JP2009236588A - Sample gas collecting device and gas chromatograph device - Google Patents

Sample gas collecting device and gas chromatograph device Download PDF

Info

Publication number
JP2009236588A
JP2009236588A JP2008081074A JP2008081074A JP2009236588A JP 2009236588 A JP2009236588 A JP 2009236588A JP 2008081074 A JP2008081074 A JP 2008081074A JP 2008081074 A JP2008081074 A JP 2008081074A JP 2009236588 A JP2009236588 A JP 2009236588A
Authority
JP
Japan
Prior art keywords
sample gas
gas
hollow member
collecting
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008081074A
Other languages
Japanese (ja)
Other versions
JP5198111B2 (en
Inventor
Takahiro Shoda
隆博 荘田
Kazuhiro Toyoda
和弘 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2008081074A priority Critical patent/JP5198111B2/en
Publication of JP2009236588A publication Critical patent/JP2009236588A/en
Application granted granted Critical
Publication of JP5198111B2 publication Critical patent/JP5198111B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To send high-concentration sample gas, in a short time, by adsorbing the sample gas uniformly, and by preventing re-adsorption of desorbed sample gas. <P>SOLUTION: In this sample gas collection device 1, having a hollow member 11 having an introduction port 11a for introducing the sample gas and an exhaust port 15a for exhausting the introduced sample gas; a collection agent 12, stored in the hollow member 11 for collecting the sample gas; and a heating means 13 for desorbing the sample gas collected by the collection agent 12 by heating the hollow member 11, for collecting the sample gas introduced into the hollow member 11 by the collection agent 12 in a low-temperature state, and desorbing the sample gas collected by the collection agent 12 in a high-temperature state, the collection agent 12 is formed in a shape where the distance from a place where the sample gas introduced from the introduction port 11a is collected uniformly and the collected sample gas is desorbed to the exhaust port 15a is substantially uniform, and the hollow member 11 is formed in a shape storing the collection agent 12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、導入された試料ガスを低温状態のときに捕集し且つ前記捕集した試料ガスを高温状態のときに脱離する捕集剤を有する試料ガス捕集装置及びガスクロマトグラフ装置に関するものである。   The present invention relates to a sample gas collecting apparatus and a gas chromatograph apparatus having a collecting agent that collects an introduced sample gas at a low temperature and desorbs the collected sample gas at a high temperature. It is.

ガスクロマトグラフ装置(以下、GC装置)は、例えば、大気等の試料ガスに含まれる揮発性有機化合物等の検出対象成分の検出に用いられる装置であり、該試料ガスに含まれる微量な成分の検出を可能とするため、分離カラムおよび検出センサなどの検出装置のほかに、検出対象成分を捕集して濃縮するための捕集装置を備えた構成のものが一般的に用いられている。   A gas chromatograph apparatus (hereinafter referred to as a GC apparatus) is an apparatus used for detecting a component to be detected such as a volatile organic compound contained in a sample gas such as the atmosphere. Therefore, in addition to a detection device such as a separation column and a detection sensor, a configuration including a collection device for collecting and concentrating a detection target component is generally used.

特許文献1で提案されているGC装置100は、図9に示されるように、試料ガス成分を搬送するキャリアガスを発生するガスボンベなどのキャリアガス源108、キャリアガスによって搬送された試料ガスの成分を検出(分析)する分析装置110、試料ガスを導入する試料導入口101、試料導入口101から導入された試料ガスを吸引して排出口115から排出する吸引ポンプ104、試料ガスから検出対象成分を捕集して濃縮する捕集管102、および、捕集管102を試料導入口101と吸引ポンプ104との間またはキャリアガス源108と分析装置110との間に選択的に接続するバルブ105、などから構成されている。   As shown in FIG. 9, the GC apparatus 100 proposed in Patent Document 1 includes a carrier gas source 108 such as a gas cylinder that generates a carrier gas for transporting a sample gas component, and a component of the sample gas transported by the carrier gas. , A sample introduction port 101 for introducing a sample gas, a suction pump 104 for sucking the sample gas introduced from the sample introduction port 101 and discharging it from the discharge port 115, and a component to be detected from the sample gas And a valve 105 for selectively connecting the collection tube 102 between the sample inlet 101 and the suction pump 104 or between the carrier gas source 108 and the analyzer 110. , Etc.

このGC装置100において、検出対象成分を捕集(濃縮)するときは、捕集管102が試料導入口101と吸引ポンプ104との間に直列に接続されるようバルブ105を切り替え、吸引ポンプ104が試料ガスを吸引することにより、試料導入口101に導入された試料ガスが捕集管102内を流動されて検出対象成分が捕集される。そして、検出対象成分を検出するときは、捕集管102がキャリアガス源108と分析装置110との間に直列に接続されるようバルブ105を切り替えて、キャリアガス源108がキャリアガスを発生して捕集管102内を流動させることにより、検出対象成分をキャリアガスによって捕集管102から分析装置110まで搬送して、分析装置110内に導入していた。   In the GC apparatus 100, when collecting (concentrating) the detection target component, the valve 105 is switched so that the collection tube 102 is connected in series between the sample introduction port 101 and the suction pump 104, and the suction pump 104 is collected. As the sample gas is sucked, the sample gas introduced into the sample introduction port 101 flows in the collection tube 102 and the detection target component is collected. When detecting the component to be detected, the valve 105 is switched so that the collection tube 102 is connected in series between the carrier gas source 108 and the analyzer 110, and the carrier gas source 108 generates carrier gas. Then, the component to be detected is transported from the collection tube 102 to the analysis device 110 by the carrier gas, and introduced into the analysis device 110 by flowing in the collection tube 102.

また、特許文献2に示す捕集管は、急速な加熱昇温ができない接続部分に封止材を装入してデッドボリュームを少なくするとともに、充填剤を均一な加熱昇温が可能な接続部分以外の部分に装入することで、再吸着を防止して分析性能の向上と安定化を可能としてきた。
特開2006−337158号公報 特開平9−113493号公報
In addition, the collecting tube shown in Patent Document 2 is a connecting portion that can reduce the dead volume by inserting a sealing material into a connecting portion where rapid heating and heating cannot be performed, and can uniformly heat the filler. In other parts, re-adsorption is prevented and analysis performance can be improved and stabilized.
JP 2006-337158 A JP-A-9-113493

しかしながら、上述したような従来の捕集管は、冷却手段によって試料ガスを捕集管内の捕集剤に吸着するのに十分な温度まで冷却され、その後、捕集剤に吸着した試料ガスを気化温度以上に加熱手段によって加熱することで、試料ガスの脱離を促してキャリアガスと共に分析装置に送り出しているが、加熱離脱の際に脱離ガス濃度に時間分布が生じてしまい、分析装置による分析ピークがブロード(幅広)になり、急激な分析ピークを得ることが難しいという問題があった。   However, the conventional collection tube as described above is cooled to a temperature sufficient to adsorb the sample gas to the collection agent in the collection tube by the cooling means, and then vaporizes the sample gas adsorbed to the collection agent. By heating with heating means above the temperature, desorption of the sample gas is promoted and sent to the analyzer together with the carrier gas. However, time distribution occurs in the desorbed gas concentration at the time of heating and desorption. There was a problem that the analysis peak was broad (broad) and it was difficult to obtain an abrupt analysis peak.

また、吸着剤がキャリアガスの流れ方向における所定の範囲にわたって設けられているため、試料ガスを均一に吸着させることが困難であり、且つ、流れ方向の上流側で脱離した試料ガスがキャリアガスで下流側に流れて再吸着する可能性があるという問題があった。   Further, since the adsorbent is provided over a predetermined range in the flow direction of the carrier gas, it is difficult to uniformly adsorb the sample gas, and the sample gas desorbed upstream in the flow direction is the carrier gas. However, there is a problem that it may flow downstream and re-adsorb.

よって本発明は、上述した問題点に鑑み、試料ガスを均一に吸着し且つその脱離した試料ガスの再吸着を防止して高濃度の試料ガスを短時間で送出する試料ガス捕集装置及びガスクロマトグラフ装置を提供することを課題としている。   Therefore, in view of the above-described problems, the present invention provides a sample gas collecting device that uniformly adsorbs a sample gas and prevents re-adsorption of the desorbed sample gas and delivers a high concentration sample gas in a short time, and It is an object to provide a gas chromatograph apparatus.

上記課題を解決するため本発明によりなされた請求項1記載の試料ガス捕集装置は、試料ガスを導入する導入口と該導入した試料ガスを排気する排気口を有する中空状部材と、前記中空状部材に収容されて前記試料ガスを捕集する捕集剤と、前記中空状部材を加熱して前記捕集剤に捕集した試料ガスを脱離させる高温状態にする加熱手段と、を有し、前記中空状部材に導入した試料ガスを低温状態のときに前記捕集剤に捕集し且つ前記捕集剤に捕集した試料ガスを高温状態のときに脱離する試料ガス捕集装置において、前記捕集剤が、前記導入口から導入した試料ガスを均一に捕集し且つ該捕集した試料ガスを脱離してから前記排気口までの距離が略均一となる形状に形成され、前記中空状部材が、前記捕集剤を収容する形状に形成されていることを特徴とする。   In order to solve the above problems, the sample gas collecting device according to claim 1 made in accordance with the present invention comprises an introduction port for introducing a sample gas, a hollow member having an exhaust port for exhausting the introduced sample gas, and the hollow A collecting agent that is contained in a cylindrical member and collects the sample gas, and a heating unit that heats the hollow member and brings the sample gas collected in the collecting agent into a high temperature state. A sample gas collecting device that collects the sample gas introduced into the hollow member in the low temperature state and collects the sample gas collected in the collection agent in the high temperature state In the above, the collection agent is formed in a shape that uniformly collects the sample gas introduced from the introduction port and has a substantially uniform distance to the exhaust port after desorbing the collected sample gas, The hollow member is formed in a shape that accommodates the scavenger. It is characterized in.

請求項2記載の発明は、請求項1に記載の試料ガス捕集装置において、前記捕集剤が、中空半球状に形成されていることを特徴とする。   The invention according to claim 2 is the sample gas collecting device according to claim 1, wherein the collecting agent is formed in a hollow hemispherical shape.

請求項3記載の発明は、請求項1又は2に記載の試料ガス捕集装置において、前記捕集剤と前記排気口の間に介在するように前記中空状部材に収容され且つ前記捕集剤から脱離した試料ガスの再吸着を防止する非吸着剤を有することを特徴とする。   The invention according to claim 3 is the sample gas collecting device according to claim 1 or 2, wherein the sample gas collecting device is accommodated in the hollow member so as to be interposed between the collecting agent and the exhaust port, and the collecting agent. And a non-adsorbent that prevents re-adsorption of the sample gas desorbed from the sample gas.

上記課題を解決するため本発明によりなされた請求項4記載のガスクロマトグラフ装置は、請求項1〜3の何れか1項に記載の試料ガス捕集装置1と、前記試料ガス捕集装置1で脱離した試料ガスの成分を分析する分析手段5と、を有することを特徴とする。   The gas chromatograph apparatus according to claim 4 made in accordance with the present invention in order to solve the above-described problems is the sample gas collecting apparatus 1 according to any one of claims 1 to 3 and the sample gas collecting apparatus 1. And analyzing means 5 for analyzing the components of the desorbed sample gas.

以上説明したように請求項1に記載した本発明の試料ガス捕集装置によれば、中空状部材の導入口から導入した試料ガスを均一に捕集し且つ該捕集した試料ガスを脱離してから排気口までの距離が略均一となるように捕集剤を形成して中空状部材に収容するようにしたことから、導入した試料ガスを均一に捕集でき且つその脱離した試料ガスを一気に排気口から排出することができるため、高濃度の試料ガスを短時間で送出することができる。また、捕集剤と排気口との間には捕集剤が存在しないため、脱離した試料ガスの再吸着を防止することができる。従って、本発明の試料ガス捕集装置を用いることで、シャープで分解度の高いピークを得ることができる。   As described above, according to the sample gas collecting device of the present invention described in claim 1, the sample gas introduced from the introduction port of the hollow member is uniformly collected and the collected sample gas is desorbed. Since the trapping agent is formed so that the distance from the exhaust port to the exhaust port is substantially uniform and accommodated in the hollow member, the introduced sample gas can be uniformly collected and the sample gas desorbed from the sample gas. Can be discharged from the exhaust port at once, so that a high-concentration sample gas can be delivered in a short time. Further, since there is no collecting agent between the collecting agent and the exhaust port, it is possible to prevent resorption of the desorbed sample gas. Therefore, by using the sample gas collecting device of the present invention, a sharp peak with a high resolution can be obtained.

請求項2に記載の発明によれば、請求項1に記載の発明の効果に加え、捕集剤を中空半球状に形成するようにしたことから、試料ガスと捕集剤との接触面積をより広くすることができ、捕集剤の全ての領域から排気口までの距離を等距離とすることができるため、濃縮率が向上でき且つ再吸着による濃縮率の低下を防止することができる。   According to the invention described in claim 2, in addition to the effect of the invention described in claim 1, since the collecting agent is formed in a hollow hemisphere, the contact area between the sample gas and the collecting agent is increased. Since the distance from the entire region of the collection agent to the exhaust port can be made equal, the concentration rate can be improved and the decrease in the concentration rate due to re-adsorption can be prevented.

請求項3に記載の発明によれば、請求項1又は2に記載の発明の効果に加え、非吸着剤を捕集剤と排気口の間に介在するように中空状部材に収容するようにしたことから、捕集剤から脱離した試料ガスの再吸着を防止して一気に排気口から排出することができるため、高濃度の試料ガスをより一層短時間で送出することができる。   According to the invention described in claim 3, in addition to the effect of the invention described in claim 1 or 2, the non-adsorbent is accommodated in the hollow member so as to be interposed between the collecting agent and the exhaust port. As a result, the sample gas desorbed from the collection agent can be prevented from being re-adsorbed and discharged from the exhaust port at once, so that a high-concentration sample gas can be delivered in a shorter time.

