JP2009237226A - Electronic eyeglasses - Google Patents

Electronic eyeglasses Download PDF

Info

Publication number
JP2009237226A
JP2009237226A JP2008082810A JP2008082810A JP2009237226A JP 2009237226 A JP2009237226 A JP 2009237226A JP 2008082810 A JP2008082810 A JP 2008082810A JP 2008082810 A JP2008082810 A JP 2008082810A JP 2009237226 A JP2009237226 A JP 2009237226A
Authority
JP
Japan
Prior art keywords
illuminance
vision
wavelength
variable focus
photopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008082810A
Other languages
Japanese (ja)
Inventor
Yoshinobu Okada
好信 岡田
Satoko Machida
佐土子 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008082810A priority Critical patent/JP2009237226A/en
Publication of JP2009237226A publication Critical patent/JP2009237226A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide electronic eyeglasses which are free from blurring of an image and allow the dioptric power to be comfortably corrected even when brightness around a wearer is changed. <P>SOLUTION: The electronic eyeglasses include: an illuminance sensor; variable focus lenses which are provided so as to correspond to right and left eyes and have the focal lengths varied by a signal from the outside; and a focus control circuit which determines the focal lengths of the variable focus lenses in accordance with an output from the illuminance sensor. The focus control circuit includes: an illuminance calculation block for calculating illuminance in accordance with the output from the illuminance sensor; an calculation comparison block for calculating a comparative value between the illuminance calculated by the illuminance calculation block and a predetermined photopic or scotopic vision illuminance; and a driving control block for determining the focal lengths of the variable focus lenses in accordance with the calculation comparison result of the calculation comparison block. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電気的に屈折力の調整制御を行う電子眼鏡に関するものである。   The present invention relates to an electronic spectacle that electrically adjusts and controls the refractive power.

焦点距離を可変できる電子眼鏡として、光学弾性体レンズに加わる圧力を電気制御することにより、光学弾性体レンズの形状を変化させて、屈折力を可変制御する方式が知られている(例えば、特許文献1参照。)。   As electronic glasses capable of changing the focal length, there is known a method in which the refractive power is variably controlled by changing the shape of the optical elastic lens by electrically controlling the pressure applied to the optical elastic lens (for example, patents). Reference 1).

また電気的に屈折力を可変制御する電子眼鏡として、レンズの中に液晶などの誘電体材料を封入し、これに電圧をかけて誘電率を変化させることで屈折力を制御する可変焦点レンズを用いた方式がある。レンズや可変焦点レンズの屈折率は、波長に依存する。そのため、レンズや可変焦点レンズにおいて、可視波長である380nmから780nmの波長域での屈折力を同一にすることは出来ない。そのため、可変焦点レンズの屈折力調整が必要であり、たとえば明所視の比視感度がほぼ最大となる波長の550nmで、所定の屈折力を実現するように可変焦点レンズの誘電率を変化させて制御を行う方法が知られている(例えば、特許文献2参照。)。
特開昭63−24217号公報 特開平11−352445号公報
Also, as electronic glasses that variably control refractive power electrically, a variable focus lens that controls refractive power by enclosing a dielectric material such as liquid crystal in the lens and applying a voltage to this to change the dielectric constant. There is a method used. The refractive index of a lens or variable focus lens depends on the wavelength. Therefore, in a lens or a variable focus lens, the refractive power in the visible wavelength range of 380 nm to 780 nm cannot be made the same. Therefore, it is necessary to adjust the refractive power of the variable focus lens. For example, the dielectric constant of the variable focus lens is changed so as to realize a predetermined refractive power at a wavelength of 550 nm where the specific luminous sensitivity of photopic vision is almost maximum. A method for performing control is known (for example, see Patent Document 2).
JP-A-63-24217 JP-A-11-352445

しかしながら、前記従来の技術では、周囲の明るさが変化しても可変焦点レンズの屈折力は変化しない。例えば550nmの波長を基準にして可変焦点レンズの屈折力を制御した場合には、周囲の明るさが変化しても、常に550nmの波長が、所定の屈折力となるように制御されている。   However, in the conventional technique, the refractive power of the variable focus lens does not change even if the ambient brightness changes. For example, when the refractive power of the variable focus lens is controlled with reference to the wavelength of 550 nm, the wavelength of 550 nm is always controlled to have a predetermined refractive power even if the ambient brightness changes.

周囲が略10ルクス以上の明るさの状態の明所視においては、網膜上の錐体細胞により光を感知するために比視感度最大の波長は略555nmとなるが、略0.01ルクス以下の月明かり程度の明るさの状態の暗所視においては、網膜上の杆体細胞により光を感知するために比視感度最大の波長は略507nmとなる。また暗所視と明所視の中間の明るさの朝焼けや夕暮れ時程度の薄明視においては、明るさに応じて杆体細胞と錐体細胞の両細胞により光を感知するために、比視感度最大の波長は、明るさに応じて変化する。従って、周囲の明るさが変化すると、比視感度最大の波長の屈折力が、装着者が必要とする所定の屈折力からずれてしまい、焦点がずれて像がぼやけて見えるなどの課題を有していた。   In photopic vision where the surroundings are brighter than about 10 lux, the wavelength of maximum visual acuity is about 555 nm in order to sense light by the pyramidal cells on the retina, but about 0.01 lux or less In the scotopic vision with a brightness of about the moonlight, the wavelength of the maximum luminous efficiency is about 507 nm in order to sense light by the rod cells on the retina. In the morning glow at the midpoint between dark vision and photopic vision, and at dusk vision at dusk, light sensitivity is detected by both rod cells and cone cells depending on the brightness. The maximum wavelength varies depending on the brightness. Therefore, when the ambient brightness changes, the refractive power of the wavelength with the maximum specific visibility shifts from the predetermined refractive power required by the wearer, and there is a problem that the image is blurred because the focus is shifted. Was.

本発明は、前記従来の課題を解決するもので、装着者の周囲の明るさが変化した場合でも、像のぼやけが無く快適に屈折力の矯正が出来る電子眼鏡を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to provide electronic glasses that can comfortably correct refractive power without blurring of an image even when the brightness around the wearer changes. .

前記従来の課題を解決するために、本発明の電子眼鏡は、照度センサと、左右の眼に対応して設けられた外部からの信号により焦点距離が変化する可変焦点レンズと、前記照度センサからの出力に応じて前記可変焦点レンズの焦点距離を決定する焦点制御回路とを備えたことを特徴としたものである。   In order to solve the above-mentioned conventional problems, an electronic spectacle of the present invention includes an illuminance sensor, a variable focus lens whose focal length is changed by an external signal provided corresponding to the left and right eyes, and the illuminance sensor. And a focus control circuit for determining the focal length of the variable focus lens in accordance with the output of.

本発明は、前記従来の課題を解決するもので、本発明の照度センサと焦点制御回路と可変焦点レンズを備えた電子眼鏡によれば、周囲の明るさに応じて装着者に最適な屈折力に可変焦点レンズを駆動制御することにより、どのような明るさの状況下においても視界の明るい焦点ぼけの無い最適な視力の矯正を実現する電子眼鏡を提供することができる。   The present invention solves the above-described conventional problems, and according to the electronic glasses equipped with the illuminance sensor, the focus control circuit, and the variable focus lens of the present invention, the optimum refractive power for the wearer according to the surrounding brightness. In addition, by driving and controlling the variable focus lens, it is possible to provide an electronic spectacle that realizes optimum correction of visual acuity without a bright defocus in a field of view under any brightness conditions.

以下に、本発明の電子眼鏡の屈折力制御装置の実施の形態を図面とともに詳細に説明する。   Embodiments of a refractive power control apparatus for electronic glasses according to the present invention will be described below in detail with reference to the drawings.

(実施の形態1)
本発明の実施の形態1について、図1から図6を用いて説明する。図1は、本発明の実施の形態1における電子眼鏡の概略図である。可変焦点レンズ1はリム3により保持されている。1組の可変焦点レンズ1とリム3は、ブリッジ5により連結保持されている。電子眼鏡装着時に鼻に密着して電子眼鏡を保持する部分には、1組の鼻パッド6がブリッジ5に設けられている。リム3の両端には智7が設けられており、丁番8を介してテンプル4に連結されている。テンプル4には、焦点制御回路9と電源10が設けられている。テンプル4は、電子眼鏡装着時に顔側面および耳部に、電子眼鏡が安定して保持されるように構成されている。智7には、照度センサ11が設けられている。本実施例では、焦点制御回路9と電源10はテンプル4に設け、照度センサ11は智7に設けたが、特にこれに限定されるものではなく、フレーム2の他の構成要素に配置しても良い。
(Embodiment 1)
Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram of the electronic glasses according to Embodiment 1 of the present invention. The variable focus lens 1 is held by a rim 3. One set of the variable focus lens 1 and the rim 3 are connected and held by a bridge 5. A pair of nose pads 6 is provided on the bridge 5 in a portion that holds the electronic glasses in close contact with the nose when the electronic glasses are worn. Wigs 7 are provided at both ends of the rim 3, and are connected to the temple 4 through hinges 8. The temple 4 is provided with a focus control circuit 9 and a power source 10. The temple 4 is configured so that the electronic glasses are stably held on the side of the face and the ears when the electronic glasses are worn. The illuminance sensor 11 is provided in the wisdom 7. In this embodiment, the focus control circuit 9 and the power source 10 are provided in the temple 4 and the illuminance sensor 11 is provided in the wilt 7, but this is not particularly limited, and the focus control circuit 9 and the power source 10 are arranged in other components of the frame 2. Also good.

図2は、本発明の実施の形態1における電子眼鏡のブロック図を示す。照度センサ11は、電子眼鏡を装着している状態の周囲の照度を検出し、照度に応じた出力を焦点制御回路9に送る。焦点制御回路9は、照度算出ブロック20と演算比較ブロック21と駆動制御ブロック22から構成されている。照度算出ブロック20は、照度センサ11からの出力に応じて照度を算出する。演算比較ブロック21は、照度算出ブロック20による算出値と所定の照度との演算比較処理を行なう。駆動制御ブロック22は、演算比較ブロック21による演算比較結果に応じて、可変焦点レンズ1の屈折力の調整制御を行う。可変焦点レンズ1、電源10、照度センサ11はそれぞれ焦点制御回路9と電気的に接続されている。   FIG. 2 is a block diagram of the electronic glasses according to Embodiment 1 of the present invention. The illuminance sensor 11 detects the illuminance around the electronic glasses and sends an output corresponding to the illuminance to the focus control circuit 9. The focus control circuit 9 includes an illuminance calculation block 20, a calculation comparison block 21, and a drive control block 22. The illuminance calculation block 20 calculates the illuminance according to the output from the illuminance sensor 11. The operation comparison block 21 performs an operation comparison process between the value calculated by the illuminance calculation block 20 and a predetermined illuminance. The drive control block 22 performs adjustment control of the refractive power of the variable focus lens 1 in accordance with the calculation comparison result by the calculation comparison block 21. The variable focus lens 1, the power supply 10, and the illuminance sensor 11 are each electrically connected to the focus control circuit 9.

図3は、明所視と暗所視における人間の眼の比視感度特性を示すグラフである。人間の眼は、明所視の状態(日中の明るい環境で見ている状態)では、網膜上の錐体細胞により光を感知する。錐体細胞は略555nmの波長の黄緑色光に対して最も感度が高いため、明所視の状態における比視感度特性は図3の12の特性となる。明所視の照度は略10ルクス以上の明るい状態の場合である。暗所視の状態(月明かり程度の環境で見ている状態)では、網膜上の杆体細胞により光を感知する。杆体細胞は、略507nmの波長の青緑色光に対して最も感度が高いため、暗所視の状態における比視感度特性は図3の13の特性となる。暗所視の照度は略0.01ルクス以下の暗い環境の状態の場合である。   FIG. 3 is a graph showing specific luminous efficiency characteristics of human eyes in photopic and scotopic visions. In the state of photopic vision (when viewed in a bright environment during the day), the human eye senses light by cone cells on the retina. Since the pyramidal cells are most sensitive to yellow-green light having a wavelength of approximately 555 nm, the specific luminous sensitivity characteristic in the photopic state is the characteristic 12 in FIG. The photopic illuminance is in a bright state of approximately 10 lux or more. In the scotopic state (when viewed in an environment of about moonlight), light is detected by the rod cells on the retina. Since rod cells are most sensitive to blue-green light having a wavelength of about 507 nm, the relative luminous sensitivity characteristic in the state of scotopic vision is the characteristic 13 in FIG. The illuminance in the dark place is in a dark environment of about 0.01 lux or less.

図4は、本発明の実施の形態1における電子眼鏡の屈折力制御の説明図である。図4を用いて、屈折力制御の調整方法について説明を行う。明るさが略10ルクスの第3の照度16より明るい状態の明所視においては、図3の明所視の比視感度特性12に示すように、比視感度最大の波長は略555nmとなり、短波長側の青色光や長波長側の赤色光に対する比視感度は著しく低下する。照度センサ11により周囲の照度が略10ルクスの第3の照度以上と検知した場合には、装着者に最適な所定の屈折力を実現する波長が略555nmとなるように焦点制御回路9により可変焦点レンズ1の調整を行う。   FIG. 4 is an explanatory diagram of refractive power control of the electronic glasses according to Embodiment 1 of the present invention. A method for adjusting the refractive power control will be described with reference to FIG. In photopic vision in which the brightness is brighter than the third illuminance 16 of about 10 lux, as shown in the photosensitivity characteristic 12 of photopic vision in FIG. The relative visibility with respect to blue light on the short wavelength side and red light on the long wavelength side is significantly reduced. When the illuminance sensor 11 detects that the ambient illuminance is greater than or equal to the third illuminance of approximately 10 lux, the focus control circuit 9 can change the wavelength to achieve a predetermined refractive power optimum for the wearer to approximately 555 nm. The focus lens 1 is adjusted.

明るさが略0.01ルクスの第2の照度15より暗い状態の暗所視においては、図3の暗所視の比視感度特性13に示すように、比視感度最大の波長は略507nmとなり、明所視の状態における比視感度最大の略555nmの波長の感度は50%以下に大きく低下する。照度センサ11により周囲の照度が略0.01ルクスの第2の照度以下と検知した場合には、装着者に最適な屈折力を実現する波長が略507nmとなるように焦点制御回路9により可変焦点レンズ1の調整を行う。   In scotopic vision in which the brightness is darker than the second illuminance 15 of about 0.01 lux, the maximum wavelength of luminosity is about 507 nm as shown in the relative luminosity characteristic 13 of scotopic vision in FIG. Thus, the sensitivity at the wavelength of about 555 nm, which is the maximum specific visual sensitivity in the photopic state, is greatly reduced to 50% or less. When the illuminance sensor 11 detects that the ambient illuminance is less than or equal to the second illuminance of approximately 0.01 lux, the focus control circuit 9 can vary the wavelength that achieves the optimum refractive power for the wearer to approximately 507 nm. The focus lens 1 is adjusted.

明るさが略0.01ルクスの第2の照度から略10ルクスの第3の照度の間の朝焼けや夕暮れ時の明るさの薄明視の状態においては、明るさに応じて杆体細胞と錐体細胞の両細胞により光を感知する。薄明視において暗所視に近い照度の場合には、錐体細胞よりも杆体細胞により光を感知する割合が大きいために、比視感度も暗所視の比視感度特性13に近い特性となる。また薄明視において明所視に近い照度においては、杆体細胞よりも錐体細胞により光を感知する割合が大きいために、比視感度も明所視の比視感度特性12に近い特性となる。本発明の実施例1においては、薄明視の状態では、明所視の照度である略10ルクスの第3の照度16と暗所視の照度である略0.01ルクスの第2の照度15の間の第1の照度14で制御の切り替えを行う。   In the state of sunrise or dusk brightness between the second illuminance of about 0.01 lux and the third illuminance of about 10 lux, rod cells and cones according to the brightness. Light is sensed by both cells. In the case of illuminance close to that of scotopic vision in mesopic vision, the ratio of detecting light by the rod cells is larger than that of the cone cells, so that the specific luminous efficiency is close to the specific luminous sensitivity characteristic 13 of scotopic vision. . Further, in illuminance close to photopic vision in mesopic vision, the ratio of sensing light by cone cells is larger than that of rod cells, so that the specific visual sensitivity is close to the specific visual sensitivity characteristic 12 of photopic vision. In the first embodiment of the present invention, in the state of dim vision, the third illuminance 16 of approximately 10 lux that is the illuminance for photopic vision and the second illuminance 15 of approximately 0.01 lux that is the illuminance for scotopic vision. The control is switched at the first illuminance 14 between the two.

図4の実施の形態1においては、第1の照度として1ルクスの場合を示している。照度センサ11の出力に対応する照度が1ルクスよりも大きい場合には、明所視の比視感度最大の略555nmが、装着者に最適な所定の屈折力を実現するように焦点制御回路9により可変焦点レンズ1の調整を行う。照度センサ11の出力に対応する照度が1ルクスよりも小さい場合には、暗所視の比視感度最大の略507nmが、装着者に最適な所定の屈折力を実現するように焦点制御回路9により可変焦点レンズ1の調整を行う。図4においては、第1の照度を1ルクスとしたが、とくにこの値に限るものではなく、薄明視の状態の略0.01ルクスから略10ルクスの間の値であればよい。   In Embodiment 1 of FIG. 4, the case where 1 lux is 1 lux is shown. When the illuminance corresponding to the output of the illuminance sensor 11 is greater than 1 lux, the focus control circuit 9 is set so that the maximum specific vision sensitivity of photopic vision is approximately 555 nm and that the predetermined refractive power optimum for the wearer is realized. Thus, the variable focus lens 1 is adjusted. When the illuminance corresponding to the output of the illuminance sensor 11 is smaller than 1 lux, the focus control circuit 9 is set so that the maximum specific luminous sensitivity of scotopic vision is approximately 507 nm and realizes a predetermined refractive power optimum for the wearer. Thus, the variable focus lens 1 is adjusted. In FIG. 4, the first illuminance is 1 lux. However, the value is not particularly limited to this value, and may be a value between approximately 0.01 lux and approximately 10 lux in the state of dimming.

本発明の実施の形態1における第1の設計例の説明図を図5に示す。光学材料は、光の波長によって屈折率が変化する分散特性を有する。分散特性を表す特性値としてアッベ数がある。アッベ数は、C線(656.3nmの波長)の屈折率をnC、d線(587.6nmの波長)の屈折率をnd、F線(486.1nmの波長)の屈折率をnFとすると、数1で表すことができる。   FIG. 5 shows an explanatory diagram of the first design example in the first embodiment of the present invention. The optical material has a dispersion characteristic in which the refractive index changes depending on the wavelength of light. There is an Abbe number as a characteristic value representing the dispersion characteristic. The Abbe number is defined as follows. The refractive index of the C line (wavelength of 656.3 nm) is nC, the refractive index of the d line (wavelength of 587.6 nm) is nd, and the refractive index of the F line (wavelength of 486.1 nm) is nF. , Can be expressed by Equation 1.

Figure 2009237226
Figure 2009237226

ポリカーボネート樹脂、アクリル系樹脂やウレタン系樹脂などの一般的な光学樹脂材料のアッベ数は25から80程度であるが、可変焦点レンズ1の材料としてネマティック液晶材料を使用する場合には、アッベ数が20から40程度の値となる。   The Abbe number of general optical resin materials such as polycarbonate resin, acrylic resin, and urethane resin is about 25 to 80. However, when a nematic liquid crystal material is used as the material of the variable focus lens 1, the Abbe number is The value is about 20 to 40.

第1の設計例として
装着者の必要な所定の屈折力:D=4ディオプタ(焦点距離f=250mm)
可変焦点レンズ1の液晶材料のアッベ数:V=20
とした可変焦点レンズの場合を、図5を用いて説明する。
A predetermined refractive power required by the wearer as a first design example: D = 4 diopter (focal length f = 250 mm)
Abbe number of liquid crystal material of variable focus lens 1: V = 20
The case of the variable focus lens will be described with reference to FIG.

図5(a)は、照度センサ11の出力に対応する照度が第1の照度14よりも大きな値の場合の屈折力調整状態を示す。明所視の比視感度最大の略555nmの波長が、装着者に最適な屈折力D=4ディオプタ(焦点距離f=250mm)を実現するように可変焦点レンズ1を焦点制御回路9により調整されている。   FIG. 5A shows a refractive power adjustment state when the illuminance corresponding to the output of the illuminance sensor 11 is a value larger than the first illuminance 14. The variable focus lens 1 is adjusted by the focus control circuit 9 so that the wavelength of approximately 555 nm, which is the maximum specific vision sensitivity of photopic vision, is realized so as to realize the optimum refractive power D = 4 diopter (focal length f = 250 mm) for the wearer. ing.

図5(a)の可変焦点レンズ1の屈折力の状態は、略555nmの波長が、装着者に最適な屈折力D=4ディオプタに調整されており、暗所視の比視感度最大の略507nmの波長は、D=4.1(焦点距離f=245mm)となっている。従って、暗所視の暗さで(a)の屈折力状態の電子眼鏡を装着した場合には、暗所視の比視感度最大の略507nmの波長が装着者にとって最適な屈折力D=4ディオプタからずれた状態に調整されているために、適正な屈折力矯正状態になっておらず、焦点がぼけた状態となっている。   The refractive power state of the varifocal lens 1 shown in FIG. 5A is such that the wavelength of approximately 555 nm is adjusted to a refractive power D = 4 diopters optimum for the wearer, and the relative luminous sensitivity of scotopic vision is maximum. The wavelength of 507 nm is D = 4.1 (focal length f = 245 mm). Therefore, when the electronic glasses having the refractive power state (a) in the darkness of scotopic vision are worn, a wavelength of about 507 nm, which is the maximum specific luminosity sensitivity of scotopic vision, is the optimum refractive power D = 4 for the wearer. Since it is adjusted so as to deviate from the diopter, it is not in an appropriate refractive power correction state and is out of focus.

図5(b)は、照度センサ11の出力に対応する照度が第1の照度14よりも小さな値の場合の屈折力調整状態を示す。暗所視の状態の比視感度最大の略507nmの波長が、装着者に最適な屈折力D=4ディオプタ(焦点距離f=250mm)を実現するように可変焦点レンズ1を焦点制御回路9により調整されている。明所視の比視感度最大の略555nmの波長は、暗所視においては比視感度が50%以下と大幅に低下しており、また屈折力は3.9ディオプタ(焦点距離f=255mm)となり装着者が必要とする最適な屈折力からはずれた状態になっている。   FIG. 5B shows a refractive power adjustment state when the illuminance corresponding to the output of the illuminance sensor 11 is smaller than the first illuminance 14. The variable focus lens 1 is moved by the focus control circuit 9 so that the wavelength of about 507 nm, which is the maximum relative luminous sensitivity in the state of scotopic vision, realizes the optimum refractive power D = 4 diopter (focal length f = 250 mm) for the wearer. It has been adjusted. At a wavelength of about 555 nm, which is the maximum specific vision sensitivity for photopic vision, the specific visibility is greatly reduced to 50% or less in dark vision vision, and the refractive power is 3.9 diopters (focal length f = 255 mm). Thus, it is in a state deviating from the optimum refractive power required by the wearer.

本発明の実施の形態1における第2の設計例の説明図を図6に示す。図6の第2の設計例における可変焦点レンズ1として、回折レンズ17とネマティック液晶材料18で構成された回折型可変焦点レンズ19を用いた場合を示す。回折レンズ17の材料としては、ポリカーボネート樹脂、アクリル系樹脂やウレタン系樹脂などを用いることができるが、特にこれに限るものではい。回折現象により屈折力を生じる回折型可変焦点レンズ19の分散特性は波長に依存し、アッベ数は、C線(656.3nmの波長)の波長をλC、d線(587.6nmの波長)の波長をλd、F線(486.1nmの波長)の波長をλFとすると、数2で表すことができる。   An explanatory diagram of the second design example in the first embodiment of the present invention is shown in FIG. 6 shows a case where a diffractive variable focus lens 19 composed of a diffractive lens 17 and a nematic liquid crystal material 18 is used as the variable focus lens 1 in the second design example of FIG. The material of the diffractive lens 17 may be polycarbonate resin, acrylic resin, urethane resin, or the like, but is not particularly limited thereto. The dispersion characteristic of the diffractive variable focus lens 19 that generates refractive power due to the diffraction phenomenon depends on the wavelength, and the Abbe number is that of the C-line (656.3 nm wavelength) is λC, and the d-line (587.6 nm wavelength). Assuming that the wavelength is λd and the wavelength of the F-line (wavelength of 486.1 nm) is λF, it can be expressed by Equation 2.

Figure 2009237226
Figure 2009237226

数2に示すように、回折型可変焦点レンズ19のアッベ数は、−3.4となり、通常のポリカーボネート樹脂、アクリル系樹脂やウレタン系樹脂などの光学樹脂材料のアッベ数が25から80程度に対して、相当小さな値となる。従って回折型可変焦点レンズ19の光の波長に対する分散特性は悪く、屈折力(焦点距離)の波長に対する依存性が非常に大きくなる。   As shown in Equation 2, the Abbe number of the diffractive variable focus lens 19 is −3.4, and the Abbe number of a normal optical resin material such as polycarbonate resin, acrylic resin, or urethane resin is about 25 to 80. On the other hand, the value is considerably small. Accordingly, the dispersion characteristics of the diffractive variable focus lens 19 with respect to the wavelength of light are poor, and the dependence of the refractive power (focal length) on the wavelength becomes very large.

第2の設計例として
装着者の必要な屈折力:D=4ディオプタ(焦点距離f=250mm)
回折型可変焦点レンズのアッベ数:V=−3.4
とした回折レンズ17とネマティック液晶材料18で構成した回折型可変焦点レンズ19を用いた場合を、図6を用いて説明する。
As a second design example, the refractive power required by the wearer: D = 4 diopters (focal length f = 250 mm)
Abbe number of diffractive variable focus lens: V = -3.4
The case where the diffractive variable focus lens 19 composed of the diffractive lens 17 and the nematic liquid crystal material 18 is used will be described with reference to FIG.

図6(a)は、照度センサ11の出力に対応する照度が第1の照度14よりも大きな値の場合の屈折力調整状態を示す。明所視の比視感度最大の略555nmの波長が、装着者に最適な屈折力D=4ディオプタ(焦点距離f=250mm)を実現するように回折型可変焦点レンズ19を焦点制御回路9により調整されている。   FIG. 6A shows a refractive power adjustment state when the illuminance corresponding to the output of the illuminance sensor 11 is a value larger than the first illuminance 14. The diffractive variable focus lens 19 is moved by the focus control circuit 9 so that the wavelength of approximately 555 nm, which is the maximum specific luminous sensitivity for photopic vision, realizes the optimum refractive power D = 4 diopter (focal length f = 250 mm) for the wearer. It has been adjusted.

図6(a)の回折型可変焦点レンズ19の屈折力の状態は、略555nmの波長が、装着者に最適な屈折力D=4ディオプタに調整されており、暗所視の比視感度最大の略507nmの波長は、D=3.7(焦点距離f=270mm)となっている。従って、暗所視の暗さで(a)の屈折力状態の電子眼鏡を装着した場合には、暗所視の比視感度最大の略507nmの波長が装着者にとって最適な屈折力D=4ディオプタから大きくずれた状態に調整されているために、適正な屈折力矯正状態になっておらず、焦点がぼけた状態となっている。   The refractive power state of the diffractive variable focus lens 19 in FIG. 6A is such that the wavelength of approximately 555 nm is adjusted to a refractive power D = 4 diopters that is optimal for the wearer, and the relative luminous sensitivity of scotopic vision is maximum. The wavelength of about 507 nm is D = 3.7 (focal length f = 270 mm). Therefore, when the electronic glasses having the refractive power state (a) in the darkness of scotopic vision are worn, a wavelength of about 507 nm, which is the maximum specific luminosity sensitivity of scotopic vision, is the optimum refractive power D = 4 for the wearer. Since it is adjusted to a state greatly deviated from the diopter, it is not in an appropriate refractive power correction state and is in a defocused state.

図6(b)は、照度センサ11の出力に対応する照度が第1の照度14よりも小さな値の場合の屈折力調整状態を示す。暗所視の状態の比視感度最大の略507nmの波長が、装着者に最適な屈折力D=4ディオプタ(焦点距離f=250mm)を実現するように回折型可変焦点レンズ19を焦点制御回路9により調整されている。明所視の比視感度最大の略555nmの波長は、暗所視においては比視感度が50%以下と大幅に低下しており、また屈折力は4.3ディオプタ(焦点距離f=230mm)となり装着者が必要とする最適な屈折力からはずれた状態になっている。   FIG. 6B shows the refractive power adjustment state when the illuminance corresponding to the output of the illuminance sensor 11 is smaller than the first illuminance 14. The diffractive variable focus lens 19 is a focus control circuit so that a wavelength of about 507 nm, which is the maximum relative luminous sensitivity in the state of scotopic vision, realizes an optimum refractive power D = 4 diopter (focal length f = 250 mm) for the wearer. 9 is adjusted. At a wavelength of about 555 nm, which is the maximum specific vision sensitivity for photopic vision, the specific visibility is greatly reduced to 50% or less in dark vision vision, and the refractive power is 4.3 diopters (focal length f = 230 mm). Thus, it is in a state deviating from the optimum refractive power required by the wearer.

実施の形態1においては、可変焦点レンズ1として液晶方式のレンズを例として説明しているが、液圧レンズ方式、フォトニック結晶レンズ方式など電気制御で屈折力の調整が可能な可変焦点レンズであればよい。   In the first embodiment, a liquid crystal type lens is described as an example of the variable focus lens 1, but a variable focus lens capable of adjusting the refractive power by electrical control, such as a hydraulic lens type or a photonic crystal lens type. I just need it.

以上のように、実施の形態1においては、照度センサ11により周囲の照度を検知し、その出力に応じて比視感度最大の波長が装着者の必要とする所定の屈折力となるように、焦点制御回路9により可変焦点レンズ1を2段階に調整する。この調整制御により、周囲の照度に応じて装着者に対して適した屈折力矯正することにより、周囲の照度変化があっても焦点のずれのない電子眼鏡を実現することができる。   As described above, in the first embodiment, the illuminance sensor 11 detects ambient illuminance, and according to the output, the wavelength having the maximum specific visual acuity has a predetermined refractive power required by the wearer. The variable focus lens 1 is adjusted in two stages by the focus control circuit 9. By this adjustment control, by correcting the refractive power suitable for the wearer in accordance with the surrounding illuminance, it is possible to realize electronic glasses that are free of focus shift even if the surrounding illuminance changes.

(実施の形態2)
本発明の実施の形態2について、図7を用いて説明する。図7は、本発明の実施の形態2における電子眼鏡の屈折力制御の説明図である。以下図7を用いて、屈折力制御の調整方法について説明を行なう。照度センサ11からの出力に応じた照度が略10ルクスの第3の照度16より明るい状態の明所視においては、網膜上の錐体細胞により光を感知する。図3の明所視の比視感度特性12に示すように、比視感度最大の波長は略555nmとなり、短波長側の青色光や長波長側の赤色光に対する比視感度は著しく低下する。従って照度センサ11により周囲の照度が略10ルクスの第3の照度16以上と検知した場合には、装着者に最適な所定の屈折力を実現する波長が略555nmとなるように焦点制御回路9により可変焦点レンズ1の調整を行う。
(Embodiment 2)
A second embodiment of the present invention will be described with reference to FIG. FIG. 7 is an explanatory diagram of the refractive power control of the electronic glasses according to the second embodiment of the present invention. Hereinafter, a method for adjusting the refractive power control will be described with reference to FIG. In photopic vision where the illuminance corresponding to the output from the illuminance sensor 11 is brighter than the third illuminance 16 of approximately 10 lux, light is sensed by the pyramidal cells on the retina. As shown in the photopic characteristic 12 of photopic vision in FIG. 3, the maximum wavelength of specific luminous efficiency is about 555 nm, and the relative luminous sensitivity to blue light on the short wavelength side and red light on the long wavelength side is significantly reduced. Accordingly, when the illuminance sensor 11 detects the ambient illuminance as the third illuminance 16 or more of about 10 lux, the focus control circuit 9 is set so that the wavelength for realizing the predetermined refractive power optimum for the wearer is about 555 nm. Thus, the variable focus lens 1 is adjusted.

照度センサ11からの出力に応じた照度が略0.01ルクスの第2の照度15より暗い状態の暗所視においては、網膜上の杆体細胞により光を感知する。図3の暗所視の比視感度特性13に示すように、比視感度最大の波長は略507nmとなり、明所視の状態における比視感度最大の略555nmの波長の感度は50%以下に大きく低下する。照度センサ11により周囲の照度が略0.01ルクスの第2の照度以下と検知した場合には、装着者に最適な屈折力を実現する波長が略507nmとなるように焦点制御回路9により可変焦点レンズ1の調整を行う。   In scotopic vision where the illuminance corresponding to the output from the illuminance sensor 11 is darker than the second illuminance 15 of approximately 0.01 lux, light is sensed by the rod cells on the retina. As shown in the relative luminous sensitivity characteristic 13 of dark vision in FIG. 3, the maximum wavelength of specific luminous efficiency is approximately 507 nm, and the sensitivity of the wavelength of approximately 555 nm, which is the maximum relative luminous efficiency in photopic vision, is 50% or less. Decrease significantly. When the illuminance sensor 11 detects that the ambient illuminance is less than or equal to the second illuminance of approximately 0.01 lux, the focus control circuit 9 can vary the wavelength that achieves the optimum refractive power for the wearer to approximately 507 nm. The focus lens 1 is adjusted.

照度センサ11からの出力に応じた照度が略0.01ルクスの第2の照度から略10ルクスの第3の照度の間の朝焼けや夕暮れ時の明るさの薄明視の状態においては、明るさに応じて杆体細胞と錐体細胞の両細胞により光を感知する。薄明視において暗所視に近い照度の場合には、錐体細胞よりも杆体細胞により光を感知する割合が大きいために、比視感度も暗所視の比視感度特性13に近い特性となる。また薄明視において明所視に近い照度においては、杆体細胞よりも錐体細胞により光を感知する割合が大きいために、比視感度も明所視の比視感度特性12に近い特性となる。従って略0.01ルクスから略10ルクスの間においては、比視感度最大の波長は暗所視における比視感度最大の波長略507nmから明所視における比視感度最大の波長略555nmの間で変化する。   The brightness in accordance with the output from the illuminance sensor 11 is in the state of morning glow or dusk lightness between the second illuminance of approximately 0.01 lux and the third illuminance of approximately 10 lux. In response to this, light is sensed by both rod cells and cone cells. In the case of illuminance close to that of scotopic vision in mesopic vision, the ratio of detecting light by the rod cells is larger than that of the cone cells, so that the specific luminous efficiency is close to the specific luminous sensitivity characteristic 13 of scotopic vision. . Further, in illuminance close to photopic vision in mesopic vision, the ratio of sensing light by cone cells is larger than that of rod cells, so that the specific visual sensitivity is close to the specific visual sensitivity characteristic 12 of photopic vision. Therefore, between about 0.01 lux and about 10 lux, the wavelength with the highest specific luminous efficiency is between the wavelength with the highest relative visual sensitivity for scotopic vision of about 507 nm and the wavelength with the highest relative visual sensitivity for photopic vision of about 555 nm. Change.

本発明の実施例2においては図7に示すように、薄明視の状態においては、照度センサ11の出力に応じて装着者に対して最適な所定の屈折力を実現する波長が、略507nmから略555nmに連続的に変化するように焦点制御回路9により可変焦点レンズ1の調整を行う。このような調整を行うことにより杆体細胞と錐体細胞の両細胞により光を感知する薄明視の状態においても、その明るさに応じて比視感度の大きな波長で装着者の最適な屈折力矯正を実現することができる。   In Example 2 of the present invention, as shown in FIG. 7, the wavelength that realizes the optimum predetermined refractive power for the wearer in accordance with the output of the illuminance sensor 11 is approximately 507 nm in the state of thin vision. The variable focus lens 1 is adjusted by the focus control circuit 9 so as to continuously change to approximately 555 nm. By making such adjustments, the optimal refractive power correction of the wearer at a wavelength with high specific vision sensitivity according to the brightness even in the state of mesopic vision where light is sensed by both rod cells and cone cells Can be realized.

実施の形態2においては、暗所視の比視感度最大の略507nmから明所視の比視感度最大の略555nmにわたって、装着者に適正な屈折力を実現する波長が、連続的に変化するように焦点制御回路9により可変焦点レンズ1の調整を行った。しかし調整制御方法については、特にこれに限定されるものではなく、図8に示すように、暗所視の比視感度最大の略507nmから明所視の比視感度最大の略555nmの波長にわたって断続的に変化するように焦点制御回路9により可変焦点レンズ1の調整を行っても良い。   In the second embodiment, the wavelength that achieves the appropriate refractive power for the wearer continuously changes from approximately 507 nm, which is the maximum specific luminous sensitivity for scotopic vision, to approximately 555 nm, which is the maximum specific luminous sensitivity for photopic vision. As described above, the variable focus lens 1 was adjusted by the focus control circuit 9. However, the adjustment control method is not particularly limited to this, and as shown in FIG. 8, over a wavelength range from about 507 nm at the maximum relative luminous sensitivity for scotopic vision to about 555 nm at the maximum relative luminous sensitivity for photopic vision. The variable focus lens 1 may be adjusted by the focus control circuit 9 so as to change intermittently.

以上のように、実施の形態2においては、照度センサ11により周囲の照度を検知し、その出力に応じて比視感度最大の波長が装着者の必要とする所定の屈折力となるように、焦点制御回路9により可変焦点レンズ1を調整する。この調整制御により、周囲の照度に応じて装着者に対して最適な屈折力矯正することが可能となり、周囲の照度変化があっても焦点のずれない電子眼鏡を実現することができる。   As described above, in the second embodiment, the illuminance sensor 11 detects ambient illuminance, and according to the output, the wavelength having the maximum specific visual acuity has a predetermined refractive power required by the wearer. The variable focus lens 1 is adjusted by the focus control circuit 9. This adjustment control makes it possible to correct the refractive power optimal for the wearer in accordance with the ambient illuminance, and to realize electronic glasses that are not out of focus even if the ambient illuminance changes.

本発明にかかるは電子眼鏡は、照度センサにより周囲の明るさを検知しその出力に応じて焦点制御回路により可変焦点レンズの屈折力の調整制御を行なう。このことにより、周囲の明るさの環境が変化しても焦点の合った最適な屈折力矯正が可能なため、近視、遠視や老眼等の人間の眼の屈折力異常を矯正するための電子眼鏡等に有用である。   The electronic glasses according to the present invention detect ambient brightness by an illuminance sensor, and perform adjustment control of the refractive power of the variable focus lens by a focus control circuit according to the output. This makes it possible to correct the optimal refractive power in focus even if the surrounding brightness environment changes, so electronic glasses for correcting abnormal refractive power in the human eye such as myopia, hyperopia and presbyopia Etc. are useful.

本発明の実施の形態1における電子眼鏡の概略図Schematic diagram of electronic glasses in Embodiment 1 of the present invention 本発明の実施の形態1における電子眼鏡のブロック図Block diagram of electronic glasses in Embodiment 1 of the present invention 明所視と暗所視における人間の眼の比視感度特性を示すグラフA graph showing the relative visibility characteristics of human eyes in photopic and scotopic vision 本発明の実施の形態1における電子眼鏡の屈折力制御の説明図Explanatory drawing of refractive power control of the electronic spectacles in Embodiment 1 of this invention 本発明の実施の形態1における第1の設計例の説明図Explanatory drawing of the 1st design example in Embodiment 1 of this invention 本発明の実施の形態1における第2の設計例の説明図Explanatory drawing of the 2nd design example in Embodiment 1 of this invention 本発明の実施の形態2における電子眼鏡の屈折力制御の説明図Explanatory drawing of refractive power control of the electronic spectacles in Embodiment 2 of this invention 本発明の実施の形態2における電子眼鏡の屈折力制御の説明図Explanatory drawing of refractive power control of the electronic spectacles in Embodiment 2 of this invention

符号の説明Explanation of symbols

1 可変焦点レンズ
2 フレーム
3 リム
4 テンプル
5 ブリッジ
6 鼻パッド
7 智
8 丁番
9 焦点制御回路
10 電源
11 照度センサ
12 明所視の比視感度特性
13 暗所視の比視感度特性
14 第1の照度
15 第2の照度
16 第3の照度
17 回折レンズ
18 ネマティック液晶
19 回折型可変焦点レンズ
20 照度算出ブロック
21 演算比較ブロック
22 駆動制御ブロック
DESCRIPTION OF SYMBOLS 1 Variable focus lens 2 Frame 3 Rim 4 Temple 5 Bridge 6 Nose pad 7 Satoshi 8 Hinge 9 Focus control circuit 10 Power supply 11 Illuminance sensor 12 Specific luminous efficiency characteristic of photopic vision 13 Specific luminous characteristic characteristic of dark vision 14 1st Illuminance 15 Second illuminance 16 Third illuminance 17 Diffractive lens 18 Nematic liquid crystal 19 Diffractive variable focus lens 20 Illuminance calculation block 21 Operation comparison block 22 Drive control block

Claims (8)

照度センサと、
左右の眼に対応して設けられた外部からの信号により焦点距離が変化する可変焦点レンズと、
前記照度センサからの出力に応じて前記可変焦点レンズの焦点距離を決定する焦点制御回路とを備えた電子眼鏡。
An illuminance sensor;
A variable focal length lens whose focal length is changed by an external signal provided corresponding to the left and right eyes;
Electronic glasses comprising: a focus control circuit that determines a focal length of the variable focus lens according to an output from the illuminance sensor.
前記焦点制御回路は、
前記照度センサからの出力に応じて前記左右の可変焦点レンズの焦点距離を同時に決定する請求項1に記載の電子眼鏡。
The focus control circuit includes:
2. The electronic glasses according to claim 1, wherein focal lengths of the left and right variable focus lenses are simultaneously determined according to an output from the illuminance sensor.
前記焦点制御回路は、
前記照度センサからの出力に応じて照度を算出する照度算出ブロックと、
前記照度算出ブロックにより算出された照度と予め定めた暗所視照度または明所視照度との比較値を演算する演算比較ブロックと、
前記演算比較ブロックによる演算比較結果に応じて前記可変焦点レンズの焦点距離を決定する駆動制御ブロックとを備えた請求項1に記載の電子眼鏡。
The focus control circuit includes:
An illuminance calculation block that calculates illuminance according to the output from the illuminance sensor;
A calculation comparison block for calculating a comparison value between the illuminance calculated by the illuminance calculation block and a predetermined dark place illuminance or photopic illuminance;
The electronic spectacles of Claim 1 provided with the drive control block which determines the focal distance of the said variable focus lens according to the calculation comparison result by the said calculation comparison block.
前記駆動制御ブロックは、
前記比較値が前記暗所視照度よりも小なる時は暗所視での比視感度最大波長の焦点距離となるように前記可変焦点レンズの焦点距離を決定し、
前記比較値が前記明所視照度よりも大なる時は明所視での比視感度最大波長の焦点距離となるように前記可変焦点レンズの焦点距離を決定する請求項3に記載の電子眼鏡。
The drive control block includes:
When the comparison value is smaller than the scotopic illuminance, determine the focal length of the variable focus lens so as to be the focal length of the maximum luminous efficiency relative wavelength in scotopic vision,
4. The electronic glasses according to claim 3, wherein when the comparison value is larger than the photopic illuminance, the focal length of the variable focus lens is determined so as to be a focal length of a maximum luminous efficiency relative wavelength in photopic vision. .
前記駆動制御ブロックは、
前記比較値が前記暗所視照度よりも大で前記明所視照度よりも小なる時は、前記照度に応じて暗所視での比視感度最大波長の焦点距離から明所視での比視感度最大波長の焦点距離の範囲で前記可変焦点レンズの焦点距離を決定する請求項3に記載の電子眼鏡。
The drive control block includes:
When the comparison value is larger than the scotopic illuminance and smaller than the photopic illuminance, the ratio in photopic vision from the focal length of the maximum luminous efficiency relative wavelength in scotopic vision according to the illuminance. The electronic spectacles of Claim 3 which determine the focal distance of the said variable focus lens in the range of the focal distance of a visibility maximum wavelength.
前記駆動制御ブロックは、
前記比較値が前記暗所視照度よりも大で前記明所視照度よりも小なる時は、前記照度に応じて暗所視での比視感度最大波長の焦点距離から明所視での比視感度最大波長の焦点距離の範囲で前記可変焦点レンズの焦点距離を決定する請求項4に記載の電子眼鏡。
The drive control block includes:
When the comparison value is larger than the scotopic illuminance and smaller than the photopic illuminance, the ratio in photopic vision from the focal length of the maximum luminous efficiency relative wavelength in scotopic vision according to the illuminance. The electronic spectacles of Claim 4 which determine the focal distance of the said variable focus lens in the range of the focal distance of a visibility maximum wavelength.
前記暗所視照度が略0.01ルクスであり、前記明所視照度が略10ルクスである請求項3に記載の電子眼鏡。 The electronic glasses according to claim 3, wherein the dark place illuminance is approximately 0.01 lux, and the bright place illuminance is approximately 10 lux. 前記暗所視での比視感度最大波長は略507nmであり、前記明所視での比視感度最大波長は略555nmである請求項4あるいは請求項5に記載の電子眼鏡。 The electronic spectacles according to claim 4 or 5, wherein the maximum wavelength of specific luminous efficiency in the dark place vision is about 507 nm, and the maximum wavelength of specific visibility in the photopic vision is about 555 nm.
JP2008082810A 2008-03-27 2008-03-27 Electronic eyeglasses Pending JP2009237226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008082810A JP2009237226A (en) 2008-03-27 2008-03-27 Electronic eyeglasses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008082810A JP2009237226A (en) 2008-03-27 2008-03-27 Electronic eyeglasses

Publications (1)

Publication Number Publication Date
JP2009237226A true JP2009237226A (en) 2009-10-15

Family

ID=41251243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008082810A Pending JP2009237226A (en) 2008-03-27 2008-03-27 Electronic eyeglasses

Country Status (1)

Country Link
JP (1) JP2009237226A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016525722A (en) * 2013-08-02 2016-08-25 エシロール エンテルナショナル (コンパニ ジェネラル ドプチック) How to control a programmable lens device
CN109363623A (en) * 2018-11-12 2019-02-22 复旦大学 A kind of Portable eye position illumination recorder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016525722A (en) * 2013-08-02 2016-08-25 エシロール エンテルナショナル (コンパニ ジェネラル ドプチック) How to control a programmable lens device
JP2016525721A (en) * 2013-08-02 2016-08-25 エシロール エンテルナショナル (コンパニ ジェネラル ドプチック) How to control a programmable lens device
CN109363623A (en) * 2018-11-12 2019-02-22 复旦大学 A kind of Portable eye position illumination recorder

Similar Documents

Publication Publication Date Title
CN107111145B (en) Head-mounted display device and display method
TWI435139B (en) Static progressive surface region in optical communication with a dynamic optic
US9268153B2 (en) Dynamic ophthalmic lens capable of correcting night and day vision
US20090213283A1 (en) Apparatus and method for adjustable variable transmissivity polarized eye glasses
US20090033863A1 (en) Ophthalmic dynamic aperture
JP2016535289A (en) Adaptive optical filter for eyeglass lenses
WO2008078320A2 (en) Electronic transparency regulation element to enhance viewing through lens system
CN109669277B (en) Active matrix focusing lens and focusing glasses with same
JP2022534558A (en) Electrically adjustable vision aid for the treatment of myopia
JP2016139116A (en) Head-mounted display device and display method
JP2023155326A (en) Spectacle lens comprising activatable optical filter, and optical device comprising such spectacle lens
CN109799628B (en) Liquid crystal glasses device
WO2017110832A1 (en) Electronic eyeglasses
JP2009237226A (en) Electronic eyeglasses
CN111279249B (en) Light transmittance adjustable glasses
KR20090094047A (en) Ophthalmic dynamic aperture
KR20180065770A (en) Variable focus spectacles and method of driving the same
CN113272721B (en) Eyewear comprising a variable optical filter system and methods for the system and eyewear
CN208672937U (en) A kind of eyesight correction device
CN109407343A (en) A kind of Focusable glasses
CN110520788B (en) Optical device adapted to be worn by a wearer
KR101359721B1 (en) Improved Single Vision Spectacle Lens
US20220397777A1 (en) Dynamic control of transmission value
AU2020405962B2 (en) Methods for designing an ophthalmic tinted lens and ophthalmic tinted lenses, and corresponding ophthalmic tinted lens
CN114690412A (en) Head-mounted display device