of suppressing the temperature unevenness of the dough of the temperature rising method of the present invention is more effective by providing it to a frozen dough having a small specific surface area or uneven shape. It is because it is demonstrated to.

本発明において、平均生地温度とは、生地中の各部位の温度の平均温度を意味する。具体的には、突起部等がなく、ほぼ半球形に近い生地玉等の場合には、生地の中心部の温度(以下、芯温という。)と、生地の表面部の温度(以下、表面温度という)との平均温度である。また、クロワッサン等の先端部や突起部等の凸部を有する形態の場合には、芯温と、表面温度と、凸部の温度(以下、角温度という。)との平均温度である。   In the present invention, the average dough temperature means an average temperature of each part in the dough. Specifically, in the case of a dough ball or the like that has no protrusions and has a substantially hemispherical shape, the temperature of the center of the fabric (hereinafter referred to as the core temperature) and the temperature of the surface of the fabric (hereinafter referred to as the surface) Temperature). Further, in the case of a form having a tip such as a croissant or a convex part such as a protrusion, the average temperature is a core temperature, a surface temperature, and a temperature of the convex part (hereinafter referred to as an angular temperature).

本発明の冷凍生地の昇温方法(以下、本発明の昇温方法ということがある。)は、パン類又はパイ類の冷凍生地を昇温する方法であって、パン類又はパイ類の冷凍生地を、平均生地温度2〜15℃となるように昇温する第一工程と、第一工程により得られた平均生地温度2〜15℃の生地を、平均生地温度15℃超28℃以下まで昇温する第二工程と、を有し、前記第二工程における冷凍生地の平均昇温速度が0.01〜0.35℃/秒であることを特徴とする。このように、パン類又はパイ類の冷凍生地を、平均生地温度−30〜―12℃の冷凍状態から生地温度15〜28℃の昇温完了状態とする工程を、該冷凍状態から平均生地温度2〜15℃の冷蔵状態とする第一工程と、該冷蔵状態から該昇温完了状態とする第二工程とに分け、該第二工程における冷凍生地の平均昇温速度を最適化することにより、焼成後のベーカリー製品の品質を損なうことなく、解凍・昇温時間を大幅に短縮することができる。   The method for raising the temperature of frozen dough according to the present invention (hereinafter sometimes referred to as the temperature raising method of the present invention) is a method for raising the temperature of frozen dough for breads or pie, The first step of heating the dough so that the average dough temperature is 2 to 15 ° C, and the dough having an average dough temperature of 2 to 15 ° C obtained in the first step is more than 15 ° C and not more than 28 ° C. A second step of raising the temperature, wherein the average temperature rise rate of the frozen dough in the second step is 0.01 to 0.35 ° C./second. In this way, the process of changing the frozen dough of breads or pies from the frozen state at an average dough temperature of −30 to −12 ° C. to the completed temperature rise state at a dough temperature of 15 to 28 ° C. from the frozen state to the average dough temperature By optimizing the average heating rate of the frozen dough in the second step by dividing it into a first step to be refrigerated at 2 to 15 ° C. and a second step from the refrigerated state to the temperature rising completion state. The thawing / heating time can be greatly shortened without impairing the quality of the baked product after baking.

このような効果が得られる理由は明らかではないが、以下のように推察される。第二工程開始温度は、第一工程終了時の温度が起点となる為、生地の部位ごとに温度が異なるが、平均昇温速度を0.01〜0.35℃/秒とすることにより、生地全体の温度ムラを最小化して均一な温度分布に近づけることができる。この結果、解凍・昇温時間が大幅に短縮されるにもかかわらず、目標の昇温完了温度到達時の生地全体の温度のバラツキが抑えられ、焼成後のベーカリー製品の品質を、スクラッチ製法によるベーカリー製品とほぼ同等の品質とすることができると推察される。   The reason why such an effect is obtained is not clear, but is presumed as follows. Since the temperature at the end of the first step is the starting point, the second step start temperature is different for each part of the dough, but by setting the average rate of temperature rise to 0.01 to 0.35 ° C./second, It is possible to minimize the temperature unevenness of the entire fabric and bring it closer to a uniform temperature distribution. As a result, even though the thawing / heating time is greatly shortened, the temperature variation of the entire dough when reaching the target temperature rise completion temperature is suppressed, and the quality of the baked product after baking is determined by the scratch manufacturing method. It is assumed that the quality can be almost equivalent to that of bakery products.

以下、工程ごとに説明する。
第一工程は、パン類又はパイ類の冷凍生地を、平均生地温度2〜15℃となるように昇温する工程である。冷凍生地の平均生地温度は、冷凍状態であれば特に限定されるものではなく、通常用いられている冷凍貯蔵設備において冷凍貯蔵されたものを用いることができる。本発明の昇温方法においては、平均生地温度−30〜―12℃の冷凍生地であることが好ましい。
Hereinafter, it demonstrates for every process.
The first step is a step of heating the frozen dough of breads or pies so that the average dough temperature is 2 to 15 ° C. The average dough temperature of the frozen dough is not particularly limited as long as it is in a frozen state, and one that has been frozen and stored in a commonly used refrigeration storage facility can be used. In the temperature raising method of the present invention, a frozen dough having an average dough temperature of −30 to −12 ° C. is preferable.

第一工程終了時の平均生地温度は、2〜15℃の範囲内の温度であれば特に限定されるものではなく、対象とする冷凍生地の組成や重量、形状等を考慮して、適宜決定することができる。第一工程終了時の平均生地温度を15℃以下とすることにより、急激な温度上昇に伴う局部加熱や端面効果による部分的な過加熱を抑制することができる。また、第二工程における生地全体の温度ムラの最小化をより効果的に行うことが可能となる。一方、第一工程終了時の平均生地温度を2℃以上とすることにより、冷凍生地の昇温時間のより大幅な短縮化を達成することができる。本発明の昇温方法においては、第一工程終了時の平均生地温度は8〜15℃であることが好ましい。   The average dough temperature at the end of the first step is not particularly limited as long as the temperature is in the range of 2 to 15 ° C., and is appropriately determined in consideration of the composition, weight, shape, etc. of the target frozen dough. can do. By setting the average dough temperature at the end of the first step to 15 ° C. or less, it is possible to suppress local overheating accompanying the rapid temperature rise and partial overheating due to the end face effect. In addition, it is possible to more effectively minimize the temperature unevenness of the entire fabric in the second step. On the other hand, when the average dough temperature at the end of the first step is set to 2 ° C. or higher, the temperature increase time of the frozen dough can be significantly shortened. In the temperature raising method of the present invention, the average dough temperature at the end of the first step is preferably 8 to 15 ° C.

第一工程における平均昇温速度は、冷凍生地を平均生地温度が2〜15℃の範囲内となるように昇温し得る速度であれば、特に限定されるものではないが、0.05〜2.00℃/秒であることが好ましく、0.08〜1.65℃/秒であることがより好ましい。平均昇温速度を2.00℃/秒以下とすることにより、第一工程終了時の生地の温度ムラをより抑えることができ、また、生地の過度の乾燥や加熱を回避し易くなる。一方、平均昇温速度を0.05℃/秒以上とすることにより、冷凍生地の昇温時間のより大幅な短縮化を達成することができる上に、生地内部の水分の不均一化の進行が抑制され、昇温後の生地状態を凍結時とほぼ同等にすることが可能となる。これは、一般に−5〜0℃付近と言われている最大氷結晶生成帯を、短時間で速やかに通過することにより、生地内部に含まれる水分の移動を最小限に抑え、焼成後の気泡膜を薄く、きめ細かくすることができるためと推察される。   The average rate of temperature increase in the first step is not particularly limited as long as it is a rate at which the frozen dough can be heated so that the average dough temperature is in the range of 2 to 15 ° C. It is preferably 2.00 ° C / second, more preferably 0.08 to 1.65 ° C / second. By setting the average temperature increase rate to 2.00 ° C./second or less, the temperature unevenness of the dough at the end of the first step can be further suppressed, and it becomes easy to avoid excessive drying and heating of the dough. On the other hand, by setting the average heating rate to 0.05 ° C./second or more, the heating time of the frozen dough can be significantly shortened and the moisture inside the dough becomes more uneven. Is suppressed, and the dough state after the temperature rise can be made substantially equal to that at the time of freezing. This is because air bubbles after baking are minimized by passing through the maximum ice crystal formation zone, which is generally said to be around -5 to 0 ° C, quickly in a short time to minimize the movement of moisture contained in the dough. This is presumably because the film can be made thin and fine.

第二工程は、第一工程により得られた平均生地温度2〜15℃の生地を、平均生地温度15℃超28℃以下まで昇温する工程である。第一工程終了時の平均生地温度は、15℃超28℃以下の範囲内の温度であれば特に限定されるものではなく、対象とする冷凍生地の組成や重量、形状、イーストの種類、第一工程における平均昇温速度、昇温後の作業が成型作業かホイロ発酵か、ホイロ発酵温度等を考慮して、適宜決定することができる。第二工程終了時の平均生地温度が28℃より高い場合には、生地中のイーストが急激に活性化して発酵状態が不均一になったり、生地中の油脂が溶け出したりして、昇温後の生地を焼成して得られるベーカリー製品の品質に悪影響を及ぼす恐れがある。一方、第二工程終了時の平均生地温度を15℃より高くすることにより、生地全体を均一な温度分布に近づけることができるとともに、昇温時間のより大幅な短縮化を達成することができる。   The second step is a step of heating the dough having an average dough temperature of 2 to 15 ° C. obtained in the first step to an average dough temperature exceeding 15 ° C. to 28 ° C. or less. The average dough temperature at the end of the first step is not particularly limited as long as the temperature is in the range of more than 15 ° C. and not more than 28 ° C. The composition, weight, shape, type of yeast, It can be appropriately determined in consideration of the average temperature increase rate in one step, whether the operation after the temperature increase is a molding operation or proof fermentation, or proof fermentation temperature. When the average dough temperature at the end of the second step is higher than 28 ° C., the yeast in the dough is rapidly activated and the fermentation state becomes non-uniform, or the fats and oils in the dough melt out and the temperature rises. There is a risk of adversely affecting the quality of the bakery product obtained by baking the subsequent dough. On the other hand, by making the average dough temperature at the end of the second step higher than 15 ° C., the entire dough can be brought close to a uniform temperature distribution, and the heating time can be shortened significantly.

第二工程における平均昇温速度は、0.01〜0.35℃/秒の範囲内の速度であれば、特に限定されるものではない。平均昇温速度を0.35℃/秒以下とすることにより、生地全体の温度ムラの最小化及び生地品質の安定化をより効果的に行うことができる。一方、平均昇温速度を0.01℃/秒以上とすることにより、冷凍生地の昇温時間のより大幅な短縮化を達成することができる。本発明の昇温方法においては、第二工程における平均昇温速度は、0.03〜0.30℃/秒であることが好ましい。   The average temperature increase rate in the second step is not particularly limited as long as it is a rate in the range of 0.01 to 0.35 ° C./second. By setting the average temperature rising rate to 0.35 ° C./second or less, it is possible to more effectively minimize the temperature unevenness of the entire fabric and stabilize the fabric quality. On the other hand, when the average rate of temperature increase is 0.01 ° C./second or more, the temperature increase time of the frozen dough can be significantly shortened. In the temperature raising method of the present invention, the average temperature raising rate in the second step is preferably 0.03 to 0.30 ° C./second.

本発明の昇温方法により、従来の一般的な解凍・昇温方法においては、冷凍温度帯から冷蔵温度帯、そして成形、ホイロ前の温度帯に至るまで、数十分〜数時間かかっていた冷凍パン生地の昇温工程の所要時間を、大幅に短縮することができる。第一工程の所要時間と、第二工程の所要時間は、何れも特に限定されるものではないが、両工程の合計所要時間が1〜20分間であることが好ましく、1〜15分間であることがより好ましい。このように、第一工程と第二工程の合計所要時間を短くすることにより、生地表面への凝縮水の付着や、生地内部での水分移行を十分に抑制することができる。すなわち、本発明の昇温方法により、ベーカリー製品の製造工程において、冷凍状態からホイロ工程に入るまでの解凍・昇温工程を、非常に短時間に、生地表面がべたついたりして作業性を損なう事無く、効率良く行うことが可能である。   According to the heating method of the present invention, in the conventional general thawing / heating method, it took tens of minutes to several hours from the freezing temperature zone to the refrigeration temperature zone and the temperature zone before molding and proofing. The time required for the temperature raising process of the frozen bread dough can be greatly shortened. The time required for the first step and the time required for the second step are not particularly limited, but the total time required for both steps is preferably 1 to 20 minutes, preferably 1 to 15 minutes. It is more preferable. As described above, by shortening the total time required for the first step and the second step, it is possible to sufficiently suppress the adhesion of condensed water to the surface of the dough and the moisture transfer inside the dough. That is, with the temperature rising method of the present invention, in the bakery product manufacturing process, the thawing / temperature rising process from the frozen state to the proofing process is very short and the dough surface becomes sticky and the workability is impaired. It is possible to carry out efficiently without any trouble.

第一工程と第二工程における平均昇温速度を変更することにより、内部伝熱を効果的に併用して、生地の温度ムラを抑え、品質に悪影響を与えない速やかな昇温が可能となる。特に、第二工程における平均昇温速度が、第一工程における平均昇温速度よりも遅いことが好ましい。第二工程における昇温速度を第一工程よりも緩やかにすることにより、生地の温度ムラを、焼成後の製品の品質に悪影響を与えない程度の温度バラつき範囲内に抑えることができる。ここで、「焼成後の製品の品質に悪影響を与えない程度の温度バラつき範囲内」とは、例えば、同時に昇温処理した各生地の芯温、表面温度、角温度の温度ムラが、目標温度に対し、標準偏差7.0位内、好ましくは4.0以内である程度のバラつきを意味する。   By changing the average temperature increase rate in the first step and the second step, internal heat transfer is effectively used together, temperature variation of the dough is suppressed, and rapid temperature increase that does not adversely affect the quality becomes possible. . In particular, it is preferable that the average temperature increase rate in the second step is slower than the average temperature increase rate in the first step. By making the rate of temperature increase in the second step slower than that in the first step, the temperature unevenness of the dough can be suppressed within a temperature variation range that does not adversely affect the quality of the product after baking. Here, “within a temperature variation range that does not adversely affect the quality of the product after baking” means, for example, that the temperature unevenness of the core temperature, the surface temperature, and the angular temperature of each fabric that has been subjected to a temperature increase process at the same time is the target temperature On the other hand, it means a certain degree of variation within the standard deviation of about 7.0, preferably within 4.0.

第一工程と第二工程における平均昇温速度は、それぞれ、製造するベーカリー食品の種類、生地の組成、重量、形状等を考慮して、適宜決定することができる。例えば、比熱の異なるフィリング類を内包するような包餡類であっても、それぞれの特性に応じた平均昇温速度を設定することにより、本発明の昇温方法を適用することができる。   The average heating rate in the first step and the second step can be appropriately determined in consideration of the type of bakery food to be produced, the composition of the dough, the weight, the shape, and the like. For example, even in the case of wrappings that contain fillings having different specific heats, the temperature rising method of the present invention can be applied by setting an average temperature rising rate according to each characteristic.

第一工程と第二工程における生地を昇温する方法は、生地の平均昇温速度を、本発明の効果を奏する範囲内にし得る方法であれば、特に限定されるものではない。また、公知の昇温装置を用いて昇温することもできる。本発明の昇温方法においては、例えば、マグネトロンを用いたマイクロ波照射による加熱方法(例えば、特開2000−218959号公報参照。)が好適である。   The method for raising the temperature of the dough in the first step and the second step is not particularly limited as long as the average temperature rise rate of the dough can be within the range where the effects of the present invention can be achieved. Moreover, it can also heat up using a well-known temperature rising apparatus. In the temperature raising method of the present invention, for example, a heating method by microwave irradiation using a magnetron (for example, see Japanese Patent Application Laid-Open No. 2000-218959) is suitable.

第一工程と第二工程における生地を昇温する方法は、より具体的には、第二工程における平均昇温速度が0.01〜0.35℃/秒とし得る方法であればよく、生地を連続的に加熱する方法であってもよく、不連続的に加熱する方法であってもよい。例えば、加熱処理時間と非加熱処理時間を適宜組み合わせることにより、細かい昇温速度調整が可能となるため、連続的に加熱処理をするよりも簡便に、生地の平均昇温速度を目的の範囲内に維持することができる。これは、加熱処理の間に非加熱時間を設けることにより、生地に蓄積された熱エネルギーが、非加熱時間内において、内部伝熱により拡散するため、生地内における温度のバラツキが緩和されるためと推察される。なお、加熱処理と非加熱処理の組み合わせ、つまり、加熱時間と非加熱時間の切り替えのタイミング等は、加熱処理に用いる装置、加熱時の単位時間当たりの加熱強度(生地に与えられる熱エネルギー量)、生地の形状、大きさ、種類、フィリングの有無等を考慮して、適宜決定することができる。   More specifically, the method for raising the temperature of the dough in the first step and the second step may be any method as long as the average temperature rise rate in the second step can be 0.01 to 0.35 ° C./second. May be a continuous heating method or a discontinuous heating method. For example, by appropriately combining the heat treatment time and the non-heat treatment time, it is possible to finely adjust the temperature increase rate, so that the average temperature increase rate of the dough is within the target range more easily than continuous heat treatment. Can be maintained. This is because, by providing a non-heating time during the heat treatment, the thermal energy accumulated in the dough is diffused by internal heat transfer within the non-heating time, so the temperature variation in the dough is alleviated. It is guessed. The combination of heat treatment and non-heat treatment, that is, the timing of switching between the heat time and the non-heat time, etc., is the equipment used for the heat treatment, the heating intensity per unit time during heating (the amount of heat energy given to the dough) The shape can be determined as appropriate in consideration of the shape, size, type, and the presence / absence of filling.

例えば、特開2000−218959号公報記載のマグネトロンを用いたマイクロ波照射装置を用いた場合には、マグネトロンによるマイクロ波の照射状態と非照射状態を適宜切り替えることにより、簡便に、第二工程における生地の平均昇温速度を0.01〜0.35℃/秒とすることができる。また、マグネトロン等の加熱処理のための熱源は、1であってもよく、複数あってもよい。例えば、複数のマグネトロンを装置内に適当なバランスで配置し、各マグネトロンの照射・非照射状態の切り替えを別個独立に行うことにより、一度の昇温処理により複数の生地を扱う場合であっても、生地温度のバラツキを抑えて良好に生地を昇温させることができる。   For example, in the case of using a microwave irradiation apparatus using a magnetron described in Japanese Patent Application Laid-Open No. 2000-218959, by appropriately switching between the microwave irradiation state and the non-irradiation state by the magnetron, The average temperature rising rate of the dough can be set to 0.01 to 0.35 ° C./second. Further, the heat source for heat treatment such as magnetron may be one or plural. For example, even if a plurality of magnetrons are arranged in an appropriate balance in the apparatus and a plurality of doughs are handled by a single temperature increase process by switching the irradiation / non-irradiation state of each magnetron independently. The dough temperature can be raised satisfactorily while suppressing variations in the dough temperature.

イーストを用いたパン類の生地は、本発明の昇温方法を用いて昇温した後、発酵し、焼成することにより、ベーカリー製品を製造することができる。一方、イーストを用いないパイ類の生地は、本発明の昇温方法を用いて昇温した後、焼成することにより、ベーカリー製品を製造することができる。本発明の昇温方法を用いて昇温した生地は、生地中の温度ムラが小さく、かつ、水分の不均一化がほとんど進行していないため、焼成後に得られるベーカリー製品は、きめが細かくて歯切れが良く、クラストが薄く、老化が遅いという優れた特性を有する。なお、昇温後の生地のホイロ発酵や焼成は、常法により行うことができる。   Bakery products using yeast can be produced by heating and baking the bread dough using the temperature increasing method of the present invention. On the other hand, baked goods can be manufactured by baking the dough of the pie which does not use yeast, after heating using the temperature rising method of this invention. The dough heated using the temperature raising method of the present invention has little temperature unevenness in the dough, and the moisture non-uniformity has hardly progressed. Therefore, the bakery product obtained after baking has a fine texture. It has excellent characteristics such as good crispness, thin crust, and slow aging. In addition, the proof fermentation and baking of the dough after temperature rising can be performed by a conventional method.

次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
なお、本実施例において用いた解凍庫は、2本ずつ庫内上下に対向するように、合計4本のマグネトロン(出力850W)を備えた解凍庫である。各マグネトロンは、別個独立に、マイクロ波の照射・非照射を切り替えることが可能なものである。以下の実施例においては、全て、8秒間を1コマとして、各コマにおけるマイクロ波の照射・非照射を適宜切り替えることにより、冷凍生地の昇温を行った。
EXAMPLES Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited to a following example.
Note that the thawing cabinet used in this example is a thawing cabinet provided with a total of four magnetrons (output 850 W) so as to face each other vertically in the cabinet. Each magnetron can switch microwave irradiation / non-irradiation independently. In all of the following examples, the temperature of the frozen dough was increased by appropriately switching between microwave irradiation and non-irradiation in each frame, with 8 frames being one frame.

[実施例1、2及び比較例1]
定法にて作成した冷凍あんぱん生地(生地重量35g、餡子重量40g、計75g/個)を−18℃の冷凍庫より取り出し、解凍庫中のターンテーブル上(8秒/回転)に8個を等間隔、同心円状に並べ、マイクロ波を照射して昇温を行い、それぞれの芯温及び表面温度の変化を計測し、8個の生地の平均値及び標準偏差を算出した(実施例1)。具体的には、解凍庫内の4箇所(庫内内側上部、庫内内側上部、庫内外側上部、庫内外側下部)に1本ずつ設置されたマグネトロンを、独立して8秒ごとにマイクロ波の照射・非照射を切り替えることにより、ターンテーブル上の冷凍あんぱん生地に、不連続にマイクロ波を照射することにより、昇温を行った。表1は、マイクロ波照射時間とタイミング、すなわち、各マグネトロンの照射・非照射の切り替えを1コマ(8秒間)ごとに示したものである。表中、「内側上部」、「内側上部」、「外側上部」、「外側下部」は、マグネトロンの設置場所を示している。また、「○」はマイクロ波を照射している状態を、「−」はマイクロ波を照射していない状態を、それぞれ示している。
[Examples 1 and 2 and Comparative Example 1]
Frozen crushed dough (dough weight 35g, eggplant weight 40g, total 75g / piece) was taken out from the -18 ° C freezer and 8 pieces were put on the turntable (8 seconds / rotation) in the thawing box. The temperature was raised by irradiating with microwaves at intervals and concentric circles, the changes in the core temperature and the surface temperature were measured, and the average value and standard deviation of the eight fabrics were calculated (Example 1). Specifically, magnetrons installed one by one in four locations in the thawing chamber (inside upper part of the warehouse, upper part of the inner side of the warehouse, upper part of the inner side of the warehouse, and lower part of the outer side of the warehouse) are micro-independently every 8 seconds. By switching between irradiation and non-irradiation of waves, the temperature was increased by discontinuously irradiating the frozen protein dough on the turntable with microwaves. Table 1 shows microwave irradiation time and timing, that is, switching between irradiation and non-irradiation of each magnetron for each frame (8 seconds). In the table, “inner upper part”, “inner upper part”, “outer upper part”, and “outer lower part” indicate the installation location of the magnetron. Further, “◯” indicates a state in which the microwave is irradiated, and “−” indicates a state in which the microwave is not irradiated.

Figure 2009240203
Figure 2009240203

また、マイクロ波照射時間とタイミングを表2にした以外は、実施例1と同様にして、同じ種類の冷凍あんぱん生地8個を昇温した(実施例2)。それぞれの芯温及び表面温度の変化を計測し、8個の生地の平均値及び標準偏差を算出した。   In addition, eight pieces of the same type of frozen protein dough were heated in the same manner as in Example 1 except that the microwave irradiation time and timing were set in Table 2 (Example 2). The changes in the core temperature and surface temperature of each were measured, and the average value and standard deviation of the eight fabrics were calculated.

Figure 2009240203
Figure 2009240203

一方で、同じ種類の冷凍あんぱん生地8個を、自然解凍法(天板に並べた後、ビニールをかけて温度20℃、湿度60%の室内で2時間15分間放置。特に環境雰囲気以外に昇温エネルギーを与えたり、緩和時間を設けたりはしない。)により昇温した(比較例1)。それぞれの芯温及び表面温度の変化を計測し、8個の生地の平均値を算出した。   On the other hand, 8 frozen frozen doughs of the same type were placed in a natural thawing method (lined on a top plate and then left in a room with a temperature of 20 ° C and a humidity of 60% for 2 hours and 15 minutes. The temperature was raised (Comparative Example 1). The change of each core temperature and surface temperature was measured, and the average value of eight dough was computed.

Figure 2009240203
Figure 2009240203

得られた結果を、図1及び表3に示した。表3中、「平均生地温度」は、芯温と表面温度との平均値である。なお、例えば実施例1において、32秒後の温度は、28秒時点から32秒後までの8秒間(4コマ目)に、全くマイクロ波を照射しなかった後に測定した温度を示しており、40秒後の温度は、32秒時点から40秒後までの8秒間(5コマ目)に、庫内内側下部と庫内外側下部のマイクロトロンからマイクロ波を照射した後に測定した温度を示している。
一方、図1は、表3記載のそれぞれの生地温度の変化と、本発明の昇温方法における第一及び第二工程の平均昇温速度の上限値と下限値を傾きとする直線とを示したものである。図中、線1は第一工程の平均昇温速度の下限値(0.05℃/秒)を傾きとする直線、線2は第一工程の平均昇温速度の上限値(2.00℃/秒)を傾きとする直線、線3は第二工程の平均昇温速度の下限値(0.01℃/秒)を傾きとする直線、線4は第二工程の平均昇温速度の上限値(0.35℃/秒)を傾きとする直線である。また、線5は実施例1における生地の芯温の平均値、線6は実施例1における生地の表面温度の平均値、線7は実施例1における平均生地温度の平均値、線8は実施例2における生地の芯温の平均値、線9は実施例2における生地の表面温度の平均値、線10は実施例2における平均生地温度の平均値、線11は比較例1における平均生地温度の平均値をそれぞれ示している。
The obtained results are shown in FIG. In Table 3, “average fabric temperature” is an average value of the core temperature and the surface temperature. For example, in Example 1, the temperature after 32 seconds indicates the temperature measured after no microwave irradiation for 8 seconds (fourth frame) from 28 seconds to 32 seconds later, The temperature after 40 seconds indicates the temperature measured after irradiating microwaves from the inside lower part of the inside and the outside lower part of the inside of the warehouse for 8 seconds (5th frame) from the time of 32 seconds to 40 seconds later. Yes.
On the other hand, FIG. 1 shows changes in the respective dough temperatures listed in Table 3 and straight lines with slopes of the upper limit value and the lower limit value of the average heating rate in the first and second steps in the heating method of the present invention. It is a thing. In the figure, line 1 is a straight line with the lower limit (0.05 ° C./sec) of the average temperature increase rate in the first step as an inclination, and line 2 is the upper limit (2.00 ° C.) of the average temperature increase rate in the first step / Line) is a straight line with a slope, line 3 is a straight line with a slope of the lower limit value (0.01 ° C./second) of the average temperature increase rate in the second step, and line 4 is an upper limit of the average temperature rise rate in the second step. It is a straight line with the value (0.35 ° C./second) as the slope. Moreover, the line 5 is the average value of the core temperature of the fabric in Example 1, the line 6 is the average value of the surface temperature of the fabric in Example 1, the line 7 is the average value of the average fabric temperature in Example 1, and the line 8 is the implementation. The average value of the core temperature of the fabric in Example 2, line 9 is the average value of the surface temperature of the fabric in Example 2, line 10 is the average value of the average fabric temperature in Example 2, and line 11 is the average fabric temperature in Comparative Example 1. The average value of each is shown.

なお、実施例2よりも実施例1のほうが、生地の温度のバラツキが小さい傾向が観察された。これは、実施例2よりも実施例1において、マイクロ波の照射の切り替えを頻繁に行っているため、非照射時に、内部伝熱を利用してそれまでに蓄積した熱エネルギーを拡散し得るためであり、適宜設けた非照射時間がバラツキを緩和する時間となっているためと推察される。
また、昇温後の生地の状態を観察したところ、実施例1の生地は良好であったが、実施例2の生地は8個のうちの一部の底面が柔らかく、ややべたついていた。一方、比較例1の生地は、水が染み出しており、表面がべたついていた。
In addition, it was observed that the variation in the temperature of the fabric in Example 1 was smaller than that in Example 2. This is because the microwave irradiation is switched more frequently in the first embodiment than in the second embodiment, so that the heat energy accumulated so far can be diffused by using internal heat transfer at the time of non-irradiation. This is presumed to be because the non-irradiation time provided as appropriate is the time to alleviate the variation.
Further, when the state of the dough after the temperature increase was observed, the dough of Example 1 was good, but the dough of Example 2 was slightly sticky with some of the bottoms of the 8 pieces being soft. On the other hand, the fabric of Comparative Example 1 exudes water and has a sticky surface.

昇温後の生地を、オーブン用の天板に移し変え、温度38℃、湿度85%のホイロで75分間発酵させた後、200℃に設定したオーブンで10分間焼成してベーカリー製品(あんぱん)を製造した。得られたあんぱんを、約20℃の室温で2時間放置したものと、1日放置したものの、それぞれの食感(口溶け、しとり、きめ細かさ)及びあんぱんとしての好ましさを、それぞれ下記に示した評価基準に従って10名のパネラーにより評価した。評価の結果を表4に示した。また、ベーカリー製品の比容積の平均値(平均比容積)と、評価項目以外で気付いた点を特記事項として記載した。   After the temperature rise, the dough is transferred to an oven top plate, fermented for 75 minutes in a proofer with a temperature of 38 ° C and a humidity of 85%, and then baked in an oven set at 200 ° C for 10 minutes to make a bakery product (Anpan) Manufactured. The following table shows the texture (paste, mouthfeel, fineness) and the taste of each of the resulting anpan when left at room temperature of about 20 ° C for 2 hours and when left for 1 day. Evaluation was performed by 10 panelists according to the evaluation criteria. The evaluation results are shown in Table 4. Moreover, the average value (average specific volume) of the specific volume of the bakery product and the points noticed other than the evaluation items are described as special notes.

<口溶け>
5:非常に口溶け良く、口中で団子にならない。
4:口溶け良く、口中で殆ど団子にならない。
3:やや口溶け良く、一部口中で団子になる。
2: 口溶け悪く、口中でねちゃつき、団子状の塊となる。
1:非常に口溶け悪く、口中でねちゃついて飲み込み難い。
<しとり>
5:非常にしっとりして、ソフトな食感。
4:しっとりして、ソフトな食感。
3:ややパサつく部分がある。
2:全体にパサつき、部分的に硬い食感。
1:非常にパサつき、ボソついた硬い食感。
<きめ細かさの評価基準>
5:内相が非常にきめ細かく均一な状態。
4:内相がややきめ細かく、ほぼ均一な状態。
3:内相がきめ細かさと一部粗い部分が混在している状態。
2:内相が粗めで、やや不均一な状態。
1:内相が非常に粗く、不均一な状態。
<好ましさ>
5:非常に好ましい。
4:やや好ましい。
3:普通。
2:やや好ましくない。
1:非常に好ましくない。
<Melting mouth>
5: It melts very well and does not become a dumpling in the mouth.
4: Melt well, almost no dumplings in the mouth.
3: Slightly melts in the mouth and partly becomes dumpling in the mouth.
2: Melting in the mouth, sticking in the mouth, forming a dumpling lump.
1: The mouth melts so badly that it is sticky in the mouth and difficult to swallow.
<Shitori>
5: Very moist and soft texture.
4: Moist and soft texture.
3: There is a slightly cramped part.
2: Fully crisp and partially hard texture.
1: Very dry and crisp, hard texture.
<Evaluation criteria for fineness>
5: The inner phase is very fine and uniform.
4: The inner phase is slightly fine and almost uniform.
3: A state in which the inner phase is fine and partially rough.
2: The inner phase is rough and slightly non-uniform.
1: The inner phase is very rough and uneven.
<Preference>
5: Very preferable.
4: Slightly preferred.
3: Normal.
2: Slightly undesirable.
1: Very unfavorable.

Figure 2009240203
Figure 2009240203

本発明の昇温方法を用いたあんぱんは、解凍・昇温に要する時間が明らかに短いこと、及び、焼成後時間をおいても従来の解凍法を用いたあんぱんに比べて、口溶け、しとり、きめ細かさが共に優れており、時間が経ってもパサつかず、明らかに好ましい食感を維持していることが分かった。すなわち、これらの結果から、本発明の昇温方法を用いて昇温した生地を発酵後焼成して得られるベーカリー製品は、高品質であり、かつ、焼成後の老化が遅いという優れた特性を有することが明らかである。   The anpan using the temperature raising method of the present invention is clearly shorter in the time required for thawing and temperature raising, and melts in the mouth compared to the anpan using the conventional thawing method even after a baked time, It was found that both the fineness and the fineness were excellent. That is, from these results, the bakery product obtained by baking after fermentation of the dough heated using the temperature rising method of the present invention is of high quality and has the excellent property that aging after baking is slow. It is clear to have.

また、実施例1と実施例2のあんぱんを比較すると、実施例2のあんぱんは、実施例1のあんぱんよりも平均比容積が小さくなり、内相はややつまり気味になった。また、第二工程終了後ホイロ発酵前の昇温した生地では、従来法により昇温した生地と比べるとベタツキは顕かに抑制されているものの、一部生地の軟化によるバラツキ等の好ましくない状態が発現することが分かった。このような品質の問題は、平均昇温速度、特に第二工程における平均昇温速度が速過ぎるために、高い温度域における生地の温度ムラが大きくなるためと考えられる。昇温終了時の平均昇温速度が速過ぎる場合に生じるこのような品質の問題は、解凍前の冷凍生地の温度が高めの場合に、更に顕著に生じると予想される。つまり、実施例1と実施例2の比較から、第二工程における平均昇温速度が適切な速度範囲であることの重要性が示唆されている。   Moreover, when the proteins of Example 1 and Example 2 were compared, the protein of Example 2 had a smaller average specific volume than the protein of Example 1, and the inner phase was somewhat awkward. In addition, in the dough heated at the end of the second step and before the proofing, the stickiness is clearly suppressed as compared to the dough heated by the conventional method, but unfavorable state such as unevenness due to softening of some dough Was found to be expressed. Such a quality problem is thought to be because the temperature unevenness of the dough in a high temperature range becomes large because the average temperature rising rate, particularly the average temperature rising rate in the second step, is too high. Such a quality problem that occurs when the average rate of temperature increase at the end of temperature increase is too fast is expected to occur more significantly when the temperature of the frozen dough before thawing is high. That is, the comparison between Example 1 and Example 2 suggests the importance of the average rate of temperature increase in the second step being in an appropriate speed range.

[実施例3、4及び比較例2]
定法にて作成した冷凍メロンパン生地(生地重量48g、ビスケット生地重量29g、計77g/個)を−18℃の冷凍庫より取り出し、解凍庫中のターンテーブル上(8秒/回転)に8個を等間隔、同心円状に並べ、マイクロ波照射時間とタイミングを適宜調整してマイクロ波を照射し、昇温を行った(実施例3)。それぞれの芯温及び表面温度の変化を計測し、8個の生地の平均値及び標準偏差を算出した。
また、マイクロ波照射時間とタイミングを代えた以外は、実施例3と同様にして、同じ種類の冷凍メロンパン生地8個を昇温した(実施例4)。それぞれの芯温及び表面温度の変化を計測し、8個の生地の平均値及び標準偏差を算出した。
一方で、同じ種類の冷凍メロンパン生地8個を、自然解凍法(天板に並べた後、ビニールをかけて温度20.4℃、湿度60%の室内で2時間放置)により昇温した(比較例2)。それぞれの芯温及び表面温度の変化を計測し、8個の生地の平均値を算出した。
[Examples 3 and 4 and Comparative Example 2]
Frozen melon bread dough (dough weight 48g, biscuit dough weight 29g, total 77g / piece) taken out from a freezer at -18 ° C and put 8 pieces on the turntable (8 seconds / rotation) in the thawing box etc. The temperature was raised by arranging the intervals and concentric circles, adjusting the microwave irradiation time and timing as appropriate, and irradiating the microwave (Example 3). The changes in the core temperature and surface temperature of each were measured, and the average value and standard deviation of the eight fabrics were calculated.
Moreover, eight frozen melon bread doughs of the same type were heated in the same manner as in Example 3 except that the microwave irradiation time and timing were changed (Example 4). The changes in the core temperature and surface temperature of each were measured, and the average value and standard deviation of the eight fabrics were calculated.
On the other hand, eight frozen melon bread doughs of the same type were heated by a natural thawing method (after placing them on a top board and then placed in a room with a temperature of 20.4 ° C. and a humidity of 60% for 2 hours) Example 2). The change of each core temperature and surface temperature was measured, and the average value of eight dough was computed.

Figure 2009240203
Figure 2009240203

得られた結果を、図2及び表5に示した。表5中、「平均生地温度」は、芯温と表面温度との平均値である。一方、図2は、表5記載のそれぞれの生地温度の変化と、本発明の昇温方法における第一及び第二工程の平均昇温速度の上限値と下限値を傾きとする直線とを示したものである。図中、線1〜4は図1と同様である。また、線12は実施例3における生地の芯温の平均値、線13は実施例3における生地の表面温度の平均値、線14は実施例3における平均生地温度の平均値、線15は実施例4における生地の芯温の平均値、線16は実施例4における生地の表面温度の平均値、線17は実施例4における平均生地温度の平均値、線18は比較例2における平均生地温度の平均値をそれぞれ示している。
なお、昇温後の生地の状態を観察したところ、実施例3の生地は良好であったが、実施例4の生地はビスケット生地の一部が融解し、やや表面がべたついていた。一方、比較例2の生地は、水が染み出しており、表面がべたついていた。
The obtained results are shown in FIG. In Table 5, “average fabric temperature” is an average value of the core temperature and the surface temperature. On the other hand, FIG. 2 shows changes in the respective dough temperatures shown in Table 5 and straight lines with the upper and lower limits of the average heating rate in the first and second steps in the heating method of the present invention as slopes. It is a thing. In the figure, lines 1 to 4 are the same as those in FIG. Moreover, the line 12 is the average value of the core temperature of the fabric in Example 3, the line 13 is the average value of the surface temperature of the fabric in Example 3, the line 14 is the average value of the average fabric temperature in Example 3, and the line 15 is implemented. The average value of the core temperature of the fabric in Example 4, line 16 is the average value of the surface temperature of the fabric in Example 4, line 17 is the average value of the average fabric temperature in Example 4, and line 18 is the average fabric temperature in Comparative Example 2. The average value of each is shown.
In addition, when the state of the dough after the temperature increase was observed, the dough of Example 3 was good, but the dough of Example 4 was partially melted and the surface was somewhat sticky. On the other hand, the fabric of Comparative Example 2 exudes water and has a sticky surface.

昇温後の生地を、オーブン用の天板に移し変え、温度30℃、湿度60%のホイロで80分間発酵させた後、200℃に設定したオーブンで10分間焼成してベーカリー製品(メロンパン)を製造した。得られたメロンパンを、約20℃の室温で2時間放置したものと、1日放置したものの、それぞれの食感(歯切れ、口溶け、しとり)及びメロンパンとしての好ましさを10名のパネラーにより評価した。口溶け、しとり、好ましさの評価基準は前記のあんぱんと同様であり、歯切れは、下記に示した評価基準に従った。評価の結果を表6に示した。また、ベーカリー製品の比容積の平均値(平均比容積)と、評価項目以外で気付いた点を特記事項として記載した。   After the temperature rise, the dough is transferred to an oven top plate, fermented for 80 minutes in a proofer at 30 ° C and 60% humidity, then baked in an oven set at 200 ° C for 10 minutes and bakery products (melon bread) Manufactured. Although the obtained melon bread was left at room temperature of about 20 ° C. for 2 hours and left for 1 day, each panel was evaluated by 10 panelists for the texture (crisp, mouth melting, and wiping) and the preference for melon bread. did. The evaluation criteria for melting in the mouth, moistening, and preference were the same as those of the above-mentioned anpan, and the crispness was in accordance with the evaluation criteria shown below. The evaluation results are shown in Table 6. Moreover, the average value (average specific volume) of the specific volume of the bakery product and the points noticed other than the evaluation items are described as special notes.

<歯切れ>
5:非常に歯切れ良く、容易に噛み切れる
4:歯切れ良く、噛み切り易い
3:やや歯切れ良く、噛み切り辛い部分がある
2:やや歯切れ悪く、全体に噛み切り辛い
1:歯切れ悪く、非常に噛み切り辛い
<Chopping>
5: Very crisp and easy to bite. 4: Good crisp and easy to bite. 3: Slightly crisp and hard to bite. 2: Slightly crisp and bite to the whole. 1: Bad crisp and very bite. Difficult to cut

Figure 2009240203
Figure 2009240203

本発明の昇温方法を用いたメロンパンは、解凍・昇温に要する時間が明らかに短いこと、及び、焼成後時間をおいても従来の解凍法を用いたメロンパンに比べて、歯切れ、口溶け、しとりが共に優れており、時間が経ってもパサつかず、明らかに好ましい食感を維持していることが分かった。
一方、実施例3と4のメロンパンを比較すると、実施例2のあんぱんと同様に、第二工程における平均昇温速度が上限値に近い実施例4のメロンパンは、実施例3のものよりも、焼成品の比容積が小さくなり、内相はややつまり気味になる、ビスケット生地中の油脂の溶け出しが発生する等の品質の問題が生じやすい傾向が観察された。このことからも、第二工程における平均昇温速度が適切な速度範囲であることの重要性が示唆されている。
Melon bread using the heating method of the present invention is clearly shorter time required for thawing and heating, and compared to melon bread using the conventional thawing method even after a baked time, crisp, melted in the mouth, It was found that both the shitori were excellent and did not pass over time, clearly maintaining a favorable texture.
On the other hand, when the melon breads of Examples 3 and 4 are compared, the melon bread of Example 4 in which the average temperature rising rate in the second step is close to the upper limit value is similar to that of Example 2 than that of Example 3. It was observed that the specific volume of the baked product was reduced, the inner phase was somewhat clogged, and the quality problems such as the fat and oil in the biscuit dough were likely to be dissolved. This also suggests the importance of the average temperature increase rate in the second step being in an appropriate speed range.

[比較例3及び4]
実施例3と同じ種類の冷凍メロンパン生地8個を、特許文献5記載の方法に従い、昇温を行った(比較例3)。具体的には、ドウコンディショナーを使用し、最初の冷凍状態から温度10.9℃、湿度80%RHの庫内雰囲気条件で、平均生地温度10.2℃まで140分間かけて解凍(昇温速度0.219℃/分=0.0037℃/sec)した後、16.4℃、85%RHの雰囲気条件で3時間保持(昇温速度0.032℃/分=0.0005℃/sec)し、昇温完了とした。それぞれの芯温及び表面温度の変化を計測し、8個の生地の平均値及び標準偏差を算出した。
一方、実施例3と同じ種類の冷凍メロンパン生地8個を、第一工程を本発明の昇温方法により行った後、第二工程を自然解凍により昇温を行った(比較例4)。具体的には、第一工程の平均昇温速度を0.517℃/secで平均生地温度を10.6℃まで上昇させた後、天板に並べ、ビニールをかけて温度20.4℃、湿度60%の室内雰囲気下で65分間放置して平均生地温度18.4℃まで昇温し、昇温完了とした。それぞれの芯温及び表面温度の変化を計測し、8個の生地の平均値及び標準偏差を算出した。
なお、昇温後の生地の状態を観察したところ、比較例3の生地は、水が染み出しており、表面がべたついていた。一方、比較例4の生地は、表面がやや乾燥していた。
[Comparative Examples 3 and 4]
Eight frozen melon bread doughs of the same type as in Example 3 were heated according to the method described in Patent Document 5 (Comparative Example 3). Specifically, using a dough conditioner, thawing over 140 minutes from the first frozen state to an average dough temperature of 10.2 ° C. under an atmospheric condition of a temperature of 10.9 ° C. and a humidity of 80% RH (heating rate) 0.219 ° C / min = 0.0037 ° C / sec) and then held for 3 hours at 16.4 ° C and 85% RH (temperature increase rate 0.032 ° C / min = 0.0005 ° C / sec) The temperature rise was completed. The changes in the core temperature and surface temperature of each were measured, and the average value and standard deviation of the eight fabrics were calculated.
On the other hand, eight frozen melon bread doughs of the same type as in Example 3 were subjected to the first step by the temperature raising method of the present invention, and then the second step was heated by natural thawing (Comparative Example 4). Specifically, after increasing the average temperature of the first step at 0.517 ° C./sec and increasing the average dough temperature to 10.6 ° C., it is placed on the top plate and covered with vinyl at a temperature of 20.4 ° C. The mixture was left for 65 minutes in an indoor atmosphere at a humidity of 60%, and the temperature was raised to an average dough temperature of 18.4 ° C. The changes in the core temperature and surface temperature of each were measured, and the average value and standard deviation of the eight fabrics were calculated.
In addition, when the state of the dough after the temperature increase was observed, the dough of Comparative Example 3 had water oozed out and the surface was sticky. On the other hand, the surface of the fabric of Comparative Example 4 was slightly dry.

昇温後の生地を、オーブン用の天板に移し変え、温度30℃、湿度60%のホイロで80分間発酵させた後、200℃に設定したオーブンで10分間焼成してベーカリー製品(メロンパン)を製造した。得られたメロンパンを、約20℃の室温で2時間放置したものと、1日放置したものの、それぞれの食感(歯切れ、口溶け、しとり)及びメロンパンとしての好ましさを10名のパネラーにより評価した。口溶け、しとり、好ましさの評価基準は前記のあんぱんと同様であり、歯切れの評価基準は、前記のメロンパンと同様である。評価の結果を表7に示した。また、ベーカリー製品の比容積の平均値(平均比容積)と、評価項目以外で気付いた点を特記事項として記載した。   After the temperature rise, the dough is transferred to an oven top plate, fermented for 80 minutes in a proofer at 30 ° C and 60% humidity, then baked in an oven set at 200 ° C for 10 minutes and bakery products (melon bread) Manufactured. Although the obtained melon bread was left at room temperature of about 20 ° C. for 2 hours and left for 1 day, each panel was evaluated by 10 panelists for the texture (crisp, mouth melting, and wiping) and the preference for melon bread. did. The evaluation criteria for melting in the mouth, moistening, and preference are the same as those for the above-mentioned anpan, and the evaluation criteria for crispness are the same as those for the above-mentioned melon bread. The results of evaluation are shown in Table 7. Moreover, the average value (average specific volume) of the specific volume of the bakery product and the points noticed other than the evaluation items are described as special notes.

Figure 2009240203
Figure 2009240203

本発明の昇温方法を用いたメロンパンは、特許文献5記載の方法に比べ、昇温に要する時間は圧倒的に短く、なおかつ品質的にも非常に優れている事が分かった。
同じく、本発明の第一工程のみで平均生地温度を10℃付近まで昇温し、その後、第二工程を自然解凍法と同じ条件下で緩慢に昇温した場合に比べても、同様に、顕著に品質が優れている事が分かった。
すなわち、これらの結果から、短時間で速やかに、かつ、本発明の昇温速度範囲で解凍・昇温することにより、極めて良好な品質のベーカリー製品を得られることが明らかである。
It was found that the melon bread using the temperature raising method of the present invention has an overwhelmingly short time required for raising the temperature and is very excellent in quality as compared with the method described in Patent Document 5.
Similarly, even if the average dough temperature is raised to about 10 ° C. only in the first step of the present invention, and then the second step is slowly raised under the same conditions as the natural thawing method, It was found that the quality was remarkably excellent.
That is, from these results, it is clear that a bakery product with extremely good quality can be obtained by thawing and heating quickly in a short time and within the temperature increase rate range of the present invention.

[実施例5、6及び比較例5]
定法にて作成した冷凍クロワッサン生地(生地重量55g/個)を−18℃の冷凍庫より取り出し、解凍庫中のターンテーブル上(8秒/回転)に8個を等間隔、同心円状に並べ、マイクロ波照射時間とタイミングを適宜調整してマイクロ波を照射し、昇温を行った(実施例5)。それぞれの芯温及び表面温度の変化を計測し、8個の生地の平均値及び標準偏差を算出した。
また、マイクロ波照射時間とタイミングを代えた以外は、実施例5と同様にして、同じ種類の冷凍クロワッサン生地8個を昇温した(実施例6)。それぞれの芯温及び表面温度の変化を計測し、8個の生地の平均値及び標準偏差を算出した。
一方で、同じ種類の冷凍クロワッサン生地8個を、自然解凍法(天板に並べた後、ビニールをかけて温度20℃、湿度60%の室内で1時間45分間放置)により昇温した(比較例5)。それぞれの芯温及び表面温度の変化を計測し、8個の生地の平均値を算出した。
[Examples 5 and 6 and Comparative Example 5]
Frozen croissant dough (dough weight 55g / piece) prepared by a regular method is taken out from a freezer at -18 ° C, and 8 pieces are arranged on a turntable (8 seconds / rotation) in a thawing box at equal intervals and concentrically. The microwave irradiation was performed by appropriately adjusting the wave irradiation time and timing, and the temperature was raised (Example 5). The changes in the core temperature and surface temperature of each were measured, and the average value and standard deviation of the eight fabrics were calculated.
In addition, eight frozen croissant doughs of the same type were heated in the same manner as in Example 5 except that the microwave irradiation time and timing were changed (Example 6). The changes in the core temperature and surface temperature of each were measured, and the average value and standard deviation of the eight fabrics were calculated.
On the other hand, eight frozen croissant doughs of the same type were heated by a natural thawing method (after placing them on a top board and then placed in a room with a temperature of 20 ° C. and a humidity of 60% for 1 hour and 45 minutes). Example 5). The change of each core temperature and surface temperature was measured, and the average value of eight dough was computed.

Figure 2009240203
Figure 2009240203

得られた結果を、図3及び表8に示した。表8中、「平均生地温度」は、芯温、角温度、及び表面温度の平均値である。一方、図3は、表8記載のそれぞれの生地温度の変化と、本発明の昇温方法における第一及び第二工程の平均昇温速度の上限値と下限値を傾きとする直線とを示したものである。図中、線1〜4は図1と同様である。また、線19は実施例5における生地の芯温の平均値、線20は実施例5における生地の角温度の平均値、線21は実施例5における生地の表面温度の平均値、線22は実施例5における平均生地温度の平均値、線23は実施例6における生地の芯温の平均値、線24は実施例6における生地の角温度の平均値、線25は実施例6における生地の表面温度の平均値、線26は実施例6における平均生地温度の平均値、線27は比較例3における平均生地温度の平均値をそれぞれ示している。
なお、昇温後の生地の状態を観察したところ、実施例5の生地は良好であったが、実施例6の生地は油脂が溶けだし、一部べたついていた。一方、比較例5の生地は、水が染み出しており、表面がべたついていた。
The obtained results are shown in FIG. In Table 8, “average fabric temperature” is an average value of core temperature, angular temperature, and surface temperature. On the other hand, FIG. 3 shows changes in the respective dough temperatures shown in Table 8 and straight lines with the upper limit value and lower limit value of the average heating rate of the first and second steps in the heating method of the present invention as slopes. It is a thing. In the figure, lines 1 to 4 are the same as those in FIG. Moreover, the line 19 is the average value of the core temperature of the fabric in Example 5, the line 20 is the average value of the angular temperature of the fabric in Example 5, the line 21 is the average value of the surface temperature of the fabric in Example 5, and the line 22 is The average value of the average fabric temperature in Example 5, the line 23 is the average value of the core temperature of the fabric in Example 6, the line 24 is the average value of the angular temperature of the fabric in Example 6, and the line 25 is the texture of the fabric in Example 6. The average value of the surface temperature, the line 26 indicates the average value of the average dough temperature in Example 6, and the line 27 indicates the average value of the average dough temperature in Comparative Example 3, respectively.
In addition, when the state of the dough after the temperature increase was observed, the dough of Example 5 was good, but the dough of Example 6 started to dissolve oil and fat and was partially sticky. On the other hand, the fabric of Comparative Example 5 had water oozing out and the surface was sticky.

昇温後の生地を、オーブン用の天板に移し変え、温度28℃、湿度75%のホイロで80分間発酵させた後、200℃に設定したオーブンで16分間焼成してベーカリー製品(クロワッサン)を製造した。得られたクロワッサンを、約20℃の室温で2時間放置したものと、1日放置したものの、それぞれの食感(口溶け、歯切れ、サク感)及びクロワッサンとしての好ましさを10名のパネラーにより評価した。口溶け、歯切れ、好ましさの評価基準は前記のメロンパンと同様であり、サク感は、下記に示した評価基準に従った。評価の結果を表9に示した。また、ベーカリー製品の比容積の平均値(平均比容積)と、評価項目以外で気付いた点を特記事項として記載した。   After the temperature rise, the dough is transferred to an oven top plate, fermented for 80 minutes in a proofer with a temperature of 28 ° C and a humidity of 75%, then baked for 16 minutes in an oven set at 200 ° C for bakery products (croissants) Manufactured. Although the croissants obtained were left at room temperature of about 20 ° C. for 2 hours and left for 1 day, the texture of each mouth (melted, crisp, crispy) and the preference for croissants were evaluated by 10 panelists. evaluated. The evaluation standards for melting in the mouth, crispness and preference were the same as for the melon bread, and the crispness was in accordance with the evaluation standards shown below. The evaluation results are shown in Table 9. Moreover, the average value (average specific volume) of the specific volume of the bakery product and the points noticed other than the evaluation items are described as special notes.

<サク感>
5:クラストが非常にサクサクしている
4:クラストがややサクサクしている
3:クラストがサクサクしているが、一部重く硬い部分がある
2:クラストがあまりサクサクしておらず、全体に重く硬い
1:クラストがサクサクしておらず、フニャフニャして硬い
<Crunch>
5: The crust is very crisp 4: The crust is somewhat crisp 3: The crust is crisp, but there are some heavy and hard parts 2: The crust is not so crisp and heavy overall Hard 1: The crust is not crisp and hard

Figure 2009240203
Figure 2009240203

本発明の昇温方法を用いたクロワッサンは、解凍・昇温に要する時間が明らかに短いこと、及び、焼成後時間をおいても従来の解凍法を用いたクロワッサンに比べて、口溶け、歯切れ、サク感が共に優れており、時間が経ってもパサつかず、明らかに好ましい食感を維持していることが分かった。
一方、実施例5と6のクロワッサンを比較すると、実施例2のあんぱんと同様に、第二工程における平均昇温速度が上限値に近い実施例6のクロワッサンは、実施例5のものよりも、焼成品の比容積が小さくなり、生地中の油脂の溶け出しが発生することに起因して、焼成形状のバラツキが大きくなる等の品質の問題が生じやすい傾向が観察された。このことからも、第二工程における平均昇温速度が適切な速度範囲であることの重要性が示唆されている。
The croissant using the temperature rising method of the present invention is clearly shorter in the time required for thawing and temperature rising, and compared with the croissant using the conventional thawing method even after the time of baking, melting in the mouth, crispness, It was found that both the crispy feelings were excellent and did not stick even over time, clearly maintaining a favorable texture.
On the other hand, when the croissants of Examples 5 and 6 are compared, the croissant of Example 6 in which the average temperature increase rate in the second step is close to the upper limit as in the case of Example 2 is more than that of Example 5. It was observed that the specific volume of the baked product was reduced and the oil and fats in the dough were melted out, so that quality problems such as increased variation in the baked shape were likely to occur. This also suggests the importance of the average temperature increase rate in the second step being in an appropriate speed range.

[実施例7、8及び比較例6]
定法にて作成した冷凍くるみパン生地(生地重量70g/個)を−18℃の冷凍庫より取り出し、解凍庫中のターンテーブル上(8秒/回転)に8個を等間隔、同心円状に並べ、マイクロ波照射時間とタイミングを適宜調整してマイクロ波を照射し、昇温を行った(実施例7)。それぞれの芯温及び表面温度の変化を計測し、8個の生地の平均値及び標準偏差を算出した。
また、マイクロ波照射時間とタイミングを代えた以外は、実施例7と同様にして、同じ種類の冷凍くるみパン生地8個を昇温した(実施例8)。それぞれの芯温及び表面温度の変化を計測し、8個の生地の平均値及び標準偏差を算出した。
一方で、同じ種類の冷凍くるみパン生地8個を、自然解凍法(天板に並べた後、ビニールをかけて温度20℃、湿度60%の室内で3時間15分間放置)により昇温した(比較例6)。それぞれの芯温及び表面温度の変化を計測し、8個の生地の平均値を算出した。
[Examples 7 and 8 and Comparative Example 6]
Frozen walnut bread dough (dough weight 70g / piece) prepared by a regular method is taken out from a freezer at -18 ° C, and 8 pieces are arranged in a concentric circle at regular intervals on a turntable (8 seconds / rotation) in a thawing box. The microwave irradiation was performed by appropriately adjusting the wave irradiation time and timing, and the temperature was raised (Example 7). The changes in the core temperature and surface temperature of each were measured, and the average value and standard deviation of the eight fabrics were calculated.
Further, eight frozen walnut bread doughs of the same kind were heated in the same manner as in Example 7 except that the microwave irradiation time and timing were changed (Example 8). The changes in the core temperature and surface temperature of each were measured, and the average value and standard deviation of the eight fabrics were calculated.
On the other hand, eight frozen walnut bread doughs of the same type were heated by a natural thawing method (after placing them on a top board and covering with vinyl for 3 hours and 15 minutes in a room with a temperature of 20 ° C. and a humidity of 60%) (comparison) Example 6). The change of each core temperature and surface temperature was measured, and the average value of eight dough was computed.

Figure 2009240203
Figure 2009240203

得られた結果を、図4及び表10に示した。表10中、「平均生地温度」は、芯温と表面温度との平均値である。一方、図4は、表10記載のそれぞれの生地温度の変化と、本発明の昇温方法における第一及び第二工程の平均昇温速度の上限値と下限値を傾きとする直線とを示したものである。図中、線1〜4は図1と同様である。また、線28は実施例7における生地の芯温の平均値、線29は実施例7における生地の表面温度の平均値、線30は実施例7における平均生地温度の平均値、線31は実施例8における生地の芯温の平均値、線32は実施例8における生地の表面温度の平均値、線33は実施例8における平均生地温度の平均値、線34は比較例4における平均生地温度の平均値をそれぞれ示している。
なお、昇温後の生地の状態を観察したところ、実施例7の生地は良好であったが、実施例8の生地は一部表面が乾燥していた。一方、比較例6の生地は、水が染み出しており、表面がべたついていた。
The obtained results are shown in FIG. In Table 10, “average fabric temperature” is an average value of the core temperature and the surface temperature. On the other hand, FIG. 4 shows the change of each dough temperature of Table 10, and the straight line which makes the upper limit value and the lower limit value of the average temperature increase rate of the 1st and 2nd process in the temperature rising method of this invention the inclination. It is a thing. In the figure, lines 1 to 4 are the same as those in FIG. Moreover, the line 28 is the average value of the core temperature of the fabric in Example 7, the line 29 is the average value of the surface temperature of the fabric in Example 7, the line 30 is the average value of the average fabric temperature in Example 7, and the line 31 is implemented. The average value of the core temperature of the fabric in Example 8, the line 32 is the average value of the surface temperature of the fabric in Example 8, the line 33 is the average value of the average fabric temperature in Example 8, and the line 34 is the average fabric temperature in Comparative Example 4. The average value of each is shown.
In addition, when the state of the dough after the temperature rise was observed, the dough of Example 7 was good, but the surface of the dough of Example 8 was partially dried. On the other hand, the fabric of Comparative Example 6 exudes water and has a sticky surface.

昇温後の生地を、ガス抜き後、丸め成形し、周囲に5本放射状に10mm程度の切れ目を入れた後、オーブン用の天板に移し変え、温度38℃、湿度85%のホイロで65分間発酵させた後、200℃に設定したオーブンで10分間焼成してベーカリー製品(くるみパン)を製造した。得られたくるみパンを、約20℃の室温で2時間放置したものと、1日放置したものの、それぞれの食感(口溶け、しとり、ソフト感)及びくるみパンとしての好ましさを10名のパネラーにより評価した。口溶け、しとりの評価基準は前記のあんぱんと同様であり、ソフト感は、下記に示した評価基準に従った。評価の結果を表11に示した。また、ベーカリー製品の比容積の平均値(平均比容積)を記載した。   The dough after the temperature rise is degassed, rounded and molded, and 5 perimeters are cut in a radial direction of about 10 mm, and then transferred to a top plate for an oven. After fermenting for a minute, it was baked for 10 minutes in an oven set at 200 ° C. to produce a bakery product (walnut bread). The resulting walnut bread was allowed to stand at room temperature of about 20 ° C. for 2 hours and left for 1 day, but the texture (melted in the mouth, moisturized, soft feeling) and the preference for walnut bread of 10 people Evaluated by panelists. The evaluation criteria for melting in the mouth and sushi are the same as those of the above-mentioned anpan, and the soft feeling was in accordance with the evaluation criteria shown below. The evaluation results are shown in Table 11. Moreover, the average value (average specific volume) of the specific volume of bakery products was described.

<ソフト感>
5:全体に非常に柔らかく、ふんわりしている
4:柔らかく、ふんわりしている
3:柔らかいが、一部しまって硬さを感じる
2:やや硬く、ボソつきを感じる
1:全体に硬く、ボソついている
<Soft feeling>
5: Very soft and fluffy 4: Soft and fluffy 3: Soft, but partly feels firmness 2: Slightly hard, feels sticky 1: Overall hard, sticky Have

Figure 2009240203
Figure 2009240203

本発明の昇温方法を用いたくるみパンは、解凍・昇温に要する時間が明らかに短いこと、及び、焼成後時間をおいても従来の解凍法を用いたくるみパンに比べて、口溶け、しとり、ソフト感が共に優れており、時間が経ってもパサつかず、明らかに好ましい食感を維持していることが分かった。
一方、実施例7と8のくるみパンを比較すると、実施例2のあんぱんと同様に、第二工程における平均昇温速度が上限値に近い実施例8のくるみパンは、実施例7のものよりも、焼成品の比容積が小さくなり、食感が若干損なわれる等の品質の問題が生じやすい傾向が観察された。このことからも、第二工程における平均昇温速度が適切な速度範囲であることの重要性が示唆されている。
The walnut bread using the temperature rising method of the present invention is clearly shorter in the time required for thawing and temperature rising, and melts in the mouth compared to the walnut bread using the conventional thawing method even after a baked time, It has been found that both the softness and the soft feeling are excellent, and it does not stick over time, and clearly maintains a favorable texture.
On the other hand, when comparing the crushed breads of Examples 7 and 8, the crushed bread of Example 8 in which the average temperature rising rate in the second step is close to the upper limit value is similar to that of Example 7 in the same manner as the anpan of Example 2. However, it was observed that the specific volume of the baked product tends to be small and quality problems such as a slight loss of texture are likely to occur. This also suggests the importance of the average temperature increase rate in the second step being in an appropriate speed range.

本発明の冷凍生地の昇温方法は、様々な種類の組成、重量、形状のパン類又はパイ類の冷凍生地において、解凍・昇温時間の短縮化と品質の向上を可能にすることができるため、冷凍生地を利用したベーカリー製品の製造分野等で利用が可能である。   The method for raising the temperature of frozen dough according to the present invention can shorten the thawing / heating time and improve the quality of frozen doughs of breads or pies having various compositions, weights and shapes. Therefore, it can be used in the field of manufacturing bakery products using frozen dough.

冷凍生地の昇温工程における実施例1、2及び比較例1の、それぞれの生地温度の変化と、本発明の昇温方法における第一及び第二工程の平均昇温速度の上限値と下限値を傾きとする直線とを示したものである。Changes in the dough temperature of Examples 1 and 2 and Comparative Example 1 in the temperature raising step of the frozen dough, and the upper limit value and the lower limit value of the average temperature raising rate in the first and second steps in the temperature raising method of the present invention A straight line with a slope of is shown. 冷凍生地の昇温工程における実施例3、4及び比較例2の、それぞれの生地温度の変化と、本発明の昇温方法における第一及び第二工程の平均昇温速度の上限値と下限値を傾きとする直線とを示したものである。Changes in the respective dough temperatures of Examples 3 and 4 and Comparative Example 2 in the temperature raising step of the frozen dough, and the upper limit value and the lower limit value of the average temperature rising rate in the first and second steps in the temperature raising method of the present invention A straight line with a slope of is shown. 冷凍生地の昇温工程における実施例5、6及び比較例5の、それぞれの生地温度の変化と、本発明の昇温方法における第一及び第二工程の平均昇温速度の上限値と下限値を傾きとする直線とを示したものである。Changes in the respective dough temperatures in Examples 5 and 6 and Comparative Example 5 in the temperature raising step of the frozen dough, and the upper limit value and the lower limit value of the average temperature raising rate in the first and second steps in the temperature raising method of the present invention A straight line with a slope of is shown. 冷凍生地の昇温工程における実施例7、8及び比較例6の、それぞれの生地温度の変化と、本発明の昇温方法における第一及び第二工程の平均昇温速度の上限値と下限値を傾きとする直線とを示したものである。Changes in the respective dough temperatures in Examples 7 and 8 and Comparative Example 6 in the temperature raising step of the frozen dough, and the upper limit value and the lower limit value of the average temperature raising rate in the first and second steps in the temperature raising method of the present invention A straight line with a slope of is shown.

Claims (6)

パン類又はパイ類の冷凍生地を昇温する方法であって、
パン類又はパイ類の冷凍生地を、平均生地温度2〜15℃となるように昇温する第一工程と、
第一工程により得られた平均生地温度2〜15℃の生地を、平均生地温度15℃超28℃以下まで昇温する第二工程と、
を有し、
前記第二工程における平均昇温速度が0.01〜0.35℃/秒であることを特徴とする、冷凍生地の昇温方法。
A method for heating a frozen dough for breads or pie,
A first step of heating the frozen dough of breads or pies so that the average dough temperature is 2 to 15 ° C;
A second step of heating the dough having an average dough temperature of 2 to 15 ° C. obtained in the first step to an average dough temperature of more than 15 ° C. and not more than 28 ° C .;
Have
The method for raising the temperature of frozen dough, wherein the average temperature raising rate in the second step is 0.01 to 0.35 ° C / second.
前記第一工程が、平均生地温度−30〜―12℃の冷凍生地を、0.05〜2.00℃/秒の平均昇温速度で昇温することを特徴とする請求項1記載の冷凍生地の昇温方法。   2. The freezing according to claim 1, wherein the first step heats the frozen dough having an average dough temperature of −30 to −12 ° C. at an average heating rate of 0.05 to 2.00 ° C./sec. How to heat up the dough. 前記第一工程と前記第二工程の合計所要時間が1〜20分間であることを特徴とする請求項1又は2記載の冷凍生地の昇温方法。   The method for raising the temperature of the frozen dough according to claim 1 or 2, wherein the total time required for the first step and the second step is 1 to 20 minutes. 前記第二工程における平均昇温速度が、前記第一工程における平均昇温速度よりも遅いことを特徴とする請求項1〜3のいずれか記載の冷凍生地の昇温方法。   The method for heating a frozen dough according to any one of claims 1 to 3, wherein an average temperature increase rate in the second step is slower than an average temperature increase rate in the first step. パン類の冷凍生地を、請求項1〜4のいずれか記載の冷凍生地の昇温方法を用いて昇温した後、発酵し、焼成することにより製造されたベーカリー製品。   A bakery product manufactured by fermenting and baking a frozen dough of breads after heating the frozen dough according to any one of claims 1 to 4. パイ類の冷凍生地を、請求項1〜4のいずれか記載の冷凍生地の昇温方法を用いて昇温した後、焼成することにより製造されたベーカリー製品。   The bakery product manufactured by baking after baking the frozen dough of pie using the temperature rising method of the frozen dough in any one of Claims 1-4.
JP2008089754A 2008-03-31 2008-03-31 Heating method for frozen dough Active JP4932771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008089754A JP4932771B2 (en) 2008-03-31 2008-03-31 Heating method for frozen dough

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008089754A JP4932771B2 (en) 2008-03-31 2008-03-31 Heating method for frozen dough

Publications (2)

Publication Number Publication Date
JP2009240203A true JP2009240203A (en) 2009-10-22
JP4932771B2 JP4932771B2 (en) 2012-05-16

Family

ID=41302901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008089754A Active JP4932771B2 (en) 2008-03-31 2008-03-31 Heating method for frozen dough

Country Status (1)

Country Link
JP (1) JP4932771B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094092A (en) * 2011-10-31 2013-05-20 Nippon Flour Mills Co Ltd Method for baking melon bread using frozen dough
US10694753B2 (en) 2013-05-23 2020-06-30 Duke Manufacturing Co. Food preparation apparatus and methods
US10918112B2 (en) 2013-05-23 2021-02-16 Duke Manufacturing Co. Dough preparation apparatus and methods

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816667A (en) * 1981-07-20 1983-01-31 Matsushita Electric Ind Co Ltd Thawing by high-frequency heating
JPS62262936A (en) * 1986-05-07 1987-11-16 日本製粉株式会社 Defreezing of frozen bread dough
JPH03194317A (en) * 1989-12-21 1991-08-26 Toshiba Corp Heating and cooking method for frozen dough
JPH04325073A (en) * 1991-04-24 1992-11-13 Matsushita Electric Ind Co Ltd Thawing of food and low-temperature heating of food with high-frequency wave
JPH05168396A (en) * 1991-12-25 1993-07-02 Nippon Flour Mills Co Ltd Method for thawing and fermenting frozen yeast donut dough
JPH0779690A (en) * 1993-09-17 1995-03-28 Sanyo Electric Co Ltd Method for thawing frozen bread dough and its fermentation
JPH11155469A (en) * 1997-11-25 1999-06-15 Fukushima Kogyo Kk Thawing of frozen bread dough and apparatus for thawing
JP2000279165A (en) * 1999-03-31 2000-10-10 Oriental Yeast Co Ltd Freeze resistant yeast for making confectionary and bread
JP2003047391A (en) * 2000-10-02 2003-02-18 Kanegafuchi Chem Ind Co Ltd Drought-resistant yeast
WO2004005490A1 (en) * 2002-07-05 2004-01-15 Japan Tobacco Inc. Novel baker’s yeast and bread using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816667A (en) * 1981-07-20 1983-01-31 Matsushita Electric Ind Co Ltd Thawing by high-frequency heating
JPS62262936A (en) * 1986-05-07 1987-11-16 日本製粉株式会社 Defreezing of frozen bread dough
JPH03194317A (en) * 1989-12-21 1991-08-26 Toshiba Corp Heating and cooking method for frozen dough
JPH04325073A (en) * 1991-04-24 1992-11-13 Matsushita Electric Ind Co Ltd Thawing of food and low-temperature heating of food with high-frequency wave
JPH05168396A (en) * 1991-12-25 1993-07-02 Nippon Flour Mills Co Ltd Method for thawing and fermenting frozen yeast donut dough
JPH0779690A (en) * 1993-09-17 1995-03-28 Sanyo Electric Co Ltd Method for thawing frozen bread dough and its fermentation
JPH11155469A (en) * 1997-11-25 1999-06-15 Fukushima Kogyo Kk Thawing of frozen bread dough and apparatus for thawing
JP2000279165A (en) * 1999-03-31 2000-10-10 Oriental Yeast Co Ltd Freeze resistant yeast for making confectionary and bread
JP2003047391A (en) * 2000-10-02 2003-02-18 Kanegafuchi Chem Ind Co Ltd Drought-resistant yeast
WO2004005490A1 (en) * 2002-07-05 2004-01-15 Japan Tobacco Inc. Novel baker’s yeast and bread using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094092A (en) * 2011-10-31 2013-05-20 Nippon Flour Mills Co Ltd Method for baking melon bread using frozen dough
US10694753B2 (en) 2013-05-23 2020-06-30 Duke Manufacturing Co. Food preparation apparatus and methods
US10918112B2 (en) 2013-05-23 2021-02-16 Duke Manufacturing Co. Dough preparation apparatus and methods
US11602149B2 (en) 2013-05-23 2023-03-14 Duke Manufacturing Co. Food preparation apparatus and methods
US11779023B2 (en) 2013-05-23 2023-10-10 Duke Manufacturing Co. Dough preparation apparatus and methods

Also Published As

Publication number Publication date
JP4932771B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP6649280B2 (en) Method for producing heat-treated flour and method for producing mix for bakery food
JP2937422B2 (en) Frozen dough for coating of custard cream puff
JP5420493B2 (en) Breads suitable for microwave heating and bread flour compositions therefor
JP4932771B2 (en) Heating method for frozen dough
JP2016202012A (en) Frozen baked bread or frozen semi-baked bread and method for producing the same
JP2017035074A (en) Manufacturing method of pulverized heat treated wheat flour and manufacturing method of mix for bakery foods
JPH04267840A (en) Frozen food and production thereof
JP2009195196A (en) Method for manufacturing bakery product
JP6906869B2 (en) Manufacturing method of baked frozen flatbread using superheated steam
WO2016031680A1 (en) Method for producing bread and bread produced thereby
KR100431493B1 (en) Fabrication method of fermented bread
JP3641313B2 (en) Bread flour and bread
JPH0424017B2 (en)
JP7364353B2 (en) Composition for bakery products, bakery dough using the same, method for producing bakery products, and method for suppressing quality deterioration
JP2003325140A (en) Quality-improving agent of confectionery or bread, and confectionery or bread
JP2010158194A (en) Method for producing rice-powder soaker dough
JP2003274845A (en) Method for producing fermented bread containing rice flour as main raw material
JP2014096995A (en) New melon bun
JP3631704B2 (en) Bread and confectionery quality improver, bread and confectionery containing the quality improver
JP2727311B2 (en) Bread making method, frozen bread and frozen bread dough
JPH04179433A (en) Process for improving quality of frozen food
KR102505366B1 (en) Method for making of bread contained cup
JP3796518B2 (en) Pizza crust and pizza manufacturing method
JPH0994052A (en) Oil and fat composition for food and its use
WO2000005967A1 (en) Pizza crust and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R150 Certificate of patent or registration of utility model

Ref document number: 4932771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250