以上説明したように請求項4に記載した本発明のガスクロマトグラフ装置によれば、加熱脱離時における脱離ガス濃度の時間分布の短縮化できる試料ガス捕集装置を有していることから、試料ガス捕集装置は分析手段に短時間で試料ガスを送出することができ、分析手段は急激な検出ピークを得ることができるため、ガスの成分を効率的に分析することができる。   As described above, according to the gas chromatograph device of the present invention described in claim 4, since the sample gas collecting device that can shorten the time distribution of the desorbed gas concentration at the time of thermal desorption is provided, Since the sample gas collecting device can send the sample gas to the analyzing means in a short time, and the analyzing means can obtain a sudden detection peak, the gas component can be analyzed efficiently.

以下、本発明に係る試料ガス捕集装置および該試料ガス捕集装置を有するガスクロマトグラフ(GC)装置の一実施形態について、図1〜8の図面を参照して説明する。   Hereinafter, an embodiment of a sample gas collecting device and a gas chromatograph (GC) device having the sample gas collecting device according to the present invention will be described with reference to the drawings of FIGS.

図1において、試料ガス捕集装置1は、中空状部材11と、捕集剤12と、冷却加熱手段13と、非吸着剤14と、封止ケース15と、封止メッシュ16と、を有し、一体に形成している。なお、本実施形態では、中空状部材11と封止ケース15を別体とした場合について説明するが、それらを一体のケースとすることもできる。   In FIG. 1, the sample gas collection device 1 has a hollow member 11, a collection agent 12, a cooling and heating means 13, a non-adsorbent 14, a sealing case 15, and a sealing mesh 16. And are integrally formed. In addition, although this embodiment demonstrates the case where the hollow member 11 and the sealing case 15 are made into a different body, they can also be made into an integral case.

中空状部材11は、中空半球状に熱伝導性部材によって形成さている。中空状部材11は、半球状の頂点付近に形成された導入口11aを有し、該導入口11aから内部に試料ガス、キャリアガス等を導入する構造となっている。なお、本実施例では、1つの導入口11aを設ける場合について説明するが、本発明はこれに限定するものではなく、球表面に複数の導入部を設けて複数箇所から試料ガス、キャリアガス等を内部に導入するなど種々異なる実施形態とすることができる。   The hollow member 11 is formed of a heat conductive member in a hollow hemispherical shape. The hollow member 11 has an introduction port 11a formed in the vicinity of a hemispherical apex, and has a structure in which sample gas, carrier gas, and the like are introduced into the inside from the introduction port 11a. In this embodiment, the case where one introduction port 11a is provided will be described. However, the present invention is not limited to this, and a plurality of introduction portions are provided on the surface of the sphere so that sample gas, carrier gas, etc. It can be set as various embodiments, such as introduce | transducing inside.

捕集剤12は、試料ガスを吸着する部材、例えば、TENAX系、活性炭系、ゼオライト系等のガス分子を吸着捕集する膜状材料によって、上述した中空状部材11よりも若干小さな中空半球状に形成されている。そして、捕集剤12は、後述する封止ケース15の排気口15aを中心とした所定半径の半球状に形成されている。このような半休形状とすることで、導入口11aから導入した試料ガスを均一に捕集し且つ該捕集した試料ガスを脱離してから排気口15aまでの距離を略均一としている。この捕集剤12は、低温状態時に中空状部材11内を流れる試料ガスを吸着して捕集する。そして、捕集した試料ガスを気化温度以上とする高温状態に加熱されることで脱離する。   The trapping agent 12 is a hollow hemisphere that is slightly smaller than the hollow member 11 described above by a member that adsorbs a sample gas, for example, a membrane material that adsorbs and collects gas molecules such as TENAX, activated carbon, and zeolite. Is formed. And the collection agent 12 is formed in the hemisphere of the predetermined radius centering on the exhaust port 15a of the sealing case 15 mentioned later. By adopting such a semi-vacuum shape, the sample gas introduced from the introduction port 11a is uniformly collected, and the distance from the collected sample gas to the exhaust port 15a is made substantially uniform. The collector 12 adsorbs and collects the sample gas flowing in the hollow member 11 in a low temperature state. Then, the collected sample gas is desorbed by being heated to a high temperature state at or above the vaporization temperature.

冷却加熱手段13は、請求項中の加熱手段に相当し、中空状部材11の外周面に沿って設けられ、公知であるクーラー等の冷却装置及びヒータ等の加熱装置が用いられる。そして、冷却装置及び加熱装置は外部からの制御によって冷却、加熱が切り換えられる。冷却加熱手段13は、中空状部材11を冷却又は加熱することで、上述した捕集剤12の冷却又は加熱を促す。   The cooling and heating means 13 corresponds to the heating means in the claims, is provided along the outer peripheral surface of the hollow member 11, and a known cooling device such as a cooler and a heating device such as a heater are used. The cooling device and the heating device are switched between cooling and heating by external control. The cooling and heating means 13 promotes cooling or heating of the collection agent 12 described above by cooling or heating the hollow member 11.

非吸着剤14は、捕集剤12から脱離した試料ガスの吸着性が低い、例えばαアルミナ、不活性処理を施した金属やガラス等の材料が用いられる。そして、捕集剤12と封止ケース15との間に生じる空間に充填される。なお、この非吸着剤14は、不要である場合、試料ガス捕集装置1の構成から削除することもできる。   As the non-adsorbent 14, a material such as α-alumina, a metal or glass that has been subjected to an inert treatment is used, which has a low adsorptivity of the sample gas desorbed from the collection agent 12. Then, the space generated between the collection agent 12 and the sealing case 15 is filled. In addition, this non-adsorbent 14 can also be deleted from the structure of the sample gas collection apparatus 1, when unnecessary.

封止ケース15は、上記中空状部材11と同一の材料で、中空状部材11の開口を塞ぐ略円盤状に形成されている。封止ケース15は、排気口15aと、嵌合凸部15bと、係止部15cと、取付部15dと、を有している。   The sealing case 15 is made of the same material as the hollow member 11 and is formed in a substantially disk shape that closes the opening of the hollow member 11. The sealing case 15 has an exhaust port 15a, a fitting convex portion 15b, a locking portion 15c, and an attachment portion 15d.

排気口15aは、封止ケース15本体の中心付近から外部に向かって突出し、上記中空状部材11内に導入した試料ガス(脱離ガス)を排気する配管状に形成されている。嵌合凸部15bは、封止ケース15の円周部に沿ってリング凸状に形成され、上記中空状部材11の開口に勘合して内部を密閉する。係止部15cは、第1、2メッシュ16a,bに係合して固定するように、上記中空状部材11内に向かって突出するリング凸状に形成されている。取付部15dは、排気口15aの周囲に上記中空状部材11内に向かって突出するリング凸状に形成されている。   The exhaust port 15a protrudes outward from the vicinity of the center of the main body of the sealing case 15 and is formed in a pipe shape for exhausting the sample gas (desorption gas) introduced into the hollow member 11. The fitting convex portion 15b is formed in a ring convex shape along the circumferential portion of the sealing case 15, and is fitted into the opening of the hollow member 11 to seal the inside. The locking portion 15c is formed in a ring convex shape protruding toward the hollow member 11 so as to engage and fix the first and second meshes 16a and 16b. The mounting portion 15d is formed in a ring convex shape that protrudes into the hollow member 11 around the exhaust port 15a.

封止メッシュ16は、第1メッシュ16aと第2メッシュ16bと第3メッシュ16cとを有し、それらの各々は試料ガス等の通過(浸透)が可能な各種メッシュ部材によって中空半球状に形成されている。第1メッシュ16aは、上記中空状部材11との間に所定の隙間Sを形成するように、上記中空状部材11よりも若干小さな中空半球状に形成されている。そして、上記中空状部材11の内面から突出する複数の凸部11bによって、隙間Sを形成するように位置付けられる。   The sealing mesh 16 includes a first mesh 16a, a second mesh 16b, and a third mesh 16c, each of which is formed in a hollow hemispherical shape by various mesh members capable of passing (penetrating) a sample gas or the like. ing. The first mesh 16 a is formed in a hollow hemisphere slightly smaller than the hollow member 11 so as to form a predetermined gap S between the first mesh 16 a and the hollow member 11. And it positions so that the clearance gap S may be formed by the some convex part 11b which protrudes from the inner surface of the said hollow-shaped member 11. FIG.

第2メッシュ16bは、第1メッシュ16aとの間に捕集剤12を収容することが可能なように、第1メッシュ16aよりも若干小さな中空半球状に形成されている。即ち、第1メッシュ16aと第2メッシュ16bは、封止ケース15の係止部15cと係止されて固定されると、第1メッシュ16aの内面と第2メッシュ16bの外面とによって捕集剤12を挟持する構成となっている。   The second mesh 16b is formed in a hollow hemisphere that is slightly smaller than the first mesh 16a so that the scavenger 12 can be accommodated between the second mesh 16b and the first mesh 16a. That is, when the first mesh 16a and the second mesh 16b are locked and fixed to the locking portion 15c of the sealing case 15, the collecting agent is formed by the inner surface of the first mesh 16a and the outer surface of the second mesh 16b. 12 is sandwiched.

第3メッシュ16cは、第2メッシュ16bとの間に非吸着剤14を収容することが可能なように、第2メッシュ16bよりもかなり小さな中空半球状に形成されている。即ち、第3メッシュ16cは、封止ケース15の取付部15dに取り付けられると、第2メッシュ16bの内面と第3メッシュ16cの外面とによって非吸着剤14を挟持する構成となっている。   The 3rd mesh 16c is formed in the hollow hemisphere considerably smaller than the 2nd mesh 16b so that the non-adsorbent 14 can be accommodated between the 2nd mesh 16b. That is, when the third mesh 16c is attached to the attachment portion 15d of the sealing case 15, the non-adsorbent 14 is sandwiched between the inner surface of the second mesh 16b and the outer surface of the third mesh 16c.

このように構成した試料ガス捕集装置1は、以下のように組み立てられる。まず、中空状部材11内に第1メッシュ16aを配置し、そこに捕集剤12を配置して第2メッシュ16bで挟み込む。そして、非吸着剤14を充填した後に、第3メッシュ16cが取り付けられた封止ケース15を、中空状部材11の開口から近づけて嵌合して組み立てられる。   The sample gas collecting device 1 configured as described above is assembled as follows. First, the 1st mesh 16a is arrange | positioned in the hollow-shaped member 11, the scavenger 12 is arrange | positioned there, and it pinches | interposes with the 2nd mesh 16b. After the non-adsorbent 14 is filled, the sealing case 15 to which the third mesh 16c is attached is fitted close to the opening of the hollow member 11 and assembled.

このように組み立てられた試料ガス捕集装置1は、冷却加熱手段13によって上記中空状部材11内が冷却された状態で、導入口11aから試料ガスが導入されると、上記中空状部材11と第1メッシュ16aとの間の隙間Sを流れて捕集剤12にその試料ガスが捕集される。そして、捕集剤12は薄膜状に形成されていることから、半球状に形成された半球面の全てに均一に捕集される。   When the sample gas is introduced from the inlet 11a in a state where the inside of the hollow member 11 is cooled by the cooling and heating means 13, the sample gas collecting device 1 assembled in this way The sample gas is collected in the collection agent 12 through the gap S between the first mesh 16a. And since the collection agent 12 is formed in the thin film shape, it is uniformly collected by all the hemispherical surfaces formed in the hemispherical shape.

捕集剤12による試料ガスの捕集(吸着)の終了に応じて、捕集剤12に吸着した試料ガスを気化温度以上に、冷却加熱手段13によって上記中空状部材11内が加熱されると、試料ガスの捕集剤12からの脱離が促される。そして、脱離した試料ガスは導入部11aから導入されたキャリアガスと共に、非吸着部14を通過して排気口15aから外部に送出される。   When the inside of the hollow member 11 is heated by the cooling and heating means 13 above the vaporization temperature of the sample gas adsorbed on the collection agent 12 in accordance with the end of collection (adsorption) of the sample gas by the collection agent 12. The detachment of the sample gas from the collecting agent 12 is promoted. Then, the desorbed sample gas passes through the non-adsorption portion 14 together with the carrier gas introduced from the introduction portion 11a and is sent to the outside from the exhaust port 15a.

本発明の試料ガス捕集装置1と従来の試料ガスの流れ方向に長い筒状の捕集管(図9参照)の各脱離特性の比較結果を図2に示す。なお、実験条件は、予め定められた冷却時間で冷却して試料ガスを捕集した後に、予め定められた加熱時間で加熱して試料ガスを脱離させ、それを各部材の下流側に設けられたガスセンサで濃度を測定することが条件となっている。   FIG. 2 shows a comparison result of the desorption characteristics of the sample gas collecting device 1 of the present invention and a conventional cylindrical collecting tube (see FIG. 9) that is long in the flow direction of the sample gas. The experimental condition is that the sample gas is collected by cooling for a predetermined cooling time, and then heated for a predetermined heating time to desorb the sample gas, which is provided downstream of each member. The condition is that the concentration is measured by the gas sensor.

図2(a)に示す本発明の脱離特性は、脱離時間が短い間に、高濃度の試料ガスが検出されたことを示している。これに対し、図2(b)に示す従来の脱離特性は、脱離時間が長い間に、低濃度の試料ガスを検出されたことを示している。このように本発明の構造とすることで、高濃度の試料ガスを短時間で送出できることが確認できた。   The desorption characteristic of the present invention shown in FIG. 2 (a) indicates that a high concentration of sample gas was detected while the desorption time was short. On the other hand, the conventional desorption characteristic shown in FIG. 2B indicates that a low concentration of sample gas was detected while the desorption time was long. As described above, it was confirmed that the high concentration sample gas can be delivered in a short time by adopting the structure of the present invention.

以上説明した本発明の試料ガス捕集装置1によれば、中空状部材11の導入口11aから導入した試料ガスを均一に捕集し且つ該捕集した試料ガスを脱離してから排気口15aまでの距離が略均一となるように捕集剤12を形成して中空状部材11に収容するようにしたことから、導入した試料ガスを均一に捕集でき且つその脱離した試料ガスを一気に排気口15aから排出することができるため、高濃度の試料ガスを短時間で送出することができる。また、捕集剤12と排気口15aとの間には捕集剤12が存在しないため、脱離した試料ガスの再吸着を防止することができる。従って、本発明の試料ガス捕集装置1を用いることで、シャープで分解度の高いピークを得ることができる。   According to the sample gas collecting apparatus 1 of the present invention described above, the sample gas introduced from the introduction port 11a of the hollow member 11 is uniformly collected, and the collected sample gas is desorbed, and then the exhaust port 15a. Since the trapping agent 12 is formed so as to have a substantially uniform distance to be accommodated in the hollow member 11, the introduced sample gas can be collected uniformly and the desorbed sample gas can be collected all at once. Since the gas can be discharged from the exhaust port 15a, a high-concentration sample gas can be sent out in a short time. Moreover, since the collection agent 12 does not exist between the collection agent 12 and the exhaust port 15a, it is possible to prevent resorption of the desorbed sample gas. Therefore, by using the sample gas collecting device 1 of the present invention, a sharp peak with a high resolution can be obtained.

また、捕集剤12を中空半球状に形成するようにしたことから、試料ガスと捕集剤12との接触面積をより広くすることができ、捕集剤12の全ての領域から排気口までの距離を等距離とすることができるため、濃縮率が向上でき且つ再吸着による濃縮率の低下を防止することができる。   In addition, since the collecting agent 12 is formed in a hollow hemispherical shape, the contact area between the sample gas and the collecting agent 12 can be increased, and from all regions of the collecting agent 12 to the exhaust port. Therefore, the concentration rate can be improved and a decrease in the concentration rate due to re-adsorption can be prevented.

さらに、非吸着剤14を捕集剤12と排気口15aの間に介在するように中空状部材11に収容するようにしたことから、捕集剤12から脱離した試料ガスの再吸着を防止して一気に排気口15aから排出することができるため、高濃度の試料ガスをより一層短時間で送出することができる。   Further, since the non-adsorbing agent 14 is accommodated in the hollow member 11 so as to be interposed between the collecting agent 12 and the exhaust port 15a, re-adsorption of the sample gas desorbed from the collecting agent 12 is prevented. Since the gas can be discharged from the exhaust port 15a at once, a high concentration sample gas can be sent out in a shorter time.

なお、上述した実施形態では、捕集剤12を半球状に形成する場合について説明したが、本発明はこれに限定するものではなく、導入口11aから導入した試料ガスを均一に捕集し且つ該捕集した試料ガスを脱離してから排気口15aまでの距離が略均一となる形状であれば、例えば、試料ガスの流れ方向に対して捕集剤12の断面が略扇状、円弧状など中空箱状というように種々異なる実施形態とすることができる。   In the above-described embodiment, the case where the collecting agent 12 is formed in a hemispherical shape has been described. However, the present invention is not limited to this, and the sample gas introduced from the introduction port 11a is uniformly collected and As long as the distance from the collected sample gas to the exhaust port 15a is substantially uniform, for example, the collector 12 has a substantially fan-shaped or arc-shaped cross section with respect to the flow direction of the sample gas. Various embodiments such as a hollow box shape can be used.

また、上述した実施形態では、中空状部材11と捕集剤12とを同一の中空半球状に形成した場合について説明したが、本発明はこれに限定するものではなく、中空状部材11の形状を捕集剤12の形状にあわせる必要はない。   Moreover, although embodiment mentioned above demonstrated the case where the hollow member 11 and the collection agent 12 were formed in the same hollow hemisphere, this invention is not limited to this, The shape of the hollow member 11 It is not necessary to match the shape of the collecting agent 12.

次に、上述した試料ガス捕集装置1を組み込んだガスクロマトグラフ装置3について、図3〜図7の図面を参照して説明する。   Next, the gas chromatograph apparatus 3 incorporating the sample gas collection apparatus 1 described above will be described with reference to the drawings of FIGS.

図3〜図7において、ガスクロマトグラフ装置(以下、GC装置)3は、上述した試料ガス捕集装置1と、活性炭フィルタ4と、分析手段5と、バッファ6と、ポンプ7と、を有し、それらを成分検出経路Rに順次組み込んでいる。   3-7, the gas chromatograph apparatus (henceforth GC apparatus) 3 has the sample gas collection apparatus 1, the activated carbon filter 4, the analysis means 5, the buffer 6, and the pump 7 which were mentioned above. These are sequentially incorporated into the component detection path R.

成分検出経路Rは、試料ガス捕集装置1と活性炭フィルタ4とを接続する流路R1と、試料ガス捕集装置1と分析手段5とを接続する流路R2と、分析手段5とバッファ6とを接続する流路R3と、活性炭フィルタ4と分析手段5とを接続するバイパス経路R4と、を有している。   The component detection path R includes a flow path R1 that connects the sample gas collection device 1 and the activated carbon filter 4, a flow path R2 that connects the sample gas collection device 1 and the analysis means 5, an analysis means 5 and a buffer 6. And a bypass path R4 for connecting the activated carbon filter 4 and the analysis means 5 to each other.

活性炭フィルタ4は、大気口から大気を吸入して、フィルタ内の活性炭により大気に含まれる不純物を取り除いてキャリアガスを生成するものである。   The activated carbon filter 4 sucks the atmosphere from the atmosphere port, removes impurities contained in the atmosphere by the activated carbon in the filter, and generates a carrier gas.

分析手段5は、図示しないが、カラムとガスセンサとを有している。カラムは、公知であるガスクロマトグラフの分離カラム等が用いられる。カラムは、ヒータによって加熱されることで、流路R2から導入された試料ガスをその種類(測定対象成分)により時間軸上(所定の測定期間)で分離して送出する。   Although not shown, the analysis means 5 has a column and a gas sensor. As the column, a known separation column of a gas chromatograph or the like is used. The column is heated by the heater, and the sample gas introduced from the flow path R2 is separated and sent on the time axis (predetermined measurement period) according to the type (measurement target component).

ガスセンサは、接触燃焼式ガスセンサ、吸着燃焼式ガスセンサ等が用いられ、例えば感応素子部と感応素子部の抵抗差に基づいて、ガス濃度を示すセンサ信号を図示しない制御部に出力する。   As the gas sensor, a contact combustion type gas sensor, an adsorption combustion type gas sensor, or the like is used. For example, based on a resistance difference between the sensitive element part and the sensitive element part, a sensor signal indicating the gas concentration is output to a control part (not shown).

前記制御部は、三方弁V1,V2、分析手段5、流動部7等に電気的に接続され、各々の制御を行う。前記制御部は、前記ガスセンサからのセンサ出力を所定のサンプリング間隔で取得し、それらのセンサ出力に基づいて試料ガスを前記カラムで分離した各分離ガスの濃度を算出することで、サンプルガスを分析する。   The control unit is electrically connected to the three-way valves V1 and V2, the analysis unit 5, the flow unit 7 and the like, and performs each control. The control unit obtains sensor outputs from the gas sensors at predetermined sampling intervals, and calculates the concentration of each separated gas obtained by separating the sample gas by the column based on the sensor outputs, thereby analyzing the sample gas. To do.

バッファ6は、ポンプ7による流動の乱れを抑制し、流動量を一定に保つための既存のものであり、バッファ6を配設することで流動量が安定するため検出精度を高めることができる。また、ポンプ7の流動の乱れによる誤差が許容範囲内であれば、バッファ6を省略してもよい。そして、ポンプ7は、ポンプ吸入口7aから吸入したガスをポンプ排出口7bから排出して成分検出経路R内における試料ガス等を流動させるものである。   The buffer 6 is an existing one for suppressing the flow disturbance caused by the pump 7 and keeping the flow amount constant. By providing the buffer 6, the flow amount is stabilized, so that the detection accuracy can be improved. Further, the buffer 6 may be omitted if the error due to the disturbance of the flow of the pump 7 is within an allowable range. The pump 7 discharges the gas sucked from the pump suction port 7a from the pump discharge port 7b to flow the sample gas or the like in the component detection path R.

三方弁V1は、流路R1に設けられている。そして、三方弁V1は、3つのポートa、b、cを備え、ポートaには活性炭フィルタ4、ポートbには吸排気口8、ポートcには試料ガス捕集装置1がそれぞれ接続されている。三方弁V1は、試料ガスの導入に応じて、試料ガス捕集装置1と吸排気口8とを接続し(b−c接続)、キャリアガスの導入に応じて、活性炭フィルタ4と試料ガス捕集装置1とを接続する(a−c接続)。   The three-way valve V1 is provided in the flow path R1. The three-way valve V1 includes three ports a, b, and c. The activated carbon filter 4 is connected to the port a, the intake / exhaust port 8 is connected to the port b, and the sample gas collecting device 1 is connected to the port c. Yes. The three-way valve V1 connects the sample gas collector 1 and the intake / exhaust port 8 according to the introduction of the sample gas (bc connection), and according to the introduction of the carrier gas, the activated carbon filter 4 and the sample gas trap. The collector 1 is connected (ac connection).

三方弁V2は、流路R2に設けられている。三方弁V2は、試料ガス捕集装置1と分析手段5との間に位置するバイパス経路R4の端部に設けられている。また、3つのポートa、b、cを備え、ポートaには分析手段5側に位置する試料ガス捕集装置1の端部、ポートbにはバイパス経路R4、ポートcには分析手段5、がそれぞれ接続されている。三方弁V2は、キャリアガスを流動させる経路として、試料ガス捕集装置1またはバイパス経路R4のどちらか一方を選択して切り替えるものである。即ち、試料ガス捕集装置1と分析手段5(a−c接続)、または、バイパス経路R4と分析手段5(b−c接続)、を選択的に接続するものである。   The three-way valve V2 is provided in the flow path R2. The three-way valve V <b> 2 is provided at the end of the bypass path R <b> 4 located between the sample gas collection device 1 and the analysis means 5. In addition, three ports a, b, c are provided, the port a is an end of the sample gas collecting device 1 located on the analysis means 5 side, the port b is a bypass path R4, the port c is the analysis means 5, Are connected to each other. The three-way valve V2 selects and switches either the sample gas collection device 1 or the bypass route R4 as a route for flowing the carrier gas. That is, the sample gas collecting device 1 and the analyzing means 5 (ac connection) or the bypass path R4 and the analyzing means 5 (bc connection) are selectively connected.

次に、ガスクロマトグラフ(GC)装置1の本発明に係る動作(作用)の一例を、図3〜図7の概略動作図及び図8に示すフローチャートを参照して説明する。   Next, an example of the operation (action) according to the present invention of the gas chromatograph (GC) apparatus 1 will be described with reference to the schematic operation diagrams of FIGS. 3 to 7 and the flowchart shown in FIG.

ガスクロマトグラフ装置1は、電源投入により起動されると、三方弁V1,V2を共にポートa−c間に接続し、試料ガス捕集装置1の冷却加熱手段13を加熱状態とする。そして、ポンプ7の駆動によりキャリアガスの流動を開始する。これにより、キャリアガスが試料ガス捕集装置1および分析手段5のカラムを通過するように流動され、脱離された不純成分がキャリアガスによってGC装置1外に排出される(以上、図3参照、クリーニング1動作)。そして、不純成分の排出が完了したのち、ステップS120に進む。   When the gas chromatograph apparatus 1 is activated by turning on the power, both the three-way valves V1 and V2 are connected between the ports ac, and the cooling and heating means 13 of the sample gas collecting apparatus 1 is brought into a heating state. Then, the flow of the carrier gas is started by driving the pump 7. As a result, the carrier gas flows so as to pass through the column of the sample gas collecting device 1 and the analyzing means 5, and the desorbed impure components are discharged out of the GC device 1 by the carrier gas (see FIG. 3 above). Cleaning 1 operation). Then, after discharging the impure components is completed, the process proceeds to step S120.

ステップS120において、試料ガス捕集装置1の冷却加熱手段13を冷却状態にする。そして、ステップS130において、三方弁V1をポートb−c間に接続し、三方弁V2をポートa−c間に接続し、所定の時間にわたるポンプ7の駆動により試料ガスを試料ガス捕集装置1内に流動させることで、試料ガス捕集装置1の捕集剤12に試料ガスを捕集(吸着)させる(以上、図4参照、サンプリング動作)。そして、試料ガスの捕集が完了したのち、ステップS140に進む。   In step S120, the cooling and heating means 13 of the sample gas collecting apparatus 1 is brought into a cooling state. In step S130, the three-way valve V1 is connected between the ports b and c, the three-way valve V2 is connected between the ports ac and the sample gas is collected by driving the pump 7 over a predetermined time. The sample gas is collected (adsorbed) by the collection agent 12 of the sample gas collection device 1 by flowing in (refer to FIG. 4, sampling operation). And after collection of sample gas is completed, it progresses to Step S140.

なお、捕集剤12による試料ガスの捕集量は、試料ガスの流速と期間により決定され、流動量が多いほど捕集量も多くなるため、所定の期間は捕集剤12の捕集量等に基づいて、捕集剤12が破化しないように設定される。   Note that the amount of sample gas collected by the collection agent 12 is determined by the flow rate and period of the sample gas, and the amount of collection increases as the flow rate increases. Based on the above, the collection agent 12 is set so as not to be destroyed.

ステップS140において、三方弁V2をポートb−c間に接続し、ポンプ7の駆動により分析手段5等をキャリアガスでパージすることで、不純成分がキャリアガスによってGC装置1外に排出される(以上、図5参照、クリーニング2動作)。そして、不純成分の排出が完了したのち、ステップS150に進む。   In step S140, the three-way valve V2 is connected between the ports bc, and the analysis means 5 and the like are purged with the carrier gas by driving the pump 7, so that the impure components are discharged out of the GC apparatus 1 by the carrier gas ( (See FIG. 5, cleaning 2 operation). Then, after discharging the impure components is completed, the process proceeds to step S150.

ステップS150において、三方弁V1,V2を共にポートb−c間に接続し、試料ガス捕集装置1の冷却加熱手段13を加熱状態にすると共に、前記カラムを加熱状態とし、ポンプ7の駆動により成分検出経路Rにおいてキャリアガスを流動させる。(以上、図6参照、脱離1動作)。そして、脱離が完了したのち、ステップS160に進む。   In step S150, the three-way valves V1 and V2 are both connected between the ports bc, the cooling and heating means 13 of the sample gas collecting apparatus 1 is brought into a heating state, the column is brought into a heating state, and the pump 7 is driven. The carrier gas is caused to flow in the component detection path R. (See FIG. 6, Desorption 1 operation). Then, after the desorption is completed, the process proceeds to step S160.

ステップS160において、試料ガス捕集装置1の冷却加熱手段13及び前記カラムの各状態を維持して、三方弁V1のポートを(b−c)間から(a−c)間に切り替えて接続し、三方弁V2を一時的にポート(a−c)間に接続し、試料ガス捕集装置1内の脱離ガスを分析手段5へ送出させる(打ち込み)。そして、三方弁V2をポート(b−c)間に接続し、分析手段5による分析が完了するまで、その状態を維持する。   In step S160, the cooling and heating means 13 of the sample gas collecting apparatus 1 and the respective states of the column are maintained, and the port of the three-way valve V1 is switched between (bc) and (ac) and connected. The three-way valve V2 is temporarily connected between the ports (ac), and the desorbed gas in the sample gas collecting device 1 is sent to the analyzing means 5 (implanted). Then, the three-way valve V2 is connected between the ports (b-c), and this state is maintained until the analysis by the analysis means 5 is completed.

これにより、試料ガス捕集装置1内に脱離されて滞留している高濃度の試料ガスが、吸排気口8から吸入された大気によって分析手段5(即ち、カラム)に排出(導入)される。そして、高濃度の試料ガスが前記カラム内に導入されたのち、前記カラムを試料ガス成分分離に適した高温に加熱する。これにより、前記カラム内に導入された試料ガスに含まれる試料ガス成分が分離され、キャリアガスによって、それぞれの試料ガス成分が時間差をもって分析手段5のガスセンサに搬送されて、各成分の検出が行われる(以上、図7参照、脱離2及び分析動作)。そして、分析が終了すると、ステップS110に戻って、一連の処理を繰り返す。   Thereby, the high-concentration sample gas desorbed and staying in the sample gas collecting apparatus 1 is discharged (introduced) to the analysis means 5 (that is, the column) by the air sucked from the intake / exhaust port 8. The Then, after a high-concentration sample gas is introduced into the column, the column is heated to a high temperature suitable for sample gas component separation. As a result, the sample gas components contained in the sample gas introduced into the column are separated, and each sample gas component is conveyed to the gas sensor of the analysis means 5 with a time difference by the carrier gas, and each component is detected. (Refer to FIG. 7 above, desorption 2 and analysis operation). When the analysis ends, the process returns to step S110 and a series of processes is repeated.

以上説明した本発明のガスクロマトグラフ装置3によれば、加熱脱離時における脱離ガス濃度の時間分布の短縮化した試料ガス捕集装置1を有していることから、試料ガス捕集装置1は分離分析手段5に短時間で試料ガスを送出することができ、分離分析手段5は急激な検出ピークを得ることができるため、ガスの成分を効率的に分析することができる。   According to the gas chromatograph apparatus 3 of the present invention described above, the sample gas collecting apparatus 1 has the sample gas collecting apparatus 1 in which the time distribution of the desorbed gas concentration during the heat desorption is shortened. Can send the sample gas to the separation and analysis means 5 in a short time, and the separation and analysis means 5 can obtain an abrupt detection peak, so that the gas components can be analyzed efficiently.

なお、上述したステップS160では、三方弁V1のポートを(a−c)間に接続することで、試料ガス捕集装置1と活性炭フィルタ4とを接続する場合について説明したが、本発明はこれに限定するものではなく、三方弁V1のポートを(b−c)間に接続して試料ガス捕集装置1と吸排気口8と接続して、試料ガス捕集装置1内の脱離ガスを分析手段5へ送出させる実施形態とすることもできる。   In step S160 described above, the case where the sample gas collecting device 1 and the activated carbon filter 4 are connected by connecting the port of the three-way valve V1 between (ac) has been described. The port of the three-way valve V1 is connected between (bc) and connected to the sample gas collection device 1 and the intake / exhaust port 8, and the desorbed gas in the sample gas collection device 1 is not limited thereto. Can be sent to the analysis means 5.

また、上述した各実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   Moreover, each embodiment mentioned above only showed the typical form of this invention, and this invention is not limited to embodiment. That is, various modifications can be made without departing from the scope of the present invention.

本発明の試料ガス捕集装置の概略構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows schematic structure of the sample gas collection apparatus of this invention. 本発明の試料ガス捕集装置と従来の捕集管の脱離特性を示すグラフであり、(a)が本発明の試料ガス捕集装置のもの、(b)が従来の捕集管のものをそれぞれ示している。It is a graph which shows the detachment | desorption characteristic of the sample gas collection device of this invention, and the conventional collection tube, (a) is a thing of the sample gas collection device of this invention, (b) is a thing of the conventional collection tube Respectively. 本発明のガスクロマトグラフ装置のクリーニング1に係る概略構成を示すブロック図である。It is a block diagram which shows schematic structure which concerns on the cleaning 1 of the gas chromatograph apparatus of this invention. 本発明のガスクロマトグラフ装置のサンプリングに係る概略構成を示すブロック図である。It is a block diagram which shows schematic structure which concerns on the sampling of the gas chromatograph apparatus of this invention. 本発明のガスクロマトグラフ装置のクリーニング2に係る概略構成を示すブロック図である。It is a block diagram which shows schematic structure which concerns on the cleaning 2 of the gas chromatograph apparatus of this invention. 本発明のガスクロマトグラフ装置の脱離1に係る概略構成を示すブロック図である。It is a block diagram showing a schematic structure concerning desorption 1 of a gas chromatograph device of the present invention. 本発明のガスクロマトグラフ装置の脱離2、分析に係る概略構成を示すブロック図である。It is a block diagram which shows the schematic structure which concerns on the detachment | desorption 2 and analysis of the gas chromatograph apparatus of this invention. 本発明のガスクロマトグラフ装置の処理概要の一例を示すフローチャートである。It is a flowchart which shows an example of the process outline | summary of the gas chromatograph apparatus of this invention. 従来のガスクロマトグラフ装置の構成図である。It is a block diagram of the conventional gas chromatograph apparatus.

符号の説明Explanation of symbols

1 試料ガス捕集装置
3 ガスクロマトグラフ装置
11 中空状部材
11a 導入口
12 捕集剤
13 加熱手段(冷却加熱手段)
14 非吸着剤
15a 排気口
DESCRIPTION OF SYMBOLS 1 Sample gas collection apparatus 3 Gas chromatograph apparatus 11 Hollow member 11a Inlet 12 Collection agent 13 Heating means (cooling heating means)
14 Non-adsorbent 15a Exhaust port

Claims (4)

試料ガスを導入する導入口と該導入した試料ガスを排気する排気口を有する中空状部材と、前記中空状部材に収容されて前記試料ガスを捕集する捕集剤と、前記中空状部材を加熱して前記捕集剤に捕集した試料ガスを脱離させる高温状態にする加熱手段と、を有し、前記中空状部材に導入した試料ガスを低温状態のときに前記捕集剤に捕集し且つ前記捕集剤に捕集した試料ガスを高温状態のときに脱離する試料ガス捕集装置において、
前記捕集剤が、前記導入口から導入した試料ガスを均一に捕集し且つ該捕集した試料ガスを脱離してから前記排気口までの距離が略均一となる形状に形成され、
前記中空状部材が、前記捕集剤を収容する形状に形成されていることを特徴とする試料ガス捕集装置。
A hollow member having an introduction port for introducing a sample gas, an exhaust port for exhausting the introduced sample gas, a collecting agent that is contained in the hollow member and collects the sample gas, and the hollow member. Heating means for desorbing the sample gas collected in the collection agent to a high temperature state, and the sample gas introduced into the hollow member is captured by the collection agent in a low temperature state. In the sample gas collection device for collecting and desorbing the sample gas collected in the collection agent in a high temperature state,
The collection agent is formed in a shape that uniformly collects the sample gas introduced from the introduction port and has a substantially uniform distance from the desorption of the collected sample gas to the exhaust port,
The sample gas collecting apparatus, wherein the hollow member is formed in a shape for accommodating the collecting agent.
前記捕集剤が、中空半球状に形成されていることを特徴とする請求項1に記載の試料ガス捕集装置。   The sample gas collecting apparatus according to claim 1, wherein the collecting agent is formed in a hollow hemispherical shape. 前記捕集剤と前記排気口の間に介在するように前記中空状部材に収容され且つ前記捕集剤から脱離した試料ガスの再吸着を防止する非吸着剤を有することを特徴とする請求項1又は2に記載の試料ガス捕集装置。   A non-adsorbing agent that prevents re-adsorption of the sample gas accommodated in the hollow member and desorbed from the collecting agent so as to be interposed between the collecting agent and the exhaust port is provided. Item 3. The sample gas collector according to Item 1 or 2. 請求項1〜3の何れか1項に記載の試料ガス捕集装置と、前記試料ガス捕集装置で脱離した試料ガスの成分を分析する分析手段と、を有することを特徴とするガスクロマトグラフ装置。   A gas chromatograph comprising: the sample gas collecting device according to any one of claims 1 to 3; and an analysis unit that analyzes a component of the sample gas desorbed by the sample gas collecting device. apparatus.
JP2008081074A 2008-03-26 2008-03-26 Sample gas collector and gas chromatograph Expired - Fee Related JP5198111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081074A JP5198111B2 (en) 2008-03-26 2008-03-26 Sample gas collector and gas chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008081074A JP5198111B2 (en) 2008-03-26 2008-03-26 Sample gas collector and gas chromatograph

Publications (2)

Publication Number Publication Date
JP2009236588A true JP2009236588A (en) 2009-10-15
JP5198111B2 JP5198111B2 (en) 2013-05-15

Family

ID=41250733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081074A Expired - Fee Related JP5198111B2 (en) 2008-03-26 2008-03-26 Sample gas collector and gas chromatograph

Country Status (1)

Country Link
JP (1) JP5198111B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7338952B2 (en) 2018-03-20 2023-09-05 前田建設工業株式会社 Connection structure and connection method of steel shoring

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144619A (en) * 1997-07-28 1999-02-16 Toshiba Corp Method and device for evaluating impurity in air
JP2002035740A (en) * 2000-07-26 2002-02-05 Koichi Kawase Water cleaner and activated carbon for water cleaner
JP2004053268A (en) * 2002-07-16 2004-02-19 Seiko Epson Corp Organic matter collection tube, organic matter absorber, and method for absorbing organic matter
JP2004340685A (en) * 2003-05-14 2004-12-02 Shin Etsu Polymer Co Ltd Method for evaluating semiconductor wafer housing container
JP2007064647A (en) * 2005-08-29 2007-03-15 Toppan Printing Co Ltd Gas monitoring system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144619A (en) * 1997-07-28 1999-02-16 Toshiba Corp Method and device for evaluating impurity in air
JP2002035740A (en) * 2000-07-26 2002-02-05 Koichi Kawase Water cleaner and activated carbon for water cleaner
JP2004053268A (en) * 2002-07-16 2004-02-19 Seiko Epson Corp Organic matter collection tube, organic matter absorber, and method for absorbing organic matter
JP2004340685A (en) * 2003-05-14 2004-12-02 Shin Etsu Polymer Co Ltd Method for evaluating semiconductor wafer housing container
JP2007064647A (en) * 2005-08-29 2007-03-15 Toppan Printing Co Ltd Gas monitoring system

Also Published As

Publication number Publication date
JP5198111B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP6948804B2 (en) Gas concentrator and gas concentrator
JP4856514B2 (en) Exhalation component collector, exhalation component collection device, exhalation component collector manufacturing method, exhalation component analysis device, and exhalation component analysis method
US7600439B1 (en) Apparatus and method for storage of atmospheric sample for eventual chemical analysis
TWI546529B (en) Gas collection and analysis system with front-end and back-end pre-concentrators, disposable moisture removal filter, and process
US8308854B2 (en) Helium reclamation systems and methods for a gas chromatograph
US20060266353A1 (en) Exhaled air filter, exhaled air collecting apparatus, exhaled air analyzing system and exhaled air analyzing method
RU2018139275A (en) SYSTEM, DEVICE AND METHOD FOR MONITORING ORGANIC COMPOUNDS IN A GAS MEDIA
JP2013503348A5 (en)
JP2004537715A (en) Gas detection method and gas detector
JP5203006B2 (en) Sample gas collector and gas chromatograph
JP5067873B2 (en) Apparatus and method for selectively concentrating and detecting complex gaseous chemical substances
JP2006337158A (en) Sample concentration device
JP5198111B2 (en) Sample gas collector and gas chromatograph
JP5038204B2 (en) Gas chromatograph
JP5184171B2 (en) Sample gas collector and gas chromatograph
US20220042953A1 (en) System and method for reducing moisture to sample and test a gas mixture
EP4379369A1 (en) Sampling device for sampling and concentrating trace compounds from an air sample
JP4874946B2 (en) Gas concentration cell and gas concentration method
JP2005241473A (en) Air pollutant collecting device
JP4044851B2 (en) Method for measuring volatile organic substances and sampling instrument for measurement
WO2021252696A1 (en) Device and methods for collecting and processing analytes in air/breath
JP2007212325A (en) Heat desorption equipment
JP3240996U (en) Gas analysis pretreatment device and gas analysis system
JP4100607B2 (en) Gas analyzer and gas analysis method
KR100655786B1 (en) Preconcentrator equipped with removing ability of water vapor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees