JP2009234923A - Magnetically susceptible heating element for thermotherapy and therapeutic formulation - Google Patents

Magnetically susceptible heating element for thermotherapy and therapeutic formulation Download PDF

Info

Publication number
JP2009234923A
JP2009234923A JP2008079013A JP2008079013A JP2009234923A JP 2009234923 A JP2009234923 A JP 2009234923A JP 2008079013 A JP2008079013 A JP 2008079013A JP 2008079013 A JP2008079013 A JP 2008079013A JP 2009234923 A JP2009234923 A JP 2009234923A
Authority
JP
Japan
Prior art keywords
heating element
magnetic
thermotherapy
iron oxide
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008079013A
Other languages
Japanese (ja)
Inventor
Toshiyuki Hakata
俊之 博多
Hiroshi Kawasaki
浩史 川崎
Jun Motoyama
順 本山
Noriyuki Yamashita
法幸 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANO THERAPY KENKYUSHO KK
Toda Kogyo Corp
Original Assignee
NANO THERAPY KENKYUSHO KK
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANO THERAPY KENKYUSHO KK, Toda Kogyo Corp filed Critical NANO THERAPY KENKYUSHO KK
Priority to JP2008079013A priority Critical patent/JP2009234923A/en
Publication of JP2009234923A publication Critical patent/JP2009234923A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem associated with thermotherapy, wherein the heating value of a medium is critical and needs to be precisely controlled, as insufficient heating of tumor tissues can lead to failure of the therapy and excessive heating of normal tissues can cause burn injury, and the heating value of magnetic particulates by hysteresis heating are affected by their particle size, but evaluation of entire particle size distribution of submicrometer particles is difficult, and the heating value cannot be sufficiently controlled by ordinary electron microscopy or particle size evaluation by the light scattering method. <P>SOLUTION: Industrially developable iron oxide magnetic particulates are intended for use in thermotherapy. The heating value of the iron oxide magnetic particulates according to the applied high-frequency magnetic field can be controlled by setting their particle size and specific surface area. A medical formulation using the particulates is also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高周波磁界により加温される感磁性の酸化鉄磁性微粒子で、温熱治療等の生物学分野及び医療分野で利用可能な発熱体及びそれらを用いた医療用製剤に関するものである。   The present invention relates to a heat-sensitive iron oxide magnetic fine particle heated by a high-frequency magnetic field, which can be used in biology and medical fields such as thermotherapy, and a medical preparation using them.

癌の治療方法のひとつとして、温熱療法が古くから使用されており、近年、特に局所的に腫瘍組織のみを加温する方法がいくつか考案されている。特に酸化鉄微粒子を高周波磁場により加温する方法は、該磁場が従来の加温装置に比べ、該磁性微粒子を含まない状態で、表皮近傍の正常組織を加温し難いことから、より有効な温熱療法の手法の一つであるとして注目を集めている。(特許文献1及び2参照)   As a cancer treatment method, thermotherapy has been used for a long time, and in recent years, several methods have been devised in particular to locally warm only tumor tissue. In particular, the method of heating iron oxide fine particles with a high-frequency magnetic field is more effective because it is difficult to heat normal tissue near the epidermis in a state in which the magnetic field does not contain the magnetic fine particles as compared with a conventional heating device. It is attracting attention as one of the methods of thermotherapy. (See Patent Documents 1 and 2)

このような磁性微粒子の中で特に酸化鉄を用いた温熱療法については特許文献3や4などに記載されている。   Among such magnetic fine particles, hyperthermia using iron oxide in particular is described in Patent Documents 3 and 4 and the like.

ここで用いられる磁性微粒子は生体内へ注入可能な粒子として、サブミクロンサイズの粒子を用いて様々に加工された分散物やゲル、又は埋設できるようにチップ状に固めたものであることが記載されている。(特許文献1〜5参照)   The magnetic fine particles used here are described as particles that can be injected into a living body, and are dispersions and gels that are variously processed using particles of submicron size, or solidified in a chip shape so that they can be embedded. Has been. (See Patent Documents 1 to 5)

特公平7−55910号公報Japanese Patent Publication No. 7-55910 特開平11−57031号公報JP 11-57031 A 特許第3102007号公報Japanese Patent No. 3102007 特許第2847789号公報Japanese Patent No. 2847789 特開2006−347949号公報JP 2006-347949 A

しかしながらこのようなサブミクロンの酸化鉄磁性粒子は粒子径及び磁気特性をコントロールしたものであっても,負荷する高周波磁場に対する反応性が異なり、発熱量が異なることが問題となっていた。   However, even if such sub-micron iron oxide magnetic particles are controlled in particle diameter and magnetic properties, there is a problem that the reactivity to the high-frequency magnetic field to be applied is different and the calorific value is different.

温熱療法を実施するにあたり、媒体の発熱量はクリティカルな問題となり、腫瘍組織に対する加温不足による治療の失敗や正常組織の過加温による熱傷の原因となりうるため、媒体の発熱量は正確にコントロールする必要がある。   When performing hyperthermia, the calorific value of the medium becomes a critical issue, and it can cause treatment failure due to underheating of the tumor tissue or burns due to overheating of normal tissue, so the calorific value of the medium is accurately controlled. There is a need to.

磁性微粒子のヒステリシス発熱による発熱量は微粒子の粒子径に影響されることが示されており,磁気特性による直接的な発熱量制御は困難であった。   It has been shown that the amount of heat generated by the hysteresis heat generation of magnetic fine particles is affected by the particle size of the fine particles, and direct control of the amount of heat generated by magnetic properties has been difficult.

また、サブミクロンの粒子では全体の粒子径分布を評価することが難しく、通常用いられる電子顕微鏡での観察や光散乱法を用いた粒子径の評価だけでは,磁性微粒子の高周波磁場に対する発熱量を制御する上で十分な指標とはならなかった。   In addition, it is difficult to evaluate the overall particle size distribution with submicron particles, and the amount of heat generated by magnetic fine particles against a high-frequency magnetic field can be determined only by observation with a commonly used electron microscope or particle size evaluation using a light scattering method. It was not a sufficient indicator to control.

本発明者は前記課題を解決すべく鋭意研究を重ねた結果、酸化鉄磁性微粒子の粒子径及び比表面積を設定することにより負荷する高周波磁場に対する発熱量をコントロールできることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventor has found that the amount of heat generated by a high frequency magnetic field to be applied can be controlled by setting the particle diameter and specific surface area of the iron oxide magnetic fine particles, and completes the present invention. It came to.

即ち、本発明は、(1)高周波時下発生装置により加温される酸化鉄磁性微粒子を主成分とする温熱治療用感磁性発熱体。(2)該酸化鉄磁性微粒子の平均粒径が5〜35nmであり、且つ、35〜150m/gの比表面積を有する(1)に記載の温熱治療用感磁性発熱体。(3)該酸化鉄磁性微粒子を生体適合性の助剤を用いて分散及び/又は懸濁化した(1)または(2)に記載の温熱治療用感磁性発熱体。(4)該酸化鉄磁性微粒子を生体適合性の助剤を用いてゲル状、顆粒状又は棒状に集結させた(1)又は(2)に記載の温熱治療用感磁性発熱体。(5)該感磁性発熱体が分散懸濁状態、凍結乾燥状態、または埋め込み型固形物で提供される(1)〜(4)のいずれかに記載の治療用製剤である。 That is, the present invention relates to (1) a thermosensitive magnetic heating element for thermal treatment, the main component of which is iron oxide magnetic fine particles heated by a high-frequency generator. (2) The thermosensitive magnetic heating element according to (1), wherein the iron oxide magnetic fine particles have an average particle diameter of 5 to 35 nm and a specific surface area of 35 to 150 m 2 / g. (3) The magnetic heating element for thermotherapy according to (1) or (2), wherein the iron oxide magnetic fine particles are dispersed and / or suspended using a biocompatible auxiliary agent. (4) The thermosensitive magnetic heating element for thermotherapy according to (1) or (2), wherein the iron oxide magnetic fine particles are gathered into a gel, granule or rod using a biocompatible auxiliary agent. (5) The therapeutic preparation according to any one of (1) to (4), wherein the magnetosensitive heating element is provided in a dispersed suspension state, a lyophilized state, or an implantable solid.

本発明を実施することにより、酸化鉄磁性微粒子の発熱量が負荷する高周波磁場によりコントロールすることが可能となり、温熱療法を目的とした工業的に開発可能な酸化鉄磁性微粒子及びそれを用いた医療用製剤を提供することができる。   By carrying out the present invention, it becomes possible to control by the high frequency magnetic field loaded with the calorific value of the iron oxide magnetic fine particles, and industrially developable iron oxide magnetic fine particles for the purpose of thermotherapy and medical treatment using the same Preparations can be provided.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

本発明に用いられる高周波発熱体は、酸化鉄を主成分とする磁性微粒子であり、マグネシウム、カルシウム、マンガン、銅、亜鉛などの酸化物を含んだ化合物も含まれるが、好ましくはFe、γ−Feなどの酸化鉄及び/又はその混合物である。 The high-frequency heating element used in the present invention is a magnetic fine particle mainly composed of iron oxide, and includes compounds containing oxides such as magnesium, calcium, manganese, copper, and zinc, but preferably Fe 3 O 4. , Γ-Fe 2 O 3 and other iron oxides and / or mixtures thereof.

本発明に用いられる高周波磁場発生装置は30kHz〜1MHzの周波数を発生する高周波磁場装置であることが好ましく、更に好ましくは50kHz〜400kHzの高周波磁場発生装置である。   The high-frequency magnetic field generator used in the present invention is preferably a high-frequency magnetic field generator that generates a frequency of 30 kHz to 1 MHz, and more preferably a high-frequency magnetic field generator of 50 kHz to 400 kHz.

本発明に用いられる感磁性発熱体は、1〜200Oe(0.08〜15.9kA/m)の保磁力を持つことが好ましく、更に好ましくは2〜50Oe(0.16〜3.98kA/m)の保磁力を持つことが好ましい。   The magnetosensitive heating element used in the present invention preferably has a coercive force of 1 to 200 Oe (0.08 to 15.9 kA / m), more preferably 2 to 50 Oe (0.16 to 3.98 kA / m). ).

本発明に用いられる感磁性発熱体は、サブミクロンサイズの粒子径を持つ微粒子で、透過型電子顕微鏡で観察した一次粒子径が好ましくは5〜35nm、更に好ましくは10〜20nmである。また、磁性酸化鉄微粒子はBET法により比表面積を測定したときに35〜150m/g、更に好ましくは50〜120m/gである。BET法による比表面積が35〜150m/gの範囲外である場合には、高周波磁化による加温で十分な発熱量を得ることが困難である。 The magnetosensitive heating element used in the present invention is a fine particle having a submicron size particle diameter, and the primary particle diameter observed with a transmission electron microscope is preferably 5 to 35 nm, more preferably 10 to 20 nm. Further, the magnetic iron oxide fine particles 35~150m 2 / g, more preferably from 50~120m 2 / g as measured specific surface area by the BET method. When the specific surface area by the BET method is outside the range of 35 to 150 m 2 / g, it is difficult to obtain a sufficient calorific value by heating by high-frequency magnetization.

本発明の感磁性発熱体を分散及び/又は懸濁させるために用いられる生体適合性の助剤は、リン脂質又はレシチン、コレステロールなどのリポソーム材料や、ポリソルベート、ポリエチレングリコール、糖脂肪酸エステルなどの界面活性剤などが用いられる。また、塩酸、リン酸、酢酸、クエン酸、塩化ナトリウムなどの無機塩によりpH調整が行なわれてもよい。   Biocompatible aids used to disperse and / or suspend the magnetosensitive heating element of the present invention include phospholipids or lecithin, liposome materials such as cholesterol, and interfaces such as polysorbate, polyethylene glycol, and sugar fatty acid esters. An activator or the like is used. Moreover, pH adjustment may be performed with inorganic salts such as hydrochloric acid, phosphoric acid, acetic acid, citric acid, and sodium chloride.

本発明の感磁性発熱体をゲル状、顆粒状又は棒状に加工するために用いられる生体適合性の助剤としては、ポリ乳酸、ポリグリコール酸及び/又はその重合物、プルロニックF127、ゼラチン、寒天、アスパラギン酸塩などの高分子材料を用いることができる。   Examples of the biocompatible auxiliary agent used for processing the magnetosensitive heating element of the present invention into a gel, granule, or rod include polylactic acid, polyglycolic acid and / or a polymer thereof, pluronic F127, gelatin, agar A polymer material such as aspartate can be used.

本発明の感磁性発熱体を分散液又は溶解して用いる凍結乾燥剤として提供する場合には、マンニトール、キシリトール、ソルビトール、マルトース、スクロース、ラクトースなどの腑形剤、グリセリンなどの等張化剤などを加えることができる。   When the magnetically-sensitive heating element of the present invention is provided as a dispersion or a lyophilization agent to be used after being dissolved, it is a morphitol such as mannitol, xylitol, sorbitol, maltose, sucrose, or lactose, an isotonic agent such as glycerin, etc. Can be added.

以下、実施例により本発明を更に詳細に説明する。本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to these examples.

実施例1
粒子径が10nmで且つ比表面積74m/gのFe微粒子20mgを蒸留水1mL中に加え、超音波振とう機により分散した。得られた分散液中のFe濃度は23.9mg/mLであった。
Example 1
20 mg of Fe 3 O 4 fine particles having a particle diameter of 10 nm and a specific surface area of 74 m 2 / g were added to 1 mL of distilled water and dispersed by an ultrasonic shaker. The concentration of Fe 3 O 4 in the obtained dispersion was 23.9 mg / mL.

実施例2
粒子径が11nmで且つ比表面積86m/gのFe微粒子20mgを蒸留水1mL中に加え、超音波振とう機により分散した。得られた分散液中のFe濃度は23.5mg/mLであった。
Example 2
20 mg of Fe 3 O 4 fine particles having a particle diameter of 11 nm and a specific surface area of 86 m 2 / g were added to 1 mL of distilled water and dispersed by an ultrasonic shaker. The concentration of Fe 3 O 4 in the obtained dispersion was 23.5 mg / mL.

実施例3
粒子径が10nmで且つ比表面積107m/gのFe微粒子20mgを蒸留水1mL中に加え、超音波振とう機により分散した。得られた分散液中のFe濃度は22.3mg/mLであった。
Example 3
20 mg of Fe 3 O 4 fine particles having a particle diameter of 10 nm and a specific surface area of 107 m 2 / g were added to 1 mL of distilled water and dispersed by an ultrasonic shaker. The concentration of Fe 3 O 4 in the obtained dispersion was 22.3 mg / mL.

実施例4
粒子径が10nmで且つ比表面積122m/gのFe微粒子20mgを蒸留水1mL中に加え、超音波振とう機により分散した。得られた分散液中のFe濃度は22.0mg/mLであった。
Example 4
20 mg of Fe 3 O 4 fine particles having a particle diameter of 10 nm and a specific surface area of 122 m 2 / g were added to 1 mL of distilled water and dispersed by an ultrasonic shaker. The concentration of Fe 3 O 4 in the obtained dispersion was 22.0 mg / mL.

実施例5
粒子径が10nmで且つ比表面積91m/gのFe微粒子20mgを蒸留水1mL中に加え、超音波振とう機により分散した。得られた分散液をトリメチルアンモニオアセチルジドデシルグルタメートクロライド(TMAG):ジラウロイルホスファチジルコリン(DLPC):ジオレオイルホスファチジルエタノールアミン(DOPE)をそれぞれモル比で1:2:2となるように調製されたリポソーム小胞中に分散した。得られた分散液中のFe濃度は19.2mg/mLであった。
Example 5
20 mg of Fe 3 O 4 fine particles having a particle diameter of 10 nm and a specific surface area of 91 m 2 / g were added to 1 mL of distilled water and dispersed by an ultrasonic shaker. Trimethylammonioacetyl didodecylglutamate chloride (TMAG): dilauroylphosphatidylcholine (DLPC): dioleoylphosphatidylethanolamine (DOPE) was prepared in a molar ratio of 1: 2: 2, respectively. Dispersed in liposome vesicles. The concentration of Fe 3 O 4 in the obtained dispersion was 19.2 mg / mL.

実施例6
粒子径が10nmで且つ比表面積92m/gのFe微粒子20mgを蒸留水1mL中に加え、超音波振とう機により分散した。得られた分散液中をアルギン酸ナトリウムが1重量%となるように混合した。得られた分散液中のFe濃度は27.9mg/mLであった。
Example 6
20 mg of Fe 3 O 4 fine particles having a particle diameter of 10 nm and a specific surface area of 92 m 2 / g were added to 1 mL of distilled water and dispersed by an ultrasonic shaker. The obtained dispersion was mixed so that sodium alginate was 1% by weight. The concentration of Fe 3 O 4 in the obtained dispersion was 27.9 mg / mL.

実施例7
粒子径が10nmで且つ比表面積91m/gのFe微粒子20mgを蒸留水1mL中に加え、超音波振とう機により分散した。得られた分散液中をプルロニックF127が20重量%となるように混合した。得られた分散液中のFe濃度は19.3mg/mLであった。
Example 7
20 mg of Fe 3 O 4 fine particles having a particle diameter of 10 nm and a specific surface area of 91 m 2 / g were added to 1 mL of distilled water and dispersed by an ultrasonic shaker. The obtained dispersion was mixed so that Pluronic F127 was 20% by weight. The concentration of Fe 3 O 4 in the obtained dispersion was 19.3 mg / mL.

比較例1
粒子径が40nmで且つ比表面積30m/gのFe微粒子20mgを蒸留水1mL中に加え、超音波振とう機により分散した。得られた分散液中のFe濃度は51.9mg/mLであった。
Comparative Example 1
20 mg of Fe 3 O 4 fine particles having a particle size of 40 nm and a specific surface area of 30 m 2 / g were added to 1 mL of distilled water and dispersed by an ultrasonic shaker. The concentration of Fe 3 O 4 in the obtained dispersion was 51.9 mg / mL.

比較例2
粒子径が10nmで且つ比表面積190m/gのFe微粒子20mgを蒸留水1mL中に加え、超音波振とう機により分散した。得られた分散液中のFe濃度は17.5mg/mLであった。
Comparative Example 2
20 mg of Fe 3 O 4 fine particles having a particle size of 10 nm and a specific surface area of 190 m 2 / g were added to 1 mL of distilled water and dispersed by an ultrasonic shaker. The concentration of Fe 3 O 4 in the obtained dispersion was 17.5 mg / mL.

実験例1
高周波磁場発生装置の磁場照射面の上に実施例1〜4、比較例1、2、実施例5〜7を充填したプラスチックサンプル管を設置し、サンプル中央にオプティカル温度計のセンサを挿入し、360kHzの磁場を照射した。経時的にサンプルの温度を計測し、サンプル濃度辺りの昇温速度を算出した。その結果を表1及び表2に示す。
Experimental example 1
A plastic sample tube filled with Examples 1 to 4, Comparative Examples 1 and 2, and Examples 5 to 7 is installed on the magnetic field irradiation surface of the high-frequency magnetic field generator, and an optical thermometer sensor is inserted in the center of the sample. A 360 kHz magnetic field was applied. The temperature of the sample was measured over time, and the rate of temperature increase around the sample concentration was calculated. The results are shown in Tables 1 and 2.

Figure 2009234923
Figure 2009234923

Figure 2009234923
Figure 2009234923

実験例2
高周波磁場発生装置の磁場照射面の上にサンプルを充填したプラスチックサンプル管を設置し、サンプル中央にオプティカル温度計のセンサを挿入し、110kHzの磁場を照射した。経時的にサンプルの温度を計測し、サンプル濃度辺りの昇温速度を算出した。その結果を表3に示す。
Experimental example 2
A plastic sample tube filled with a sample was placed on the magnetic field irradiation surface of the high-frequency magnetic field generator, and an optical thermometer sensor was inserted in the center of the sample to irradiate a magnetic field of 110 kHz. The temperature of the sample was measured over time, and the rate of temperature increase around the sample concentration was calculated. The results are shown in Table 3.

Figure 2009234923
Figure 2009234923

表1、表2の結果から、交流磁場周波数を360kHzとして照射した場合、本発明に係る感磁性発熱体は、0.30J/mg/min以上の発熱量が得られることが確認された。
また、表3の結果から、本発明に係る感磁性発熱体は、交流磁場周波数を110kHzとして照射した場合、0.20J/mg/min以上の発熱量が得られることが確認された。
From the results of Tables 1 and 2, it was confirmed that when the magnetic field was irradiated with an alternating magnetic field frequency of 360 kHz, the magneto-sensitive heating element according to the present invention was able to obtain a calorific value of 0.30 J / mg / min or more.
Further, from the results of Table 3, it was confirmed that the magnetosensitive heating element according to the present invention can obtain a calorific value of 0.20 J / mg / min or more when irradiated with an alternating magnetic field frequency of 110 kHz.

本発明を実施することにより、酸化鉄磁性微粒子の発熱量が負荷する高周波磁場により制御することが可能となり、温熱療法を目的とした工業的に開発可能な酸化鉄磁性微粒子及びそれを用いた医療用製剤を提供することができる。   By carrying out the present invention, it becomes possible to control by the high-frequency magnetic field loaded with the calorific value of the iron oxide magnetic fine particles, and industrially developable iron oxide magnetic fine particles for the purpose of thermotherapy and medical treatment using the same Preparations can be provided.

実験例1における実施例1〜4及び比較例サンプルの発熱特性Heat generation characteristics of Examples 1 to 4 and Comparative Example sample in Experimental Example 1 実験例2における実施例1〜4及び比較例サンプルの発熱特性Heat generation characteristics of Examples 1 to 4 and Comparative Sample in Experimental Example 2

Claims (5)

高周波磁界発生装置により加温される磁性酸化鉄微粒子を主成分とすることを特徴とする温熱治療用感磁性発熱体。 A magnetosensitive heating element for thermal therapy, characterized by comprising magnetic iron oxide fine particles heated by a high-frequency magnetic field generator as a main component. 前記磁性酸化鉄微粒子の平均粒径が5〜35nmであり、且つ、35〜150m/gの比表面積を有する請求項1記載の温熱治療用感磁性発熱体。 The magnetic oxide mean particle size of the iron particles is 5~35Nm, and, 35~150m 2 / g thermotherapy for sensitive magnetic heating element of claim 1 having a specific surface area of. 前記磁性酸化鉄微粒子を、生体適合性の助剤を用いて分散及び/又は懸濁化した請求項1又は2に記載の温熱治療用感磁性発熱体。 The magnetic heating element for thermotherapy according to claim 1 or 2, wherein the magnetic iron oxide fine particles are dispersed and / or suspended using a biocompatible auxiliary agent. 前記磁性酸化鉄微粒子を生体適合性の助剤を用いてゲル状、顆粒状又は棒状に集結させた請求項1又は2に記載の温熱治療用感磁性発熱体。 The thermosensitive magnetic heating element for thermotherapy according to claim 1 or 2, wherein the magnetic iron oxide fine particles are collected in a gel, granule, or rod shape using a biocompatible auxiliary agent. 前記感磁性発熱体を、分散懸濁状態、凍結乾燥状態又は埋め込み型固形物で提供される請求項1〜4のいずれかに記載の治療用製剤。
The therapeutic preparation according to any one of claims 1 to 4, wherein the magnetosensitive heating element is provided in a dispersed suspension state, a lyophilized state, or an implantable solid.
JP2008079013A 2008-03-25 2008-03-25 Magnetically susceptible heating element for thermotherapy and therapeutic formulation Pending JP2009234923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008079013A JP2009234923A (en) 2008-03-25 2008-03-25 Magnetically susceptible heating element for thermotherapy and therapeutic formulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008079013A JP2009234923A (en) 2008-03-25 2008-03-25 Magnetically susceptible heating element for thermotherapy and therapeutic formulation

Publications (1)

Publication Number Publication Date
JP2009234923A true JP2009234923A (en) 2009-10-15

Family

ID=41249346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008079013A Pending JP2009234923A (en) 2008-03-25 2008-03-25 Magnetically susceptible heating element for thermotherapy and therapeutic formulation

Country Status (1)

Country Link
JP (1) JP2009234923A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3058949B1 (en) * 2013-10-16 2020-12-09 Jinis Co., Ltd. Sensitizing composition using electromagnetic waves for thermal therapy of cancers, and cancer therapy using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174720A (en) * 1988-08-19 1990-07-06 Meito Sangyo Kk Agent for thermotherapy
JPH11178941A (en) * 1997-12-19 1999-07-06 Nippon Electric Glass Co Ltd Cement material for thermotherapy and implant material for thermotherapy
JP2007031393A (en) * 2005-07-29 2007-02-08 Fujifilm Corp Magnetic nanoparticle for thermotherapy of tumor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174720A (en) * 1988-08-19 1990-07-06 Meito Sangyo Kk Agent for thermotherapy
JPH11178941A (en) * 1997-12-19 1999-07-06 Nippon Electric Glass Co Ltd Cement material for thermotherapy and implant material for thermotherapy
JP2007031393A (en) * 2005-07-29 2007-02-08 Fujifilm Corp Magnetic nanoparticle for thermotherapy of tumor

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
JPN6012066898; Takashi Atsumi, et al.: 'heating efficiency of magnetite particles exposed to ac magnetic field' J Magn Magn Mater 310, 2007, 2841-3 *
JPN6012066900; 井藤 彰ら: '免疫誘導型ハイパーサーミア"Heat Immunotherapy"の開発' 癌の臨床 50(13), 2004, 1127-31 *
JPN6012066902; DUGUET E. et al.: 'Towards a versatile platform based on magnetic nanoparticles forin vivo applications' Bull. Mater. Sci. Vol. 29, No. 6, 2006, 581-6 *
JPN6012066904; Yong-kang Sun, et al.: 'Synthesis of nanometer-size maghemite particles from magnetite' Colloids and Surfaces A: Physicochemical and Engineering Aspects Volume 245, Issues 1-3, 2004, 15-19 *
JPN6012066907; Andreas Jordan, et al.: 'Endocytosis of dextran and silan-coated magnetitenanoparticles and the e.ect of intracellular hypert' Journal of Magnetism and Magnetic Materials Volume 194, Issue 1-3, 1999, 185-96 *
JPN6012066909; Peter Majewskia, et al.: 'Functionalized Magnetite Nanoparticles?Synthesis, Properties, and Bio-Applications' Critical Reviews in Solid State and Materials Sciences Volume 32, Issue 3-4,, 2007, 203-15 *
JPN6012066911; 細野隼章ら: 'サイズ制御されたマグネタイトナノ粒子の合成と発熱特性' 磁性流体連合講演会講演論文集 Vol.2007-12, 2007, 18-21 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3058949B1 (en) * 2013-10-16 2020-12-09 Jinis Co., Ltd. Sensitizing composition using electromagnetic waves for thermal therapy of cancers, and cancer therapy using same

Similar Documents

Publication Publication Date Title
Hilger et al. Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice
de Escalona et al. Magnetic solid lipid nanoparticles in hyperthermia against colon cancer
Shi et al. Fluorescent polystyrene–Fe3O4 composite nanospheres for in vivo imaging and hyperthermia
Xue et al. AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer
Mondal et al. Magnetic hydroxyapatite: a promising multifunctional platform for nanomedicine application
Nikazar et al. Photo‐and magnetothermally responsive nanomaterials for therapy, controlled drug delivery and imaging applications
Zhao et al. Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/photoacoustic imaging-guided photothermal therapy of non-small cell lung cancer
Wang et al. Synergistic interventional photothermal therapy and immunotherapy using an iron oxide nanoplatform for the treatment of pancreatic cancer
Nafiujjaman et al. Ternary graphene quantum dot–polydopamine–Mn 3 O 4 nanoparticles for optical imaging guided photodynamic therapy and T 1-weighted magnetic resonance imaging
Wen et al. Thermoacoustic imaging and therapy guidance based on ultra-short pulsed microwave pumped thermoelastic effect induced with superparamagnetic iron oxide nanoparticles
JP2008545665A (en) Injectable superparamagnetic nanoparticles for hyperthermic treatment and use to form hyperthermic implants
Engelmann et al. Agglomeration of magnetic nanoparticles and its effects on magnetic hyperthermia
EP3655042B1 (en) Iron oxide nanoparticles doped with alkali metals or alkali earth metals
CN103429227A (en) Nanoparticles delivery systems, preparation and uses thereof
Kaczmarek et al. Magneto-ultrasonic heating with nanoparticles
Alphandéry et al. Biodegraded magnetosomes with reduced size and heating power maintain a persistent activity against intracranial U87-Luc mouse GBM tumors
Long et al. Highly stable microwave susceptible agents via encapsulation of Ti-mineral superfine powders in urea-formaldehyde resin microcapsules for tumor hyperthermia therapy
Beyk et al. Selective radiofrequency ablation of tumor by magnetically targeting of multifunctional iron oxide–gold nanohybrid
Chen et al. Stimuli-responsive nanocomposites for magnetic targeting synergistic multimodal therapy and T1/T2-weighted dual-mode imaging
Cassim et al. Development of novel magnetic nanoparticles for hyperthermia cancer therapy
CN108671230A (en) A kind of gold nanoshell magnetism PLGA microcapsules and preparation method thereof
JP2009234923A (en) Magnetically susceptible heating element for thermotherapy and therapeutic formulation
Unnikrishnan et al. Exploration of inorganic nanoparticles for revolutionary drug delivery applications: a critical review
CA2844774C (en) Agglomerating magnetic alkoxysilane-coated nanoparticles
Grumezescu Engineering of nanobiomaterials: applications of nanobiomaterials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130419