JP2009236561A - Electromagnetic/ultrasonic probe, ultrasonic flow detector, and ultrasonic flaw detection method - Google Patents

Electromagnetic/ultrasonic probe, ultrasonic flow detector, and ultrasonic flaw detection method Download PDF

Info

Publication number
JP2009236561A
JP2009236561A JP2008080521A JP2008080521A JP2009236561A JP 2009236561 A JP2009236561 A JP 2009236561A JP 2008080521 A JP2008080521 A JP 2008080521A JP 2008080521 A JP2008080521 A JP 2008080521A JP 2009236561 A JP2009236561 A JP 2009236561A
Authority
JP
Japan
Prior art keywords
ultrasonic
electromagnetic
electromagnetic ultrasonic
ultrasonic probe
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008080521A
Other languages
Japanese (ja)
Other versions
JP5305706B2 (en
Inventor
Michio Sato
藤 道 雄 佐
Kazumi Watabe
部 和 美 渡
Noriyasu Kobayashi
林 徳 康 小
Kunio Matsukura
倉 国 男 松
Tetsuo Endo
藤 哲 央 遠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008080521A priority Critical patent/JP5305706B2/en
Publication of JP2009236561A publication Critical patent/JP2009236561A/en
Application granted granted Critical
Publication of JP5305706B2 publication Critical patent/JP5305706B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic/ultrasonic probe easy to be manufactured and using a solenoid coil. <P>SOLUTION: The electromagnetic/ultrasonic probe A is equipped with a cylindrical permanent magnet 1 magnetized in the diametric direction from its outer peripheral surface to its inner peripheral surface and the coil 2 wound centering around the circumferential axis of the permanent magnet 1. The electromagnetic/ultrasonic probe B is equipped with at least one arcuate permanent magnet 1 magnetized in the diametric direction from its outer peripheral surface to its inner peripheral surface, and the coil 2 wound centering around the circumferential axis of the permanent magnet 1 and the electromagnetic/ultrasonic probe C is equipped with at least one permanent magnet magnetized in the diametric direction from its outer peripheral surface to its inner peripheral surface and the coil 2 wound centering around the axis in the direction orthogonal to the magnetizing direction of the permanent magnet. A plurality of the permanent magnets 1 are arranged circumferentially along the surface of piping 3. The ultrasonic flaw detection device/method is equipped with a plurality of electromagnetic/ultrasonic probes A, B and C, and a part of the electromagnetic/ultrasonic probes A, B and C may be used for the transmission of an ultrasonic wave and other probes are used for the reception of the ultrasonic wave. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電磁超音波探触子および超音波探傷装置ならびに超音波探傷方法に関し、特に、配管の欠陥や減肉を検出する電磁超音波探触子および超音波探傷装置ならびに超音波探傷方法に関する。   The present invention relates to an electromagnetic ultrasonic probe, an ultrasonic flaw detection apparatus, and an ultrasonic flaw detection method, and more particularly, to an electromagnetic ultrasonic probe, an ultrasonic flaw detection apparatus, and an ultrasonic flaw detection method that detect defects and thinning of piping. .

一般に、配管の欠陥や減肉を検出する方法として、特許文献1に示されているような方法がある。特許文献1に示されている方法は、配管の磁歪効果を利用するものである。すなわち、配管にコイルを巻きつけるとともに、配管近傍に永久磁石または電磁石により磁場を加え、静的な磁気歪を発生させる。配管に巻きつけたコイルに交流電流を流すことにより、配管に交流磁界を発生させ、静的な磁気歪量を変化させることにより、超音波を発生させる。特許文献1では、磁歪効果のない配管の場合には、あらかじめ磁気歪を与えた金属バンドを配管に巻きつけ、当該金属バンド上にコイルを巻きつけておく。このコイルに交流電流を流すことによって、金属バンドの磁気歪量を変化させ、金属バンドを振動させる。この金属バンドの振動を配管に伝えることによって、配管に超音波を発生させることができる。   Generally, there is a method as disclosed in Patent Document 1 as a method for detecting a piping defect or thinning. The method disclosed in Patent Document 1 uses the magnetostriction effect of piping. That is, a coil is wound around a pipe, and a magnetic field is applied to the vicinity of the pipe by a permanent magnet or an electromagnet to generate static magnetostriction. By passing an alternating current through a coil wound around the pipe, an alternating magnetic field is generated in the pipe, and an ultrasonic wave is generated by changing the amount of static magnetostriction. In Patent Document 1, in the case of a pipe having no magnetostrictive effect, a metal band to which magnetostriction is applied in advance is wound around the pipe, and a coil is wound around the metal band. By passing an alternating current through this coil, the amount of magnetostriction of the metal band is changed to vibrate the metal band. By transmitting the vibration of the metal band to the pipe, ultrasonic waves can be generated in the pipe.

しかしながら、特許文献1に示されている方法は、配管自体に磁歪効果がある場合には有効な方法であるが、配管に磁歪効果がない場合には、特許文献1にも示されているように金属バンドを使用する必要がある(公報第6頁第32〜37行目参照)。通常、この金属バンドを使用して配管に超音波を送受信する場合には、位置決めした後に接着等による接合が必要となる。汎用の配管は、特殊な処理をしない限り、磁歪効果がないので、金属バンドを配管に接合することとなる。配管に接合した金属バンドを使用して超音波の送受信を行なう場合には、接合に時間がかかり、準備作業が長くなること、接合品質の保証が困難であるため、作業員の技量に応じて検査にバラツキが生ずるという課題がある。   However, the method disclosed in Patent Document 1 is an effective method when the pipe itself has a magnetostrictive effect. However, if the pipe does not have a magnetostrictive effect, it is also disclosed in Patent Document 1. It is necessary to use a metal band (see the publication, page 6, lines 32 to 37). Usually, when this metal band is used to transmit / receive ultrasonic waves to / from a pipe, it is necessary to perform bonding by bonding after positioning. Since general-purpose piping has no magnetostrictive effect unless special treatment is performed, a metal band is joined to the piping. When sending and receiving ultrasonic waves using a metal band joined to piping, it takes time to join, lengthy preparation work, and it is difficult to guarantee joining quality, so depending on the skill of the worker There is a problem that variation occurs in the inspection.

これに対し、特許文献2に示されているように、電磁超音波探触子を使用する方法が提案されている。超音波の受信用に電磁超音波探触子を使用する方法である。特許文献2に示されている方法は、2枚の永久磁石を磁化方向が異なるように配列するとともにこれら配列された永久磁石の一方の面にコイルを設置したものである。特許文献2に示された方法は、配管の磁歪効果を使用しないので、金属バンドが不要であり、接合のための作業も不要となる(公報段落[0068]および図4参照)。   On the other hand, as shown in Patent Document 2, a method using an electromagnetic ultrasonic probe has been proposed. This is a method of using an electromagnetic ultrasonic probe for receiving ultrasonic waves. In the method disclosed in Patent Document 2, two permanent magnets are arranged so as to have different magnetization directions, and a coil is installed on one surface of the arranged permanent magnets. Since the method shown in Patent Document 2 does not use the magnetostriction effect of the piping, a metal band is unnecessary, and an operation for joining is also unnecessary (see paragraph [0068] of FIG. 4 and FIG. 4).

特許文献2に示されている電磁超音波探触子においては、超音波を受信するためのパンケーキコイルを設置している。図12の上側に示すように、パンケーキコイル28は、交流電流6が供給される入力端子が接続された外側の端部から矩形の螺旋状に形成されて出力端子に接続された内側の端部にまで連続するような平面形状を有している。図12の下側に示すように、2枚の永久磁石18は、そのS極とN極が互いに磁化方向が異なるように配列され、配列された永久磁石18の下方(超音波受信側)に、超音波を受信するためのパンケーキコイル28を配置している。 このパンケーキコイル28に交流電流6が供給されることにより、図12の下側に示す方向に磁束16が発生し、配管3の表面には渦電流7が発生して矢印で示す方向のローレンツ力17が生じている。
特許第3669706号公報 特開2006−53134号公報
In the electromagnetic ultrasonic probe shown in Patent Document 2, a pancake coil for receiving ultrasonic waves is installed. As shown in the upper side of FIG. 12, the pancake coil 28 is formed in a rectangular spiral shape from the outer end to which the input terminal to which the alternating current 6 is supplied is connected, and is connected to the output terminal. It has a planar shape that continues to the part. As shown in the lower side of FIG. 12, the two permanent magnets 18 are arranged so that their S poles and N poles have different magnetization directions, and below the arranged permanent magnets 18 (on the ultrasonic receiving side). A pancake coil 28 for receiving ultrasonic waves is arranged. When the alternating current 6 is supplied to the pancake coil 28, the magnetic flux 16 is generated in the direction shown in the lower side of FIG. 12, and the eddy current 7 is generated on the surface of the pipe 3 so that the Lorentz in the direction shown by the arrow Force 17 is generated.
Japanese Patent No. 3669706 JP 2006-53134 A

しかしながら、特許文献2に示すようなパンケーキコイルは特殊な冶具を使用して汎用の鋼線を平面状に巻いて製作するか、プリント基板をエッチングして製作するため、製造方法が複雑になる。このため、製造が容易なソレノイドコイルを使用した電磁超音波探触子が望まれていた。   However, since the pancake coil as shown in Patent Document 2 is manufactured by winding a general-purpose steel wire in a flat shape using a special jig, or by manufacturing a printed circuit board, the manufacturing method becomes complicated. . For this reason, an electromagnetic ultrasonic probe using a solenoid coil that is easy to manufacture has been desired.

本発明は上記課題を解決するためになされたものであり、製造が容易なソレノイドコイルを使用した電磁超音波探触子および超音波探傷装置ならびに超音波探傷方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an electromagnetic ultrasonic probe, an ultrasonic flaw detection apparatus, and an ultrasonic flaw detection method using a solenoid coil that can be easily manufactured.

上記課題を解決するため、本発明の第1の構成に係る電磁超音波探触子は、外周面から内周面への径方向に磁化された円筒形状の永久磁石と、前記永久磁石の周方向を軸にして巻きつけられたコイルと、を備えることを特徴とする。   In order to solve the above problems, an electromagnetic ultrasonic probe according to a first configuration of the present invention includes a cylindrical permanent magnet magnetized in a radial direction from an outer peripheral surface to an inner peripheral surface, and a periphery of the permanent magnet. And a coil wound around the direction.

本発明の第2の構成に係る電磁超音波探触子は、外周面から内周面への径方向に磁化された少なくとも1つの円弧状の永久磁石と、前記永久磁石の周方向を軸にして巻きつけられたコイルと、を備えることを特徴とする。   The electromagnetic ultrasonic probe according to the second configuration of the present invention includes at least one arc-shaped permanent magnet magnetized in the radial direction from the outer peripheral surface to the inner peripheral surface, and the circumferential direction of the permanent magnet as an axis. And a coil wound around.

本発明の第3の構成に係る電磁超音波探触子は、外周面から内周面への径方向に磁化された少なくとも1つの永久磁石と、前記永久磁石の磁化された方向に対して垂直方向を軸にして巻きつけられたコイルと、を備えることを特徴とする。   The electromagnetic ultrasonic probe according to the third configuration of the present invention includes at least one permanent magnet magnetized in the radial direction from the outer peripheral surface to the inner peripheral surface, and perpendicular to the magnetized direction of the permanent magnet. And a coil wound around the direction.

本発明の第4の構成に係る電磁超音波探触子は、上記第2または第3の構成に係る電磁超音波探触子において、前記永久磁石を周方向に複数配置したことを特徴とする。   An electromagnetic ultrasonic probe according to a fourth configuration of the present invention is characterized in that in the electromagnetic ultrasonic probe according to the second or third configuration, a plurality of the permanent magnets are arranged in the circumferential direction. .

本発明の第5の構成に係る超音波探傷装置は、上記第1ないし第4の構成の何れかに記載の電磁超音波探触子を複数備え、一部を超音波送信用とし、それ以外を超音波受信用としたことを特徴とする。   An ultrasonic flaw detector according to a fifth configuration of the present invention includes a plurality of electromagnetic ultrasonic probes according to any of the first to fourth configurations, a part for ultrasonic transmission, and the others Is for ultrasonic reception.

本発明の第6の構成に係る超音波探傷装置は、上記第1ないし第4の構成の何れかに記載の電磁超音波探触子を2個備え、これら2個の電磁超音波探触子間の距離をねじれ波の波長の1/4とすると共に、これら2個の電磁超音波探触子の送信コイルを流れる電流の周波数の位相をそれぞれ90度ずらすことを特徴とする。   An ultrasonic flaw detector according to a sixth configuration of the present invention includes two electromagnetic ultrasonic probes according to any one of the first to fourth configurations, and these two electromagnetic ultrasonic probes. The distance between them is ¼ of the wavelength of the torsional wave, and the phase of the frequency of the current flowing through the transmission coils of these two electromagnetic ultrasonic probes is shifted by 90 degrees.

本発明の第7の構成に係る超音波探傷方法は、上記第1ないし第4の構成の何れかに記載の電磁超音波探触子を探傷対象の表面に対して磁束密度が直交するように配置し、前記電磁超音波探触子の前記コイルに交流電流を流して前記探傷対象の表面に渦電流を誘導して、前記探傷対象に発生するローレンツ力により超音波を発生させ、前記超音波の反射エコーを前記電磁超音波探触子により検出することを特徴とする。   The ultrasonic flaw detection method according to the seventh configuration of the present invention is such that the magnetic flux density of the electromagnetic ultrasonic probe according to any one of the first to fourth configurations is orthogonal to the surface of the flaw detection target. Arranging and inducing an eddy current on the surface of the flaw detection target by causing an alternating current to flow through the coil of the electromagnetic ultrasonic probe, and generating an ultrasonic wave by a Lorentz force generated on the flaw detection target. The reflected echo is detected by the electromagnetic ultrasonic probe.

本発明の第8の構成に係る超音波探傷方法は、上記第1ないし第4の構成の何れかに記載の電磁超音波探触子を複数使用し、複数の前記電磁超音波探触子の一部を超音波送信用に使用すると共に、それ以外の前記電磁超音波探触子を超音波受信用に使用することを特徴とする。   An ultrasonic flaw detection method according to an eighth configuration of the present invention uses a plurality of electromagnetic ultrasonic probes according to any one of the first to fourth configurations, and a plurality of the electromagnetic ultrasonic probes. A part is used for ultrasonic transmission, and the other electromagnetic ultrasonic probe is used for ultrasonic reception.

本発明の第9の構成に係る超音波探傷方法は、上記第1ないし第4の構成の何れかに記載の電磁超音波探触子を2個使用し、これら2個の電磁超音波探触子間の距離をねじれ波の波長の1/4とすると共に、これら2個の電磁超音波探触子の送信コイルを流れる電流の周波数の位相をそれぞれ90度ずらしてねじれ波を一方向にのみ伝播させることを特徴とする。   An ultrasonic flaw detection method according to a ninth configuration of the present invention uses two electromagnetic ultrasonic probes according to any one of the first to fourth configurations, and these two electromagnetic ultrasonic probes. The distance between the elements is set to ¼ of the wavelength of the torsion wave, and the phase of the frequency of the current flowing through the transmission coils of these two electromagnetic ultrasonic probes is shifted by 90 degrees, respectively, so that the torsion wave is only in one direction. It is characterized by propagating.

本発明の第10の構成に係る超音波探傷方法は、上記第1ないし第4の構成の何れかに記載の電磁超音波探触子を探傷対象の軸方向に対して斜めに配置することを特徴とする。   An ultrasonic flaw detection method according to a tenth configuration of the present invention includes disposing the electromagnetic ultrasonic probe according to any one of the first to fourth configurations obliquely with respect to an axial direction of a flaw detection target. Features.

本発明の電磁超音波探触子および超音波探傷装置ならびに超音波探傷方法によれば、ソレノイドコイルの製造が容易となり、低廉なコストで配管の欠陥や減肉を確実に検出することが可能となる。   According to the electromagnetic ultrasonic probe, the ultrasonic flaw detector, and the ultrasonic flaw detection method of the present invention, it becomes easy to manufacture a solenoid coil, and it is possible to reliably detect piping defects and thinning at a low cost. Become.

以下、本発明に係る電磁超音波探触子および超音波探傷装置ならびに超音波探傷方法の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of an electromagnetic ultrasonic probe, an ultrasonic flaw detector, and an ultrasonic flaw detection method according to the present invention will be described with reference to the drawings.

(第1実施形態)
まず、図1を用いて第1実施形態を説明する。本第1実施形態に示された電磁超音波探触子Aは、外周面から内周面への径方向に磁化された円筒形状の永久磁石1とこの永久磁石1の周方向を軸にして巻回されたソレノイドコイル2から構成されている。そして、この電磁超音波探触子Aを使用する場合には、図1に示したように、探傷対象である配管3に対して磁束密度が加わるように設置して使用する。また、電磁超音波探触子Aは固定治具4を使用して、配管3に固定する。
(First embodiment)
First, the first embodiment will be described with reference to FIG. The electromagnetic ultrasonic probe A shown in the first embodiment includes a cylindrical permanent magnet 1 magnetized in a radial direction from an outer peripheral surface to an inner peripheral surface, and the circumferential direction of the permanent magnet 1 as an axis. It is composed of a wound solenoid coil 2. And when using this electromagnetic ultrasonic probe A, as shown in FIG. 1, it installs and uses it so that magnetic flux density may be added with respect to the piping 3 which is a flaw detection object. Further, the electromagnetic ultrasonic probe A is fixed to the pipe 3 by using the fixing jig 4.

このように構成された電磁超音波探触子Aにおいて、図2に基づいて、動作を説明する。図2は、図1の電磁超音波深触子Aの一部を拡大して示したものである。径方向に磁化された円筒状の永久磁石1により、探傷対象である配管表面に直交するように磁束密度5が加わる。次に、この永久磁石1に巻いたソレノイドコイル2に交流電流6を流すと、配管表面には、図2に示したように配管の軸方向に渦電流7が誘導される。   The operation of the electromagnetic ultrasonic probe A configured as described above will be described with reference to FIG. FIG. 2 is an enlarged view of a part of the electromagnetic ultrasonic deep contact A shown in FIG. A magnetic flux density 5 is applied by the cylindrical permanent magnet 1 magnetized in the radial direction so as to be orthogonal to the surface of the pipe to be flaw-detected. Next, when an alternating current 6 is passed through the solenoid coil 2 wound around the permanent magnet 1, an eddy current 7 is induced on the pipe surface in the axial direction of the pipe as shown in FIG.

これら磁束密度5と渦電流7が直交して発生するので、配管3の周方向にはフレミングの左手の法則により、ローレンツ力8が発生する。このローレンツ力8は、交流電流6によって誘導された渦電流7によって発生するので時間的に変化する。したがって、このローレンツ力8により、交流電流6と同じ周波数の超音波が発生することとなる。しかも、発生したローレンツ力8の発生方向が、配管3の周方向であり、配管3の軸方向に振動成分を持たないので、純粋なねじれ振動を発生していることとなる。   Since the magnetic flux density 5 and the eddy current 7 are generated orthogonally, a Lorentz force 8 is generated in the circumferential direction of the pipe 3 according to Fleming's left-hand rule. Since the Lorentz force 8 is generated by the eddy current 7 induced by the alternating current 6, it changes with time. Therefore, this Lorentz force 8 generates an ultrasonic wave having the same frequency as the alternating current 6. In addition, the direction in which the generated Lorentz force 8 is generated is the circumferential direction of the pipe 3 and has no vibration component in the axial direction of the pipe 3, so that pure torsional vibration is generated.

ここで、超音波の周波数が高く、波長が配管の板厚より短い場合には、通常の横波として配管の径方向に伝播することとなる。しかし、超音波の周波数が低く、波長が配管の板厚より長い場合には、配管の径方向には伝播せず、配管の軸方向に伝播することとなる。この場合、振動方向が配管周方向であり、伝搬方向が配管軸方向なので、ねじれ波となる。   Here, when the frequency of the ultrasonic wave is high and the wavelength is shorter than the plate thickness of the pipe, it propagates in the radial direction of the pipe as a normal transverse wave. However, when the frequency of the ultrasonic wave is low and the wavelength is longer than the thickness of the pipe, it does not propagate in the radial direction of the pipe but propagates in the axial direction of the pipe. In this case, since the vibration direction is the pipe circumferential direction and the propagation direction is the pipe axis direction, it becomes a torsional wave.

なお、上記説明は超音波発生の動作であるが、超音波を受信する動作は、図3に示したような逆のプロセスとなる。すなわち、図1および図2に示したような構成の電磁超音波探触子において、磁束密度(B)5が加わった状態で、ねじれ波が到達し、配管3の周方向に振動(V)9があれば、フレミングの右手の法則(E=V×B)によって、配管表面に電界(E)が発生する。この電界(E)によって、配管表面には、渦電流(J=σE、σは導電率)10が発生する。この電流(J)10によって、鎖交磁束11が発生する。この鎖交磁束11はソレノイドコイル2に鎖交するので、ソレノイドコイル2の両端には、この鎖交磁束11によりファラデーの法則に基づく電圧(Vout)が発生し、超音波を検出できる。したがって、図1および図2に示した電磁超音波探触子Aは、ねじれ波を送信できるとともに受信も可能である。   Although the above description is an operation of generating ultrasonic waves, the operation of receiving ultrasonic waves is a reverse process as shown in FIG. That is, in the electromagnetic ultrasonic probe having the configuration as shown in FIGS. 1 and 2, the torsional wave arrives with the magnetic flux density (B) 5 applied, and vibrates in the circumferential direction of the pipe 3 (V). If there is 9, an electric field (E) is generated on the pipe surface by Fleming's right-hand rule (E = V × B). This electric field (E) generates an eddy current (J = σE, σ is conductivity) 10 on the pipe surface. This current (J) 10 generates linkage flux 11. Since this interlinkage magnetic flux 11 interlinks with the solenoid coil 2, a voltage (Vout) based on Faraday's law is generated by the interlinkage magnetic flux 11 at both ends of the solenoid coil 2, and ultrasonic waves can be detected. Therefore, the electromagnetic ultrasonic probe A shown in FIGS. 1 and 2 can transmit and receive a torsion wave.

上記の構成を有する電磁超音波探触子Aを使用する場合が図4に示されている。図4において、電磁超音波探触子Aによりねじれ波12を発生させる。配管3に減肉や欠陥13がある場合、減肉または欠陥の箇所でねじれ波12が反射し、その反射エコー14を電磁超音波探触子Aで検出する。このようにして、配管内の減肉発生箇所や欠陥の発生箇所を検出することができる。   FIG. 4 shows a case where the electromagnetic ultrasonic probe A having the above configuration is used. In FIG. 4, a torsional wave 12 is generated by an electromagnetic ultrasonic probe A. When the pipe 3 has a thinning or a defect 13, the torsional wave 12 is reflected at the location of the thinning or the defect, and the reflected echo 14 is detected by the electromagnetic ultrasonic probe A. In this way, it is possible to detect the occurrence of the thinning in the pipe and the occurrence of the defect.

(第2実施形態)
次に、本発明の第2実施形態の電磁超音波探触子Bについて図5を用いて説明する。図5において、電磁超音波探触子Bは、外周面から内周面への径方向に磁化された円弧状の永久磁石15とこの永久磁石15の周方向を軸にして巻いたソレノイドコイル2から構成される。図5に示した構成の電磁超音波探触子Bの動作は、図1および図2に示した第1実施形態の電磁超音波探触子Aと同じである。すなわち、径方向に磁化された円弧状の永久磁石15により、図5に示したように配管の径方向に磁束密度16が加わる。次に、この永久磁石15に巻いたソレノイドコイル2に交流電流6を流すと、配管表面には、図5に示したように配管の軸方向に渦電流7が誘導される。これら磁束密度16と渦電流7が直交しているので、配管3の周方向にはフレミングの左手の法則により、ローレンツ力17が発生する。
(Second Embodiment)
Next, the electromagnetic ultrasonic probe B according to the second embodiment of the present invention will be described with reference to FIG. In FIG. 5, an electromagnetic ultrasonic probe B includes an arc-shaped permanent magnet 15 magnetized in a radial direction from an outer peripheral surface to an inner peripheral surface, and a solenoid coil 2 wound around the circumferential direction of the permanent magnet 15. Consists of The operation of the electromagnetic ultrasonic probe B having the configuration shown in FIG. 5 is the same as that of the electromagnetic ultrasonic probe A of the first embodiment shown in FIG. 1 and FIG. That is, the magnetic flux density 16 is applied in the radial direction of the pipe by the arc-shaped permanent magnet 15 magnetized in the radial direction as shown in FIG. Next, when an alternating current 6 is passed through the solenoid coil 2 wound around the permanent magnet 15, an eddy current 7 is induced on the pipe surface in the axial direction of the pipe as shown in FIG. Since the magnetic flux density 16 and the eddy current 7 are orthogonal to each other, a Lorentz force 17 is generated in the circumferential direction of the pipe 3 according to Fleming's left-hand rule.

このローレンツ力17は、交流電流6によって誘導された渦電流7によって発生するので時間的に変化する。したがって、このローレンツ力17により、交流電流6と同じ周波数の超音波が発生することとなる。しかも、発生したローレンツ力17の発生方向が、配管3の周方向であり、配管3の軸方向に振動成分を持たないので、純粋なねじれ振動を発生していることとなる。   Since the Lorentz force 17 is generated by the eddy current 7 induced by the alternating current 6, it changes over time. Therefore, this Lorentz force 17 generates an ultrasonic wave having the same frequency as the alternating current 6. In addition, the direction in which the generated Lorentz force 17 is generated is the circumferential direction of the pipe 3 and has no vibration component in the axial direction of the pipe 3, so that pure torsional vibration is generated.

ここで、第1実施形態でも述べたが、超音波の周波数が高く、波長が配管の板厚より短い場合には、通常の横波として配管の径方向に伝播することとなる。しかし、超音波の周波数が低く、波長が配管の板厚より長い場合には、配管の径方向には伝播せず、配管の軸方向に伝播することとなる。この場合、振動方向が配管周方向であり、伝搬方向が配管軸方向なので、ねじれ波となる。   Here, as described in the first embodiment, when the frequency of the ultrasonic wave is high and the wavelength is shorter than the plate thickness of the pipe, it propagates as a normal transverse wave in the radial direction of the pipe. However, when the frequency of the ultrasonic wave is low and the wavelength is longer than the thickness of the pipe, it does not propagate in the radial direction of the pipe but propagates in the axial direction of the pipe. In this case, since the vibration direction is the pipe circumferential direction and the propagation direction is the pipe axis direction, it becomes a torsional wave.

また、超音波の受信も第1実施形態と全く同様の動作によりなされるので、ここでは省略する。図5に示した第2実施形態の電磁超音波探触子も、第1実施形態と同様に超音波の送信と受信が可能である。さらに、図4に示した第1実施形態と同様にして配管内の減肉発生箇所や欠陥発生箇所の検出を行なう。   The reception of ultrasonic waves is performed by the same operation as in the first embodiment, and is omitted here. The electromagnetic ultrasonic probe of the second embodiment shown in FIG. 5 can transmit and receive ultrasonic waves as in the first embodiment. Further, the occurrence of the thinning in the pipe and the occurrence of the defect are detected in the same manner as in the first embodiment shown in FIG.

(第3実施形態)
次に、本発明の第3実施形態に係る電磁超音波探触子について図6を用いて説明する。図6において、第2実施形態に示した電磁超音波探触子Bを複数個配管3の周方向に配列する。そして、それら電磁超音波探触子Bを直列または並列に接続してねじれ波の送受信を行なう。
(Third embodiment)
Next, an electromagnetic ultrasonic probe according to the third embodiment of the present invention will be described with reference to FIG. In FIG. 6, a plurality of electromagnetic ultrasonic probes B shown in the second embodiment are arranged in the circumferential direction of the pipe 3. The electromagnetic ultrasonic probes B are connected in series or in parallel to transmit / receive torsional waves.

このようにすれば、第2実施形態に示した電磁超音波深触子Bで送信強度が不足した場合でも、複数個使用することで送信強度を向上させることができる。また、受信した超音波エコーも使用した電磁超音波探触子Bの数だけ大きくできるので、受信感度も向上する。   In this way, even when the transmission intensity is insufficient with the electromagnetic ultrasonic probe B shown in the second embodiment, it is possible to improve the transmission intensity by using a plurality. Further, since the received ultrasonic echoes can be increased by the number of electromagnetic ultrasonic probes B that use them, the reception sensitivity is also improved.

この第3実施形態において、少ない電磁超音波探触子で十分な超音波エコーレベルが得られれば、電磁超音波探触子のコストダウンが図られる。   In the third embodiment, if a sufficient ultrasonic echo level can be obtained with a small number of electromagnetic ultrasonic probes, the cost of the electromagnetic ultrasonic probe can be reduced.

(第4実施形態)
次に、本発明の第4実施形態に係る電磁超音波探触子Cについて、図7を用いて説明する。図7において、電磁超音波探触子Cは、配管表面3に対して垂直方向に磁化された直方体の永久磁石18とこの永久磁石18の磁化された方向に対して垂直方向を軸にして巻いたソレノイドコイル2から構成される。図7に示した電磁超音波探触子Cの動作は、図1ないし図4に示した電磁超音波探触子A、図5および図6に示した電磁超音波探触子Bと同様であるので省略する。また、超音波の受信も、第1実施形態と全く同様の動作によりなされるのでこれも省略する。
(Fourth embodiment)
Next, an electromagnetic ultrasonic probe C according to the fourth embodiment of the present invention will be described with reference to FIG. In FIG. 7, an electromagnetic ultrasonic probe C is wound around a rectangular parallelepiped permanent magnet 18 that is magnetized in a direction perpendicular to the pipe surface 3 and a direction perpendicular to the magnetized direction of the permanent magnet 18. The solenoid coil 2 is provided. The operation of the electromagnetic ultrasonic probe C shown in FIG. 7 is the same as that of the electromagnetic ultrasonic probe A shown in FIGS. 1 to 4 and the electromagnetic ultrasonic probe B shown in FIGS. I will omit it. In addition, the reception of ultrasonic waves is also performed by the same operation as in the first embodiment, so this is also omitted.

すなわち、発生したローレンツ力17の発生方向が、配管3の周方向であり、配管3の軸方向に振動成分を持たないので、純粋なねじれ振動を発生していることとなる。ここで、第1実施形態と同様に、超音波の周波数が高く、波長が配管の板厚より短い場合には、通常の横波として配管の径方向に伝播することとなる。しかし、超音波の周波数が低く、波長が配管の板厚より長い場合には、配管の径方向には伝播せず、配管の軸方向に伝播することとなる。この場合、振動方向が配管周方向であり、伝搬方向が配管軸方向なので、ねじれ波となる。   That is, the direction in which the generated Lorentz force 17 is generated is the circumferential direction of the pipe 3, and since no vibration component is present in the axial direction of the pipe 3, pure torsional vibration is generated. Here, as in the first embodiment, when the frequency of the ultrasonic wave is high and the wavelength is shorter than the plate thickness of the pipe, it propagates as a normal transverse wave in the radial direction of the pipe. However, when the frequency of the ultrasonic wave is low and the wavelength is longer than the thickness of the pipe, it does not propagate in the radial direction of the pipe but propagates in the axial direction of the pipe. In this case, since the vibration direction is the pipe circumferential direction and the propagation direction is the pipe axis direction, it becomes a torsional wave.

また、超音波の受信も第1実施形態と全く同様の動作によりなされるので、ここでの説明は省略する。図7に示した電磁超音波探触子Cも、第1実施形態と同様に超音波の送信と受信が可能である。さらに、図4に示した第1実施形態と同様にして配管内の減肉発生箇所や欠陥発生箇所13の検出を行なう。   In addition, since reception of ultrasonic waves is performed by the same operation as in the first embodiment, description thereof is omitted here. The electromagnetic ultrasonic probe C shown in FIG. 7 can transmit and receive ultrasonic waves as in the first embodiment. Furthermore, the thinning occurrence location and the defect occurrence location 13 in the pipe are detected in the same manner as in the first embodiment shown in FIG.

(第5実施形態)
次に、本発明の第5実施形態に係る電磁超音波探触子について図8を用いて説明する。図8において、第4実施形態に示した電磁超音波探触子Cを複数個配管の周方向に配列する。そして、それら電磁超音波探触子Cを直列または並列に接続してねじれ波の送受信を行なっている。このようにすれば、第4実施形態に示した電磁超音波探触子で送信強度が不足した場合でも、複数個使用することで送信強度を向上させることができる。また、受信した超音波エコーも使用した電磁超音波探触子の数だけ大きくできるので、受信感度も向上する。
(Fifth embodiment)
Next, an electromagnetic ultrasonic probe according to a fifth embodiment of the present invention will be described with reference to FIG. In FIG. 8, a plurality of electromagnetic ultrasonic probes C shown in the fourth embodiment are arranged in the circumferential direction of the pipe. These electromagnetic ultrasonic probes C are connected in series or in parallel to transmit and receive torsional waves. In this way, even when the transmission intensity of the electromagnetic ultrasonic probe shown in the fourth embodiment is insufficient, the transmission intensity can be improved by using a plurality of transmissions. Further, since the received ultrasonic echoes can be increased by the number of electromagnetic ultrasonic probes that use them, the reception sensitivity is also improved.

第5実施形態において、少ない電磁超音波探触子で十分な超音波エコーレベルが得られれば、電磁超音波探触子のコストダウンが図られる。   In the fifth embodiment, if a sufficient ultrasonic echo level can be obtained with a small number of electromagnetic ultrasonic probes, the cost of the electromagnetic ultrasonic probe can be reduced.

また、第1実施形態ないし第5実施形態の電磁超音波探触子を2個使用し、しかもこれらの電磁超音波深触子を隣接させて設置し、一方を超音波送信用、他方を超音波受信用とした超音波探傷装置であっても良い。   Also, two electromagnetic ultrasonic probes of the first to fifth embodiments are used, and these electromagnetic ultrasonic probes are installed adjacent to each other, one for ultrasonic transmission and the other for ultrasonic transmission. It may be an ultrasonic flaw detector for receiving sound waves.

(第6実施形態)
次に、本発明の第6実施形態に係る超音波探傷装置及びその方法について図9を用いて説明する。図9は第1実施形態ないし第5実施形態の電磁超音波探触子を2個、配列したことを示している。しかも図9において、2つの電磁超音波探触子間の距離を発生するねじれ波の波長の1/4とする。
(Sixth embodiment)
Next, an ultrasonic inspection apparatus and method according to the sixth embodiment of the present invention will be described with reference to FIG. FIG. 9 shows that two electromagnetic ultrasonic probes according to the first to fifth embodiments are arranged. Moreover, in FIG. 9, it is assumed that the distance between two electromagnetic ultrasonic probes is ¼ of the wavelength of the torsion wave that generates the distance.

このときの電磁超音波探触子の動作について図10(a)〜(d)を用いて説明する。図10(a)において、電磁超音波深触子の一方を♯1として、電磁超音波深触子♯1と1/4波長離して設置したもう一方の電磁超音波深触子を♯2とする。電磁超音波探触子♯1に、電流値が0から徐々に増加する正弦波の交流電流を流すと、ねじれ波19a、19bは、図10(b)に示したように、振幅が0から徐々に増加するとともに、配管の右側と左側に対称に伝播する。   The operation of the electromagnetic ultrasonic probe at this time will be described with reference to FIGS. In FIG. 10 (a), one of the ultrasonic ultrasonic transducers is set as # 1, and the other ultrasonic ultrasonic transducer installed at a quarter wavelength away from the electromagnetic ultrasonic transducer # 1 is # 2. To do. When a sinusoidal alternating current whose current value gradually increases from 0 is passed through the electromagnetic ultrasonic probe # 1, the torsional waves 19a and 19b have amplitudes from 0 as shown in FIG. 10 (b). It gradually increases and propagates symmetrically to the right and left sides of the pipe.

次に、電磁超音波探触子♯2に正弦波の交流電流であって、しかも、電磁超音波探触子♯1に対して、位相が90度異なる正弦波の交流電流を流すと、ねじれ波20a、20bは図10(c)に示したように、振幅が最大値から始まり、配管の右側と左側に対称に伝播する。したがって、配管3の上では、これら2つのねじれ波19a、19b、20a、20bが加算されるので、結局、図10(d)に示したように、配管3の右側では、電磁超音波探触子♯1と電磁超音波探触子♯2で発生したねじれ波21aが同相となって重なり合うことになる。   Next, when a sinusoidal alternating current that flows through the electromagnetic ultrasonic probe # 2 and that has a phase difference of 90 degrees is passed through the electromagnetic ultrasonic probe # 1, the twist is generated. As shown in FIG. 10C, the waves 20a and 20b start from the maximum value and propagate symmetrically to the right and left sides of the pipe. Therefore, these two torsional waves 19a, 19b, 20a, and 20b are added on the pipe 3, so that as shown in FIG. The torsional waves 21a generated by the child # 1 and the electromagnetic ultrasonic probe # 2 are overlapped in the same phase.

しかし、配管の左側では、電磁超音波探触子♯1と電磁超音波探触子♯2で発生したねじれ波21bが逆相となり、打ち消し合う。したがって、このような構成および交流電流の位相関係で電磁超音波探触子♯1と電磁超音波探触子♯2を動作させれば、一方向に伝播するねじれ波21aを発生させることができる。一方向に伝播するねじれ波を使えば、超音波の強度が加算されることとなるので、配管減肉や欠陥からの反射エコーのレベルを向上させることができる。   However, on the left side of the piping, the torsional waves 21b generated by the electromagnetic ultrasonic probe # 1 and the electromagnetic ultrasonic probe # 2 are out of phase and cancel each other. Therefore, if the electromagnetic ultrasonic probe # 1 and the electromagnetic ultrasonic probe # 2 are operated with such a configuration and the phase relationship of the alternating current, the torsional wave 21a propagating in one direction can be generated. . If a torsion wave propagating in one direction is used, the intensity of ultrasonic waves is added, so that the level of reflection echo from pipe thinning and defects can be improved.

(第7実施形態)
次に、本発明の第7実施形態に係る超音波探傷方法について図11を用いて説明する。第7実施形態は、エルボ配管22、曲率のある配管22に適用する場合の実施例である。図11(a)において、第7実施形態は、第1実施形態ないし第5実施形態の電磁超音波探触子および第6実施形態の超音波探傷装置をエルボ配管22が接続されている配管3に設置し、エルボ配管22からのねじれ波の入射と反射を模式的に示したものである。電磁超音波探触子によって発生したねじれ波23は、波面24が配管軸方向に直角であり、電磁超音波探触子を設置した配管3を反射することなく伝播し、エルボ配管22に入る。
(Seventh embodiment)
Next, an ultrasonic flaw detection method according to the seventh embodiment of the present invention will be described with reference to FIG. 7th Embodiment is an Example in the case of applying to the elbow piping 22 and the piping 22 with a curvature. In FIG. 11A, the seventh embodiment is the pipe 3 to which the elbow pipe 22 is connected to the electromagnetic ultrasonic probe of the first embodiment to the fifth embodiment and the ultrasonic flaw detector of the sixth embodiment. The torsional wave incidence and reflection from the elbow pipe 22 are schematically shown. The torsional wave 23 generated by the electromagnetic ultrasonic probe has a wavefront 24 perpendicular to the pipe axis direction, propagates without reflecting the pipe 3 on which the electromagnetic ultrasonic probe is installed, and enters the elbow pipe 22.

次に、最初に曲率が大きく変わる(1)の箇所でねじれ波の波面25とエルボ配管22の曲率が異なるためねじれ波は反射する。さらに、(2)および(3)の端面でも反射する。以上、説明したように、エルボ配管等、曲率のある配管では、曲率が変わるところで、ねじれ波は反射することとなる。したがって、図11(a)の箇所に配管減肉や欠陥があれば、曲率部からの反射エコーと重なってしまい、配管減肉や欠陥を識別できなくなる。   Next, since the curvatures of the wave front 25 of the torsional wave and the elbow pipe 22 are different at the location (1) where the curvature is greatly changed first, the torsional wave is reflected. Further, the light is also reflected at the end faces of (2) and (3). As described above, in a pipe having a curvature such as an elbow pipe, the torsional wave is reflected where the curvature changes. Therefore, if there is a pipe thinning or a defect at the location in FIG. 11A, it overlaps with the reflected echo from the curvature portion, and the pipe thinning or the defect cannot be identified.

これに対し、図11(b)のように、電磁超音波探触子を約45度傾けて配管3に設置する。この場合、ねじれ波の波面26は、配管軸方向に約45度傾く。このねじれ波は、直管部を反射することなく伝播し、エルボ配管22に入る。次に、最初に曲率が大きく変わる(1)の箇所でも波面27の傾き角とエルボ配管22の曲率が同じであるので、(a)のように反射は起こらず、そのまま伝播することとなる。   On the other hand, as shown in FIG. 11B, the electromagnetic ultrasonic probe is installed in the pipe 3 with an inclination of about 45 degrees. In this case, the wavefront 26 of the torsion wave is inclined about 45 degrees in the pipe axis direction. The torsion wave propagates through the straight pipe portion without being reflected and enters the elbow pipe 22. Next, since the inclination angle of the wavefront 27 and the curvature of the elbow pipe 22 are the same even at the location (1) where the curvature changes greatly at first, the reflection does not occur as shown in FIG.

さらに、ねじれ波が端面(2)と(3)に到達した場合には、これらの端面で反射する。したがって、図11(b)に示した取り付け方法にすれば、エルボ配管22の端面でのみねじれ波の反射が起きるので、(1)の箇所に配管減肉や欠陥があっても検出できることとなる。   Further, when the torsional waves reach the end faces (2) and (3), they are reflected by these end faces. Therefore, if the attachment method shown in FIG. 11B is used, the torsional wave is reflected only at the end face of the elbow pipe 22, so that it can be detected even if pipe thinning or a defect exists at the position (1). .

本発明の第1実施形態の構成を示す概略図。Schematic which shows the structure of 1st Embodiment of this invention. 第1実施形態でのねじれ波を送信する動作の説明図。Explanatory drawing of the operation | movement which transmits the torsional wave in 1st Embodiment. 第1実施形態でのねじれ波を受信する動作の説明図。Explanatory drawing of the operation | movement which receives the torsional wave in 1st Embodiment. 第1実施形態における配管減肉や欠陥を検出する動作の説明図。Explanatory drawing of the operation | movement which detects the pipe thinning and defect in 1st Embodiment. 本発明の第2実施形態の構成を示す概略図。Schematic which shows the structure of 2nd Embodiment of this invention. 第2実施形態の電磁超音波探触子を複数個直列に接続した第3実施形態を示す説明図。Explanatory drawing which shows 3rd Embodiment which connected two or more electromagnetic ultrasonic probes of 2nd Embodiment in series. 本発明の第4実施形態の構成を示す概略図。Schematic which shows the structure of 4th Embodiment of this invention. 第4実施形態の電磁超音波探触子を複数個直列に接続した第5実施形態を示す説明図。Explanatory drawing which shows 5th Embodiment which connected the several electromagnetic ultrasonic probe of 4th Embodiment in series. 本発明の第6実施形態の構成を示す概略図。Schematic which shows the structure of 6th Embodiment of this invention. 第6実施形態における超音波の一方向への伝播(a)〜(d)の説明図。Explanatory drawing of propagation (a)-(d) of the ultrasonic wave to one direction in 6th Embodiment. 第7実施形態でのエルボ部でのねじれ波の反射(a)(b)を示す概念図。The conceptual diagram which shows reflection (a) (b) of the torsion wave in the elbow part in 7th Embodiment. 従来のパンケーキコイルを使用した電磁超音波探触子を示す説明図。Explanatory drawing which shows the electromagnetic ultrasonic probe using the conventional pancake coil.

符号の説明Explanation of symbols

A,B,C 電磁超音波探触子
1 永久磁石
2 ソレノイドコイル
3 配管
6 交流電流
22 エルボ配管
23 ねじれ波
A, B, C Electromagnetic ultrasonic probe 1 Permanent magnet 2 Solenoid coil 3 Piping 6 AC current 22 Elbow piping 23 Torsional wave

Claims (10)

外周面から内周面への径方向に磁化された円筒形状の永久磁石と、
前記永久磁石の周方向を軸にして巻きつけられたコイルと、
を備えることを特徴とする電磁超音波探触子。
A cylindrical permanent magnet magnetized in the radial direction from the outer peripheral surface to the inner peripheral surface;
A coil wound around the circumferential direction of the permanent magnet;
An electromagnetic ultrasonic probe comprising:
外周面から内周面への径方向に磁化された少なくとも1つの円弧状の永久磁石と、
前記永久磁石の周方向を軸にして巻きつけられたコイルと、
を備えることを特徴とする電磁超音波探触子。
At least one arc-shaped permanent magnet magnetized in the radial direction from the outer peripheral surface to the inner peripheral surface;
A coil wound around the circumferential direction of the permanent magnet;
An electromagnetic ultrasonic probe comprising:
外周面から内周面への径方向に磁化された少なくとも1つの永久磁石と、
前記永久磁石の磁化された方向に対して垂直方向を軸にして巻きつけられたコイルと、
を備えることを特徴とする電磁超音波探触子。
At least one permanent magnet magnetized in the radial direction from the outer peripheral surface to the inner peripheral surface;
A coil wound around a direction perpendicular to the magnetized direction of the permanent magnet;
An electromagnetic ultrasonic probe comprising:
前記永久磁石を周方向に複数配置したことを特徴とする請求項2または請求項3に記載の電磁超音波探触子   The electromagnetic ultrasonic probe according to claim 2 or 3, wherein a plurality of the permanent magnets are arranged in a circumferential direction. 請求項1ないし請求項4の何れかに記載の電磁超音波探触子を複数備え、
一部を超音波送信用とし、それ以外を超音波受信用としたことを特徴とする超音波探傷装置。
A plurality of the electromagnetic ultrasonic probes according to any one of claims 1 to 4,
An ultrasonic flaw detector characterized in that a part is for ultrasonic transmission and the other is for ultrasonic reception.
請求項1ないし請求項4の何れかに記載の電磁超音波探触子を2個備え、
これら2個の電磁超音波探触子間の距離をねじれ波の波長の1/4とすると共に、これら2個の電磁超音波探触子の送信コイルを流れる電流の周波数の位相をそれぞれ90度ずらすことを特徴とする超音波探傷装置。
Two electromagnetic ultrasonic probes according to any one of claims 1 to 4 are provided,
The distance between the two electromagnetic ultrasonic probes is ¼ of the wavelength of the torsional wave, and the phase of the frequency of the current flowing through the transmission coils of these two electromagnetic ultrasonic probes is 90 degrees. Ultrasonic flaw detector characterized by shifting.
請求項1ないし請求項4の何れかに記載の電磁超音波探触子を探傷対象の表面に対して磁束密度が直交するように配置し、
前記電磁超音波探触子の前記コイルに交流電流を流して前記探傷対象の表面に渦電流を誘導して、前記探傷対象に発生するローレンツ力により超音波を発生させ、
前記超音波の反射エコーを前記電磁超音波探触子により検出することを特徴とする超音波探傷方法。
The electromagnetic ultrasonic probe according to any one of claims 1 to 4 is arranged so that a magnetic flux density is orthogonal to a surface of a flaw detection target,
An alternating current is passed through the coil of the electromagnetic ultrasonic probe to induce an eddy current on the surface of the flaw detection target, and an ultrasonic wave is generated by a Lorentz force generated on the flaw detection target,
An ultrasonic flaw detection method, wherein the reflected echo of the ultrasonic wave is detected by the electromagnetic ultrasonic probe.
請求項1ないし請求項4の何れかに記載の電磁超音波探触子を複数使用し、
複数の前記電磁超音波探触子の一部を超音波送信用に使用すると共に、それ以外の前記電磁超音波探触子を超音波受信用に使用することを特徴とする超音波探傷方法。
A plurality of electromagnetic ultrasonic probes according to any one of claims 1 to 4 are used,
An ultrasonic flaw detection method characterized in that a part of the plurality of electromagnetic ultrasonic probes is used for ultrasonic transmission and the other electromagnetic ultrasonic probes are used for ultrasonic reception.
請求項1ないし請求項4の何れかに記載の電磁超音波探触子を2個使用し、
これら2個の電磁超音波探触子間の距離をねじれ波の波長の1/4とすると共に、これら2個の電磁超音波探触子の送信コイルを流れる電流の周波数の位相をそれぞれ90度ずらしてねじれ波を一方向にのみ伝播させることを特徴とする超音波探傷方法。
Two electromagnetic ultrasonic probes according to any one of claims 1 to 4 are used,
The distance between the two electromagnetic ultrasonic probes is ¼ of the wavelength of the torsional wave, and the phase of the frequency of the current flowing through the transmission coils of these two electromagnetic ultrasonic probes is 90 degrees. An ultrasonic flaw detection method characterized in that a torsion wave is propagated in only one direction by shifting.
請求項1ないし請求項4の何れかに記載の電磁超音波探触子を探傷対象の軸方向に対して斜めに配置することを特徴とする超音波探傷方法。   5. An ultrasonic flaw detection method, wherein the electromagnetic ultrasonic probe according to claim 1 is arranged obliquely with respect to an axial direction of a flaw detection target.
JP2008080521A 2008-03-26 2008-03-26 Electromagnetic ultrasonic probe, ultrasonic flaw detector, and ultrasonic flaw detection method Expired - Fee Related JP5305706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008080521A JP5305706B2 (en) 2008-03-26 2008-03-26 Electromagnetic ultrasonic probe, ultrasonic flaw detector, and ultrasonic flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008080521A JP5305706B2 (en) 2008-03-26 2008-03-26 Electromagnetic ultrasonic probe, ultrasonic flaw detector, and ultrasonic flaw detection method

Publications (2)

Publication Number Publication Date
JP2009236561A true JP2009236561A (en) 2009-10-15
JP5305706B2 JP5305706B2 (en) 2013-10-02

Family

ID=41250709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008080521A Expired - Fee Related JP5305706B2 (en) 2008-03-26 2008-03-26 Electromagnetic ultrasonic probe, ultrasonic flaw detector, and ultrasonic flaw detection method

Country Status (1)

Country Link
JP (1) JP5305706B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101651045B1 (en) * 2015-12-02 2016-08-24 한국가스공사 Pipe nondestructive inspection system using parallel signal processing structure and inspection method using the same
US20160320348A1 (en) * 2015-04-30 2016-11-03 The Boeing Company Ultrasound scanning system, assembly, and method for inspecting composite structures
CN112684001A (en) * 2020-10-28 2021-04-20 国网浙江省电力有限公司温州供电公司 Ultrasonic guided wave nondestructive detection device for power transmission conductor and damage identification method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122250A (en) * 1984-07-10 1986-01-30 Sumitomo Metal Ind Ltd Electromagnetic ultrasonic flaw detection method and apparatus
JPS61144566A (en) * 1984-12-14 1986-07-02 マンネスマン・アクチエンゲゼルシヤフト Electromagnetic acoustic transducer for generating ultrasonic wave
JPH01127950A (en) * 1987-11-13 1989-05-19 Mitsubishi Heavy Ind Ltd Electromagnetic ultrasonic probe for focusing
JPH01262464A (en) * 1988-04-13 1989-10-19 Mitsubishi Electric Corp Electromagnetic ultrasonic transmitter-receiver
JPH10512967A (en) * 1995-11-22 1998-12-08 ピペトロニクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Inspection equipment for ferromagnetic materials
JP2005345224A (en) * 2004-06-02 2005-12-15 Tokyo Gas Co Ltd Electromagnetic supersonic sensor for detecting pipe corrosion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122250A (en) * 1984-07-10 1986-01-30 Sumitomo Metal Ind Ltd Electromagnetic ultrasonic flaw detection method and apparatus
JPS61144566A (en) * 1984-12-14 1986-07-02 マンネスマン・アクチエンゲゼルシヤフト Electromagnetic acoustic transducer for generating ultrasonic wave
JPH01127950A (en) * 1987-11-13 1989-05-19 Mitsubishi Heavy Ind Ltd Electromagnetic ultrasonic probe for focusing
JPH01262464A (en) * 1988-04-13 1989-10-19 Mitsubishi Electric Corp Electromagnetic ultrasonic transmitter-receiver
JPH10512967A (en) * 1995-11-22 1998-12-08 ピペトロニクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Inspection equipment for ferromagnetic materials
JP2005345224A (en) * 2004-06-02 2005-12-15 Tokyo Gas Co Ltd Electromagnetic supersonic sensor for detecting pipe corrosion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160320348A1 (en) * 2015-04-30 2016-11-03 The Boeing Company Ultrasound scanning system, assembly, and method for inspecting composite structures
US9778230B2 (en) * 2015-04-30 2017-10-03 The Boeing Company Ultrasound scanning system, assembly, and method for inspecting composite structures
KR101651045B1 (en) * 2015-12-02 2016-08-24 한국가스공사 Pipe nondestructive inspection system using parallel signal processing structure and inspection method using the same
CN112684001A (en) * 2020-10-28 2021-04-20 国网浙江省电力有限公司温州供电公司 Ultrasonic guided wave nondestructive detection device for power transmission conductor and damage identification method
CN112684001B (en) * 2020-10-28 2024-03-01 国网浙江省电力有限公司温州供电公司 Ultrasonic guided wave nondestructive testing device and damage identification method for power transmission wire

Also Published As

Publication number Publication date
JP5305706B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
Petcher et al. Shear horizontal (SH) ultrasound wave propagation around smooth corners
JP5129566B2 (en) Flexible electromagnetic acoustic transducer sensor
CN108562642B (en) Electromagnetic transduction device of longitudinal mode ultrasonic guided wave, pipeline detection system and method
US8479577B2 (en) In-line inspection tool for pipeline integrity testing
KR101061590B1 (en) Magnetostrictive transducers, structural diagnostic devices and structural diagnostic methods using the same
US8356519B2 (en) Non-contact type transducer for rod member having multi-loop coil
CN110174466B (en) Electromagnetic ultrasonic excitation probe and construction method thereof
KR20100111986A (en) Segmented magnetostrictive patch array transducer, apparatus of diagnosing structural fault having the same and method of operating the same
AU2005321550A1 (en) Device for testing ferromagnetic component walls without destruction of the same
Liu et al. A flexible and noncontact guided-wave transducer based on coils-only EMAT for pipe inspection
CA2964314A1 (en) Electromagnetic accoustic transducer
CN104090034A (en) Electromagnetic ultrasonic Lamb wave transducer for guided wave tomography
Liu et al. Development of a shear horizontal wave electromagnetic acoustic transducer with periodic grating coil
JP5305706B2 (en) Electromagnetic ultrasonic probe, ultrasonic flaw detector, and ultrasonic flaw detection method
CN110152963B (en) Periodic permanent magnet type omnidirectional horizontal shear modal electromagnetic acoustic sensor
RU177945U1 (en) Device for ultrasonic inspection of the pipeline
Liu et al. Development of a wholly flexible surface wave electromagnetic acoustic transducer for pipe inspection
JP2011075499A (en) Method and device for inspecting reduced-thickness of piping using electromagnetic ultrasonic wave
KR101523347B1 (en) Omni-directional shear-horizontal wave electromagnetic acoustic transducer
JP5893889B2 (en) L-mode and T-mode combined inspection method for guide waves
JP2012098226A (en) Pipe inspection method, pipe inspection device and electromagnetic ultrasonic sensor
JP2014066654A (en) Electromagnetic acoustic transducer and electromagnetic acoustic flaw detector
JP4926628B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection method using Lorentz force
JP2006511173A (en) Electromagnetic ultrasonic transducer
JPH11248688A (en) Electromagnetic ultrasonic flaw detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130625

R151 Written notification of patent or utility model registration

Ref document number: 5305706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees