JP2009238477A - Rotating anode x-ray tube - Google Patents

Rotating anode x-ray tube Download PDF

Info

Publication number
JP2009238477A
JP2009238477A JP2008080974A JP2008080974A JP2009238477A JP 2009238477 A JP2009238477 A JP 2009238477A JP 2008080974 A JP2008080974 A JP 2008080974A JP 2008080974 A JP2008080974 A JP 2008080974A JP 2009238477 A JP2009238477 A JP 2009238477A
Authority
JP
Japan
Prior art keywords
rotating body
bearing
ray tube
cylindrical
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2008080974A
Other languages
Japanese (ja)
Inventor
Chiharu Tadokoro
千治 田所
Hitoshi Hattori
仁志 服部
Yasuo Yoshii
保夫 吉井
Yasutaka Ito
安孝 伊藤
Hironori Nakamuta
浩典 中牟田
Tetsuya Yonezawa
哲也 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Electron Tubes and Devices Co Ltd
Original Assignee
Toshiba Corp
Toshiba Electron Tubes and Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electron Tubes and Devices Co Ltd filed Critical Toshiba Corp
Priority to JP2008080974A priority Critical patent/JP2009238477A/en
Publication of JP2009238477A publication Critical patent/JP2009238477A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anode rotating type X-ray tube with high reliability in which a rotor can make a stable rotation movement. <P>SOLUTION: In the X-ray tube, a cylindrical rotor includes a cylindrical inner face and a fixed axle is inserted into the hollow cylinder to support the rotor rotatably. A pillar-shape bearing part is installed in the fixed axle and includes an opposed face opposed to the cylinder inner face. A bearing groove is formed in the opposed face and a dynamic bearing is formed on the opposed face by lubricant filled in the gap. At both ends of the pillar-shape bearing part, a thin structure is provided at the end of the pillar-shape bearing part by a circular circumference groove formed by cut-out and a cylindrical flange part at the outer periphery of the circular circumference groove. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、液体潤滑剤を用いた動圧滑り軸受けを有する回転陽極型X線管に関する。     The present invention relates to a rotary anode type X-ray tube having a dynamic pressure sliding bearing using a liquid lubricant.

一般に、X線管装置は、医療診断システム及び工業診断システム等に用いられている。X線管装置は、X線を放射する回転陽極型X線管と、ステータコイルと、これら回転陽極型X線管及びステータコイルを収容した筐体とを備えている。     In general, X-ray tube apparatuses are used in medical diagnosis systems, industrial diagnosis systems, and the like. The X-ray tube device includes a rotary anode X-ray tube that emits X-rays, a stator coil, and a housing that houses the rotary anode X-ray tube and the stator coil.

回転陽極型X線管は、固定軸と、この固定軸に回転可能に設けられ、ステータコイルからの磁界で回転される回転体と、この回転体の端部に継手を介して設けられ、回転体と共に回転される陽極ターゲットと、この陽極ターゲットに対向配置され、陽極ターゲットに電子ビームを射突させて陽極ターゲットからX線を発生させる陰極と、これら回転体、陽極ターゲット及び陰極を収容した真空外囲器とから構成されている。固定軸及び回転体間の隙間には、潤滑液としての液体金属が充填された動圧すべり軸受が形成され、回転体の回転時に、固定軸及び回転体間の液体金属には、動圧が発生されて回転体が回転可能に支持されている。   The rotary anode type X-ray tube is provided with a fixed shaft, a rotary body rotatably provided on the fixed shaft, rotated by a magnetic field from the stator coil, and a rotary body provided with a joint at the end of the rotary body. An anode target rotated together with the body, a cathode disposed opposite to the anode target, projecting an electron beam onto the anode target and generating X-rays from the anode target, and a vacuum containing these rotor, anode target and cathode It consists of an envelope. A dynamic pressure plain bearing filled with a liquid metal as a lubricating liquid is formed in the gap between the fixed shaft and the rotating body. When the rotating body rotates, the liquid metal between the fixed shaft and the rotating body has a dynamic pressure. The generated rotating body is rotatably supported.

従来の動圧すべり軸受は、一例として特許文献1に開示されるように、回転時に液体潤滑剤を引き込む溝、例えば、ヘリングボーンパターンの螺旋溝が固定軸に形成されている。回転体は、この固定軸を構成する筒状部材に嵌合され、筒状部材の円筒内面との間に小間隙が設けられている円柱状の軸受対向部及び互いに隣接する軸受対向部の間に、円柱状軸受対向部より細い径を有し、筒状部材の円筒内面との間に比較的大きな間隙が与えられ、軸受対向部より小さい径を有する小径部分とを備えた軸で構成されている。円柱状軸受対向部には、上述した螺旋溝が形成されて動圧すべり軸受けに形成され、小径部分と筒状部材の円筒内面との間のスペースは、円柱状軸受対向部の焼きつきを防止するために、潤滑剤を十分に貯蔵する機能を有している。このようなすべり軸受の例は、特許文献1に限らず、特許文献2、特許文献3の公報に開示されている。   As disclosed in Patent Document 1 as an example, a conventional dynamic pressure plain bearing has a groove for drawing a liquid lubricant during rotation, for example, a spiral groove in a herringbone pattern, formed on a fixed shaft. The rotating body is fitted to a cylindrical member constituting the fixed shaft, and a cylindrical bearing facing portion in which a small gap is provided between the cylindrical member and the cylindrical inner surface of the cylindrical member, and between the bearing facing portions adjacent to each other. The shaft has a smaller diameter than the cylindrical bearing facing portion, a relatively large gap is provided between the cylindrical member and the cylindrical inner surface, and a small diameter portion having a smaller diameter than the bearing facing portion. ing. The above-mentioned spiral groove is formed in the cylindrical bearing facing portion to form a hydrodynamic sliding bearing, and the space between the small diameter portion and the cylindrical inner surface of the cylindrical member prevents seizure of the cylindrical bearing facing portion. Therefore, it has a function of sufficiently storing the lubricant. Examples of such plain bearings are not limited to Patent Document 1, but are disclosed in Patent Documents 2 and 3.

また、X線管装置以外の他分野におけるすべり軸受として、特許文献4に開示されるように、内燃機関の主軸受があり、この内燃機関の主軸受では、軸受の疲労破損防止のために軸受端部に切欠き(溝)を設けて、軸の片当たり接触に対して変形しやすい構造としている。
特許第3139873号 特開2001−276034号 特開2005−69375号 特開平10−122229号公報
Further, as disclosed in Patent Document 4, as a plain bearing in other fields other than the X-ray tube device, there is a main bearing of an internal combustion engine. In the main bearing of the internal combustion engine, a bearing is used to prevent fatigue damage of the bearing. A notch (groove) is provided at the end so that the shaft can be easily deformed against contact with one piece.
Japanese Patent No. 3139873 JP 2001-276034 A JP 2005-69375 A JP-A-10-122229

近年、CT装置では、ヘリカルスキャンの高速化にともない、X線管に作用する遠心力が増大し、回転陽極を支持する固定軸が変形する蓋然性が増大している。固定軸の変形に伴い、小さな隙間しか設けられていない軸受部では、回転体と固定軸が接触し、焼きつきが生じることが懸念されている。   In recent years, in the CT apparatus, as the helical scan speeds up, the centrifugal force acting on the X-ray tube increases, and the probability that the fixed shaft that supports the rotating anode deforms increases. With the deformation of the fixed shaft, there is a concern that in the bearing portion where only a small gap is provided, the rotating body and the fixed shaft come into contact with each other and seizure occurs.

上記課題の解決策として、軸受部を固定軸の変形が生じ易い領域から固定軸の変形がより小さい領域に配置を変更する方法が想定される。しかし、軸受部が配置を変更すると陽極の全長が長くなり、全長が長くなるに伴い、遠心力が作用した際の固定軸の変形量はさらに増大し、また、X線管自体の重量も大きくなってしまう問題がある。従って、軸受部の配置を変更するのではなく、軸受構造の改良が望まれている。   As a solution to the above problem, a method of changing the arrangement of the bearing portion from a region where the deformation of the fixed shaft is likely to occur to a region where the deformation of the fixed shaft is smaller is assumed. However, if the arrangement of the bearing portion is changed, the total length of the anode becomes longer. As the total length becomes longer, the amount of deformation of the fixed shaft when the centrifugal force is applied further increases, and the weight of the X-ray tube itself increases. There is a problem that becomes. Therefore, an improvement in the bearing structure is desired rather than changing the arrangement of the bearing portions.

また、従来から、回転体の振れ回りや固定軸の変形によって軸受部の端部で回転体と固定軸がかじる(互いに接触する)問題があり、また、回転体の起動時における軸受部への給液不足によるかじり(接触)が生ずる問題もある。かじりにより焼き付きが生じた場合、回転体は回転不能となる。   Further, conventionally, there has been a problem that the rotating body and the fixed shaft are gnawed (contact each other) at the end of the bearing portion due to the swinging of the rotating body and the deformation of the fixed shaft. There is also a problem that galling (contact) occurs due to insufficient supply of liquid. When seizure occurs due to galling, the rotating body cannot rotate.

本発明は、上記問題点を解決するためになされてものであり、その目的は、回転体と固定軸がかじり接触することなく、回転体の安定した回転運動が可能な信頼性の高い陽極回転型X線管を提供することにある。   The present invention has been made in order to solve the above-described problems, and the object thereof is to provide a reliable anode rotation capable of stable rotational movement of the rotating body without causing the rotating body and the fixed shaft to be in contact with each other. It is to provide a type X-ray tube.

この発明によれば、
電子ビームが照射されてX線を発生するターゲットを備えている回転陽極と、
当該回転陽極を支持し、中空筒状部を定める円筒内面を有する回転体と、
前記中空筒部に挿入され、前記回転体を回転可能に支持する固定軸であって、前記円筒内面に間隙を空けて対向される対向面を備える柱状軸受部を有する固定軸と、
前記円筒内面及び前記対向面の少なくとも一方に形成されている軸受溝及び前記間隙に充填された潤滑剤で前記対向面上に形成される動圧軸受けと、及び
前記柱状軸受部の両端部の少なくとも一方に切欠形成された円周溝及びこの円周溝外周の円筒状鍔部で前記柱状軸受部の端部に設けられた薄肉構造と、
を具備することを特徴とする回転陽極型X線管が提供される。
According to this invention,
A rotating anode comprising a target that is irradiated with an electron beam to generate X-rays;
A rotating body that supports the rotating anode and has a cylindrical inner surface that defines a hollow cylindrical portion;
A fixed shaft that is inserted into the hollow cylindrical portion and rotatably supports the rotating body, and has a columnar bearing portion provided with an opposing surface facing the cylindrical inner surface with a gap therebetween;
A bearing groove formed on at least one of the cylindrical inner surface and the facing surface, a dynamic pressure bearing formed on the facing surface with a lubricant filled in the gap, and at least both ends of the columnar bearing portion A thin-walled structure provided at the end of the columnar bearing portion with a circumferential groove formed on one side and a cylindrical flange on the outer periphery of the circumferential groove;
A rotary anode type X-ray tube is provided.

また、この発明によれば、
電子ビームが照射されてX線を発生するターゲットを備えている回転陽極と、
当該回転陽極を支持し、中空筒状部を定める円筒内面を有する回転体と、
前記中空筒部に挿入され、前記回転体を回転可能に支持する固定軸であって、前記円筒内面に間隙を空けて対向される対向面を備える第1及び第2の柱状軸受部及びこの第1及び第2の柱状軸受部間に当該柱状軸受部よりも小径の小径軸部を有し、この小径軸部と前記円筒内面との間に潤滑剤が貯蔵される貯蔵部が設けられている固定軸と、
前記円筒内面及び前記対向面の少なくとも一方に形成されている軸受溝及び前記間隙に充填された前記潤滑剤で前記対向面上に形成される動圧軸受けと、及び
前記第1及び第2の柱状軸受部の両端部の少なく一方に夫々切欠形成された円周溝及びこの円周溝外周の円筒状鍔部で前記柱状軸受部の端部に設けられた薄肉構造と、
を具備することを特徴とする回転陽極型X線管が提供される。
Moreover, according to this invention,
A rotating anode comprising a target that is irradiated with an electron beam to generate X-rays;
A rotating body that supports the rotating anode and has a cylindrical inner surface that defines a hollow cylindrical portion;
First and second columnar bearing portions, which are inserted into the hollow cylindrical portion and support the rotating body so as to be rotatable, and have opposed surfaces facing the cylindrical inner surface with a gap therebetween, and the first Between the first and second columnar bearing portions, there is a small diameter shaft portion smaller in diameter than the columnar bearing portion, and a storage portion for storing a lubricant is provided between the small diameter shaft portion and the cylindrical inner surface. A fixed shaft;
A bearing groove formed on at least one of the cylindrical inner surface and the opposed surface, a dynamic pressure bearing formed on the opposed surface with the lubricant filled in the gap, and the first and second columnar shapes A thin groove structure provided at the end of the columnar bearing portion at a circumferential groove formed in a cutout at least one of both ends of the bearing portion and a cylindrical flange on the outer periphery of the circumferential groove;
A rotary anode type X-ray tube is provided.

円柱状の軸受対向部の端面に切欠きが設けれ、軸受対向部の端部が薄肉構造に形成される。従って、回転体と円柱状軸受対向部の接近による潤滑液の圧力上昇で薄肉構造は、容易に弾性変形し、回転体と円柱状軸受対向部の隙間を維持できる。結果として、回転体と固定軸が接触して焼き付くことを防止することできる。この構造は、回転体が振れ回っても固定軸と回転軸とがかじり合うことを防止することもできる。また、軸受対向部の薄肉構造に給液孔を設けることで、軸受部への液体潤滑剤が給液孔を介してスムーズに給液され、回転体の起動時において回転体と固定軸との間のかじりを防止することができる。従って、本発明によれば、回転体と固定軸がかじることなく、回転体の安定した回転運動が可能となり、信頼性の高い陽極回転型X線管を提供できる。   A notch is provided in the end face of the cylindrical bearing facing portion, and the end portion of the bearing facing portion is formed in a thin structure. Therefore, the thin-walled structure is easily elastically deformed by the increase in the pressure of the lubricating liquid due to the approach between the rotating body and the cylindrical bearing facing portion, and the gap between the rotating body and the cylindrical bearing facing portion can be maintained. As a result, it is possible to prevent the rotating body and the fixed shaft from coming into contact and seizing. This structure can also prevent the fixed shaft and the rotating shaft from galling even if the rotating body swings around. Also, by providing a liquid supply hole in the thin structure of the bearing facing part, the liquid lubricant to the bearing part is smoothly supplied through the liquid supply hole, and the rotating body and the fixed shaft are It is possible to prevent galling. Therefore, according to the present invention, the rotating body can be stably rotated without squeezing the rotating body and the fixed shaft, and a highly reliable anode rotating X-ray tube can be provided.

以下、必要に応じて図面を参照しながら、この発明の一実施の形態に係る陽極回転型X線管を説明する。   Hereinafter, an anode rotating X-ray tube according to an embodiment of the present invention will be described with reference to the drawings as necessary.

図1は、この発明の実施の形態に係る片持ち軸受構造を有する回転陽極型X線管を示している。回転陽極型X線管1は、回転磁界を発生するステータコイル2とともにX線管装置の筐体(図示せず)に収納されている。回転陽極型X線管1は、簡略化して破線で示されている真空外囲器4を備え、真空外囲器4の外周には、回転磁界を発生するステータコイル2が配置されている。真空外囲器4内は、真空に維持され、真空外囲器4内には、回転陽極型X線管1の中心軸6に沿って固定軸10が配置され、この固定軸10の軸部14が固定部8に固定されて固定軸10が片持ち支持され、固定部8には、真空外囲器4が気密にシールされている。この固定軸10は、有底筒状の回転体50に嵌合され、この回転体50が固定軸10に回転可能に軸支されている。   FIG. 1 shows a rotary anode X-ray tube having a cantilever bearing structure according to an embodiment of the present invention. The rotary anode type X-ray tube 1 is housed in a housing (not shown) of an X-ray tube device together with a stator coil 2 that generates a rotating magnetic field. The rotary anode type X-ray tube 1 includes a vacuum envelope 4 which is simplified and shown by a broken line, and a stator coil 2 for generating a rotating magnetic field is disposed on the outer periphery of the vacuum envelope 4. The vacuum envelope 4 is maintained in a vacuum, and a fixed shaft 10 is disposed in the vacuum envelope 4 along the central axis 6 of the rotary anode X-ray tube 1. 14 is fixed to the fixed portion 8 and the fixed shaft 10 is cantilevered. The vacuum envelope 4 is hermetically sealed to the fixed portion 8. The fixed shaft 10 is fitted into a bottomed cylindrical rotating body 50, and the rotating body 50 is rotatably supported on the fixed shaft 10.

回転体50の外周には、回転体50と共に回転される銅等の導電材料で作られた円筒状のモータロータ53がステータコイル2に対向して配置され、ステータコイル2からの回転磁界によってこのモータロータ53から回転力が発生されて回転体50が固定軸10に軸支されて回転される。回転体50の有底部(端部)からは、回転継手42が中心軸6に沿って延出され、この回転継手42に陽極ターゲット40が連結されている。従って、回転体50の回転に伴い陽極ターゲット40が回転される。陽極ターゲット40には、陰極30が対向配置され、陰極30から射出された電子ビームが回転される陽極ターゲット40に射突されてX線が発生される。図1に示されるように、陰極30、陽極ターゲット40、回転体50、固定体50及びモータロータ53は、真空外囲器4に格納されている。   A cylindrical motor rotor 53 made of a conductive material such as copper that rotates together with the rotating body 50 is disposed on the outer periphery of the rotating body 50 so as to face the stator coil 2, and this motor rotor is rotated by a rotating magnetic field from the stator coil 2. A rotational force is generated from 53 and the rotating body 50 is supported by the fixed shaft 10 and rotated. A rotary joint 42 extends from the bottomed portion (end) of the rotary body 50 along the central axis 6, and the anode target 40 is connected to the rotary joint 42. Therefore, the anode target 40 is rotated with the rotation of the rotating body 50. A cathode 30 is disposed opposite to the anode target 40, and an electron beam emitted from the cathode 30 is projected onto the rotated anode target 40 to generate X-rays. As shown in FIG. 1, the cathode 30, the anode target 40, the rotating body 50, the fixed body 50, and the motor rotor 53 are stored in the vacuum envelope 4.

固定軸10は、軸部14に比べて径が大きな円柱状軸受対向部16を有し、回転体50の円筒内面51に軸受対向部16の外周面11が対向され、この固定軸10及び円柱状軸受対向部16間の隙間Gに液体金属潤滑剤20が充填されている。また、有底筒状の回転体50の開口側円筒内面には、隙間Gに充填された液体金属潤滑剤20が漏れ出ることを防止する為に、回転体10の軸部14を液密に維持するシール部54が設けられている。このシール部54は、ラビリンスシールで構成され、軸部14との間に極微小な隙間を有し、直接的に接触されず、完全密閉を軸部14との間に与えていない。従って、動圧すべり軸受内も真空外囲器4内と同様に真空に維持される。また、シール部54には、凹凸が設けられているが、シール部54の凹部は、漏れ出た液体金属を留め置く機能を有している。   The fixed shaft 10 has a cylindrical bearing facing portion 16 having a diameter larger than that of the shaft portion 14, and the outer peripheral surface 11 of the bearing facing portion 16 is opposed to the cylindrical inner surface 51 of the rotating body 50. A liquid metal lubricant 20 is filled in the gap G between the columnar bearing facing portions 16. Further, in order to prevent the liquid metal lubricant 20 filled in the gap G from leaking into the opening-side cylindrical inner surface of the bottomed cylindrical rotating body 50, the shaft portion 14 of the rotating body 10 is liquid-tight. A maintaining seal 54 is provided. The seal portion 54 is formed of a labyrinth seal, has a very small gap with the shaft portion 14, is not in direct contact with the shaft portion 14, and does not provide a complete seal with the shaft portion 14. Therefore, the inside of the dynamic pressure slide bearing is maintained in a vacuum as in the vacuum envelope 4. The seal portion 54 is provided with irregularities, but the recess of the seal portion 54 has a function of retaining the leaked liquid metal.

尚、用語として軸受は、軸を受ける部分であることから、正確な意味では、円筒内面(回転体内面)を指している。この明細書において、軸受の円筒内面(回転体内面)に対向する固定軸の部分を軸受対向部と称している。   In addition, since a bearing is a part which receives an axis | shaft as a term, it has indicated the cylindrical inner surface (rotary body inner surface) in the exact meaning. In this specification, the portion of the fixed shaft that faces the cylindrical inner surface (rotor inner surface) of the bearing is referred to as a bearing facing portion.

液体金属潤滑剤20は、動圧すべり軸受の潤滑液としての機能を有し、液体金属潤滑剤20には、回転体50が回転される際に動圧が発生される。回転体50の円筒内面51に対向される円柱状軸受対向部16の外周面11には、動圧滑り軸受け(ラジアル滑り軸受け)に液体金属潤滑剤20を引き込む溝、例えば、へリングボーン配置の螺旋溝が形成されている。従って、回転体50は、固定軸10の円柱状軸受対向部16によってラジアル方向(半径方向)で支持される。円柱状軸受対向部16の外周面11に溝が形成されるに代えて、回転体50の円筒内面51に溝が形成されても同様にラジアル滑り軸受けを軸受対向部16及び回転体50間に設けることができる。   The liquid metal lubricant 20 has a function as a lubricant for the dynamic pressure sliding bearing, and the liquid metal lubricant 20 generates dynamic pressure when the rotating body 50 is rotated. On the outer peripheral surface 11 of the cylindrical bearing facing portion 16 facing the cylindrical inner surface 51 of the rotating body 50, a groove for drawing the liquid metal lubricant 20 into the dynamic pressure sliding bearing (radial sliding bearing), for example, a herringbone arrangement. A spiral groove is formed. Therefore, the rotating body 50 is supported in the radial direction (radial direction) by the cylindrical bearing facing portion 16 of the fixed shaft 10. Instead of forming a groove on the outer peripheral surface 11 of the cylindrical bearing facing portion 16, a radial sliding bearing is similarly provided between the bearing facing portion 16 and the rotating body 50 even if a groove is formed on the cylindrical inner surface 51 of the rotating body 50. Can be provided.

図2は、図1に示した軸受構造を拡大して示している。図2に示されるように円柱状軸受対向部16は、自由端側に軸部14と略同径の円柱状端部17A及びこの端部17Aに対向する円筒状の鍔部17Bを有している。また、円柱状軸受対向部16は、固定端側、即ち、軸部14の側に軸部14と同径の円柱状端部17C及びこの端部17Cに対向する円筒状の鍔部17Dを有している。円柱状端部17A及び円筒状の鍔部17Bは、円柱状軸受対向部16の自由端側の端面に中心軸6に同軸の円周溝60、64(切り欠き)を形成することによって形成され、円柱状端部17C及び円筒状の鍔部17Dも同様に円柱状軸受対向部16の固定端側の端面に中心軸6に同軸の円周溝62(切り欠き)を形成することによって形成される。鍔部17B、17Dには、その円周に沿って配置された多数の給液孔80が形成され、鍔部17B、17Dは、円柱状軸受対向部16に比べて薄く、潤滑液20から与えられる圧力で弾性変形可能な薄肉構造70に形成されている。このようにラジアル軸受けを構成する円柱状軸受対向部16の両端部が薄肉構造70に形成されている場合には、回転体50の円筒内面51が軸受対向面11に接近した際に、この接近によって潤滑液20の圧力が上昇され、薄肉構造70が容易に弾性変形される。この弾性変形に基づいて、円筒内面51と軸受対向面11と隙間が広がり、直接接触を避け、かじりを防止することができる。また、薄肉構造70に、軸受け間隙Gと円周溝60、64(切り欠き)を連結する給液孔80を設けることで、静止時に円周溝60、64(切り欠き)に溜まった潤滑液を給液孔80から軸受け間隙Gに供給できる。従って、回転体の起動時における軸受部のかじりを防止できる。   FIG. 2 shows an enlarged view of the bearing structure shown in FIG. As shown in FIG. 2, the columnar bearing facing portion 16 has a columnar end portion 17A having substantially the same diameter as the shaft portion 14 on the free end side and a cylindrical flange portion 17B facing the end portion 17A. Yes. Further, the cylindrical bearing facing portion 16 has a cylindrical end portion 17C having the same diameter as the shaft portion 14 on the fixed end side, that is, the shaft portion 14 side, and a cylindrical flange portion 17D facing the end portion 17C. is doing. The columnar end portion 17A and the cylindrical flange portion 17B are formed by forming circumferential grooves 60 and 64 (notches) coaxial with the central axis 6 on the end surface on the free end side of the columnar bearing facing portion 16. Similarly, the cylindrical end portion 17C and the cylindrical flange portion 17D are formed by forming a circumferential groove 62 (notch) coaxial with the central shaft 6 on the end surface on the fixed end side of the cylindrical bearing facing portion 16. The A large number of liquid supply holes 80 arranged along the circumference of the flange portions 17B and 17D are formed. The flange portions 17B and 17D are thinner than the cylindrical bearing facing portion 16 and are supplied from the lubricating liquid 20. It is formed in a thin-walled structure 70 that can be elastically deformed by the applied pressure. Thus, when both ends of the cylindrical bearing facing portion 16 constituting the radial bearing are formed in the thin-walled structure 70, this approach is provided when the cylindrical inner surface 51 of the rotating body 50 approaches the bearing facing surface 11. As a result, the pressure of the lubricating liquid 20 is increased, and the thin-walled structure 70 is easily elastically deformed. Based on this elastic deformation, a gap is widened between the cylindrical inner surface 51 and the bearing facing surface 11, and direct contact can be avoided and galling can be prevented. Further, by providing the thin-walled structure 70 with the liquid supply hole 80 that connects the bearing gap G and the circumferential grooves 60 and 64 (notches), the lubricating liquid accumulated in the circumferential grooves 60 and 64 (notches) when stationary. Can be supplied from the liquid supply hole 80 to the bearing gap G. Therefore, it is possible to prevent the bearing portion from being galled at the time of starting the rotating body.

図3には、この発明の他の実施例に係る固定軸が両持ち支持されているX線管が示され、図4には、固定軸の軸受構造が示されている。図3に示されるX線管及び図4に示される軸受構造においては、図1及び図2に示したと同一の符号を付した箇所は、同一部分或いは部材を示すものとしてその説明を省略する。図3に示されるように固定軸10の軸部14A、14Bが両持ち支持され、回転体50は、略筒状に形成され、その中央に陽極ターゲット40が固定支持されている。そして、回転体10の軸部14A,14Bに夫々液密に保つためのシール部54A,54Bが設けられている。   FIG. 3 shows an X-ray tube in which a fixed shaft according to another embodiment of the present invention is supported at both ends, and FIG. 4 shows a bearing structure of the fixed shaft. In the X-ray tube shown in FIG. 3 and the bearing structure shown in FIG. 4, the portions denoted by the same reference numerals as those shown in FIGS. 1 and 2 indicate the same parts or members and the description thereof is omitted. As shown in FIG. 3, the shaft portions 14A and 14B of the fixed shaft 10 are supported at both ends, the rotating body 50 is formed in a substantially cylindrical shape, and the anode target 40 is fixedly supported at the center thereof. Then, seal portions 54A and 54B are provided on the shaft portions 14A and 14B of the rotating body 10 to keep them liquid-tight.

尚、図3においては、図を簡略化する為に真空外囲器4は省略されているが、真空外囲器4内に図1と同様に陰極30、陽極ターゲット40、回転体50、固定体50及びモータロータ53が格納されている点に注意されたい。   In FIG. 3, the vacuum envelope 4 is omitted for the sake of simplicity, but the cathode 30, the anode target 40, the rotating body 50, and the fixed body are fixed in the vacuum envelope 4 as in FIG. 1. Note that the body 50 and motor rotor 53 are stored.

図3に示されるように回転体50が両持ち支持されているような構造においても、図4に示されるように円柱状軸受対向部16の両端部に、円柱状端部17A、17C及び円筒状の鍔部17B、17Dを有しても良い。円柱状端部17A、17C及び円筒状の鍔部17B、17Dは、円柱状軸受対向部16の端面に中心軸6に同軸の円周溝60、64(切り欠き)を形成することによって形成される。鍔部17B、17Dには、その円周に沿って配置された多数の給液孔80が形成され、鍔部17B、17Dは、円柱状軸受対向部16に比べて薄く、潤滑液20から与えられる圧力で弾性変形可能な薄肉構造70に形成されている。このようにラジアル軸受けを構成する円柱状軸受対向部16の両端部が薄肉構造70に形成されている場合には、回転体50の円筒内面51が軸受対向面11に接近した際に、この接近によって潤滑液20の圧力が上昇され、薄肉構造70が容易に弾性変形される。この弾性変形に基づいて、円筒内面51と軸受対向面11と隙間が広がり、直接接触を避け、かじりを防止することができる。また、薄肉構造70に、軸受け間隙Gと円周溝60、64(切り欠き)を連結する給液孔80を設けることで、静止時に円周溝60、64(切り欠き)に溜まった潤滑液を給液孔80から軸受け間隙Gに供給できる。従って、回転体の起動時における軸受部と回転部のかじり(接触)を防止できる。   Even in a structure in which the rotating body 50 is supported at both ends as shown in FIG. 3, the cylindrical end portions 17A and 17C and the cylinder are formed at both ends of the cylindrical bearing facing portion 16 as shown in FIG. You may have the shape collar parts 17B and 17D. The cylindrical end portions 17A and 17C and the cylindrical flange portions 17B and 17D are formed by forming circumferential grooves 60 and 64 (notches) coaxial with the central axis 6 on the end surface of the cylindrical bearing facing portion 16. The A large number of liquid supply holes 80 arranged along the circumference of the flange portions 17B and 17D are formed. The flange portions 17B and 17D are thinner than the cylindrical bearing facing portion 16 and are supplied from the lubricating liquid 20. It is formed in a thin-walled structure 70 that can be elastically deformed by the applied pressure. Thus, when both ends of the cylindrical bearing facing portion 16 constituting the radial bearing are formed in the thin-walled structure 70, this approach is provided when the cylindrical inner surface 51 of the rotating body 50 approaches the bearing facing surface 11. As a result, the pressure of the lubricating liquid 20 is increased, and the thin-walled structure 70 is easily elastically deformed. Based on this elastic deformation, a gap is widened between the cylindrical inner surface 51 and the bearing facing surface 11, and direct contact can be avoided and galling can be prevented. Further, by providing the thin-walled structure 70 with the liquid supply hole 80 that connects the bearing gap G and the circumferential grooves 60 and 64 (notches), the lubricating liquid accumulated in the circumferential grooves 60 and 64 (notches) when stationary. Can be supplied from the liquid supply hole 80 to the bearing gap G. Therefore, it is possible to prevent galling (contact) between the bearing portion and the rotating portion when the rotating body is started.

図5は、図2及び図3に示した回転陽極型X線管の軸受構造の変形例を示している。図5は、図3と同様に固定軸10が両持ちされる構造として描かれているが、当然に図2に示したと同様に固定軸10が片持ち支持される構造に適用されても良いことは明らかである。また、図5に示される軸受構造においては、図2に示したと同一の符号を付した箇所は、同一部分或いは部材を示すものとしてその説明を省略する。   FIG. 5 shows a modification of the bearing structure of the rotary anode X-ray tube shown in FIGS. Although FIG. 5 is drawn as a structure in which the fixed shaft 10 is both supported as in FIG. 3, the structure may naturally be applied to a structure in which the fixed shaft 10 is cantilevered as in FIG. 2. It is clear. Further, in the bearing structure shown in FIG. 5, the parts denoted by the same reference numerals as those shown in FIG. 2 indicate the same parts or members, and the description thereof is omitted.

図5に示される回転陽極型X線管の軸受構造においては、固定軸10の円柱状軸受対向部16が中心軸6に沿って1対の円柱状対向部分16A、16Bに分離され、この円柱状対向部分16A、16B間に凹部として潤滑液貯蔵部12が形成されている。円柱状対向部分16Aの両端部にも、円柱状端部17A、17E及び円筒状の鍔部17B、17Fが設けられ、また、円柱状対向部分16Bの両端部にも、円柱状端部17D、17E及び円筒状の鍔部17D、17Gが設けられている。円柱状端部17A、17C、17E及び円筒状の鍔部17B、17D、17F、17Gは、円柱状軸受対向部16の端面に中心軸6に同軸の円周溝60、64、62、66を形成することによって形成される。鍔部17B、17D、17F、17Gには、その円周に沿って配置された多数の給液孔80が形成され、鍔部17B、17D、17F、17Gは、円柱状軸受対向部16に比べて薄く、潤滑液20から与えられる圧力で弾性変形可能な薄肉構造70に形成されている。このようにラジアル軸受けを構成する円柱状軸受対向部16の両端部が薄肉構造70に形成されている場合には、回転体50の円筒内面51が軸受対向面11に接近した際に、この接近によって潤滑液20の圧力が上昇され、薄肉構造70が容易に弾性変形される。この弾性変形に基づいて、円筒内面51と軸受対向面11と隙間が広がり、直接接触を避け、かじり(接触)を防止することができる。また、薄肉構造70に、軸受け間隙Gと円周溝60、64(切り欠き)を連結する給液孔80を設けることで、静止時に円周溝60、62、64、66に溜まった潤滑液を給液孔80から軸受け間隙Gに供給できる。従って、回転体の起動時における軸受部のかじりを防止できる。   In the bearing structure of the rotary anode X-ray tube shown in FIG. 5, the cylindrical bearing facing portion 16 of the fixed shaft 10 is separated into a pair of cylindrical facing portions 16A and 16B along the central axis 6, and this circle A lubricating liquid storage portion 12 is formed as a recess between the columnar facing portions 16A and 16B. Cylindrical ends 17A and 17E and cylindrical flanges 17B and 17F are also provided at both ends of the columnar facing portion 16A, and columnar ends 17D and 17F are also provided at both ends of the columnar facing portion 16B. 17E and cylindrical flanges 17D and 17G are provided. The cylindrical end portions 17A, 17C, and 17E and the cylindrical flange portions 17B, 17D, 17F, and 17G have circumferential grooves 60, 64, 62, and 66 coaxial with the central axis 6 on the end surface of the cylindrical bearing facing portion 16. It is formed by forming. The flange portions 17B, 17D, 17F, and 17G are formed with a large number of liquid supply holes 80 arranged along the circumference thereof, and the flange portions 17B, 17D, 17F, and 17G are compared with the cylindrical bearing facing portion 16. The thin structure 70 is thin and can be elastically deformed by the pressure applied from the lubricating liquid 20. When both end portions of the cylindrical bearing facing portion 16 constituting the radial bearing are formed in the thin wall structure 70 as described above, when the cylindrical inner surface 51 of the rotating body 50 approaches the bearing facing surface 11, this approach is performed. As a result, the pressure of the lubricating liquid 20 is increased, and the thin-walled structure 70 is easily elastically deformed. Based on this elastic deformation, a gap is widened between the cylindrical inner surface 51 and the bearing facing surface 11, and direct contact can be avoided and galling (contact) can be prevented. Further, by providing the thin-walled structure 70 with a liquid supply hole 80 that connects the bearing gap G and the circumferential grooves 60 and 64 (notches), the lubricating liquid that has accumulated in the circumferential grooves 60, 62, 64, and 66 when stationary. Can be supplied from the liquid supply hole 80 to the bearing gap G. Therefore, it is possible to prevent the bearing portion from being galled at the time of starting the rotating body.

円柱状端部17Eに相当する小径部12と円筒内面51との間のスペースは、回転体の静止時に潤滑液の貯蔵する空間となる機能を有している。給液孔80は、潤滑液を貯蔵する部分とも連通しているため、スムーズに軸受部への潤滑液の供給が可能となり、軸受部の潤滑液不足によるかじりを防止することができる。   A space between the small diameter portion 12 corresponding to the columnar end portion 17E and the cylindrical inner surface 51 has a function of becoming a space for storing the lubricating liquid when the rotating body is stationary. Since the liquid supply hole 80 communicates with a portion that stores the lubricating liquid, the lubricating liquid can be smoothly supplied to the bearing portion, and galling due to a shortage of the lubricating liquid in the bearing portion can be prevented.

図6及び図7は、図2に示した固定軸が片持ち支持されている回転陽極型X線管の軸受構造の変形例を示している。図6及び図7に示される軸受構造においては、図2、図4及び図5に示したと同一の符号を付した箇所は、同一部分或いは部材を示すものとしてその説明を省略する。   6 and 7 show a modification of the bearing structure of the rotary anode X-ray tube in which the fixed shaft shown in FIG. 2 is cantilevered. In the bearing structure shown in FIGS. 6 and 7, the parts denoted by the same reference numerals as those shown in FIGS. 2, 4, and 5 indicate the same parts or members and the description thereof is omitted.

図6に示された構造においては、固定軸10の円柱状軸受対向部16よりも大径のスラストリング90が固定軸10に接合され、スラストリング90の端面とシール部54の端面によって回転体50をスラスト方向で支持するスラスト軸受構造91を構成している。スラストリング90の端面とシール部54の端面のいずれかには、中心軸6の回りに放射状にヘリングボーンパターンの溝が配置され、この溝に引き込まれた液体金属潤滑剤20によってスラスト方向の動圧が発生されて回転体50は、中心軸6に沿ったスラスト方向で軸支されている。図6に示される構造では、軸受対向部分16Bの固定側端面にスラストリング90が固定されることから、円周溝64が形成されず、円筒状の鍔部17Dが設けられない点に注意されたい。図6に示す構造においては、円周溝64に代えてスラストリング90に対向する回転体50の固定側端面に円周溝(切欠き部)68が形成されて回転体50の端面に鍔部17Hが設けられることが好ましい。この円周溝(切欠き部)68と鍔部17Hで、回転体50の端面に円柱状軸受対向部16に形成した薄肉構造70と同様な薄肉構造72が形成される。この薄肉構造72により、円柱状軸受対向部16の側面に切欠きを設けた場合と同様に、回転体50の振れ回りや遠心力による固定軸の変形によるかじりを防止することができる。   In the structure shown in FIG. 6, a thrust ring 90 having a larger diameter than the cylindrical bearing facing portion 16 of the fixed shaft 10 is joined to the fixed shaft 10, and the rotating body is formed by the end surface of the thrust ring 90 and the end surface of the seal portion 54. A thrust bearing structure 91 that supports 50 in the thrust direction is configured. A herringbone pattern groove is radially disposed around the central axis 6 on either the end face of the thrust ring 90 or the end face of the seal portion 54, and the liquid metal lubricant 20 drawn into the groove moves in the thrust direction. Pressure is generated and the rotating body 50 is supported in the thrust direction along the central axis 6. In the structure shown in FIG. 6, since the thrust ring 90 is fixed to the fixed side end face of the bearing facing portion 16B, it is noted that the circumferential groove 64 is not formed and the cylindrical flange portion 17D is not provided. I want. In the structure shown in FIG. 6, instead of the circumferential groove 64, a circumferential groove (notch) 68 is formed on the fixed-side end surface of the rotating body 50 facing the thrust ring 90, and the flange portion is formed on the end surface of the rotating body 50. 17H is preferably provided. A thin-wall structure 72 similar to the thin-wall structure 70 formed on the cylindrical bearing facing portion 16 is formed on the end surface of the rotating body 50 by the circumferential groove (notch portion) 68 and the flange portion 17H. The thin-walled structure 72 can prevent galling due to the rotation of the rotating body 50 and the deformation of the fixed shaft due to the centrifugal force, as in the case where the notch is provided on the side surface of the cylindrical bearing facing portion 16.

図7に示された構造においては、固定軸10の固定側端面とシール部54の端面によって回転体50をスラスト方向で支持するスラスト軸受構造91を構成している。固定軸10の固定側端面とシール部54の端面の端面のいずれかには、中心軸6の回りに放射状にヘリングボーンパターンの溝(図示せず)が配置され、この溝に引き込まれた液体金属潤滑剤20によって動圧が発生されて回転体50が中心軸6に沿ったスラスト方向で軸支されている。図7に示される構造では、円柱状軸受対向部分16Bの固定側端面がスラスト軸受構造91を形成している為に、円周溝64が形成されず、円筒状の鍔部17Dが設けられない点に注意されたい。図7に示す構造においては、円周溝64に代えてシール部54の端面に対向する回転体50の端面に円周溝(切欠き部)68が形成されて回転体50の固定側端面に鍔部17Hが設けられることが好ましい。この円周溝(切欠き部)68と鍔部17Hで、回転体50の端面に円柱状軸受対向部16に形成した薄肉構造70と同様な薄肉構造72が形成される。この薄肉構造72により、円柱状軸受対向部16の端面に円周溝(切欠き部)を設けた場合と同様に、回転体50の振れ回りや遠心力による固定軸の変形によるかじりを防止することができる。   In the structure shown in FIG. 7, a thrust bearing structure 91 that supports the rotating body 50 in the thrust direction is configured by the fixed-side end surface of the fixed shaft 10 and the end surface of the seal portion 54. A herringbone pattern groove (not shown) is radially arranged around the central axis 6 on either the fixed-side end face of the fixed shaft 10 or the end face of the seal portion 54, and the liquid drawn into this groove Dynamic pressure is generated by the metal lubricant 20, and the rotating body 50 is axially supported in the thrust direction along the central axis 6. In the structure shown in FIG. 7, since the fixed side end face of the cylindrical bearing facing portion 16B forms the thrust bearing structure 91, the circumferential groove 64 is not formed, and the cylindrical flange portion 17D is not provided. Please note that. In the structure shown in FIG. 7, instead of the circumferential groove 64, a circumferential groove (notch) 68 is formed on the end surface of the rotating body 50 facing the end surface of the seal portion 54, and the fixed side end surface of the rotating body 50 is formed. It is preferable that the flange portion 17H is provided. A thin-wall structure 72 similar to the thin-wall structure 70 formed on the cylindrical bearing facing portion 16 is formed on the end surface of the rotating body 50 by the circumferential groove (notch portion) 68 and the flange portion 17H. This thin structure 72 prevents galling due to the rotation of the rotating body 50 and deformation of the fixed shaft due to centrifugal force, as in the case where a circumferential groove (notch) is provided on the end face of the cylindrical bearing facing portion 16. be able to.

図8に示されるように、両持ち固定軸を有する回転陽極型X線管においても、図7に示した軸受構造と同様に薄肉構造72A,72Bが円柱状軸受対向部16の両端面に設けることが好ましい。図8に示されるように、回転体50の両端にシール部54A、54Bが取り付けられ、シール部54A、54Bの端面と円柱状軸受対向部16の端面との間にスラスト軸受構造91A,91Bが構成されている。また、シール部54の端面に対向する回転体50の端面に円周溝(切欠き部)68A,68Bが形成されて回転体50の固定側端面に鍔部17H、17Iが設けられることが好ましい。この円周溝(切欠き部)68A,68Bと鍔部17H、17Iで、回転体50の両端面に円柱状軸受対向部16に形成した薄肉構造70と同様な薄肉構造72A,72Bが形成される。この薄肉構造772A,72Bにより、円柱状軸受対向部16の両端面に円周溝(切欠き部)を設けた場合と同様に、回転体50の振れ回りや遠心力による固定軸の変形によるかじりを防止することができる。   As shown in FIG. 8, also in the rotary anode X-ray tube having a both-end fixed shaft, the thin-walled structures 72A and 72B are provided on both end surfaces of the cylindrical bearing facing portion 16 in the same manner as the bearing structure shown in FIG. It is preferable. As shown in FIG. 8, seal portions 54A, 54B are attached to both ends of the rotating body 50, and thrust bearing structures 91A, 91B are provided between the end surfaces of the seal portions 54A, 54B and the end surface of the cylindrical bearing facing portion 16. It is configured. Further, it is preferable that circumferential grooves (notches) 68A and 68B are formed on the end surface of the rotating body 50 facing the end surface of the seal portion 54, and the flanges 17H and 17I are provided on the fixed-side end surface of the rotating body 50. . These circumferential grooves (notches) 68A, 68B and flanges 17H, 17I form thin structures 72A, 72B similar to the thin structure 70 formed on the cylindrical bearing facing portion 16 on both end faces of the rotating body 50. The As with the thin-walled structures 772A and 72B, as with the case where circumferential grooves (notches) are provided on both end surfaces of the cylindrical bearing facing portion 16, galling due to the rotation of the rotating body 50 and deformation of the fixed shaft due to centrifugal force. Can be prevented.

尚、図8に示される構造において、スラスト軸受構造91A,91Bを構成するために、図6に示されると同様にスラストリング90が設けられても良い。図8に示される構造においては、シール部54A,54Bの端面と対向する円柱状軸受対向部16の端面には、切欠構造を設けることができない。円周溝(切欠き部)を設けられない円柱状軸受対向部16に対向する軸受部の両端面68A,68Bに円周溝(切欠き部)を設け、軸受端部を薄肉構造72A,72Bとすることができる。この構造により、円柱状軸受対向部16の端面に円周溝(切欠き部)を設けた場合と同様に、回転体の振れ回り或いは遠心力による固定軸10の変形によるかじりを防止することができる。   In the structure shown in FIG. 8, a thrust ring 90 may be provided in the same manner as shown in FIG. 6 in order to constitute the thrust bearing structures 91A and 91B. In the structure shown in FIG. 8, a notch structure cannot be provided on the end surface of the cylindrical bearing facing portion 16 that faces the end surfaces of the seal portions 54A and 54B. Circumferential grooves (notches) are provided on both end faces 68A and 68B of the bearing portion facing the cylindrical bearing facing portion 16 where no circumferential grooves (notches) are provided, and the bearing ends are thin-walled structures 72A and 72B. It can be. With this structure, similarly to the case where a circumferential groove (notch) is provided on the end face of the cylindrical bearing facing portion 16, it is possible to prevent galling due to the rotation of the rotating body or deformation of the fixed shaft 10 due to centrifugal force. it can.

図9は、図5に示される構造において、給液孔80が潤滑液貯蔵部12の側に延出される鍔部17G、17Fのみに設けた変形例を示している。円柱状軸受対向部分16A、16Bで構成される軸受け円柱状対向部16の両側には、スラスト軸受構造91A,91B或いはシール54A、54Bが取付けられるため、静止時に切欠構造68A,68Bに溜まる潤滑液は、潤滑液貯蔵部12に比べて少量である。それに対して、潤滑液貯蔵部12には、多量の潤滑液20を蓄えることが可能である。従って、潤滑液20の供給に効果的な潤滑液貯蔵部12に連通している給液孔80のみが鍔部17G、17Fに設けられれば良いこととなる。   FIG. 9 shows a modification in which the liquid supply hole 80 is provided only in the flanges 17G and 17F extending toward the lubricating liquid storage unit 12 in the structure shown in FIG. Since the thrust bearing structures 91A and 91B or the seals 54A and 54B are attached to both sides of the bearing columnar facing portion 16 constituted by the cylindrical bearing facing portions 16A and 16B, the lubricating liquid that accumulates in the notch structures 68A and 68B when stationary. Is a small amount compared to the lubricating liquid storage unit 12. On the other hand, a large amount of the lubricating liquid 20 can be stored in the lubricating liquid storage unit 12. Therefore, only the liquid supply hole 80 communicating with the lubricating liquid storage section 12 effective for supplying the lubricating liquid 20 may be provided in the flange portions 17G and 17F.

図10は、潤滑液20を軸受部に引き込む凹凸の溝構造13を有する軸受構造を示し、図11は、図10に示した軸受構造13を拡大して示している。溝構造13は、既に説明したようにヘリングボーンパターンの溝が平坦面に形成されて軸受対向面11が設けられ、軸受対向面11には、凹凸が形成される。ここで、給液孔80が溝構造13の凸部に形成される場合には、軸受構造13における圧力を付与する能力が低下する虞がある。従って、図10及び図11に示される溝構造13では、溝構造13の凹部に給液孔80が設けられている。   10 shows a bearing structure having an uneven groove structure 13 that draws the lubricating liquid 20 into the bearing portion, and FIG. 11 shows the bearing structure 13 shown in FIG. 10 in an enlarged manner. In the groove structure 13, the herringbone pattern groove is formed on a flat surface as described above, and the bearing facing surface 11 is provided, and the bearing facing surface 11 is formed with irregularities. Here, when the liquid supply hole 80 is formed in the convex portion of the groove structure 13, the ability to apply pressure in the bearing structure 13 may be reduced. Therefore, in the groove structure 13 shown in FIGS. 10 and 11, the liquid supply hole 80 is provided in the concave portion of the groove structure 13.

図12は、軸受構造13に遠心力FがX線管1に作用した際に回転体50の回転軸が固定軸10の中心軸6から偏芯される様子を示している。回転体50は、遠心力Fに沿って偏芯されることから、遠心力Fが作用する回転体50の円筒内面51は、遠心力Fの方向に向けられている円柱状軸受対向部16の面11から離れ、遠心力Fとは反対方向に向けられている円柱状軸受対向部16の面11により近接される。即ち、間隙Gが軸受対向面11の周囲で均一でなくなり、遠心力Fの作用方向とは反対側の間隙G2が遠心力Fの作用方向側の間隙G1に比べて小さく、回転体50の円筒内面51が軸受対向面11により近接される。このような状態では、間隙G2側に給液孔80を設けると、軸受構造13における圧力を付与する能力が低下する虞がある。従って、図12に示される溝構造13では、遠心力の付与によって間隔が大きくなる間隙G1に面する鍔部17B,17D、17F,17Gのみに給液孔80が設けられ、間隙G1に比べて距離が小さくなる間隙G2に面する鍔部17B,17D、17F,17Gには、給液孔80が設けられない。即ち、潤滑液20の圧力上昇が小さい間隙G1側に給液孔80が設けられている。   FIG. 12 shows a state where the rotating shaft of the rotating body 50 is eccentric from the central axis 6 of the fixed shaft 10 when the centrifugal force F acts on the X-ray tube 1 on the bearing structure 13. Since the rotating body 50 is eccentric along the centrifugal force F, the cylindrical inner surface 51 of the rotating body 50 to which the centrifugal force F acts is the cylindrical bearing facing portion 16 that is directed in the direction of the centrifugal force F. It is separated from the surface 11 and is brought closer to the surface 11 of the cylindrical bearing facing portion 16 that is directed in the direction opposite to the centrifugal force F. That is, the gap G is not uniform around the bearing facing surface 11, the gap G2 on the opposite side to the direction of action of the centrifugal force F is smaller than the gap G1 on the side of the action direction of the centrifugal force F, and the cylinder of the rotating body 50 The inner surface 51 is brought closer to the bearing facing surface 11. In such a state, if the liquid supply hole 80 is provided on the gap G2 side, the ability to apply pressure in the bearing structure 13 may be reduced. Accordingly, in the groove structure 13 shown in FIG. 12, the liquid supply hole 80 is provided only in the flange portions 17B, 17D, 17F, and 17G facing the gap G1 whose interval is increased by application of centrifugal force, compared to the gap G1. The liquid supply holes 80 are not provided in the flange portions 17B, 17D, 17F, and 17G facing the gap G2 where the distance is reduced. That is, the liquid supply hole 80 is provided on the gap G1 side where the pressure increase of the lubricating liquid 20 is small.

尚、図2及び図4〜図12において、固定軸10の周囲に白抜きで描かれている回転体50内のスペース18は、真空空間となっている。固定軸10と回転体50との間の空隙は、軸受の潤滑剤20の液体金属及び真空空間で占められている。ここで、真空空間は、シール部54に僅かな隙間があり、真空外囲器4内の真空空間に連通されて真空に維持されている。図2及び図4〜図12は、回転体50が回転している様子を示し、回転体50の回転によって生じる遠心力で、液体金属20が外側に向けられ、回転体50の内周面上に張り付けられて固定軸10の周囲の中心に近接する付近では真空空間が形成される。   In FIGS. 2 and 4 to 12, the space 18 in the rotating body 50 drawn in white around the fixed shaft 10 is a vacuum space. The gap between the fixed shaft 10 and the rotating body 50 is occupied by the liquid metal and vacuum space of the bearing lubricant 20. Here, the vacuum space has a slight gap in the seal portion 54 and communicates with the vacuum space in the vacuum envelope 4 and is maintained in a vacuum. 2 and 4 to 12 show a state in which the rotating body 50 is rotating. On the inner peripheral surface of the rotating body 50, the liquid metal 20 is directed outward by the centrifugal force generated by the rotation of the rotating body 50. A vacuum space is formed in the vicinity of the vicinity of the center of the periphery of the fixed shaft 10.

上述したように、X線管においては、円柱状の軸受対向部の端面に切欠きが設けれ、軸受対向部の端部が薄肉構造に形成される。従って、回転体と円柱状軸受対向部の接近による潤滑液の圧力上昇で薄肉構造は、容易に弾性変形し、回転体と円柱状軸受対向部の隙間を維持できる。結果として、回転体と固定軸が接触して焼き付くことを防止することできる。この構造は、回転体が振れ回っても固定軸と回転軸とがかじり合うことを防止することもできる。また、軸受対向部の薄肉構造に給液孔を設けることで、軸受部への液体潤滑剤が給液孔を介してスムーズに給液され、回転体の起動時において回転体と固定軸との間のかじりを防止することができる。従って、回転体と固定軸がかじることなく、回転体の安定した回転運動が可能となり、信頼性の高い陽極回転型X線管を提供することができる。   As described above, in the X-ray tube, a notch is provided in the end surface of the cylindrical bearing facing portion, and the end portion of the bearing facing portion is formed in a thin structure. Therefore, the thin-walled structure is easily elastically deformed by the increase in the pressure of the lubricating liquid due to the approach between the rotating body and the cylindrical bearing facing portion, and the gap between the rotating body and the cylindrical bearing facing portion can be maintained. As a result, it is possible to prevent the rotating body and the fixed shaft from coming into contact and seizing. This structure can also prevent the fixed shaft and the rotating shaft from galling even if the rotating body swings around. Also, by providing a liquid supply hole in the thin structure of the bearing facing part, the liquid lubricant to the bearing part is smoothly supplied through the liquid supply hole, and the rotating body and the fixed shaft are It is possible to prevent galling. Therefore, the rotating body can be stably rotated without being gnawed by the rotating body and a highly reliable anode rotating X-ray tube can be provided.

この発明の実施の形態に係る片持ち軸受構造を有する回転陽極型X線管の構造を概略的に示す断面図である。1 is a cross-sectional view schematically showing a structure of a rotary anode type X-ray tube having a cantilever bearing structure according to an embodiment of the present invention. 図1に示される回転陽極型X線管の軸受構造を概略的に示す断面図である。It is sectional drawing which shows roughly the bearing structure of the rotating anode type | mold X-ray tube shown by FIG. この発明の他の実施の形態に係る両持ち軸受構造を有する回転陽極型X線管の構造を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of the rotating anode type | mold X-ray tube which has the both-ends bearing structure which concerns on other embodiment of this invention. 図3に示される回転陽極型X線管の軸受構造を概略的に示す断面図である。It is sectional drawing which shows roughly the bearing structure of the rotating anode type | mold X-ray tube shown by FIG. 図4に示される回転陽極型X線管の軸受構造の変形例を概略的に示す断面図である。It is sectional drawing which shows roughly the modification of the bearing structure of the rotating anode type | mold X-ray tube shown by FIG. この発明の他の実施例に係る片持ち固定軸を備えた回転陽極型X線管の軸受構造を概略的に示す断面図である。It is sectional drawing which shows roughly the bearing structure of the rotary anode type | mold X-ray tube provided with the cantilever fixed axis | shaft which concerns on the other Example of this invention. 図6に示される片持ち固定軸を備えた回転陽極型X線管の軸受構造の変形例を概略的に示す断面図である。It is sectional drawing which shows roughly the modification of the bearing structure of a rotating anode type | mold X-ray tube provided with the cantilever fixed axis | shaft shown by FIG. この発明の更に他の実施例に係る両持ち固定軸を備えた回転陽極型X線管の軸受構造を概略的に示す断面図である。It is sectional drawing which shows roughly the bearing structure of the rotary anode type | mold X-ray tube provided with the both-ends fixed axis | shaft which concerns on other Example of this invention. 図8に示される両持ち固定軸を備えた回転陽極型X線管の軸受構造の変形例を概略的に示す断面図である。It is sectional drawing which shows roughly the modification of the bearing structure of a rotating anode type | mold X-ray tube provided with the both-ends fixed shaft shown by FIG. 図8に示される両持ち固定軸を備えた回転陽極型X線管の軸受構造の他の変形例を概略的に示す断面図である。It is sectional drawing which shows roughly the other modification of the bearing structure of a rotating anode type | mold X-ray tube provided with the both-ends fixed shaft shown by FIG. 図10に示される軸受構造の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of bearing structure shown by FIG. 図8に示される両持ち固定軸を備えた回転陽極型X線管の軸受構造の更に他の変形例を概略的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing still another modification of the bearing structure of the rotary anode type X-ray tube including the both-end fixed shaft shown in FIG. 8.

符号の説明Explanation of symbols

1…回転陽極型X線管、2…ステータコイル、4...真空外囲器、6...中心軸、10…固定軸、11…軸受対向面、12…潤滑液貯蔵部、14...軸部、13…溝構造、16...円柱状軸受対向部、17A,17B...円筒状鍔部、17C,17D...円柱状端部、20…液体金属潤滑剤、30…陰極、40…陽極ターゲット、42...回転継手、50…回転体、51…円筒内面、53…モータロータ、54…シール部、60、62、64、66、68…円周溝(切欠き部)、70…薄肉構造、80…給液孔、90…スラストリング、91…スラスト軸受構造、G、G1、G2...間隙   DESCRIPTION OF SYMBOLS 1 ... Rotary anode type X-ray tube, 2 ... Stator coil, 4 . . 5. Vacuum envelope, . . 11. central axis, 10... Fixed shaft, 11... Bearing facing surface, 12. . . Shaft portion, 13 ... groove structure, 16. . . Cylindrical bearing facing part, 17A, 17B. . . Cylindrical collar, 17C, 17D. . . Cylindrical end, 20 ... Liquid metal lubricant, 30 ... Cathode, 40 ... Anode target, 42. . . Rotating joint, 50 ... Rotating body, 51 ... Cylinder inner surface, 53 ... Motor rotor, 54 ... Seal part, 60, 62, 64, 66, 68 ... Circumferential groove (notched part), 70 ... Thin wall structure, 80 ... Liquid supply Hole, 90 ... thrust ring, 91 ... thrust bearing structure, G, G1, G2. . . gap

Claims (12)

電子ビームが照射されてX線を発生するターゲットを備えている回転陽極と、
当該回転陽極を支持し、中空筒状部を定める円筒内面を有する回転体と、
前記中空筒部に挿入され、前記回転体を回転可能に支持する固定軸であって、前記円筒内面に間隙を空けて対向される対向面を備える柱状軸受部を有する固定軸と、
前記円筒内面及び前記対向面の少なくとも一方に形成されている軸受溝及び前記間隙に充填された潤滑剤で前記対向面上に形成される動圧軸受けと、及び
前記柱状軸受部の両端部の少なくとも一方に切欠形成された円周溝及びこの円周溝外周の円筒状鍔部で前記柱状軸受部の端部に設けられた薄肉構造と、
を具備することを特徴とする回転陽極型X線管。
A rotating anode comprising a target that is irradiated with an electron beam to generate X-rays;
A rotating body that supports the rotating anode and has a cylindrical inner surface that defines a hollow cylindrical portion;
A fixed shaft that is inserted into the hollow cylindrical portion and rotatably supports the rotating body, and has a columnar bearing portion provided with an opposing surface facing the cylindrical inner surface with a gap therebetween;
A bearing groove formed on at least one of the cylindrical inner surface and the facing surface, a dynamic pressure bearing formed on the facing surface with a lubricant filled in the gap, and at least both ends of the columnar bearing portion A thin-walled structure provided at the end of the columnar bearing portion with a circumferential groove formed on one side and a cylindrical flange on the outer periphery of the circumferential groove;
A rotary anode X-ray tube comprising:
前記固定軸は、一端が固定され、前記回転体は、有底円筒状に形成され、この回転体の開口側には、前記潤滑剤の漏洩を防止するシール部が固定軸との間に設けられていることを特徴とする請求項1の回転陽極型X線管。     One end of the fixed shaft is fixed, and the rotating body is formed in a bottomed cylindrical shape. A seal portion for preventing leakage of the lubricant is provided between the rotating body and the fixed shaft. The rotating anode X-ray tube according to claim 1, wherein the rotating anode X-ray tube is provided. 前記固定軸は、両端が固定され、前記回転体は、両端が開口されている円筒状に形成され、この回転体の両開口部には、前記潤滑剤の漏洩を防止するシール部が固定軸との間に設けられていることを特徴とする請求項1の回転陽極型X線管。     The fixed shaft is fixed at both ends, and the rotating body is formed in a cylindrical shape having both ends open. A seal portion for preventing leakage of the lubricant is fixed to the fixed shaft at both openings of the rotating body. The rotary anode X-ray tube according to claim 1, which is provided between 前記鍔部には、前記潤滑剤が通過する給液孔が貫通して設けられていることを特徴とする請求項1の回転陽極型X線管。     The rotary anode type X-ray tube according to claim 1, wherein a liquid supply hole through which the lubricant passes is provided in the flange portion. 電子ビームが照射されてX線を発生するターゲットを備えている回転陽極と、
当該回転陽極を支持し、中空筒状部を定める円筒内面を有する回転体と、
前記中空筒部に挿入され、前記回転体を回転可能に支持する固定軸であって、前記円筒内面に間隙を空けて対向される対向面を備える第1及び第2の柱状軸受部及びこの第1及び第2の柱状軸受部間に当該柱状軸受部よりも小径の小径軸部を有し、この小径軸部と前記円筒内面との間に潤滑剤が貯蔵される貯蔵部が設けられている固定軸と、
前記円筒内面及び前記対向面の少なくとも一方に形成されている軸受溝及び前記間隙に充填された前記潤滑剤で前記対向面上に形成される動圧軸受けと、及び
前記第1及び第2の柱状軸受部の両端部の少なく一方に夫々切欠形成された円周溝及びこの円周溝外周の円筒状鍔部で前記柱状軸受部の端部に設けられた薄肉構造と、
を具備することを特徴とする回転陽極型X線管。
A rotating anode comprising a target that is irradiated with an electron beam to generate X-rays;
A rotating body that supports the rotating anode and has a cylindrical inner surface that defines a hollow cylindrical portion;
First and second columnar bearing portions, which are inserted into the hollow cylindrical portion and support the rotating body so as to be rotatable, and have opposed surfaces facing the cylindrical inner surface with a gap therebetween, and the first Between the first and second columnar bearing portions, there is a small diameter shaft portion smaller in diameter than the columnar bearing portion, and a storage portion for storing a lubricant is provided between the small diameter shaft portion and the cylindrical inner surface. A fixed shaft;
A bearing groove formed on at least one of the cylindrical inner surface and the opposed surface, a dynamic pressure bearing formed on the opposed surface with the lubricant filled in the gap, and the first and second columnar shapes A thin groove structure provided at the end of the columnar bearing portion at a circumferential groove formed in a cutout at least one of both ends of the bearing portion and a cylindrical flange on the outer periphery of the circumferential groove;
A rotary anode X-ray tube comprising:
前記固定軸は、一端が固定され、前記回転体は、有底円筒状に形成され、この回転体の開口側には、前記潤滑剤の漏洩を防止するシール部が固定軸との間に設けられていることを特徴とする請求項5の回転陽極型X線管。     One end of the fixed shaft is fixed, and the rotating body is formed in a bottomed cylindrical shape. A seal portion for preventing leakage of the lubricant is provided between the rotating body and the fixed shaft. 6. The rotating anode X-ray tube according to claim 5, wherein the rotating anode X-ray tube is provided. 前記固定軸は、両端が固定され、前記回転体は、両端が開口されている円筒状に形成され、この回転体の両開口部には、前記潤滑剤の漏洩を防止するシール部が固定軸との間に設けられていることを特徴とする請求項5の回転陽極型X線管。     The fixed shaft is fixed at both ends, and the rotating body is formed in a cylindrical shape having both ends open. A seal portion for preventing leakage of the lubricant is fixed to the fixed shaft at both openings of the rotating body. 6. The rotary anode X-ray tube according to claim 5, wherein 前記回転体の開口部側の端部には、切欠形成された円周溝及びこの円周溝外周の円筒状鍔部で前記回転体の端部に薄肉構造を設けたことを特徴とする請求項6又は請求項7の回転陽極型X線管。     The end of the rotating body is provided with a thin structure at the end of the rotating body at the end of the rotating body at the end of the rotating body by a notched circumferential groove and a cylindrical flange on the outer periphery of the circumferential groove. The rotary anode X-ray tube according to Item 6 or Claim 7. 前記鍔部には、前記潤滑剤が通過する給液孔が貫通して設けられていることを特徴とする請求項5の回転陽極型X線管。     6. The rotary anode type X-ray tube according to claim 5, wherein a liquid supply hole through which the lubricant passes is provided in the flange portion. 前記薄肉構造は、前記貯蔵部側に設けられ、当該貯蔵部に延出前記鍔部には、前記潤滑剤が通過する給液孔が貫通して設けられていることを特徴とする請求項5に記載の回転陽極型X線管。     6. The thin-walled structure is provided on the storage unit side, and a liquid supply hole through which the lubricant passes is provided in the flange portion extending to the storage unit. A rotating anode X-ray tube as described in 1. above. 前記鍔部には、前記潤滑剤が通過する給液孔が貫通して設けられ、この給液孔は、前記動圧軸受けの軸受け溝に開口されていることを特徴とする請求項1又は請求項5に記載の回転陽極型X線管。     The liquid supply hole through which the lubricant passes is provided through the flange, and the liquid supply hole is opened in a bearing groove of the dynamic pressure bearing. Item 6. The rotating anode X-ray tube according to Item 5. 前記給液孔は、前記X線管の回転に伴い当該X線管に与えられる遠心力が付与される方向の側の鍔部に前記潤滑剤が通過する給液孔が貫通して設けられることを特徴とする請求項1又は請求項5に記載の回転陽極型X線管。     The liquid supply hole is provided with a liquid supply hole through which the lubricant passes through a flange portion in a direction in which a centrifugal force applied to the X-ray tube is applied as the X-ray tube rotates. The rotary anode type X-ray tube according to claim 1 or 5, wherein
JP2008080974A 2008-03-26 2008-03-26 Rotating anode x-ray tube Abandoned JP2009238477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008080974A JP2009238477A (en) 2008-03-26 2008-03-26 Rotating anode x-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008080974A JP2009238477A (en) 2008-03-26 2008-03-26 Rotating anode x-ray tube

Publications (1)

Publication Number Publication Date
JP2009238477A true JP2009238477A (en) 2009-10-15

Family

ID=41252184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008080974A Abandoned JP2009238477A (en) 2008-03-26 2008-03-26 Rotating anode x-ray tube

Country Status (1)

Country Link
JP (1) JP2009238477A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233364A (en) * 2010-04-27 2011-11-17 Toshiba Corp Rotating anode x-ray tube and rotating anode x-ray tube assembly
JP2015503203A (en) * 2011-12-06 2015-01-29 コーニンクレッカ フィリップス エヌ ヴェ Rotating anode balance
DE102017118924B4 (en) 2016-08-30 2023-10-19 General Electric Company System and method for reducing a bearing shaft relative deflection in an X-ray tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233364A (en) * 2010-04-27 2011-11-17 Toshiba Corp Rotating anode x-ray tube and rotating anode x-ray tube assembly
JP2015503203A (en) * 2011-12-06 2015-01-29 コーニンクレッカ フィリップス エヌ ヴェ Rotating anode balance
DE102017118924B4 (en) 2016-08-30 2023-10-19 General Electric Company System and method for reducing a bearing shaft relative deflection in an X-ray tube

Similar Documents

Publication Publication Date Title
US7746982B2 (en) Rotary anode X-ray tube
JPH0628335U (en) Dynamic bearing device
US20160133431A1 (en) Welded Spiral Groove Bearing Assembly
JP2005147394A (en) Dynamic-pressure bearing device and disc driving device
KR940009193B1 (en) Rotary-anode type x-ray tube
JP2009238477A (en) Rotating anode x-ray tube
US11017976B2 (en) Spiral groove bearing assembly with minimized deflection
US7801278B2 (en) Rotary anode X-ray tube
JP5305736B2 (en) Rotating anode X-ray tube
JP7134848B2 (en) Thrust flange for X-ray tubes with internal cooling channels
US20020141538A1 (en) Rotary anode type X-ray tube
US20230272819A1 (en) Hydrodynamic bearing system and method for operating said hydrodynamic bearing system
JP2003247540A (en) Rolling bearing and rod end bearing
JP2007309351A (en) Rolling bearing
JP3824921B2 (en) Rotating anode type X-ray tube apparatus and control method thereof
JP2010257649A (en) Rotating anode type x-ray tube
JP2002245958A (en) Rotating anode type x-ray tube and manufacturing method thereof
JPH10172483A (en) Rotary anode type x-ray tube
US11959513B2 (en) Fluid dynamic bearing device
JP3811078B2 (en) Rotating anode X-ray tube
JP4015766B2 (en) Rotating anode X-ray tube
JP2006004716A (en) Rotary anode type x-ray tube
JP2007120748A (en) Fluid bearing device
JP2002231167A (en) Rotating anode type x-ray tube
JPH1140091A (en) Rotating anode x-ray tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101227

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20110808