JP2009235552A - Metal recovery apparatus and method - Google Patents

Metal recovery apparatus and method Download PDF

Info

Publication number
JP2009235552A
JP2009235552A JP2008086605A JP2008086605A JP2009235552A JP 2009235552 A JP2009235552 A JP 2009235552A JP 2008086605 A JP2008086605 A JP 2008086605A JP 2008086605 A JP2008086605 A JP 2008086605A JP 2009235552 A JP2009235552 A JP 2009235552A
Authority
JP
Japan
Prior art keywords
electrode
metal
molten salt
recovery
intermediate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008086605A
Other languages
Japanese (ja)
Other versions
JP5153403B2 (en
Inventor
Yasuhiko Ito
靖彦 伊藤
Tokujiro Nishigori
徳二郎 錦織
Hiroyuki Tsujimura
浩行 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMSEP Co Ltd
Original Assignee
IMSEP Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMSEP Co Ltd filed Critical IMSEP Co Ltd
Priority to JP2008086605A priority Critical patent/JP5153403B2/en
Publication of JP2009235552A publication Critical patent/JP2009235552A/en
Application granted granted Critical
Publication of JP5153403B2 publication Critical patent/JP5153403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal recovery apparatus capable of easily recovering a desired metal contained in a workpiece. <P>SOLUTION: In the metal recovery apparatus 1 for recovering the metal contained in the workpiece, while a molten salt m is pooled in an electrolytic cell 10, anodic dissolution of the metal contained in the workpiece w into the molten salt is induced by applying electric current to an anodic dissolution electrode 20 and an intermediate electrode 40 so that the anodic dissolution electrode 20 and the intermediate electrode 40 function as an anode and a cathode, respectively. After the application of the electric current is completed, the dissolved metal ion is deposited onto a recovery electrode 30 as a metal or an alloy by applying electric current to the intermediate electrode 40 and the recovery electrode 30 so that the intermediate electrode 40 and the recovery electrode 30 function as an anode and a cathode, respectively. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、被処理物に含まれる金属を回収する金属回収装置及び方法に関する。   The present invention relates to a metal recovery apparatus and method for recovering metal contained in an object to be processed.

電気・電子製品、燃料電池、触媒装置などの各種廃棄物や、原子力発電での使用済み核燃料などには、アルミニウム、銅、亜鉛、チタン、インジウム、錫、白金、銀、ジルコニウムなどの有価金属が含まれており、希少資源を有効に利用する観点から、これらを効率良く回収することが求められている。従来の金属リサイクルとして、溶融塩電解を利用する方法が従来から知られている。   Valuable metals such as aluminum, copper, zinc, titanium, indium, tin, platinum, silver, and zirconium are used for various types of waste such as electrical and electronic products, fuel cells, and catalytic devices, and spent nuclear fuel in nuclear power generation. From the viewpoint of effectively using scarce resources, it is required to recover these efficiently. As conventional metal recycling, a method using molten salt electrolysis has been conventionally known.

例えば、特許文献1には、溶融塩中に塩素ガスを吹き込み、合金と直接反応(塩素化)させて溶融塩中に金属イオンを供給した後、電解により陰極で金属イオンを還元して、金属を析出させる金属回収装置が開示されている。   For example, in Patent Document 1, chlorine gas is blown into a molten salt, a metal ion is supplied to the molten salt by direct reaction (chlorination) with the alloy, and then metal ions are reduced at the cathode by electrolysis. A metal recovery device for precipitating the metal is disclosed.

また、特許文献2には、合金を陽極として電解し、特定の金属成分のみを溶融塩中に金属イオンとして陽極溶出させ、この金属イオンを陰極で還元し、金属を析出させる金属回収装置が開示されている。
特開平9−43389号公報 特開2003−344578号公報
Patent Document 2 discloses a metal recovery device that electrolyzes an alloy as an anode, elutes only a specific metal component as a metal ion in a molten salt, reduces the metal ion at the cathode, and deposits a metal. Has been.
Japanese Patent Laid-Open No. 9-43389 JP 2003-344578 A

ところが、特許文献1に開示された金属回収装置は、陰極における金属の析出と共に、陽極において有毒な塩素ガスが大量に発生し、これを塩素化の過程で再利用する必要があるため、安全性や作業性の面で問題があった。   However, the metal recovery device disclosed in Patent Document 1 generates a large amount of toxic chlorine gas at the anode together with the deposition of the metal at the cathode, and it is necessary to reuse this in the chlorination process. There was a problem in terms of workability.

また、特許文献2に開示された金属回収装置は、陽極における金属の陽極溶出と陰極における金属の析出とが同時に行われるため、陽極溶出条件と析出条件とを個別に最適化することができない。したがって、双方の条件を同時に満たすように溶融塩の成分比率や浴温度などを調整する困難な作業が必要になり、やはり作業性の面で問題があった。   In addition, the metal recovery device disclosed in Patent Document 2 cannot optimize the anode elution conditions and the deposition conditions individually because the anode elution of the metal at the anode and the metal deposition at the cathode are performed simultaneously. Therefore, it is necessary to perform difficult work of adjusting the component ratio of the molten salt and the bath temperature so as to satisfy both conditions at the same time, and there is still a problem in terms of workability.

そこで、本発明は、被処理物に含まれる所望の金属を容易に回収可能な金属回収装置及び方法の提供を目的とする。   Then, an object of this invention is to provide the metal collection | recovery apparatus and method which can collect | recover the desired metals contained in a to-be-processed object easily.

本発明の前記目的は、被処理物に含まれる金属を回収する金属回収装置であって、溶融塩を貯留可能な電解槽と、前記電解槽内に配置される陽極溶解用電極、回収用電極及び中間電極とを備え、前記陽極溶解用電極は、被処理物を保持する保持部を有しており、前記電解槽内に溶融塩が貯留された状態で、前記陽極溶解用電極及び前記中間電極がそれぞれ陽極及び陰極として機能するように、前記陽極溶解用電極と前記中間電極との間に通電することにより、被処理物に含まれる金属を溶融塩中に陽極溶出させ、通電終了後、前記中間電極及び前記回収用電極がそれぞれ陽極及び陰極として機能するように、前記中間電極と前記回収用電極との間に通電することにより、溶出した金属イオンを前記回収用電極に金属または合金として析出させる金属回収装置により達成される。   The object of the present invention is a metal recovery device for recovering a metal contained in an object to be processed, an electrolytic cell capable of storing a molten salt, an anodic dissolution electrode disposed in the electrolytic cell, and a recovery electrode And the intermediate electrode, the electrode for anodic dissolution has a holding portion for holding the object to be processed, and the molten salt is stored in the electrolytic cell, and the electrode for anodic dissolution and the intermediate electrode By passing an electric current between the anodic dissolution electrode and the intermediate electrode so that the electrodes function as an anode and a cathode, respectively, the metal contained in the object to be eluted is dissolved into the molten salt. By passing a current between the intermediate electrode and the recovery electrode so that the intermediate electrode and the recovery electrode function as an anode and a cathode, respectively, the eluted metal ions are applied to the recovery electrode as a metal or an alloy. Deposit It is achieved by the metal recovery apparatus.

また、本発明の前記目的は、被処理物に含まれる金属を回収する金属回収方法であって、電解槽に溶融塩を貯留して、被処理物を保持した陽極溶解用電極、並びに回収用電極及び中間電極を、前記溶融塩中に浸漬させる電極浸漬ステップと、前記陽極溶解用電極及び前記中間電極がそれぞれ陽極及び陰極として機能するように、前記陽極溶解用電極と前記中間電極との間に通電することにより、被処理物に含まれる金属を溶融塩中に陽極溶出させる溶出ステップと、前記溶出ステップの終了後、前記中間電極及び前記回収用電極がそれぞれ陽極及び陰極として機能するように、前記中間電極と前記回収用電極との間に通電することにより、溶出した金属イオンを前記陰極に金属または合金として析出させる析出ステップとを備える金属回収方法により達成される。   Further, the object of the present invention is a metal recovery method for recovering a metal contained in an object to be processed, wherein the molten salt is stored in an electrolytic cell to hold the object to be processed, and for recovery An electrode immersing step of immersing the electrode and the intermediate electrode in the molten salt; and between the anodic dissolution electrode and the intermediate electrode so that the anodic dissolution electrode and the intermediate electrode function as an anode and a cathode, respectively. And the intermediate electrode and the recovery electrode function as an anode and a cathode, respectively, after the elution step is completed. A metal recovering method comprising: depositing eluted metal ions as metal or alloy on the cathode by energizing between the intermediate electrode and the recovery electrode It is achieved by.

本発明によれば、被処理物に含まれる所望の金属を容易に回収可能な金属回収装置及び方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the metal recovery apparatus and method which can collect | recover the desired metals contained in a to-be-processed object easily can be provided.

以下、本発明の実施の形態について、添付図面を参照して説明する。図1は、本発明の一実施形態に係る金属回収装置の概略構成図である。図1に示すように、この金属回収装置1は、電解浴としての溶融塩mを貯留する電解槽10と、この電解槽10内に配置される陽極溶解用電極20、回収用電極30及び中間電極40とを備えている。後述するように、金属溶解電極20は常に陽極として働き、回収用電極30は常に陰極として働き、中間電極40は陰極または陽極として働く。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of a metal recovery apparatus according to an embodiment of the present invention. As shown in FIG. 1, the metal recovery apparatus 1 includes an electrolytic tank 10 that stores a molten salt m as an electrolytic bath, an anodic dissolution electrode 20 that is disposed in the electrolytic tank 10, a recovery electrode 30, and an intermediate The electrode 40 is provided. As will be described later, the metal melting electrode 20 always functions as an anode, the recovery electrode 30 always functions as a cathode, and the intermediate electrode 40 functions as a cathode or an anode.

陽極溶解用電極20は、被処理物wを保持するための保持部22を備えている。保持部22としては、例えば、多孔板や網板からなる籠状の容器を挙げることができ、被処理物wを内部に収容することができる。保持部22は、導電性材料により形成されており、回収対象とする金属元素よりもイオン化傾向の小さい金属や、黒鉛、導電性ダイヤモンドなどの炭素系材料を用いることが好ましく、ニッケルフェライトなどの金属酸化物や窒化物、ホウ化物からなる導電性セラミックスを使用することもできる。こうして、保持部22に収容された被処理物w自体を陽極として機能させることができる。保持部22は、被処理物wに通電可能であれば、上記以外の構成であってもよく、例えば、被処理物wを挟持する挟持部材から保持部22を構成することもできる。   The anodic dissolution electrode 20 includes a holding portion 22 for holding the workpiece w. As the holding | maintenance part 22, the bowl-shaped container which consists of a perforated board and a net board can be mentioned, for example, The to-be-processed object w can be accommodated in an inside. The holding part 22 is made of a conductive material, and is preferably made of a metal having a smaller ionization tendency than a metal element to be collected, or a carbon-based material such as graphite or conductive diamond, and a metal such as nickel ferrite. Conductive ceramics made of oxide, nitride, or boride can also be used. In this way, the workpiece w itself accommodated in the holding part 22 can function as an anode. The holding unit 22 may have a configuration other than that described above as long as the workpiece w can be energized. For example, the holding unit 22 may be configured from a clamping member that clamps the workpiece w.

また、回収用電極30は、析出させる金属または合金によって材料を選択するのが好ましいが、回収する金属または合金と反応して陰極としての強度や耐久性を大きく損なわない限り、特に制限されない。また、回収用電極30の析出物が脱落する可能性のある場合には、回収用電極30の下方に受け皿としての役割を担う容器を設置するのが好ましい。   The material for the collection electrode 30 is preferably selected according to the metal or alloy to be deposited, but is not particularly limited as long as it does not significantly impair the strength and durability as a cathode by reacting with the metal or alloy to be collected. Further, when there is a possibility that the deposits on the collection electrode 30 may fall off, it is preferable to install a container serving as a tray below the collection electrode 30.

陽極溶解用電極20及び回収用電極30は、駆動機構(図示せず)により上下方向に個別に移動可能に構成されており、保持部22への被処理物wの収容作業や、回収用電極30に析出した金属または合金の回収作業を容易に行うことができる。   The anodic dissolution electrode 20 and the recovery electrode 30 are configured to be individually movable in the vertical direction by a drive mechanism (not shown), and the work for accommodating the workpiece w in the holding unit 22 and the recovery electrode The recovery operation of the metal or alloy deposited on 30 can be easily performed.

中間電極40は、ガスが供給されるガス室42と、ガス室42の下部に配置された電極部材44とを備えるガス電極からなる。   The intermediate electrode 40 is composed of a gas electrode including a gas chamber 42 to which a gas is supplied and an electrode member 44 disposed below the gas chamber 42.

ガス室42は、ガス供給源(図示せず)に供給バルブ(図示せず)を介して接続されており、供給ガスを密封可能に構成されている。余剰のガスは、排気バルブ(図示せず)を介して排出することができる。本実施形態においては、ガス室42の内部に、水素及び塩化水素の混合ガスを充填している。   The gas chamber 42 is connected to a gas supply source (not shown) via a supply valve (not shown), and is configured to be able to seal the supply gas. Excess gas can be discharged through an exhaust valve (not shown). In the present embodiment, the gas chamber 42 is filled with a mixed gas of hydrogen and hydrogen chloride.

電極部材44は、黒鉛などの多孔質の炭素材料を好ましく用いることができ、白金、イリジウム、ルテニウム等の触媒を適宜担持させてもよい。また、ガス、電極部材及び溶融塩の三相界面の形成を良好にするために、ガス電極を常圧で稼動させる場合、電極部材44の上面を溶融塩mの浴面よりも上方に配置することが好ましい。一方、ガス電極を加圧下で動作させる場合には、電極部材44の上面を溶融塩mの浴面よりも下方に配置して、圧力のバランスを調整することが好ましい。このような調整を容易にするために、中間電極40についても、駆動機構(図示せず)により上下移動可能に構成してもよい。   For the electrode member 44, a porous carbon material such as graphite can be preferably used, and a catalyst such as platinum, iridium, and ruthenium may be appropriately supported. Further, in order to improve the formation of the three-phase interface between the gas, the electrode member, and the molten salt, when the gas electrode is operated at normal pressure, the upper surface of the electrode member 44 is disposed above the bath surface of the molten salt m. It is preferable. On the other hand, when the gas electrode is operated under pressure, it is preferable to adjust the pressure balance by disposing the upper surface of the electrode member 44 below the bath surface of the molten salt m. In order to facilitate such adjustment, the intermediate electrode 40 may also be configured to be vertically movable by a drive mechanism (not shown).

上述した金属回収装置1は、直流電源46からスイッチング素子48を介して、陽極溶解用電極20と中間電極40との間、又は、中間電極40と回収用電極30との間を、選択的に通電できるように構成されている。   The above-described metal recovery apparatus 1 selectively selects between the anodic dissolution electrode 20 and the intermediate electrode 40 or between the intermediate electrode 40 and the recovery electrode 30 from the DC power supply 46 via the switching element 48. It is comprised so that electricity can be supplied.

次に、以上の構成を備える金属回収装置1を用いて、被処理物wから所望の金属を回収する方法を説明する。被処理物wは、金属材料を含むものであれば特に限定されず、回収された電気・電子製品、燃料電池、触媒装置などの中にある有価金属を含む部品や、金属加工切削くず、あるいは使用済み核燃料等を例示することができ、特に、二元系や多元系の合金を含むものを好ましく例示することができる。また、被処理物w中の金属酸化物から金属を回収する場合にも、本実施形態の金属回収装置1を使用することは可能である。ここで、被処理物wが金属酸化物を含む場合、(1)金属部分のみが陽極溶出する電位に保持し酸化物を残渣として残す、(2)より貴な電位に保持して金属部分を陽極溶出させるとともに金属酸化物を塩素化して金属イオンと酸化物イオン(O2-)にする、(3)金属酸化物を前処理で還元してから陽極溶出させる、方法がある。(3)の前処理としては、金属酸化物を水素などの還元性ガスと反応させる方法や、溶融塩mに含まれる還元性の高い金属(例えば、Li)を電析させてその酸化物(例えば、Li2O)を形成させる方法を挙げることができる。上記の一部の場合では、溶融塩中に酸化物イオン(O2-)を供給することになるので、これが問題となる場合は、あらかじめ水素などと反応させて還元しておくのが好ましい。 Next, a method for recovering a desired metal from the workpiece w using the metal recovery apparatus 1 having the above configuration will be described. The object to be processed w is not particularly limited as long as it contains a metal material, and is a part containing valuable metal in the collected electrical / electronic product, fuel cell, catalyst device, etc., metal processing cutting waste, or Spent nuclear fuel and the like can be exemplified, and in particular, those containing binary or multi-component alloys can be preferably exemplified. Moreover, also when collect | recovering metals from the metal oxide in the to-be-processed object w, it is possible to use the metal collection | recovery apparatus 1 of this embodiment. Here, when the workpiece w contains a metal oxide, (1) only the metal portion is held at a potential at which the anode is eluted and the oxide is left as a residue. (2) the metal portion is held at a more noble potential than There is a method in which the anode is eluted and the metal oxide is chlorinated to form metal ions and oxide ions (O 2− ). (3) The anode is eluted after the metal oxide is reduced by pretreatment. As a pretreatment of (3), a method in which a metal oxide is reacted with a reducing gas such as hydrogen, or a highly reducible metal (for example, Li) contained in the molten salt m is electrodeposited and the oxide ( For example, a method of forming Li 2 O) can be mentioned. In some of the above cases, oxide ions (O 2− ) are supplied into the molten salt. Therefore, when this is a problem, it is preferable to perform reduction with hydrogen or the like in advance.

本実施形態においては、一例として、被処理物wが2種の異なる金属A,Bからなる合金(AB)である場合を説明する。   In this embodiment, the case where the to-be-processed object w is an alloy (AB) which consists of two types of different metals A and B is demonstrated as an example.

電解槽10内に貯留する溶融塩mとしては、例えば、LiF、NaF、KF、RbF、CsF、LiCl、NaCl、KCl、RbCl、CsCl、LiBr、NaBr、KBr、RbBr、CsBr、LiI、NaI、KI、RbI、CsI等のアルカリ金属ハロゲン化物や、MgF、CaF、SrF、BaF、MgCl、CaCl、SrCl、BaCl、MgBr、CaBr、SrBr、BaBr、MgI、CaI、SrI、BaI等のアルカリ土類金属ハロゲン化物の少なくとも1種が挙げられる。これらの化合物は単独又は二種以上を組み合わせて使用できる。化合物の組み合わせや混合比は限定的ではなく、溶融塩mの所望の作動温度等に応じて適宜設定可能である。 Examples of the molten salt m stored in the electrolytic cell 10 include LiF, NaF, KF, RbF, CsF, LiCl, NaCl, KCl, RbCl, CsCl, LiBr, NaBr, KBr, RbBr, CsBr, LiI, NaI, and KI. , RbI, and alkali metal halides such as CsI, MgF 2, CaF 2, SrF 2, BaF 2, MgCl 2, CaCl 2, SrCl 2, BaCl 2, MgBr 2, CaBr 2, SrBr 2, BaBr 2, MgI 2 , CaI 2 , SrI 2 , BaI 2 and other alkaline earth metal halides. These compounds can be used individually or in combination of 2 or more types. The combination and mixing ratio of the compounds are not limited and can be appropriately set according to the desired operating temperature of the molten salt m.

より具体的には、溶融塩mとして下記(1)〜(4)の少なくとも1種を好ましく使用することができる。
(1)LiCl−KCl
〔組成比:LiCl:KCl=35〜100mol%:65〜0mol%が好ましく、55〜65mol%:45〜35mol%がより好ましい。〕
(2)LiCl−KCl−CsCl
〔組成比:LiCl:KCl:CsCl=57.5:13.3:29.2mol%の共融組成が好ましい。但し、組成比はそれぞれ20%程度変化したものでもよい。〕
(3)LiBr−KBr
〔組成比:LiBr:KBr=35〜100mol%:65〜0mol%が好ましく、60〜70mol%:40〜30mol%がより好ましい。〕
(4)LiBr−KBr−CsBr
〔組成比:LiBr:KBr:CsBr=56.1:18.9:25.0mol%の共融組成が好ましい。但し、組成比はそれぞれ20%程度変化したものでもよい。〕
溶融塩mの温度は、使用する溶融塩mの種類や組成比によって異なるが、例えば、LiCl−KClからなる溶融塩mを使用する場合、400〜500℃に設定することが好ましい。溶融塩mを加熱手段(図示せず)により所定の温度まで加熱した後、スイッチング素子48の操作により陽極溶解用電極20と中間電極40との間に通電し、図2に示すように、陽極溶解用電極20を陽極として機能させ、中間電極40を陰極として機能させる溶出ステップを行う。
More specifically, at least one of the following (1) to (4) can be preferably used as the molten salt m.
(1) LiCl-KCl
[Composition ratio: LiCl: KCl = 35-100 mol%: 65-0 mol% is preferable, and 55-65 mol%: 45-35 mol% is more preferable. ]
(2) LiCl-KCl-CsCl
[Composition ratio: LiCl: KCl: CsCl = 57.5: 13.3: 29.2 mol% is preferred. However, the composition ratio may be changed by about 20%. ]
(3) LiBr-KBr
[Composition ratio: LiBr: KBr = 35-100 mol%: 65-0 mol% is preferable, and 60-70 mol%: 40-30 mol% is more preferable. ]
(4) LiBr-KBr-CsBr
[Composition ratio: LiBr: KBr: CsBr = 56.1: 18.9: 25.0 mol% is preferred. However, the composition ratio may be changed by about 20%. ]
The temperature of the molten salt m varies depending on the type and composition ratio of the molten salt m to be used. For example, when the molten salt m made of LiCl—KCl is used, it is preferably set to 400 to 500 ° C. After the molten salt m is heated to a predetermined temperature by a heating means (not shown), the switching element 48 is operated to energize between the anodic dissolution electrode 20 and the intermediate electrode 40, and as shown in FIG. An elution step is performed in which the melting electrode 20 functions as an anode and the intermediate electrode 40 functions as a cathode.

溶融塩mに浸漬させた参照電極(図示せず)を基準として、陽極溶解用電極20の電位を制御することにより、陽極溶解用電極20に保持された被処理物wに含まれる合金ABから、一方の金属Aのみを溶融塩中に陽極溶出させることができる。陽極電位の制御は、予め測定した直流電源46の電圧や電流と、陽極電位との関係から、電解電圧や電解電流の調整により行うこともできる。   By controlling the potential of the anodic dissolution electrode 20 with reference to a reference electrode (not shown) immersed in the molten salt m, the alloy AB contained in the workpiece w held on the anodic dissolution electrode 20 is controlled. Only one metal A can be anodicly eluted in the molten salt. The control of the anode potential can also be performed by adjusting the electrolysis voltage and the electrolysis current from the relationship between the voltage and current of the DC power supply 46 measured in advance and the anode potential.

中間電極40においては、供給ガスに含まれる塩化水素ガスが電極部材44において電子を受け取り、塩化物イオンが生成して溶融塩中に供給される。すなわち、陽極溶解用電極20及び中間電極40では、以下の反応が起こる。   In the intermediate electrode 40, hydrogen chloride gas contained in the supply gas receives electrons in the electrode member 44, and chloride ions are generated and supplied to the molten salt. That is, the following reaction occurs in the anodic dissolution electrode 20 and the intermediate electrode 40.

陽極溶解用電極(陽極)20: AB → B+A(I)+e
中間電極(陰極)40: HCl(g)+e → 1/2 H(g)+Cl
ところで、中間電極40においては、電極電位が卑になりすぎると、以下の反応が生じうるので、金属Aのイオンが中間電極40で還元されることのないよう、電解中の電極電位をモニタリングしておくのが好ましい。
Electrode for anodic dissolution (anode) 20: AB → B + A (I) + e
Intermediate electrode (cathode) 40: HCl (g) + e → 1/2 H 2 (g) + Cl
By the way, in the intermediate electrode 40, if the electrode potential becomes too low, the following reaction may occur. Therefore, the electrode potential during electrolysis is monitored so that the ions of the metal A are not reduced by the intermediate electrode 40. It is preferable to keep it.

中間電極40: A(I)+e→ A
こうして、被処理物wに含まれる金属Aの大部分が陽極溶出するまで電解を行った後、スイッチング素子48の操作により通電を終了し、陽極溶出のための電解を停止する。
Intermediate electrode 40: A (I) + e → A
Thus, after electrolysis is performed until most of the metal A contained in the workpiece w is eluted with the anode, the energization is terminated by the operation of the switching element 48, and the electrolysis for elution of the anode is stopped.

溶出ステップの終了後、スイッチング素子48の操作により、中間電極40と回収用電極30との間に通電し、図3に示すように、今度は中間電極40を陽極として機能させ、回収用電極30を陰極として機能させる析出ステップを開始する。   After completion of the elution step, the switching element 48 is operated to energize the intermediate electrode 40 and the recovery electrode 30 and, as shown in FIG. Start the deposition step to allow the to function as a cathode.

回収用電極30の電位を制御することにより、溶融塩中の金属イオンは、回収用電極30において電子を受け取って還元され、回収用電極30の表面に金属Aが析出する。中間電極40においては、溶融塩中の塩化物イオンが電極部材44で酸化されて電子を放出し、塩化水素ガスとなってガス室42に取り込まれる。すなわち、中間電極40及び回収用電極30では、以下の反応が起こる。   By controlling the potential of the recovery electrode 30, the metal ions in the molten salt are reduced by receiving electrons at the recovery electrode 30, and the metal A is deposited on the surface of the recovery electrode 30. In the intermediate electrode 40, chloride ions in the molten salt are oxidized by the electrode member 44 to release electrons, and are taken into the gas chamber 42 as hydrogen chloride gas. That is, the following reaction occurs at the intermediate electrode 40 and the recovery electrode 30.

中間電極(陽極)40: 1/2 H(g)+Cl → HCl(g)+e
回収用電極(陰極)30: A(I)+e→ A
こうして、金属イオンの大部分が析出するまで電解を行った後、スイッチング素子48の操作により、通電を停止する。この結果、陽極溶解用電極20の保持部22には、金属Bのみが残留し、回収用電極30には金属Aのみが析出するため、合金ABに含まれる2種の金属A,Bをそれぞれ個別に回収することができる。
Intermediate electrode (anode) 40: 1/2 H 2 (g) + Cl → HCl (g) + e
Recovery electrode (cathode) 30: A (I) + e → A
Thus, after electrolysis is performed until most of the metal ions are deposited, the operation of the switching element 48 stops the energization. As a result, only the metal B remains in the holding portion 22 of the anodic dissolution electrode 20, and only the metal A precipitates on the collection electrode 30, so that the two types of metals A and B contained in the alloy AB are respectively separated. Can be collected individually.

被処理物からの金属の回収方法としては、必ずしも本実施形態のものに限定されず、溶融塩を用いたリサイクル技術として一般に用いられる反応を利用できる。例えば、溶出ステップにおいて被処理物に含まれる2種以上の金属を溶融塩に溶出させた後、析出ステップにおいて陰極電位を制御し、所望の金属を析出させるようにしてもよい。或いは、溶出ステップ及び析出ステップを繰り返し行うことも可能である。回収用電極30での析出物は、単元素金属に限定されず、溶融塩に溶出した2種以上の金属イオンを還元析出させた合金であってもよいし、溶融塩に溶出した1種以上の金属イオンを還元して陰極材料と合金化させたもので良い。   The method for recovering the metal from the object to be processed is not necessarily limited to that of the present embodiment, and a reaction generally used as a recycling technique using a molten salt can be used. For example, after eluting two or more kinds of metals contained in the object to be processed into the molten salt in the elution step, the cathode potential may be controlled in the precipitation step to deposit a desired metal. Alternatively, the elution step and the precipitation step can be repeated. The precipitate in the collection electrode 30 is not limited to a single element metal, but may be an alloy in which two or more kinds of metal ions eluted in the molten salt are reduced and precipitated, or one or more kinds eluted in the molten salt. The metal ions may be reduced and alloyed with the cathode material.

このように、本実施形態の金属回収装置1によれば、陽極溶解用電極20及び回収用電極30に加えて、新規な中間電極40を設けることにより、被処理物から溶融塩への金属の陽極溶出と、溶出した金属イオンの析出とを、独立した別工程で行うことができ、陽極溶解用電極20での陽極溶出条件及び回収用電極30での析出条件を個別に精密に制御することができる。したがって、従来のように電解浴となる溶融塩の組成や温度等について複雑な調整が不要であり、被処理物から金属を容易に回収することができる。   As described above, according to the metal recovery apparatus 1 of the present embodiment, in addition to the anodic dissolution electrode 20 and the recovery electrode 30, by providing the new intermediate electrode 40, the metal from the object to be processed to the molten salt can be obtained. Anode elution and precipitation of the eluted metal ions can be performed in separate independent processes, and the anode elution conditions at the anode dissolution electrode 20 and the deposition conditions at the collection electrode 30 are individually controlled precisely. Can do. Therefore, the conventional adjustment of the composition and temperature of the molten salt serving as the electrolytic bath is unnecessary, and the metal can be easily recovered from the object to be processed.

また、中間電極40に供給される水素及び塩化水素の混合ガスは、被処理物wから溶融塩への金属の陽極溶出時に中間電極40で塩化水素ガスが消費され、混合割合が変化するが、溶出した金属イオンの析出時に再び塩化水素ガスが生成されて、混合割合が元の状態に戻る。したがって、必要最小量の水素ガス及び塩化水素ガスを密室内に封入して、クローズドサイクルでの利用により金属の回収作業を繰り返し行うことができるので、有害な塩素ガスが外部に放出されるのを効果的に防止することができる。電極部材44内の溶融塩の浴面の高さは、塩化水素ガスの消費または生成によるガス室42の内圧変化により変動するため、ガス室42に封入するガスの量を多くして圧力変化を小さくするか、或いは、電極部材44として高さが大きいものを使用し、浴面の高さが変化しても電極部材44が常に溶融塩に接しているようにすることが好ましい。また、中間電極40を上下動させて、ガス室42の内圧変化に対応させることも可能である。   Further, the mixed gas of hydrogen and hydrogen chloride supplied to the intermediate electrode 40 consumes the hydrogen chloride gas at the intermediate electrode 40 during the anode elution of the metal from the workpiece w to the molten salt, and the mixing ratio changes. When the eluted metal ions are deposited, hydrogen chloride gas is generated again, and the mixing ratio returns to the original state. Therefore, since the minimum amount of hydrogen gas and hydrogen chloride gas can be sealed in a closed chamber and the metal recovery operation can be repeated by using the closed cycle, harmful chlorine gas can be released to the outside. It can be effectively prevented. The height of the bath surface of the molten salt in the electrode member 44 varies depending on the change in the internal pressure of the gas chamber 42 due to the consumption or generation of hydrogen chloride gas, so the amount of gas sealed in the gas chamber 42 is increased to change the pressure. It is preferable to make the electrode member 44 smaller or use a electrode member 44 having a large height so that the electrode member 44 is always in contact with the molten salt even if the height of the bath surface changes. Further, the intermediate electrode 40 can be moved up and down to cope with a change in the internal pressure of the gas chamber 42.

本実施形態においては、被処理物が2種の金属A,Bからなる合金の場合を例に説明したが、被処理物が3種以上の金属を含む場合も、陽極電位又は陰極電位を適宜制御して、所望の金属または合金を陽極溶解用電極20に残留させるか、或いは、回収用電極30に金属または合金として析出することにより、上記と同様に金属回収を行うことができる。   In this embodiment, the case where the object to be processed is an alloy made of two kinds of metals A and B has been described as an example. By controlling the desired metal or alloy to remain on the anodic dissolution electrode 20 or by depositing it on the recovery electrode 30 as a metal or alloy, the metal can be recovered in the same manner as described above.

また、本実施形態においては、中間電極40への供給ガスとして、水素及び塩化水素の混合ガスを使用しているが、陽極溶解用電極20と中間電極40との間の通電時に、陰イオンを生成して溶融塩中に供給できるものであればよく、溶融塩mの種類に応じて、塩素ガスや臭素ガスといった他のガスを使用することもできる。例えば、臭素ガス(Br2)や臭化水素(HBr)を用いる場合は、臭化物系の溶融塩(LiBr-KBrなど)を用いるのが好ましい。 In the present embodiment, a mixed gas of hydrogen and hydrogen chloride is used as the supply gas to the intermediate electrode 40. However, anion ions are introduced during energization between the anodic dissolution electrode 20 and the intermediate electrode 40. Any gas that can be generated and supplied to the molten salt may be used, and other gases such as chlorine gas and bromine gas may be used depending on the type of the molten salt m. For example, when bromine gas (Br 2 ) or hydrogen bromide (HBr) is used, it is preferable to use a bromide-based molten salt (such as LiBr-KBr).

以上、本発明の一実施形態について詳述したが、本発明の中間電極は、陽極と中間電極との間の通電時、及び、中間電極と陰極との間の通電時における酸化還元反応により、中間電極と溶融塩との間で、もしくは中間電極内部で物質を可逆的に受け渡し可能な構成であればよく、必ずしも本実施形態の構成に限定されるものではない。   As described above, one embodiment of the present invention has been described in detail, but the intermediate electrode of the present invention is based on an oxidation-reduction reaction during energization between the anode and the intermediate electrode and during energization between the intermediate electrode and the cathode. Any structure can be used as long as the substance can be reversibly transferred between the intermediate electrode and the molten salt or inside the intermediate electrode, and is not necessarily limited to the structure of the present embodiment.

例えば、図4に示すように、中間電極140を、導電性の電極本体142と、電極本体142を被覆するイオン導電性の固体電解質144とを備えた構成にすることができる。尚、図4において、中間電極140以外の構成は図1と同じであるため、図1と同様の構成部分については同一の符号を付して、詳細な説明を省略する(図5以下の図面においても同様)。   For example, as shown in FIG. 4, the intermediate electrode 140 can be configured to include a conductive electrode main body 142 and an ion conductive solid electrolyte 144 that covers the electrode main body 142. In FIG. 4, the configuration other than the intermediate electrode 140 is the same as in FIG. 1, and therefore, the same components as those in FIG. 1 are denoted by the same reference numerals and detailed description thereof is omitted (FIGS. 5 and subsequent drawings). The same applies to the above).

イオン導電性の固体電解質144は、2次電池などで広く用いられているリチウムイオン導電性固体電解質を好ましく用いることができ、本実施形態においては、LiO−SiO−La23などとして例示されるリチウムイオン導電性ガラスを使用している。固体電解質144は、高温での高い導電性と耐久性、熱衝撃への耐性などが十分な材料が好ましく、ガラス以外に、セラミックスや高分子材料などであってもよい。 As the ion conductive solid electrolyte 144, a lithium ion conductive solid electrolyte widely used in secondary batteries or the like can be preferably used. In the present embodiment, Li 2 O—SiO 2 —La 2 O 3 or the like can be used. Lithium ion conductive glass exemplified as is used. The solid electrolyte 144 is preferably a material having high conductivity and durability at high temperatures and sufficient resistance to thermal shock, and may be a ceramic or a polymer material in addition to glass.

また、電極本体142は、固体電解質144の電荷担体と同種の陽イオンを還元した金属材料を含んでおり、本実施形態においては、液状のリチウム金属からなる。   The electrode body 142 includes a metal material obtained by reducing the same kind of cation as the charge carrier of the solid electrolyte 144. In the present embodiment, the electrode body 142 is made of liquid lithium metal.

このような中間電極140を備える金属回収装置によれば、中間電極140が陰極として機能するように陽極溶解用電極20と中間電極140との間に通電する溶出ステップにおいて、図5に示すように、LiCl−KClの溶融塩中に含まれるリチウムイオンが中間電極140において還元され、生成したリチウム金属が固体電解質144の内側に取り込まれる。すなわち、陽極溶解用電極20及び中間電極140では、以下の反応が起こる。   According to such a metal recovery apparatus including the intermediate electrode 140, as shown in FIG. 5, in the elution step of energizing between the anodic dissolution electrode 20 and the intermediate electrode 140 so that the intermediate electrode 140 functions as a cathode. , Lithium ions contained in the molten salt of LiCl—KCl are reduced in the intermediate electrode 140, and the generated lithium metal is taken into the solid electrolyte 144. That is, the following reaction occurs in the anodic dissolution electrode 20 and the intermediate electrode 140.

陽極溶解用電極20(陽極): AB → B+A(I)+e
中間電極(陰極)140: Li +e → Li
次に、中間電極140が陽極として機能するように中間電極140と回収用電極30との間に通電する析出ステップにおいて、図6に示すように、電極本体142のリチウム金属がイオンとなり、固体電解質144を介して溶融塩中に供給される。すなわち、中間電極140及び回収用電極30では、以下の反応が起こる。
Anodizing electrode 20 (anode): AB → B + A (I) + e
Intermediate electrode (cathode) 140: Li + + e → Li
Next, in a deposition step in which current is passed between the intermediate electrode 140 and the recovery electrode 30 so that the intermediate electrode 140 functions as an anode, the lithium metal of the electrode body 142 becomes ions as shown in FIG. 144 and fed into the molten salt. That is, the following reaction occurs at the intermediate electrode 140 and the recovery electrode 30.

中間電極(陽極)140: Li → Li +e
回収用電極(陰極)30: A(I)+e→ A
固体電解質144は、電極本体142と外部の溶融塩mとを隔離しつつ、電荷担体である陽イオンの双方向の通過が可能であればよく、電極本体142や溶融塩の種類に応じて適宜選択可能である。例えば、リチウムイオン以外のアルカリ金属(例えば、Naイオン導電性のβアルミナなど)を電荷担体とするものを、固体電解質144として使用することもできる。
Intermediate electrode (anode) 140: Li → Li + + e
Recovery electrode (cathode) 30: A (I) + e → A
The solid electrolyte 144 is only required to be capable of bidirectional passage of a cation as a charge carrier while isolating the electrode main body 142 and the external molten salt m, and is appropriately selected according to the type of the electrode main body 142 and the molten salt. Selectable. For example, a solid electrolyte 144 that uses an alkali metal other than lithium ions (for example, Na + ion conductive β-alumina) as a charge carrier can also be used.

また、電極本体142は、固体電解質144を介して溶融塩mとの間で電荷の受け渡しが可能であればよく、前記の実施形態に限定されない。例えば、図7に示すように、中間電極240が、リチウムガラス容器からなる固体電解質244に、溶融塩m
とは異なる電極内溶融塩242a
を内包し、電極内溶融塩242aに、固体状の金属材料からなる内蔵電極242bを浸漬させた構成にすることができる。例えば、溶融塩mとしてLiCl-KClを使用する場合、電極内溶融塩242aとしては、LiCl-KClにXClやYClなどが添加された(すなわち、後述するXのイオンやYのイオンを含む)ものを使用することができる。
Moreover, the electrode main body 142 should just be able to transfer an electric charge between molten salt m through the solid electrolyte 144, and is not limited to the said embodiment. For example, as shown in FIG. 7, the intermediate electrode 240 is added to the solid electrolyte 244 made of a lithium glass container.
In-electrode molten salt 242a different from
And a built-in electrode 242b made of a solid metal material is immersed in the molten salt 242a in the electrode. For example, when LiCl-KCl is used as the molten salt m, the in-electrode molten salt 242a is obtained by adding XCl or YCl to LiCl-KCl (that is, including X ions or Y ions described later). Can be used.

すなわち、図7に示す構成における中間電極240は、電極本体242が、電極内溶融塩242a及び内蔵電極242bを備えている。   That is, in the intermediate electrode 240 in the configuration shown in FIG. 7, the electrode body 242 includes the in-electrode molten salt 242a and the built-in electrode 242b.

図7に示す金属回収装置によれば、図8(a)に示すように、溶解ステップにおいて、電極内溶融塩242aの中に含まれるイオンが内蔵電極242b上で還元されて、より低次のイオンとなって電極内溶融塩242a中に供給される。そして、図8(b)に示すように、析出ステップにおいて、この低次のイオンが酸化されてもとのイオンに戻る。すなわち、中間電極240の内部において、以下の反応が生じる。   According to the metal recovery apparatus shown in FIG. 7, as shown in FIG. 8 (a), in the dissolution step, ions contained in the molten salt 242a in the electrode are reduced on the built-in electrode 242b, and the lower order. Ions are supplied into the molten salt 242a in the electrode. Then, as shown in FIG. 8B, in the precipitation step, even when the low-order ions are oxidized, they return to the original ions. That is, the following reaction occurs inside the intermediate electrode 240.

(溶解ステップ)内蔵電極(陰極) X(II) +e → X(I)
(析出ステップ)内蔵電極(陽極) X(I) → X(II) +e
電解槽10内の溶融塩mに含まれるリチウムイオン(陽イオン)は、溶融塩mと電極内溶融塩242aとの間で電荷のバランスを取るために、陽極溶解ステップにおいては、図8(a)に示すように、電解槽10内の溶融塩mから電極内溶融塩242aへと移動し、析出ステップにおいては、図8(b)に示すように、電極内溶融塩242aから電解槽10内の溶融塩mへと移動する。
(Dissolution step) Built-in electrode (cathode) X (II) + e → X (I)
(Deposition step) Built-in electrode (anode) X (I) → X (II) + e
In the anodic dissolution step, the lithium ions (cations) contained in the molten salt m in the electrolytic cell 10 balance the charge between the molten salt m and the molten salt 242a in the electrode. ), The molten salt m in the electrolytic cell 10 moves from the molten salt 242a in the electrode to the molten salt 242a in the electrode, and in the precipitation step, as shown in FIG. To the molten salt m.

このように、電極内溶融塩242a中に含まれる、価数の異なる二つのイオン間の酸化還元反応を利用することにより、図1に示す金属回収装置と同様の効果を奏することができる。電極内溶融塩242aの酸化還元対としては、Fe(III)/Fe(II)やCu(II)/Cu(I)などが挙げられる。また、内蔵電極242bは、酸化還元反応が可逆的に生じるものであれば限定されない。   Thus, by using the oxidation-reduction reaction between two ions having different valences contained in the molten salt 242a in the electrode, the same effect as that of the metal recovery apparatus shown in FIG. 1 can be obtained. Examples of the redox pair of the in-electrode molten salt 242a include Fe (III) / Fe (II) and Cu (II) / Cu (I). The built-in electrode 242b is not limited as long as the redox reaction occurs reversibly.

上記の金属回収方法において、電極内溶融塩242a中での均化・不均化反応(例えば、2Fe(III)+Fe⇔3Fe(II))が懸念される場合には、図9(a)に示すように、溶解ステップにおいて、電極内溶融塩242aの中に含まれるイオンを内蔵電極242b上で陰極還元して金属として析出させ、図9(b)に示すように、析出ステップにおいて、析出金属を酸化(陽極溶解)させてもとのイオンに戻すようにしてもよい。この場合の中間電極240の内部における反応は、以下のとおりである。   In the metal recovery method described above, if there is a concern about the leveling / disproportionation reaction (for example, 2Fe (III) + Fe⇔3Fe (II)) in the molten salt 242a in the electrode, FIG. As shown in FIG. 9B, ions contained in the molten salt 242a in the electrode are subjected to cathodic reduction on the built-in electrode 242b to be precipitated as metal. As shown in FIG. Oxidation (anodic dissolution) may be restored to the original ion. The reaction inside the intermediate electrode 240 in this case is as follows.

(溶解ステップ)内蔵電極(陰極) Y(I) +e → Y
(析出ステップ)内蔵電極(陽極) Y → Y(I) +e
このように、溶融塩中に含まれる、価数の異なる二つのイオン間の酸化還元反応を用いる代わりに、金属の陰極析出及び陽極溶解を利用することによっても、図1に示す金属回収装置と同様の効果を奏することができる。
(Dissolution step) Built-in electrode (cathode) Y (I) + e → Y
(Precipitation step) Built-in electrode (anode) Y → Y (I) + e
Thus, instead of using the oxidation-reduction reaction between two ions having different valences contained in the molten salt, the metal recovery apparatus shown in FIG. Similar effects can be achieved.

この場合の電極内溶融塩242aとしては、例えば、Fe(II)/Fe(Feの析出・溶解)や、Ag(I)/Ag(Agの析出/溶解)などが考えられ、内蔵電極242bには、十分な大きさ(すなわち、陽極溶出して無くならない量)のFe棒やAg板を使用することができる。   As the molten salt 242a in the electrode in this case, for example, Fe (II) / Fe (Fe precipitation / dissolution), Ag (I) / Ag (Ag precipitation / dissolution), and the like can be considered. Can be used an Fe bar or Ag plate of sufficient size (ie, an amount that does not disappear after elution from the anode).

本発明の一実施形態に係る金属回収装置の概略構成図である。It is a schematic block diagram of the metal collection | recovery apparatus which concerns on one Embodiment of this invention. 図1に示す金属回収装置を用いた金属回収方法の一工程を示す図である。It is a figure which shows 1 process of the metal recovery method using the metal recovery apparatus shown in FIG. 図1に示す金属回収装置を用いた金属回収方法の他の一工程を示す図である。It is a figure which shows another 1 process of the metal collection | recovery method using the metal collection | recovery apparatus shown in FIG. 本発明の他の実施形態に係る金属回収装置の概略構成図である。It is a schematic block diagram of the metal collection | recovery apparatus which concerns on other embodiment of this invention. 図4に示す金属回収装置を用いた金属回収方法の一工程を示す図である。It is a figure which shows 1 process of the metal collection | recovery method using the metal collection | recovery apparatus shown in FIG. 図4に示す金属回収装置を用いた金属回収方法の他の一工程を示す図である。It is a figure which shows another 1 process of the metal collection | recovery method using the metal collection | recovery apparatus shown in FIG. 本発明の更に他の実施形態に係る金属回収装置の概略構成図である。It is a schematic block diagram of the metal collection | recovery apparatus which concerns on other embodiment of this invention. 図7に示す金属回収装置を用いた金属回収方法の一例を示す図であり、(a)は溶出ステップ、(b)は析出ステップをそれぞれ示している。It is a figure which shows an example of the metal recovery method using the metal recovery apparatus shown in FIG. 7, (a) has shown the elution step, (b) has each shown the precipitation step. 図7に示す金属回収装置を用いた金属回収方法の他の例を示す図であり、(a)は溶出ステップ、(b)は析出ステップをそれぞれ示している。It is a figure which shows the other example of the metal recovery method using the metal recovery apparatus shown in FIG. 7, (a) has shown the elution step, (b) has each shown the precipitation step.

符号の説明Explanation of symbols

1 金属回収装置
10 電解槽
20 陽極溶解用電極
22 保持部
30 回収用電極
40 中間電極
42 ガス室
44 電極部材
46 直流電源
48 スイッチング素子
140 中間電極
142 電極本体
144 固体電解質
240 中間電極
242 電極本体
242a 電極内溶融塩
242b 内蔵電極
w 被処理物
m 溶融塩
DESCRIPTION OF SYMBOLS 1 Metal collection | recovery apparatus 10 Electrolysis tank 20 Electrode for anodic dissolution 22 Holding part 30 Collection electrode 40 Intermediate electrode 42 Gas chamber 44 Electrode member 46 DC power supply 48 Switching element 140 Intermediate electrode 142 Electrode body 144 Solid electrolyte 240 Intermediate electrode 242 Electrode body 242a Molten salt in electrode 242b Built-in electrode w Object to be treated m Molten salt

Claims (8)

被処理物に含まれる金属を回収する金属回収装置であって、
溶融塩を貯留可能な電解槽と、
前記電解槽内に配置される陽極溶解用電極、回収用電極及び中間電極とを備え、
前記陽極溶解用電極は、被処理物を保持する保持部を有しており、
前記電解槽内に溶融塩が貯留された状態で、前記陽極溶解用電極及び前記中間電極がそれぞれ陽極及び陰極として機能するように、前記陽極溶解用電極と前記中間電極との間に通電することにより、被処理物に含まれる金属を溶融塩中に陽極溶出させ、
通電終了後、前記中間電極及び前記回収用電極がそれぞれ陽極及び陰極として機能するように、前記中間電極と前記回収用電極との間に通電することにより、溶出した金属イオンを前記回収用電極に金属または合金として析出させる金属回収装置。
A metal recovery device for recovering metal contained in a workpiece,
An electrolytic cell capable of storing molten salt;
An anodic dissolution electrode disposed in the electrolytic cell, a recovery electrode and an intermediate electrode,
The electrode for anodic dissolution has a holding part for holding an object to be processed,
Energization is performed between the anodic dissolution electrode and the intermediate electrode so that the anodic dissolution electrode and the intermediate electrode function as an anode and a cathode, respectively, with the molten salt stored in the electrolytic cell. By leaching the metal contained in the object to be processed into the molten salt,
After the energization is completed, the eluted metal ions are supplied to the recovery electrode by energizing the intermediate electrode and the recovery electrode so that the intermediate electrode and the recovery electrode function as an anode and a cathode, respectively. Metal recovery equipment that deposits as metal or alloy.
前記中間電極は、ガス電極であり、
前記陽極溶解用電極と前記中間電極との間の通電により、前記中間電極への供給ガスから陰イオンを生成して溶融塩中に供給し、
前記中間電極と前記回収用電極との間の通電により、溶融塩中の前記陰イオンを前記中間電極での酸化反応により取り込むように構成した請求項1に記載の金属回収装置。
The intermediate electrode is a gas electrode;
By energization between the anodic dissolution electrode and the intermediate electrode, anions are generated from the supply gas to the intermediate electrode and supplied into the molten salt,
The metal recovery apparatus according to claim 1, wherein the anion in the molten salt is taken in by an oxidation reaction at the intermediate electrode by energization between the intermediate electrode and the recovery electrode.
前記中間電極への供給ガスは、水素及び塩化水素の混合ガスである請求項2に記載の金属回収装置。 The metal recovery apparatus according to claim 2, wherein the supply gas to the intermediate electrode is a mixed gas of hydrogen and hydrogen chloride. 前記中間電極は、イオン導電性の固体電解質と、該固体電解質の内側に設置された電極本体とを備えており、
前記陽極と前記中間電極との間の通電により、溶融塩中に含まれる前記固体電解質の電荷担体と同種の陽イオンを前記固体電解質の内側に取り込み、
前記中間電極と前記陰極との間の通電により、前記固体電解質の内側から前記固体電解質を介して溶融塩中に陽イオンを供給するように構成した請求項1に記載の金属回収装置。
The intermediate electrode includes an ion conductive solid electrolyte, and an electrode body installed inside the solid electrolyte,
By energization between the anode and the intermediate electrode, a cation of the same type as the charge carrier of the solid electrolyte contained in the molten salt is taken inside the solid electrolyte,
The metal recovery apparatus according to claim 1, wherein a cation is supplied into the molten salt from the inside of the solid electrolyte through the solid electrolyte by energization between the intermediate electrode and the cathode.
前記中間電極の前記固体電解質は、リチウムイオン導電性ガラスである請求項4に記載の金属回収装置。 The metal recovery apparatus according to claim 4, wherein the solid electrolyte of the intermediate electrode is lithium ion conductive glass. 前記電極本体は、前記固体電解質の電荷担体と同種の陽イオンを還元した金属材料を含む請求項4または5に記載の金属回収装置。 The metal recovery apparatus according to claim 4, wherein the electrode body includes a metal material obtained by reducing a cation of the same kind as the charge carrier of the solid electrolyte. 前記電極本体は、固体状の内蔵電極と、該内蔵電極が浸漬される電極内溶融塩とを備える請求項4または5に記載の金属回収装置。 The said electrode main body is a metal collection | recovery apparatus of Claim 4 or 5 provided with the solid internal electrode and the molten salt in an electrode in which this internal electrode is immersed. 被処理物に含まれる金属を回収する金属回収方法であって、
電解槽に溶融塩を貯留して、被処理物を保持した陽極溶解用電極、並びに回収用電極及び中間電極を、前記溶融塩中に浸漬させる電極浸漬ステップと、
前記陽極溶解用電極及び前記中間電極がそれぞれ陽極及び陰極として機能するように、前記陽極溶解用電極と前記中間電極との間に通電することにより、被処理物に含まれる金属を溶融塩中に陽極溶出させる溶出ステップと、
前記溶出ステップの終了後、前記中間電極及び前記回収用電極がそれぞれ陽極及び陰極として機能するように、前記中間電極と前記回収用電極との間に通電することにより、溶出した金属イオンを前記陰極に金属または合金として析出させる析出ステップとを備える金属回収方法。
A metal recovery method for recovering metal contained in a workpiece,
An electrode immersing step of immersing the electrode for anodic dissolution that retains the object to be processed, and the electrode for recovery and the intermediate electrode in the molten salt by storing the molten salt in an electrolytic cell;
By supplying an electric current between the anodic dissolution electrode and the intermediate electrode so that the anodic dissolution electrode and the intermediate electrode function as an anode and a cathode, respectively, the metal contained in the object to be processed is contained in the molten salt. An elution step for anodic elution,
After completion of the elution step, the eluted metal ions are removed from the cathode by energizing the intermediate electrode and the recovery electrode so that the intermediate electrode and the recovery electrode function as an anode and a cathode, respectively. A metal recovery method comprising: a precipitation step of precipitating as a metal or alloy.
JP2008086605A 2008-03-28 2008-03-28 Metal recovery apparatus and method Active JP5153403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008086605A JP5153403B2 (en) 2008-03-28 2008-03-28 Metal recovery apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008086605A JP5153403B2 (en) 2008-03-28 2008-03-28 Metal recovery apparatus and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012242730A Division JP5477827B2 (en) 2012-11-02 2012-11-02 Metal recovery device

Publications (2)

Publication Number Publication Date
JP2009235552A true JP2009235552A (en) 2009-10-15
JP5153403B2 JP5153403B2 (en) 2013-02-27

Family

ID=41249858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008086605A Active JP5153403B2 (en) 2008-03-28 2008-03-28 Metal recovery apparatus and method

Country Status (1)

Country Link
JP (1) JP5153403B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172533A1 (en) * 2012-05-16 2013-11-21 서울대학교산학협력단 Method for recovering metal from solution, system for recovering metal from solution, and system for recovering lithium from salt water
CN104018190A (en) * 2014-06-17 2014-09-03 北京工业大学 Method for recovering waste hard alloy
KR101438126B1 (en) * 2013-03-12 2014-09-04 한국원자력연구원 Electrolytic reduction apparatus for metal oxides including li recycling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373899A (en) * 1989-08-15 1991-03-28 Toshiba Corp Fused salt
JPH0748687A (en) * 1993-08-04 1995-02-21 Toshiba Corp Electrolytic refiner
JP2001011682A (en) * 1999-06-28 2001-01-16 Toho Titanium Co Ltd Method and device for producing titanium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373899A (en) * 1989-08-15 1991-03-28 Toshiba Corp Fused salt
JPH0748687A (en) * 1993-08-04 1995-02-21 Toshiba Corp Electrolytic refiner
JP2001011682A (en) * 1999-06-28 2001-01-16 Toho Titanium Co Ltd Method and device for producing titanium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172533A1 (en) * 2012-05-16 2013-11-21 서울대학교산학협력단 Method for recovering metal from solution, system for recovering metal from solution, and system for recovering lithium from salt water
KR101438126B1 (en) * 2013-03-12 2014-09-04 한국원자력연구원 Electrolytic reduction apparatus for metal oxides including li recycling
CN104018190A (en) * 2014-06-17 2014-09-03 北京工业大学 Method for recovering waste hard alloy

Also Published As

Publication number Publication date
JP5153403B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5504515B2 (en) Rare earth metal recovery method
Fray Emerging molten salt technologies for metals production
AU758931B2 (en) Removal of oxygen from metal oxides and solid solutions by electrolysis in a fused salt
CN1650051B (en) Reduction of metal oxides in an electrolytic cell
US20080302655A1 (en) Electrochemical Method and Apparatus For Removing Oxygen From a Compound or Metal
EP1448802B1 (en) Electrochemical processing of solid materials in fused salt
SA110310372B1 (en) Apparatus and Method for reduction of a solid feedstock
EP1337692A1 (en) Intermetallic compounds
AU2002215106A1 (en) Intermetallic compounds
Yin et al. Electrochemical behavior and underpotential deposition of Sm on reactive electrodes (Al, Ni, Cu and Zn) in a LiCl-KCl melt
WO2020011155A1 (en) Electrochemical method for high temperature molten salt electrolysis in humid atmosphere
JP3718691B2 (en) Titanium production method, pure metal production method, and pure metal production apparatus
JP5153403B2 (en) Metal recovery apparatus and method
JP5477827B2 (en) Metal recovery device
Zaikov et al. High-temperature electrochemistry of calcium
US20220186392A1 (en) Engineering process for halogen salts, using two identical electrodes
JP4089944B2 (en) Electrolytic reduction apparatus and method
KR20020077352A (en) Actinide production
AU2004225794B8 (en) Process for the electrolysis of aluminiumsulfide
KR20220134575A (en) Method for recovering metallic zinc from solid metallurgical waste
US20230069457A1 (en) Electrodes comprising a solid solution and methods of forming the electrodes
JP2014111801A (en) Method for producing silicon by molten salt electrolysis
JP6444058B2 (en) Recovery method of dysprosium by molten salt electrolysis using lithium halide
CN114016083B (en) Method for regenerating alkali metal reducing agent in process of preparing metal by alkali metal thermal reduction of metal oxide
JP2016056393A (en) Recycle device and method of rare earth-including alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5153403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250