JP2009238664A - Discharge lamp - Google Patents

Discharge lamp Download PDF

Info

Publication number
JP2009238664A
JP2009238664A JP2008085466A JP2008085466A JP2009238664A JP 2009238664 A JP2009238664 A JP 2009238664A JP 2008085466 A JP2008085466 A JP 2008085466A JP 2008085466 A JP2008085466 A JP 2008085466A JP 2009238664 A JP2009238664 A JP 2009238664A
Authority
JP
Japan
Prior art keywords
reduced diameter
diameter portion
discharge lamp
light
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008085466A
Other languages
Japanese (ja)
Other versions
JP5437586B2 (en
Inventor
Sotaro Miyasaka
聡太朗 宮坂
Takehiro Hayashi
武弘 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2008085466A priority Critical patent/JP5437586B2/en
Publication of JP2009238664A publication Critical patent/JP2009238664A/en
Application granted granted Critical
Publication of JP5437586B2 publication Critical patent/JP5437586B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable a discharge lamp to raise illumination intensity and emit light without limitation on a radiation range. <P>SOLUTION: In the short-arc type discharge lamp having a negative electrode 20 and a positive electrode 30, the surface 34 of a tapered positive electrode diameter-contracting section 31 is finished in a mirror surface. A part of light emitted from a luminance spot H in the vicinity of a pointed head face 23 of the negative electrode 20 is reflected by the surface 34, and the reflected light is radiated outside the lamp at a reflective radiation range R<SB>1</SB>at latitudes of 10-30 °. Here, the reflective radiation range R<SB>1</SB>is put in a direct radiation range R<SB>0</SB>. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ショートアーク型放電ランプなど、特定波長の光を放射する放電ランプに関し、特に、光の配光分布を調整する電極構造に関する。   The present invention relates to a discharge lamp that emits light of a specific wavelength, such as a short arc discharge lamp, and more particularly to an electrode structure that adjusts the light distribution of light.

ショートアーク型放電ランプでは、陽極、陰極が発光管内に近接した状態で保持され、電圧を印加することによってアーク放電が電極間で発生し、紫外光など特定波長の光が放射される。ショートアーク型放電ランプは、電極間距離が短いために点光源としてみなすことができ、放射輝度の高い光が得られる。例えば基板の配線パターン形成に使用される場合、ランプ外に放射された光は、レンズ、ミラーなどを介して平行光に変換され、被照射物に照射される。   In the short arc type discharge lamp, the anode and the cathode are held in the vicinity of the arc tube, and by applying a voltage, an arc discharge is generated between the electrodes, and light of a specific wavelength such as ultraviolet light is emitted. The short arc type discharge lamp can be regarded as a point light source because the distance between the electrodes is short, and light with high radiance can be obtained. For example, when used for forming a wiring pattern on a substrate, light emitted outside the lamp is converted into parallel light through a lens, a mirror, and the like, and is irradiated on an object to be irradiated.

小型ショートアークランプの場合、被照射物の傍に設置されるため、発光管、封止管自身による反射光の遮蔽によって照度むらが生じ、均一な配光分布が得られない。そこで、均一な配光分布を得るため、発光管の中央付近の肉厚を最大にし、発光管の端部に向けて肉厚を徐々に薄くする方法が知られている(特許文献1参照)。発光管の場所に応じて屈折率を変えることにより、放射光が肉厚の大きい発光管中央付近に集約され、配光分布の均一化が図られる。
特開昭60−70655号公報
In the case of a small short arc lamp, since it is installed beside the irradiated object, uneven illumination occurs due to the shielding of the reflected light by the arc tube and the sealing tube itself, and a uniform light distribution cannot be obtained. Therefore, in order to obtain a uniform light distribution, a method is known in which the thickness near the center of the arc tube is maximized and the thickness is gradually reduced toward the end of the arc tube (see Patent Document 1). . By changing the refractive index according to the location of the arc tube, the emitted light is concentrated near the center of the arc tube having a large thickness, and the light distribution is made uniform.
JP-A-60-70655

発光管のレンズ屈折効果では放射方向に制限があり、放電により発生した光の配光分布は、限られた範囲に決められる。また、発光管内部の電極などによって遮断される光はランプ外部へ導かれず、放射光の照度は上がらない。すなわち、放電によって発生する光を有効にランプ外へ取り出すことができない。   In the lens refraction effect of the arc tube, the radiation direction is limited, and the light distribution of the light generated by the discharge is determined in a limited range. Further, the light blocked by the electrode inside the arc tube is not guided outside the lamp, and the illuminance of the radiated light does not increase. That is, the light generated by the discharge cannot be effectively extracted outside the lamp.

本発明の放電ランプは、発光管と、発光管内で保持され、所定間隔を隔て互いに対向する一対の電極(陽極、陰極)とを備える。少なくとも一方の電極は、胴体部と、放電が行われる電極先端面に向けて径が細くなる縮径部とを備える。例えば、略円柱状に形成される胴体部が電極支持棒に支持される。そして本発明では、縮径部の表面が鏡面であることを特徴とする。ただし、「鏡面」とは、反射率が高く、かつ写像性が良好な表面であることを示し、表面に像を写したとき鮮明な像が得られる表面のことをいう。なお、縮径部の表面一部を鏡面にすることも鏡面状態に含まれるものとする。   The discharge lamp of the present invention includes an arc tube and a pair of electrodes (anode and cathode) held in the arc tube and facing each other with a predetermined interval. At least one of the electrodes includes a body portion and a reduced diameter portion whose diameter decreases toward the electrode front end surface where discharge is performed. For example, the body part formed in a substantially cylindrical shape is supported by the electrode support rod. In the present invention, the surface of the reduced diameter portion is a mirror surface. However, the “mirror surface” means a surface having high reflectivity and good image clarity, and a surface on which a clear image can be obtained when an image is projected on the surface. It should be noted that a part of the surface of the reduced diameter portion being a mirror surface is also included in the mirror surface state.

電極間での放電による放射光は、発光中心(以下、輝点という)から径方向に放射され、その一部は縮径部の表面に当たって反射する。このとき放射光は、反射時の進入角度に従って反射する。その結果、反射光は、所定範囲に向けて進行しながらランプ外部へ射出する。まとまった範囲に光を放射させるため、例えば、縮径部は、テーパー状に形成すればよい。紫外光を放射する場合、縮径部の表面が、波長300〜500nmの光に対して鏡面であればよい。   The light emitted by the discharge between the electrodes is radiated in the radial direction from the light emission center (hereinafter referred to as a bright spot), and a part of the light hits the surface of the reduced diameter portion and is reflected. At this time, the emitted light is reflected according to the approach angle at the time of reflection. As a result, the reflected light is emitted outside the lamp while traveling toward a predetermined range. For example, the reduced diameter portion may be formed in a tapered shape in order to radiate light in a collective range. In the case of emitting ultraviolet light, the surface of the reduced diameter portion may be a mirror surface with respect to light having a wavelength of 300 to 500 nm.

縮径部の表面が鏡面であるため、電極間で発生する光は、縮径部の表面で散乱せずに反射し、反射した光は、ランプ外部へ向けてまとまった範囲に向けて放射される。このように、放電によって発生した光を無駄なくランプ外部へ放射させることができ、ランプの照度が向上する。また、縮径部の表面は軸方向に対して傾斜しているため、輝点からの放射光を電極のより後方側へ反射させることが可能であり、配光分布制限を受けることなく光を放射することができる。   Since the surface of the reduced diameter part is a mirror surface, the light generated between the electrodes is reflected without being scattered on the surface of the reduced diameter part, and the reflected light is emitted toward the outside of the lamp. The Thus, the light generated by the discharge can be emitted to the outside of the lamp without waste, and the illuminance of the lamp is improved. In addition, since the surface of the reduced diameter portion is inclined with respect to the axial direction, it is possible to reflect the radiated light from the bright spot to the rear side of the electrode, and the light is not restricted by the light distribution distribution. Can radiate.

電極間での放電による放射光がそのまま発光管を通ってランプ外部に直接放射可能な範囲(以下、直接放射範囲という)の配光分布について言えば、ランプ特性の問題から、一様な配光分布にならないことが多い。したがって、一部範囲での照度低下を防ぐため、縮径部の表面で反射してランプ外部へ放射される光の範囲(以下、反射放射範囲という)を、直接放射範囲内に含まれるように構成するのがよい。この場合、電極の縮径部のサイズ、形状、縮径部の表面の傾斜角度は、直接放射範囲内に反射放射範囲を重畳させるように定められる。   Speaking of the light distribution in the range where the radiated light from the discharge between the electrodes can be emitted directly through the arc tube to the outside of the lamp (hereinafter referred to as the direct radiating range), the light distribution is uniform due to the problem of lamp characteristics. Often not distributed. Therefore, in order to prevent a decrease in illuminance in a part of the range, the range of light reflected from the surface of the reduced diameter portion and radiated to the outside of the lamp (hereinafter referred to as reflected radiation range) is included in the direct radiation range. It should be configured. In this case, the size and shape of the reduced diameter portion of the electrode and the inclination angle of the surface of the reduced diameter portion are determined so that the reflected radiation range is directly superimposed on the radiation range.

特に、直接放射範囲において配光分布をできるだけ均一にするため、直接放射範囲の中で相対的に照度の低い範囲に反射放射範囲を重ねるように構成するのが望ましい。例えば、縮径部の表面が陽極に形成される場合、輝点のある基準面(陰極先端面など)に対して陽極側に反射放射範囲を定めればよい。例えば、陽極側の反射放射範囲が、陽極側へ10度〜30度の角度範囲に定められる。   In particular, in order to make the light distribution distribution as uniform as possible in the direct radiation range, it is desirable to configure the reflected radiation range so as to overlap a relatively low illuminance range in the direct radiation range. For example, when the surface of the reduced diameter portion is formed on the anode, the reflected radiation range may be determined on the anode side with respect to a reference surface having a bright spot (such as the cathode tip surface). For example, the reflected radiation range on the anode side is set to an angle range of 10 degrees to 30 degrees toward the anode side.

電極が過熱されるのを防止するため、縮径部に対し、周方向に沿って溝を形成するのがよい。放熱によって電極温度が下がる。複数の溝を形成する場合、溝内部で放射光が散乱するのを防ぐため、縮径部の溝の間に形成される表面を、溝を隔てた先端面側の表面に対する仮想延長面よりも軸側に形成するのがよい。   In order to prevent the electrode from being overheated, it is preferable to form a groove along the circumferential direction with respect to the reduced diameter portion. The electrode temperature decreases due to heat dissipation. When forming a plurality of grooves, in order to prevent scattered light from being scattered inside the grooves, the surface formed between the grooves of the reduced diameter portion is made to be more than the virtual extension surface with respect to the surface on the tip surface side across the grooves. It is good to form on the shaft side.

本発明によれば、ランプ照度を高め、放射範囲を制限されることなく光を放射させることができる。   ADVANTAGE OF THE INVENTION According to this invention, lamp illumination intensity can be raised and light can be radiated | emitted without restrict | limiting a radiation range.

以下では、図面を参照して本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施形態であるショートアーク型放電ランプの概略的外観図である。   FIG. 1 is a schematic external view of a short arc type discharge lamp according to this embodiment.

ショートアーク型放電ランプ10は、透明な石英ガラス製の発光管12と、その発光管12内に陰極20、陽極30を備え、陰極20、陽極30は所定間隔をもって対向配置される。発光管12の両側には、互いに対向する石英ガラス製の封止管13A、13Bが発光管12と一体的に形成され、封止管13A、13Bの両端は、口金14A、14Bによって塞がれる。放電ランプ10は、陽極30が上側、陰極20が下側となるように鉛直方向に沿って配置されている。   The short arc type discharge lamp 10 includes a light emitting tube 12 made of transparent quartz glass, and a cathode 20 and an anode 30 in the light emitting tube 12, and the cathode 20 and the anode 30 are arranged to face each other with a predetermined interval. On both sides of the arc tube 12, quartz glass sealing tubes 13A and 13B facing each other are formed integrally with the arc tube 12, and both ends of the sealing tubes 13A and 13B are closed by caps 14A and 14B. . The discharge lamp 10 is arranged along the vertical direction so that the anode 30 is on the upper side and the cathode 20 is on the lower side.

封止管13A、13Bの内部には、金属性の陰極20、陽極30を支持する導電性の電極支持棒17A、17Bが配設され、金属箔16A、16Bを介して導電性のリード棒15A、15Bにそれぞれ接続される。封止管13A、13Bは、封止管13A、13B内に設けられるガラス管(図示せず)と溶着し、これによって発光管12内に形成される放電空間は封止される。発光管12内には、水銀、および希ガスが封入されている。   Inside the sealing tubes 13A and 13B, conductive electrode support rods 17A and 17B for supporting the metallic cathode 20 and the anode 30 are disposed, and the conductive lead rod 15A is interposed via the metal foils 16A and 16B. , 15B. The sealing tubes 13A and 13B are welded to glass tubes (not shown) provided in the sealing tubes 13A and 13B, whereby the discharge space formed in the arc tube 12 is sealed. Mercury and a rare gas are enclosed in the arc tube 12.

リード棒15A、15Bは外部の電源部(図示せず)に接続されており、リード棒15A、15B、金属箔16A、16B、そして電極支持棒17A、17Bを介して陰極20、陽極30の間に電圧が印加される。これにより、電極間でアーク放電が発生し、紫外光が発光管12の外へ放射される。   The lead rods 15A and 15B are connected to an external power source (not shown), and are connected between the cathode 20 and the anode 30 via the lead rods 15A and 15B, the metal foils 16A and 16B, and the electrode support rods 17A and 17B. A voltage is applied to. As a result, arc discharge occurs between the electrodes, and ultraviolet light is radiated out of the arc tube 12.

図2は、陰極20、陽極30の概略的外観図である。   FIG. 2 is a schematic external view of the cathode 20 and the anode 30.

陰極20は、電極支持棒17Aと接続された円柱状の陰極胴体部22と、円錐状の陰極縮径部21から成り、陰極縮径部21の先端面23は、放電面として構成される。一方、陽極30も、電極支持棒17Bと接続された円柱状の陽極胴体部32と、円錐状の陽極縮径部31から成り、陽極縮径部31の先端面33が放電面として構成されている。   The cathode 20 includes a cylindrical cathode body portion 22 connected to the electrode support rod 17A and a conical cathode diameter-reduced portion 21. A tip surface 23 of the cathode diameter-reduced portion 21 is configured as a discharge surface. On the other hand, the anode 30 is also composed of a cylindrical anode body portion 32 connected to the electrode support rod 17B and a conical anode reduced diameter portion 31, and the tip end surface 33 of the anode reduced diameter portion 31 is configured as a discharge surface. Yes.

陰極縮径部21の先端面23と、陽極縮径部31の先端面33との間でアーク放電が発生すると、水銀による紫外光が発生し、四方に放射する。陰極縮径部21の先端面23付近には、放電ランプ10を点光源としたときの発光中心(以下、輝点という)Hが定められ、輝点Hから紫外光が放射するものとみなすことができる。   When arc discharge occurs between the tip surface 23 of the cathode reduced diameter portion 21 and the tip surface 33 of the anode reduced diameter portion 31, ultraviolet light is generated by mercury and radiated in all directions. A light emission center (hereinafter referred to as a bright spot) H when the discharge lamp 10 is used as a point light source is defined near the tip surface 23 of the cathode reduced diameter portion 21, and it is considered that ultraviolet light is emitted from the bright spot H. Can do.

放電ランプ10の放射範囲は、陰極20、陽極30の配置、サイズ、および陰極20、陽極30との距離間隔などに従って定まる。陰極20、陽極30の縮径部21、31は、放射範囲を広げるようにテーパー状に形成されており、ここでは、縮径部21、31の表面23、33を、直接放射範囲Rの境界面として規定する。ただし、輝点Hからの放射光が陰極20、陽極30に遮断されず、そのままランプ外部へ進行する放射範囲を、ここでは直接放射範囲Rという。 The radiation range of the discharge lamp 10 is determined according to the arrangement and size of the cathode 20 and the anode 30 and the distance between the cathode 20 and the anode 30. The reduced diameter portions 21 and 31 of the cathode 20 and the anode 30 are formed in a tapered shape so as to widen the radiation range. Here, the surfaces 23 and 33 of the reduced diameter portions 21 and 31 are directly connected to the boundary of the radiation range R. It is defined as a surface. However, the radiation range in which the radiated light from the bright spot H is not blocked by the cathode 20 and the anode 30 and proceeds to the outside of the lamp as it is is referred to herein as the direct radiation range R0 .

本実施形態では、陰極20、陽極30の先端面23、33を鏡面仕上げするとともに、陽極縮径部31の表面33も、鏡面仕上げされている。すなわち、陽極縮径部31の表面33は、反射率が高く、かつ凹凸のない写像性良好の表面であって、表面33に反射した光は散乱しない。陽極縮径部31の表面33で反射し、ランプ外部へ進行する光の放射範囲(以下、反射放射範囲という)Rは、直接放射範囲R内に含まれており、陽極側境界付近に位置する。 In the present embodiment, the tip surfaces 23 and 33 of the cathode 20 and the anode 30 are mirror-finished, and the surface 33 of the anode reduced diameter portion 31 is also mirror-finished. That is, the surface 33 of the anode diameter-reduced portion 31 is a surface having a high reflectance and no irregularities, and the light reflected on the surface 33 is not scattered. The radiation range R 1 of light reflected from the surface 33 of the anode reduced diameter portion 31 and traveling to the outside of the lamp (hereinafter referred to as the reflected radiation range) R 1 is included in the direct radiation range R 0 and is near the anode side boundary. To position.

図3は、陽極20、30の先端面23、33付近を拡大して示した概略的断面図である。   FIG. 3 is an enlarged schematic cross-sectional view showing the vicinity of the tip surfaces 23 and 33 of the anodes 20 and 30.

陰極20と、陽極30は、距離間隔dを隔てて同軸的に対向し、また、陽極縮径部33は、陰極縮径部23に比べてテーパー形状の傾斜角度が小さい。陽極胴体部32の径の大きさをM、陰極23の先端面23の径の大きさをD2、陽極30の先端面33の径の大きさをD1、陽極縮径部33の傾斜角度をαとすると、陽極縮径部31の表面33に反射する光の反射放射範囲Rは、M、D1、D2、d、αに従う。ただし、傾斜角度αは先端面33に対する角度を示し、陽極胴体部32の径Mと、先端面33の径D1、縮径部31の軸方向長さLに従って、傾斜角度α(=arctan(L/((M−D1)/2)))が規定される。 The cathode 20 and the anode 30 are coaxially opposed to each other with a distance interval d, and the anode reduced diameter portion 33 has a tapered inclination angle smaller than that of the cathode reduced diameter portion 23. The diameter of the anode body 32 is M, the diameter of the tip 23 of the cathode 23 is D2, the diameter of the tip 33 of the anode 30 is D1, and the inclination angle of the anode reduced diameter 33 is α. Then, the reflected radiation range R 1 of the light reflected on the surface 33 of the anode reduced diameter portion 31 follows M, D 1, D 2, d, and α. However, the inclination angle α indicates an angle with respect to the distal end surface 33, and the inclination angle α (= arctan (L) according to the diameter M of the anode body portion 32, the diameter D1 of the distal end surface 33, and the axial length L of the reduced diameter portion 31. / ((M-D1) / 2))).

反射放射範囲Rは、陽極側の10度〜30度の緯度範囲に定められ、これを満たすように、すなわちこの範囲Rに向けて反射光が進行するように、陽極縮径部31の大きさ、傾斜角度αが定められている。ただし、陰極20の先端面23に沿った平面(水平面)を基準面(0度)とし、この基準面から陽極側にプラス、陰極側マイナスの緯度を規定する。陽極縮径部31のサイズ、形状などは、シミュレーションによって求めればよい。 The reflected radiation range R 0 is set to a latitude range of 10 ° to 30 ° on the anode side, and so as to satisfy this, that is, the reflected light travels toward this range R 0 . The size and the inclination angle α are determined. However, a plane (horizontal plane) along the tip surface 23 of the cathode 20 is defined as a reference plane (0 degree), and a positive latitude and a negative cathode side are defined from the reference plane to the anode side. What is necessary is just to obtain | require the size, shape, etc. of the anode diameter reducing part 31 by simulation.

例えば、陽極胴体部32の径Mを25mm、陽極縮径部31の軸方向長さLを5mm、陽極30の先端面33の径D1を8mm、陰極20の先端面の径D2を1.3mm、先端面23、33の距離dを6mmと定めることにより、10度〜30度の緯度方向に反射放射範囲Rが定められる。 For example, the diameter M of the anode body portion 32 is 25 mm, the axial length L of the anode reduced diameter portion 31 is 5 mm, the diameter D1 of the tip surface 33 of the anode 30 is 8 mm, and the diameter D2 of the tip surface of the cathode 20 is 1.3 mm. , by determining the distance d of the distal end surface 23, 33 and 6 mm, the reflected radiation range R 1 is defined in the latitudinal direction of 10 degrees to 30 degrees.

図4は、陽極縮径部31の表面33の分光反射率を示した図である。ただし、陽極縮径部31はテーパー形状であることから、曲率の影響を防ぐために表面33の微小面積に対して分光反射率を測定している。あるいは、同じ鏡面度に仕上げられた先端面33の分光反射率を測定してもよい。   FIG. 4 is a view showing the spectral reflectance of the surface 33 of the anode reduced diameter portion 31. However, since the anode reduced diameter portion 31 has a tapered shape, the spectral reflectance is measured with respect to a small area of the surface 33 in order to prevent the influence of the curvature. Or you may measure the spectral reflectance of the front end surface 33 finished by the same mirror surface degree.

図4には、鏡面加工前の分光反射率T2と鏡面加工後の分光反射率T1が示されている。陽極縮径部31の表面30は、電解研磨あるいはバフ研磨によって鏡面仕上げされており、鏡面仕上げ後の分光反射率はどの波長領域の光に対しても40%以上ある。ショートアーク型の放電ランプ10では、水銀の輝線であるg線(436nm)、h線(405nm)、i線(365nm)を利用することが多く、表面30は、約300〜500nmの波長領域の光に対して約44パーセントの反射率をもつ。   FIG. 4 shows the spectral reflectance T2 before mirror processing and the spectral reflectance T1 after mirror processing. The surface 30 of the anode reduced diameter portion 31 is mirror-finished by electrolytic polishing or buffing, and the spectral reflectance after mirror finishing is 40% or more for light in any wavelength region. The short arc type discharge lamp 10 often uses g-line (436 nm), h-line (405 nm) and i-line (365 nm), which are mercury emission lines, and the surface 30 has a wavelength region of about 300 to 500 nm. It has a reflectivity of about 44 percent for light.

図5は、従来型の電極、すなわち鏡面仕上げされてない縮径部の電極を用いた放電ランプの配光分布を示した図である。図6は、本実施形態による電極を用いた放電ランプの配光分布を示した図である。   FIG. 5 is a diagram showing a light distribution of a discharge lamp using a conventional electrode, that is, an electrode having a reduced diameter portion that is not mirror-finished. FIG. 6 is a view showing a light distribution of the discharge lamp using the electrode according to the present embodiment.

図5、図6に示す配光分布Qは、360度の方向へ放射された光の中で、上下方向、すなわち緯度方向の放射照度を測定することによって得られる。ここでは、i線近傍に感度のある照度計を用いて配光分布を測定している。縦軸は照度を示し、基準面(±0°)での照度を100%としたとき、緯度に沿った照度をその割合で表す。図5における従来型の放電ランプと、図6における本実施形態の放電ランプとの違いは、陽極縮径部の表面状態だけである。   The light distribution Q shown in FIGS. 5 and 6 is obtained by measuring the irradiance in the vertical direction, that is, in the latitudinal direction among the light emitted in the direction of 360 degrees. Here, the light distribution is measured using an illuminometer having sensitivity near the i-line. The vertical axis represents the illuminance. When the illuminance on the reference plane (± 0 °) is 100%, the illuminance along the latitude is represented by the ratio. The only difference between the conventional discharge lamp in FIG. 5 and the discharge lamp of the present embodiment in FIG. 6 is the surface state of the anode reduced diameter portion.

図5、図6の符号Nで規定される領域を比較すると、本実施形態では、陽極側の+10度〜30度の範囲、すなわち反射放射範囲Rにおいて、照度が大きくなっている。図5の放電ランプでは、陽極縮径部の表面で反射した光が散乱するため、陽極側の10度〜30度の緯度範囲で照度が落ちる。一方、図6では、照度が他の範囲と比べてそれほど低下しない。これは、陽極縮径部32の表面34で反射した光が、散乱することなく緯度10〜30度の範囲に向けて進行することを示している。すなわち、放電ランプとしての配光分布は均一な分布となる。 Figure 5, a comparison of the area defined by reference numeral N in Figure 6, in this embodiment, + 10 ° to 30 ° range on the anode side, i.e. the reflected radiation range R 1, the illuminance is increased. In the discharge lamp of FIG. 5, since the light reflected by the surface of the anode reduced diameter portion is scattered, the illuminance decreases in the latitude range of 10 degrees to 30 degrees on the anode side. On the other hand, in FIG. 6, the illuminance does not decrease much compared to other ranges. This indicates that the light reflected by the surface 34 of the anode reduced diameter portion 32 travels toward a range of 10 to 30 degrees latitude without being scattered. That is, the light distribution as a discharge lamp is a uniform distribution.

以下に示す表は、図9、図10の代表的緯度における測定結果を表す。表から明らかなように、陽極側の照度が従来型ランプの照度と比較して高い。また−50度〜+30度の緯度範囲について、従来における照度の最小、最大範囲が70%〜103%であるのに対し、本実施形態の最小、最大範囲は80%〜103%であり、より均一な配光分布になっている。   The table shown below represents the measurement results at the representative latitudes in FIGS. As is apparent from the table, the illuminance on the anode side is higher than that of the conventional lamp. In addition, in the latitude range of −50 degrees to +30 degrees, the minimum and maximum range of illuminance in the related art is 70% to 103%, whereas the minimum and maximum range of the present embodiment is 80% to 103%. The light distribution is uniform.

Figure 2009238664
Figure 2009238664

なお、250nm、420nm近傍に感度のある照度計で測定した場合も、+10度〜30度の範囲で照度が高いことが確認される。   In addition, also when it measures with the illuminometer which has sensitivity in the vicinity of 250 nm and 420 nm, it is confirmed that the illuminance is high in the range of +10 degrees to 30 degrees.

このように本実施形態によれば、ショートアーク型放電ランプ10において、テーパー状の陽極縮径部31の表面34が、鏡面に仕上げられている。そして、陰極20の先端面23近傍における輝点Hから放射される光の一部が表面34で反射し、緯度10度〜30度の反射放射範囲Rでランプ外部に放射される。反射放射範囲Rは、直接放射範囲Rに含まれており、反射放射範囲Rは緯度10度〜30度の範囲に定まるように、陽極縮径部31のサイズ、形状、および傾斜角度αが決められる。 Thus, according to this embodiment, in the short arc type discharge lamp 10, the surface 34 of the tapered anode reduced diameter portion 31 is finished to be a mirror surface. A part of the light emitted from the bright point H on the tip surface 23 near the cathode 20 is reflected by the surface 34, it is emitted to the lamp outside the reflected radiation range R 1 of 10 to 30 degrees latitude. The reflected radiation range R 1 is included in the direct radiation range R 0 , and the size, shape, and inclination angle of the anode reduced diameter portion 31 so that the reflected radiation range R 1 is determined in the range of latitude 10 degrees to 30 degrees. α is determined.

陽極縮径部31の表面34が鏡面であるため、表面34に反射した光は散乱せず、反射放射範囲Rに進む。特に、照度が低下しやすい緯度+10度〜+30度の範囲において放射照度が向上し、配光分布が均一化される。すなわち、放電によって発生した光を最大限利用して、光を放射することができる。 Since the surface 34 of the anode reduced-diameter portion 31 is a mirror surface, light reflected on the surface 34 is not scattered, the process proceeds to the reflected radiation range R 1. In particular, the irradiance is improved in the range of latitude +10 degrees to +30 degrees where the illuminance tends to decrease, and the light distribution is made uniform. That is, light can be emitted by making maximum use of light generated by discharge.

なお、陽極縮径部31の傾斜角度αは、10〜30度の緯度範囲で反射光が進行するように定められているが、所定の緯度範囲に向けて放射光を反射するように構成してもよい。例えば、放電ランプの配光分布特性に合わせ、照射照度が相対的に落ちる緯度の範囲へ向けて放射光が進むように、傾斜角度を定めればよい。   Note that the inclination angle α of the anode diameter-reduced portion 31 is determined so that the reflected light travels in the latitude range of 10 to 30 degrees, but is configured to reflect the emitted light toward the predetermined latitude range. May be. For example, the inclination angle may be determined so that the radiated light travels toward the latitude range where the irradiation illuminance falls relatively in accordance with the light distribution characteristics of the discharge lamp.

次に、図7を用いて、第2の実施形態である放電ランプについて説明する。第2の実施形態では、陽極縮径部が凹面上に形成されている。   Next, the discharge lamp which is 2nd Embodiment is demonstrated using FIG. In the second embodiment, the anode reduced diameter portion is formed on the concave surface.

図7は、第2の実施形態である放電ランプの電極を示した概略的断面図である。放電ランプ100の陰極120、陽極130は対向配置され、陽極縮径部131の表面134は凹型の鏡面であり、断面形状は湾曲状に形成されている。これにより、表面134で反射した放射光の放射範囲が狭くなる。なお、反射放射範囲を広げる場合、陽極縮径部を凸面形状にすればよい。   FIG. 7 is a schematic sectional view showing electrodes of a discharge lamp according to the second embodiment. The cathode 120 and the anode 130 of the discharge lamp 100 are disposed opposite to each other, the surface 134 of the anode reduced diameter portion 131 is a concave mirror surface, and the cross-sectional shape is formed in a curved shape. Thereby, the radiation range of the radiated light reflected by the surface 134 becomes narrow. In addition, what is necessary is just to make an anode diameter-reduced part convex shape, when expanding a reflected radiation range.

次に、図8、図9を用いて、第3の実施形態である放電ランプについて説明する。第3の実施形態では、陽極縮径部の周方向に沿って溝が形成されている。それ以外の構成については、第1の実施形態と同じである。   Next, the discharge lamp which is 3rd Embodiment is demonstrated using FIG. 8, FIG. In the third embodiment, a groove is formed along the circumferential direction of the anode reduced diameter portion. About another structure, it is the same as 1st Embodiment.

図8は、第3の実施形態である放電ランプの電極の概略的断面図である。図9は、陽極縮径部の溝付近を拡大した概略断面図である。   FIG. 8 is a schematic cross-sectional view of an electrode of a discharge lamp according to the third embodiment. FIG. 9 is an enlarged schematic cross-sectional view of the vicinity of the groove of the anode reduced diameter portion.

放電ランプ200の陰極220、陽極230は対向配置され、陽極230の陽極縮径部231には、周方向に沿って複数の溝235A、235B、235Cが形成されている。溝235A〜235Bによって放熱効果が生じ、陽極230の温度を下げる。なお、図9では、便宜上放射光を平行光として図示している。   The cathode 220 and the anode 230 of the discharge lamp 200 are disposed to face each other, and a plurality of grooves 235A, 235B, and 235C are formed in the anode reduced diameter portion 231 of the anode 230 along the circumferential direction. The heat radiation effect is generated by the grooves 235A to 235B, and the temperature of the anode 230 is lowered. In FIG. 9, the radiated light is illustrated as parallel light for convenience.

溝235A、235B、235Cの間に形成される陽極縮径部23の表面234A〜234Dは、それぞれ表面形成位置が異なる。すなわち、一つの円錐表面上に表面が載っていない。図9に示すように、表面234Bの表面は、先端面233に近い表面234Cの仮想延長面Tよりも、電極軸側に位置する。これによって、放射光が溝内部に進入し、光が溝内部で散乱することを防ぎ、陽極縮径部231の表面234A〜234Dが鏡面として有効に利用される。なお、溝の形成間隔を調整することによって、放熱と反射の効果割合を調整してもよい。   The surfaces 234A to 234D of the anode reduced diameter portion 23 formed between the grooves 235A, 235B, and 235C have different surface formation positions. That is, no surface rests on one conical surface. As shown in FIG. 9, the surface of the surface 234 </ b> B is located closer to the electrode axis side than the virtual extension surface T of the surface 234 </ b> C near the tip surface 233. Thereby, the emitted light enters the inside of the groove and the light is prevented from scattering inside the groove, and the surfaces 234A to 234D of the anode reduced diameter portion 231 are effectively used as mirror surfaces. Note that the effect ratio of heat dissipation and reflection may be adjusted by adjusting the groove formation interval.

陽極234の表面形成に関しては、レーザやダイヤモンドカッターによって溝235A〜235Cを形成し、溝形成後、溝間の表面を所定位置で所定角度となるように、切削する。そして、バフ研磨や電解研磨によって鏡面仕上げを行う。   Regarding the surface formation of the anode 234, grooves 235A to 235C are formed by a laser or a diamond cutter, and after the grooves are formed, the surface between the grooves is cut at a predetermined position at a predetermined angle. Then, mirror finishing is performed by buffing or electrolytic polishing.

なお、陽極縮径部は、テーパー形状、凹型形状以外であってもよく、傾斜角度の異なる複数のテーパー面を一体的に形成してもよい。あるいは、砲弾状、球状に形成してもよい。さらに、陽極ではなく陰極縮径部の表面を鏡面状にしてもよい。縮径部の鏡面度については、光が散乱しないように、反射率および写像性が良好な表面状態になっていればよい。また、放電ランプ10を鉛直方向以外に配置してもよく、ショートアーク型以外の放電ランプに適用してもよい。   The anode diameter-reduced portion may be other than a tapered shape or a concave shape, and a plurality of tapered surfaces having different inclination angles may be integrally formed. Alternatively, it may be formed in a bullet shape or a spherical shape. Further, the surface of the reduced diameter portion of the cathode, not the anode, may be mirror-like. As for the specularity of the reduced diameter portion, it is sufficient that the surface state has good reflectivity and image clarity so that light is not scattered. Further, the discharge lamp 10 may be arranged in a direction other than the vertical direction, and may be applied to a discharge lamp other than the short arc type.

本実施形態であるショートアーク型放電ランプの概略的外観図である。It is a schematic external view of the short arc type discharge lamp which is this embodiment. 陰極、陽極の概略的外観図である。It is a schematic external view of a cathode and an anode. 陽極の先端面付近を拡大して示した概略的断面図である。It is the schematic sectional drawing which expanded and showed the front end surface vicinity of the anode. 陽極縮径部の表面の分光反射率を示した図である。It is the figure which showed the spectral reflectance of the surface of an anode diameter reduction part. 従来型の電極を用いた放電ランプの配光分布を示した図である。It is the figure which showed the light distribution of the discharge lamp using the conventional type electrode. 本実施形態による電極を用いた放電ランプの配光分布を示した図である。It is the figure which showed the light distribution of the discharge lamp using the electrode by this embodiment. 第2の実施形態である放電ランプの電極を示した概略的断面図である。It is the schematic sectional drawing which showed the electrode of the discharge lamp which is 2nd Embodiment. 第3の実施形態である放電ランプの電極の概略的断面図である。It is a schematic sectional drawing of the electrode of the discharge lamp which is 3rd Embodiment. 極縮径部の溝付近を拡大した概略的断面図である。It is the schematic sectional drawing which expanded the groove vicinity of the extremely reduced diameter part.

符号の説明Explanation of symbols

10 放電ランプ
12 発光管
13A、13B 封止管
17A、17B 電極支持棒
20、120、220 陰極
21 陰極縮径部
22 陰極胴体部
23 先端面
24 表面
30、130、230 陽極
31、131、231 陽極縮径部
32、陽極胴体部
33、133、233 先端面
34、134、234A〜234D 表面
235A〜235C 溝
H 輝点
直接放射範囲
反射放射範囲
α 傾斜角度
Q 配光分布
DESCRIPTION OF SYMBOLS 10 Discharge lamp 12 Light emission tube 13A, 13B Sealing tube 17A, 17B Electrode support rod 20, 120, 220 Cathode 21 Cathode diameter-reduced part 22 Cathode body part 23 Tip surface 24 Surface 30, 130, 230 Anode 31, 131, 231 Anode Reduced diameter portion 32, anode body portion 33, 133, 233 Tip surface 34, 134, 234A to 234D Surface 235A to 235C Groove H Bright point R 0 Direct radiation range R 1 Reflected radiation range α Inclination angle Q Light distribution

Claims (9)

発光管と、
前記発光管内で保持され、所定間隔を隔て互いに対向する一対の電極とを備え、
前記一対の電極の少なくとも一方が、胴体部と、放電が行われる電極先端面に向けて径が細くなる縮径部とを有し、
前記縮径部の表面が鏡面であって、前記一対の電極間で発生する光が前記縮径部の表面で反射し、ランプ外部へ放射されることを特徴とする放電ランプ。
Arc tube,
A pair of electrodes held in the arc tube and facing each other at a predetermined interval;
At least one of the pair of electrodes has a body portion and a reduced diameter portion whose diameter decreases toward an electrode tip surface where discharge is performed,
The discharge lamp characterized in that the surface of the reduced diameter portion is a mirror surface, and light generated between the pair of electrodes is reflected by the surface of the reduced diameter portion and radiated to the outside of the lamp.
前記縮径部の表面で反射してランプ外部へ放射される光の反射放射範囲が、ランプ外へ直接放射される光の直接放射範囲内に含まれることを特徴とする請求項1に記載の放電ランプ。   The reflected radiation range of the light reflected from the surface of the reduced diameter portion and emitted to the outside of the lamp is included in the direct emission range of the light directly emitted to the outside of the lamp. Discharge lamp. 前記反射放射範囲が、前記直接放射範囲の中で相対的に照度の低い範囲に重なることを特徴とする請求項2に記載の放電ランプ。   The discharge lamp according to claim 2, wherein the reflected radiation range overlaps a range having a relatively low illuminance within the direct radiation range. 前記縮径部の表面が陽極に形成され、
前記反射放射範囲が、輝点のある基準面に対し陽極側に定められることを特徴とする請求項3に記載の放電ランプ。
The surface of the reduced diameter portion is formed on the anode,
4. The discharge lamp according to claim 3, wherein the reflected radiation range is determined on the anode side with respect to a reference surface having a bright spot.
前記反射放射範囲が、基準面に対し、陽極側に10度〜30度の角度範囲に定められることを特徴とする請求項4に記載の放電ランプ。   The discharge lamp according to claim 4, wherein the reflected radiation range is set to an angle range of 10 degrees to 30 degrees on the anode side with respect to the reference plane. 前記縮径部が、テーパー状に形成されていることを特徴とする請求項1乃至5のいずれかに記載の放電ランプ。   The discharge lamp according to claim 1, wherein the reduced diameter portion is formed in a tapered shape. 前記縮径部が、周方向に沿った溝を有することを特徴とする請求項1乃至6のいずれかに記載の放電ランプ。   The discharge lamp according to any one of claims 1 to 6, wherein the reduced diameter portion has a groove along a circumferential direction. 前記縮径部において、複数の溝が所定間隔で形成され、
前記縮径部の溝の間に形成される表面が、溝を隔てた先端面側の表面に対する仮想延長面よりも軸側に形成されていることを特徴とする請求項7に記載の放電ランプ。
In the reduced diameter portion, a plurality of grooves are formed at predetermined intervals,
The discharge lamp according to claim 7, wherein a surface formed between the grooves of the reduced diameter portion is formed on an axial side with respect to a virtual extension surface with respect to a surface on a tip surface side across the groove. .
前記縮径部の表面が、波長300〜500nmの光に対して鏡面であることを特徴とする請求項1乃至8のいずれかに記載の放電ランプ。


9. The discharge lamp according to claim 1, wherein the surface of the reduced diameter portion is a mirror surface with respect to light having a wavelength of 300 to 500 nm.


JP2008085466A 2008-03-28 2008-03-28 Discharge lamp Active JP5437586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085466A JP5437586B2 (en) 2008-03-28 2008-03-28 Discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085466A JP5437586B2 (en) 2008-03-28 2008-03-28 Discharge lamp

Publications (2)

Publication Number Publication Date
JP2009238664A true JP2009238664A (en) 2009-10-15
JP5437586B2 JP5437586B2 (en) 2014-03-12

Family

ID=41252347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085466A Active JP5437586B2 (en) 2008-03-28 2008-03-28 Discharge lamp

Country Status (1)

Country Link
JP (1) JP5437586B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011034824A (en) * 2009-08-03 2011-02-17 Ushio Inc Short-arc type discharge lamp
JP2013206827A (en) * 2012-03-29 2013-10-07 Iwasaki Electric Co Ltd Short arc type mercury lamp
JP2016066486A (en) * 2014-09-24 2016-04-28 株式会社オーク製作所 Discharge lamp
JP2017069078A (en) * 2015-09-30 2017-04-06 株式会社オーク製作所 Discharge lamp
JP2017103108A (en) * 2015-12-02 2017-06-08 岩崎電気株式会社 Short arc type discharge lamp
JP2019194982A (en) * 2018-05-02 2019-11-07 オスラム ゲーエムベーハーOSRAM GmbH Electrode for discharge lamp, discharge lamp and method for manufacturing electrode
US20240030020A1 (en) * 2022-07-19 2024-01-25 Ushio Denki Kabushiki Kaisha Xenon lamp for projector

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011034824A (en) * 2009-08-03 2011-02-17 Ushio Inc Short-arc type discharge lamp
JP2013206827A (en) * 2012-03-29 2013-10-07 Iwasaki Electric Co Ltd Short arc type mercury lamp
JP2016066486A (en) * 2014-09-24 2016-04-28 株式会社オーク製作所 Discharge lamp
JP2017069078A (en) * 2015-09-30 2017-04-06 株式会社オーク製作所 Discharge lamp
JP2017103108A (en) * 2015-12-02 2017-06-08 岩崎電気株式会社 Short arc type discharge lamp
CN106816358A (en) * 2015-12-02 2017-06-09 岩崎电气株式会社 Anode electrode and short arc discharge lamp
CN106816358B (en) * 2015-12-02 2019-03-22 岩崎电气株式会社 Short arc discharge lamp
JP2019194982A (en) * 2018-05-02 2019-11-07 オスラム ゲーエムベーハーOSRAM GmbH Electrode for discharge lamp, discharge lamp and method for manufacturing electrode
CN110444465A (en) * 2018-05-02 2019-11-12 欧司朗有限公司 Method for the electrode of discharge lamp, discharge lamp and for manufacturing electrode
JP7337532B2 (en) 2018-05-02 2023-09-04 オスラム ゲーエムベーハー Electrodes for discharge lamps, methods of manufacturing discharge lamps and electrodes
US20240030020A1 (en) * 2022-07-19 2024-01-25 Ushio Denki Kabushiki Kaisha Xenon lamp for projector
US11908676B2 (en) * 2022-07-19 2024-02-20 Ushio Denki Kabushiki Kaisha Xenon lamp for projector

Also Published As

Publication number Publication date
JP5437586B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5437586B2 (en) Discharge lamp
JP6707467B2 (en) Laser driven shield beam lamp
US10186414B2 (en) Dual parabolic laser driven sealed beam lamps
RU2280913C1 (en) Gas-discharge reflector lamp
TWI343588B (en) Increasing the discharge arc diffuseness in mercury-free gas discharge lamps
EP1862729A1 (en) Light source device
JP3531539B2 (en) Light source device
JP4535384B2 (en) Automotive discharge bulbs and automotive headlamps
KR101689922B1 (en) Short arc type mercury lamp
JP2002510122A (en) Electromagnetic radiation emission tube, apparatus and method
JP2010080070A (en) Light source device
JP5444051B2 (en) Vehicle lighting
KR20020044545A (en) Light illuminating apparatus
JP5708857B2 (en) UV lamp and UV irradiation device
JP2007073461A (en) High intensity discharge lamp or high intensity discharge lamp with reflector
JP2004119024A (en) Short arc type discharge lamp
JPS6070655A (en) Small-sized high pressure discharge lamp device
JP2010277938A (en) Luminaire and lighting unit
JP5620186B2 (en) Laser drive light source
JP5353930B2 (en) Optical device
EP2745308B1 (en) Metal halide lamp for automotive headlamp and headlamp with said lamp
JP5604964B2 (en) Light source device
JP2006146136A (en) Document illuminating device and image reading apparatus
JP2005216630A (en) Lamp with reflector
JP2009081044A (en) Light source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5437586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250