JP2009234834A - METHOD FOR PURIFYING ORE CONTAINING CaF2 AND ARSENIC - Google Patents

METHOD FOR PURIFYING ORE CONTAINING CaF2 AND ARSENIC Download PDF

Info

Publication number
JP2009234834A
JP2009234834A JP2008081429A JP2008081429A JP2009234834A JP 2009234834 A JP2009234834 A JP 2009234834A JP 2008081429 A JP2008081429 A JP 2008081429A JP 2008081429 A JP2008081429 A JP 2008081429A JP 2009234834 A JP2009234834 A JP 2009234834A
Authority
JP
Japan
Prior art keywords
arsenic
fluorite
ore
flotation
purification method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008081429A
Other languages
Japanese (ja)
Inventor
Toyohisa Fujita
豊久 藤田
Gjergj Dodbiba
ドドビバ ジョルジ
Koji Tono
耕次 東野
Daisuke Fukuzawa
大輔 福沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2008081429A priority Critical patent/JP2009234834A/en
Publication of JP2009234834A publication Critical patent/JP2009234834A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for purifying fluorite, particularly a purifying method capable of effectively reducing the content of arsenic in fluorite. <P>SOLUTION: There is provided a method for purifying ore containing CaF<SB>2</SB>and arsenic, the method comprising bringing the ore containing CaF<SB>2</SB>and arsenic into contact with a reducing agent. There is further provided ore obtained by the purifying method. There is further provided a method for producing hydrogen fluoride using the ore as a raw material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、CaF2及びヒ素を含む鉱石(原料蛍石)を精製する方法、より詳細には、原料蛍石の粉砕物及び浮遊選鉱からヒ素を除去する方法に関する。また、本発明は、このような方法により得られる精製蛍石及びこれを用いたフッ化水素の製造方法に関する。 The present invention relates to a method for purifying an ore (raw fluorite) containing CaF 2 and arsenic, and more particularly to a method for removing arsenic from a pulverized raw material fluorite and flotation. The present invention also relates to a purified fluorite obtained by such a method and a method for producing hydrogen fluoride using the same.

蛍石は、フッ化水素を製造するための反応原料として用いられている。フッ化水素は、蛍石(CaF2を主成分とする)を硫酸(H2SO4)と加熱下にて反応させ(CaF2+H2SO4→2HF↑+CaSO4)、生成したフッ化水素(HF)を含む反応混合物をガスの形態で回収し、蒸留することによって製造されている。
蛍石の原鉱石は、主成分であるフッ化カルシウム(CaF2)のほか、二酸化ケイ素(SiO2)、炭酸カルシウム(CaCO3)、リン(P)及びヒ素(As)などの不純物を含み得る。このような不純物を多く含む蛍石をフッ化水素製造の反応原料としてそのまま用いると、生成したフッ化水素と不純物が反応して種々の不都合を招く。したがって、高純度のフッ化水素を得るためには、蛍石をフッ化水素製造の反応原料として用いる前に予め精製しておくことが望ましい。
従来一般的な蛍石の精製方法では、採掘した蛍石の原鉱石を平均粒径0.1mm程度の大きさの微粒子にまで粉砕した後、得られた蛍石微粒子を平均泡径が数mmの泡による浮遊選鉱に付すことにより、CaF2の純度が向上した精製蛍石を得ている。粉砕は、通常、粗粉砕機及び微粉砕機を用いて段階的に行われ得る。浮遊選鉱は、捕収剤などを添加したスラリーに空気を吹き込んで泡を形成し、粒子表面のエネルギー差(濡れ性の差又は疎水性/親水性の相違)により、泡に浮かんだ粒子(例えば疎水性粒子)と、スラリー中に懸濁又は沈降した粒子(例えば親水性粒子)とに分離するものである。このように分離された2種の粒子のうち、CaF2の純度がより高いほうが精製蛍石として回収され、いずれが回収対象となるかは用いる捕収剤などによる。
Fluorite is used as a reaction raw material for producing hydrogen fluoride. Hydrogen fluoride is produced by reacting fluorite (CaF 2 as the main component) with sulfuric acid (H 2 SO 4 ) under heating (CaF 2 + H 2 SO 4 → 2HF ↑ + CaSO 4 ). It is produced by collecting a reaction mixture containing hydrogen fluoride (HF) in the form of a gas and distilling it.
Fluorite ore can contain impurities such as silicon dioxide (SiO 2 ), calcium carbonate (CaCO 3 ), phosphorus (P) and arsenic (As) in addition to calcium fluoride (CaF 2 ), the main component . If such fluorite containing a large amount of impurities is used as it is as a reaction raw material for producing hydrogen fluoride, the produced hydrogen fluoride reacts with the impurities, causing various inconveniences. Therefore, in order to obtain high-purity hydrogen fluoride, it is desirable to purify fluorite before using it as a reaction raw material for hydrogen fluoride production.
In the conventional refining method of fluorite, the mined fluorite ore is pulverized to fine particles with an average particle size of about 0.1 mm, and then the obtained fluorite fine particles have an average bubble diameter of several mm. Purified fluorite with improved CaF 2 purity is obtained by flotation with foam. The pulverization can usually be performed stepwise using a coarse pulverizer and a fine pulverizer. In the flotation, air is blown into a slurry to which a collection agent or the like is added to form bubbles, and particles floating in the bubbles (for example, wettability difference or hydrophobic / hydrophilic difference) due to energy difference on the particle surface (for example, hydrophobic / hydrophilic difference) Hydrophobic particles) and particles suspended or settled in the slurry (for example, hydrophilic particles). Of the two types of particles thus separated, the higher purity of CaF 2 is recovered as purified fluorite, and which one is to be recovered depends on the collection agent used.

現在市販されている蛍石は、このような精製方法によって既に精製されているのが通常であるが、原鉱石の産地により不純物含量のレベルが相違しており、低品位から超高品位のものまでさまざまである。低品位の蛍石は、高品位ないし超高品位の蛍石と比較した場合、二酸化ケイ素や炭酸カルシウムなどの含量に大差はないが、特にヒ素の含量に差が見られ、ヒ素をより多く含んでいる。
上述した従来一般的な蛍石の精製方法は、二酸化ケイ素や炭酸カルシウムなどの除去能については、精製蛍石をフッ化水素製造の反応原料として用いるのに十分であるが、特にヒ素の除去能は必ずしも十分ではない。蛍石の原鉱石中に不純物として多く含まれている二酸化ケイ素は、従来一般的な精製方法によって除去され、精製蛍石中の二酸化ケイ素含量を約1重量%以下にすることができる。また、蛍石中に含まれる二酸化ケイ素はフッ化水素製造プロセスにおいてフッ化水素と反応してフッ化ケイ素(SiF4)を生じるが、フッ化ケイ素はフッ化水素との沸点差が大きいので蒸留により比較的容易に除去できる。これに対して、ヒ素は蛍石の原鉱石中にそれほど多量には含まれていないものの、従来一般的な精製方法ではあまり除去されず、蛍石の原鉱石中のヒ素含量に応じて精製蛍石中に残留する。蛍石中に含まれるヒ素はフッ化水素製造プロセスにおいてフッ化水素と反応してヒ素フッ化物(AsF3)を生じ、ヒ素フッ化物はフッ化水素との沸点差が小さいので蒸留により除去することは困難である。
このため、高純度のフッ化水素を産業規模で製造するプロセスにおいては、ヒ素含量が低い高品位蛍石が反応原料として使用されており、ヒ素含量が高い低品位蛍石は使用されていないのが現状である。
The fluorite currently on the market is usually already refined by such a purification method, but the level of impurity content varies depending on the origin of the raw ore. Varies. Low-grade fluorite has no significant difference in the content of silicon dioxide or calcium carbonate when compared to high-grade or ultra-high-grade fluorite, but there is a particular difference in arsenic content, which contains more arsenic. It is out.
The conventional general fluorite purification methods described above are sufficient to use purified fluorite as a reaction raw material for the production of hydrogen fluoride. Is not necessarily enough. Silicon dioxide, which is abundantly contained as impurities in the fluorite ore, is removed by a conventional refining method, and the silicon dioxide content in the purified fluorite can be reduced to about 1% by weight or less. Silicon dioxide contained in fluorite reacts with hydrogen fluoride in the hydrogen fluoride production process to produce silicon fluoride (SiF 4 ), but silicon fluoride has a large boiling point difference from hydrogen fluoride, so it is distilled. Can be removed relatively easily. On the other hand, arsenic is not so much contained in the fluorite ore, but it is not so much removed by the conventional refining method. According to the arsenic content in the fluorite ore, It remains in the stone. Arsenic contained in fluorite reacts with hydrogen fluoride in the hydrogen fluoride production process to produce arsenic fluoride (AsF 3 ), and arsenic fluoride has a small difference in boiling point from hydrogen fluoride. It is difficult.
For this reason, in a process for producing high-purity hydrogen fluoride on an industrial scale, high-grade fluorite with a low arsenic content is used as a reaction raw material, and low-grade fluorite with a high arsenic content is not used. Is the current situation.

ソビエト連邦発明者証1710508号公報Soviet Inventor's Certificate No. 1710508 ソビエト連邦発明者証1606454号公報Soviet Federal Inventor's Certificate 1606454 ソビエト連邦発明者証1682321号公報Soviet Inventor's Certificate 1682321 イー・ブイ・グサコフ(E. V. Gusakov)、外4名、「蛍石濃縮物の化学的最終仕上げ(Chemical finishing of fluorite concentrates)」、Tsvetnye Metally、(ロシア)、1977年、第6号、p.83-85EV Gusakov, 4 others, “Chemical finishing of fluorite concentrates”, Tsvetnye Metally, (Russia), 1977, No. 6, p.83 -85 エー・エー・ブラノフ(A. A. Bulanov)、外4名、「蛍石濃縮物の化学的濃縮におけるカラム分離の使用(Use of column classifiers in the chemical concentration of fluorite concentrations)」、Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya、(ロシア)、1988年、第4号、p.16-19AA Bulanov, 4 others, “Use of column classifiers in the chemical concentration of fluorite concentrations”, Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya (Russia), 1988, No. 4, p.16-19

しかしながら、高品位蛍石は偏在しており、現在、フッ化水素製造原料に適した高品位の蛍石(いわゆるアシッドグレード)はそのほとんどが中国産である。このため資源枯渇の懸念があり、また、中国政府の輸出規制によりこれら高品位蛍石の価格が高騰してきている。
このような状況下、高品位蛍石に代えて低品位蛍石を産業規模で利用することに対する要請が高まってきており、蛍石中の不純物、特にヒ素含量を効果的に低減し得る精製方法の開発が望まれている。
蛍石の精製方法としては、上述した従来一般的な蛍石の精製方法以外に、フッ化ケイ素酸(H2SiF6)で処理する方法(特許文献1)、酸性フッ化アンモニウム(NH4F・HF)溶液で処理する方法(特許文献2)、無機酸で処理し、水酸化ナトリウム(NaOH)溶液でオートクレーブ・アルカリ化する方法(特許文献3)、アルカリ溶液と一緒に加熱する方法(非特許文献1)、アルカリオートクレーブ浸出による脱シリコン化の前にカラム分離する方法(非特許文献2)が提案されているが、いずれも二酸化ケイ素の除去には効果があるが、ヒ素の除去は十分でない。
本発明は、新規な蛍石の精製方法、特に蛍石中のヒ素含量を効果的に低減することができる精製方法を提供することを目的とするものである。
However, high-grade fluorite is ubiquitous, and most high-quality fluorite (so-called acid grade) suitable for hydrogen fluoride production raw materials is currently produced in China. For this reason, there are concerns about resource depletion, and the price of these high-grade fluorite has been rising due to export restrictions of the Chinese government.
Under such circumstances, there is an increasing demand for using low-grade fluorite on an industrial scale instead of high-grade fluorite, and a purification method that can effectively reduce impurities, particularly arsenic content in fluorite. Development is desired.
As a purification method of fluorite, in addition to the above-described conventional purification method of fluorite, a method of treating with fluorinated silicon acid (H 2 SiF 6 ) (Patent Document 1), acidic ammonium fluoride (NH 4 F)・ Method of treating with HF solution (Patent Document 2), Method of treating with inorganic acid, autoclave and alkalizing with sodium hydroxide (NaOH) solution (Patent Document 3), Method of heating together with alkali solution (Non-Patent Document 3) Patent Document 1) and column separation methods (Non-Patent Document 2) before desiliconization by alkaline autoclave leaching have been proposed, both of which are effective in removing silicon dioxide, but sufficient removal of arsenic Not.
An object of the present invention is to provide a novel fluorite purification method, particularly a purification method capable of effectively reducing the arsenic content in fluorite.

鉱物の分離精製には、前述のように浮遊選鉱法が広く用いられている。異なる組成の鉱物が細かく分散している場合、その分散しているサイズまで粉砕をおこなって浮遊選鉱をおこなう必要がある。本発明者らは、蛍石に含まれるヒ素が細かく分散しているために通常の浮遊選鉱法ではヒ素が分離できないと考えて、100nm程度にまで微粉砕をおこなった後浮遊選鉱を試みたが、ヒ素をほとんど除去することができなかった。これより、蛍石中のヒ素は、100nm以下のサイズで細かく分散しているものと推定される。本発明者らは、このように、従来の浮遊選鉱によってヒ素を除去することが困難であった蛍石に対して、化学的にヒ素を溶解させて除去することが有効であることを見出した。
本発明は、CaF2及びヒ素を含む鉱石を精製する方法であって、CaF2及びヒ素を含む鉱石を還元剤と接触させることを含む前記精製方法を提供する。
また、本発明は、前記精製方法により得られた鉱石を提供する。
さらに、本発明は、前記鉱石を原料として用いる、フッ化水素の製造方法を提供する。
As described above, the flotation method is widely used for separation and purification of minerals. When minerals of different compositions are finely dispersed, it is necessary to perform flotation by crushing to the dispersed size. The present inventors thought that arsenic contained in fluorite was finely dispersed, so that arsenic could not be separated by a normal flotation method, and after fracturing to about 100 nm, flotation was attempted. Almost no arsenic could be removed. From this, it is estimated that arsenic in fluorite is finely dispersed with a size of 100 nm or less. As described above, the present inventors have found that it is effective to dissolve and remove arsenic chemically against fluorite, which has been difficult to remove arsenic by conventional flotation. .
The present invention provides a method of purifying an ore containing CaF 2 and arsenic, to provide the purification method comprises contacting the ore containing CaF 2 and arsenic with a reducing agent.
The present invention also provides an ore obtained by the purification method.
Furthermore, this invention provides the manufacturing method of hydrogen fluoride which uses the said ore as a raw material.

本発明のCaF2及びヒ素を含む鉱石を精製する方法は、CaF2及びヒ素を含む鉱石を還元剤と接触させることを含む。
還元剤との接触は、気相でも液相でも良いが、工業的には乾燥工程をなるべく省略するため、粉砕工程が乾式の場合は気相反応が好ましく、粉砕工程が湿式の場合は液相反応が好ましい。
接触温度は、反応を早くするためには高い方が良いが、気相反応の場合は工業的には反応器の耐熱性から制限を受け、0℃〜400℃、好ましくは0℃から100℃、より好ましくは20℃〜80℃、接触時間は、0.001〜1時間、より好ましくは0.01〜0.1時間である。液相反応の場合、工業的には液体の沸点以下の方が好ましく、水を用いる場合は、0℃〜100℃、好ましくは10℃から40℃、接触時間は、0.2〜2時間、より好ましくは0.5〜2時間である。
反応時及び乾燥時にはヒ素成分が気化するため、反応系は密閉せずに一部を開放し、吸収除害設備を通すことが望ましい。
CaF2及びヒ素を含む鉱石を還元剤と接触させることによって生じる反応は、固体と気体又は液体との反応であるので、固体の比表面積が大きい、すなわち前記鉱石(蛍石)の粒径は小さい方が好ましい。蛍石の平均粒径は10μm以下が好ましく、更には1μm以下が好ましい。反応性の面からは小ささに制限はないが、粉砕にはコストがかかるため、工業的には大きな方が好ましく、0.01μm以上、更には0.1μm以上が好ましい。
前記鉱石を粉砕する粉砕機としては、例えば、ジョークラッシャー、カッターミル、ハンマーミルなどを用いてよい。またさらに、ロールクラッシャー、ディスインテグレーター、スクリューミル、エッジランナー、スタンプミル、ディスクミル、ピンミル、ボールミル、振動ミルなどの微粉砕機を用いてよい。そして、更に反応を進みやすくするには、ジェット粉砕機、ボールミル、媒体攪拌式粉砕機などを用いて、平均粒径10μm以下にまで超微粉砕するとよい。この超微粉砕は、超微粒子にまで粉砕できること、粉砕効率が高いこと(小さなエネルギーで粉砕ができること)、得られた超微粒子の粒度分布が狭いことが望ましく、このためには、湿式の媒体攪拌式粉砕機を用いることが好ましい。とりわけ、直径1mm以下の媒体(ビーズとも呼ばれる)を使用した媒体攪拌式粉砕機が好ましい。汚染を防ぐため、媒体や回転体はジルコニアなどの耐摩耗性に優れた素材でできていることが望ましい。粉砕効率を更に向上させるためには、粉砕助剤を用いることが好ましい。粉砕助剤としては、水、アルコールやアミンなどの有機溶媒、硝酸アルミやフェロシアン化カリウムのような多価無機塩、オレイン酸やステアリン酸のような界面活性剤などが挙げられる。
The method of purifying ore containing CaF 2 and arsenic of the present invention comprises contacting the ore containing CaF 2 and arsenic with a reducing agent.
The contact with the reducing agent may be in the gas phase or in the liquid phase, but industrially, the drying step is omitted as much as possible. Therefore, the gas phase reaction is preferable when the pulverization step is dry, and the liquid phase when the pulverization step is wet. Reaction is preferred.
The contact temperature is preferably higher to speed up the reaction, but in the case of gas phase reaction, it is industrially limited by the heat resistance of the reactor, and is 0 ° C to 400 ° C, preferably 0 ° C to 100 ° C. More preferably, it is 20 to 80 ° C., and the contact time is 0.001 to 1 hour, more preferably 0.01 to 0.1 hour. In the case of a liquid phase reaction, it is industrially preferable to be below the boiling point of the liquid, and when water is used, 0 ° C. to 100 ° C., preferably 10 ° C. to 40 ° C., and the contact time is more preferably 0.2 to 2 hours. Is 0.5-2 hours.
Since the arsenic component is vaporized during the reaction and drying, it is desirable to open a part of the reaction system without sealing and pass through an absorption detoxification facility.
Since the reaction caused by contacting the ore containing CaF 2 and arsenic with a reducing agent is a reaction between a solid and a gas or liquid, the specific surface area of the solid is large, that is, the particle size of the ore (fluorite) is small. Is preferred. The average particle size of fluorite is preferably 10 μm or less, more preferably 1 μm or less. From the standpoint of reactivity, there is no limitation on the size, but since the cost is high for pulverization, it is industrially preferable to be larger, preferably 0.01 μm or more, and more preferably 0.1 μm or more.
As a pulverizer for pulverizing the ore, for example, a jaw crusher, a cutter mill, a hammer mill or the like may be used. Furthermore, a fine crusher such as a roll crusher, a disintegrator, a screw mill, an edge runner, a stamp mill, a disc mill, a pin mill, a ball mill, or a vibration mill may be used. In order to further facilitate the reaction, it is preferable to finely pulverize to an average particle size of 10 μm or less using a jet pulverizer, a ball mill, a medium stirring pulverizer, or the like. In this ultra-fine pulverization, it is desirable that pulverization can be performed to ultra-fine particles, pulverization efficiency is high (pulverization can be performed with small energy), and that the obtained ultra-fine particles have a narrow particle size distribution. It is preferable to use a type pulverizer. In particular, a medium stirring type pulverizer using a medium (also referred to as beads) having a diameter of 1 mm or less is preferable. In order to prevent contamination, the medium and the rotating body are preferably made of a material having excellent wear resistance such as zirconia. In order to further improve the grinding efficiency, it is preferable to use a grinding aid. Examples of the grinding aid include water, organic solvents such as alcohol and amine, polyvalent inorganic salts such as aluminum nitrate and potassium ferrocyanide, and surfactants such as oleic acid and stearic acid.

また、還元剤との接触と浮遊選鉱を組み合わせても良い。浮遊選鉱は、還元剤との接触の前でも後でも良い。還元剤との接触はヒ素除去効果があるものの、他の不純物、例えばSiO2などの除去には効果が少ないため、浮遊選鉱を組み合わせる方が好ましい。
浮遊選鉱は、分離する蛍石超微粒子に応じて適切な大きさの泡を用いる必要があり、平均粒径10μm以下の超微粒子を効率的に分離するため、平均泡径1mm以下の泡を用い、好ましくは平均泡径0.1mm以下の泡を用いる。このような浮遊選鉱は、マイクロバブル浮遊選鉱法により実施できる。マイクロバブル浮遊選鉱法は、平均泡径が数mmの泡に比較的大きい微粒子を付着させる通常の浮遊選鉱法とは異なり、例えば加圧溶解式マイクロバブル発生装置を用いて、例えば平均泡径が数ミクロンの微細な気泡を発生させ、この泡に1ミクロンからサブミクロンの疎水性超微粒子を付着させて浮遊させ、親水性超微粒子を液中に懸濁させて、これら2種類の超微粒子を効率的に分離する方法である。尚、加圧溶解式マイクロバブル発生装置に代えて、旋回液流式、スタティックミキサー式、エゼクター式、ベンチュリ式、極微細孔式、超音波付加中空針状ノズル式、蒸気凝縮式などの他の方式のマイクロバブル発生装置を用いてもよい。
Moreover, you may combine a contact with a reducing agent and flotation. The flotation may be before or after contact with the reducing agent. Although contact with the reducing agent has an arsenic removing effect, it is less effective for removing other impurities such as SiO 2, and therefore it is preferable to combine flotation.
In flotation, it is necessary to use bubbles of appropriate size according to the ultrafine particles of fluorite to be separated, and bubbles with an average bubble diameter of 1 mm or less are used to efficiently separate ultrafine particles with an average particle diameter of 10 μm or less. Preferably, bubbles having an average bubble diameter of 0.1 mm or less are used. Such flotation can be performed by the microbubble flotation method. The microbubble flotation method differs from the usual flotation method in which relatively large fine particles are attached to bubbles having an average bubble diameter of several millimeters. Fine bubbles of several microns are generated, 1 micron to submicron hydrophobic ultrafine particles are attached to the bubbles and suspended, and the hydrophilic ultrafine particles are suspended in the liquid. This is an efficient separation method. In addition, instead of the pressure dissolution type microbubble generator, other types such as a swirling liquid flow type, a static mixer type, an ejector type, a venturi type, a very fine hole type, an ultrasonically added hollow needle nozzle type, a vapor condensation type, etc. A type of microbubble generator may be used.

蛍石中のヒ素濃度が3ppm以下であれば、通常のフッ化水素製造工業的プロセスにおいて原料蛍石として問題なく使用することができる。従って本発明はヒ素を3ppm以上含む鉱石からヒ素を除去する場合に用いることができる。一般的にヒ素濃度が高い鉱石は安価であるため、ヒ素濃度が10ppm以上さらには100ppm以上あるような低品位蛍石を用いる場合にその有効性が発揮される。
原料として用いる鉱石は、CaF2純度が60wt%以上あるような蛍石鉱山から採掘されるものであってもよいし、硫化亜鉛鉱や硫化鉛鉱や重晶石などから不純物としてされる低純度なものを用いても良い。
本発明の精製方法の1つの態様においては、上記のような還元剤との接触及び粉砕又は浮遊選鉱によって得られた精製蛍石を再び還元剤との接触及び粉砕又は浮遊選鉱に付すことによって精製を繰り返すようにしてよい。このように精製を繰り返すことによって、最終的に得られる精製蛍石の純度を向上させることができる。
If the arsenic concentration in the fluorite is 3 ppm or less, it can be used as a raw material fluorite without any problem in a normal industrial process for producing hydrogen fluoride. Therefore, the present invention can be used for removing arsenic from ores containing 3 ppm or more of arsenic. Since ores with a high arsenic concentration are generally inexpensive, their effectiveness is demonstrated when low-grade fluorite having an arsenic concentration of 10 ppm or more, further 100 ppm or more is used.
The ore used as a raw material may be mined from a fluorite mine with a CaF 2 purity of 60 wt% or more, or low purity as an impurity from zinc sulfide ore, lead sulfide or barite, etc. You may use something.
In one embodiment of the purification method of the present invention, the purified fluorite obtained by contact with the reducing agent as described above and pulverization or flotation is again subjected to contact with the reducing agent and pulverization or flotation. May be repeated. By repeating the purification in this manner, the purity of the finally obtained purified fluorite can be improved.

本発明のヒ素の除去方法で用いる還元剤としては、通常の還元反応に用いられる、アルカリ金属やアルカリ土類金属のような金属や金属塩、金属水素化物やその錯化合物、水素、ヒドラジン、リン化合物などを用いることができる。工業的には、大気中でも容易に取り扱うことのできる温和な還元剤が好ましい。中でもリン化合物及び硫黄化合物が好ましく、特に硫化水素(H2S)やその塩(硫化水素ナトリウム(NaHS)など)が好ましい。還元剤として硫化水素ナトリウムを用いる場合、硫黄を活性化させるため、酸性雰囲気下で接触させることが好ましい。
CaF2及びヒ素を含む鉱石を還元剤と接触させるときの溶液のpHは、好ましくはpH 7以下であり、より好ましくはpH 1〜3である。
CaF2及びヒ素を含む鉱石を還元剤と接触させるときの温度及びその時間としては、好ましくは0〜100℃で0.2〜2時間であり、より好ましくは10〜30℃で0.5〜2時間である。
還元剤存在下で蛍石を粉砕することにより、蛍石の活性な面が還元剤と反応しやすくなり、またメカノケミカル効果も利用できるため、より反応が進みやすくなり、また処理時のpHの影響が小さくなるため好ましい。この反応も、固体と気体又は液体との反応であるので、粉砕及び反応後の比表面積が大きい、すなわち粉砕及び反応後の蛍石の粒径は小さい方が好ましい。蛍石の平均粒径は10μm以下が好ましく、更には1μm以下が好ましい。反応性の面からは小ささに制限はないが、粉砕にはコストがかかるため、工業的には大きな方が好ましく、0.01μm以上、更には0.1μm以上が好ましい。
ヒ素がどのような形態で蛍石中に含まれているかは明らかではないが、酸化物もしくは硫化物の形態で存在しているものと思われる。ヒ素を除去するには、ヒ素を還元してAsH3のような水に溶けにくく揮発性の化合物にすることが有効であると考えられる。
Examples of the reducing agent used in the arsenic removal method of the present invention include metals and metal salts such as alkali metals and alkaline earth metals, metal hydrides and their complex compounds, hydrogen, hydrazine, and phosphorus used in ordinary reduction reactions. A compound or the like can be used. Industrially, a mild reducing agent that can be easily handled in the air is preferred. Among these, phosphorus compounds and sulfur compounds are preferable, and hydrogen sulfide (H 2 S) and salts thereof (sodium hydrogen sulfide (NaHS) and the like) are particularly preferable. When sodium hydrogen sulfide is used as the reducing agent, it is preferably contacted in an acidic atmosphere in order to activate sulfur.
The pH of the solution when contacting the ore containing CaF 2 and arsenic with the reducing agent is preferably pH 7 or less, more preferably pH 1 to 3.
The temperature and the time for contacting the ore containing CaF 2 and arsenic with the reducing agent are preferably 0.2 to 2 hours at 0 to 100 ° C., more preferably 0.5 to 2 hours at 10 to 30 ° C. .
By crushing the fluorite in the presence of the reducing agent, the active surface of the fluorite is more likely to react with the reducing agent, and the mechanochemical effect can be used, so that the reaction proceeds more easily and the pH during the treatment is reduced. This is preferable because the influence is small. Since this reaction is also a reaction between solid and gas or liquid, it is preferable that the specific surface area after pulverization and reaction is large, that is, the particle size of fluorite after pulverization and reaction is small. The average particle size of fluorite is preferably 10 μm or less, more preferably 1 μm or less. From the standpoint of reactivity, there is no limitation on the size, but since the cost is high for pulverization, it is industrially preferable to be larger, preferably 0.01 μm or more, and more preferably 0.1 μm or more.
It is not clear in what form arsenic is contained in fluorite, but it appears to exist in the form of oxide or sulfide. In order to remove arsenic, it is considered effective to reduce arsenic to make it a volatile compound that is hardly soluble in water such as AsH 3 .

本発明の精製方法により精製した鉱石(精製蛍石)はヒ素含量が低いので、高純度のフッ素水素を製造するための反応原料として好適に用いられる。前記精製蛍石を硫酸と反応させることによってフッ化水素を生成させることができる。
精製蛍石は、平均粒径10μm以下であり、従来一般的な精製方法より得られる平均粒径0.1mm程度の蛍石に比べて小さいので、比表面積が大きく、反応させ易いという利点もある。
Since the ore (refined fluorite) purified by the purification method of the present invention has a low arsenic content, it is suitably used as a reaction raw material for producing high-purity fluorine hydrogen. Hydrogen fluoride can be produced by reacting the purified fluorite with sulfuric acid.
Purified fluorite has an average particle size of 10 μm or less, and is smaller than fluorite having an average particle size of about 0.1 mm obtained by a conventional general purification method. Therefore, it has an advantage that it has a large specific surface area and can be easily reacted.

(比較例1)
メキシコ MEXCHEM FLUOR 社よりアシッドグレード精製蛍石(フッ化水素製造用に適した純度の高い蛍石、CaF2純度97.2wt%)として販売されている蛍石(180g)を純水(420g)中に分散させ、分散剤としてポリアクリル酸ナトリウム(日本純薬製ジュリマーAC-103)を5wt%添加し、湿式ビーズミル(スターミル ナノ・ゲッターDMS65、アシザワ・ファインテック社製)で粉砕した(ジルコニアボール(φ0.3mm)70vol%)。得られたスラリー中の微粉砕蛍石の平均粒径は0.18μmであった。この微粉砕蛍石の成分を分析したところ、ヒ素含量は394ppmであった。
得られた微粉砕蛍石を含むスラリーにアミルキサントゲン酸カリウム(Potasium Amyl Xanthate (PAX))を捕収剤として加え、マイクロバブル浮選機(加圧方式、泡径40μm、30g蛍石試料/2000ml水、PAX: 5g)で浮遊選鉱した。泡と沈殿物をそれぞれ回収し、熱風乾燥機にて(80〜90℃)24時間乾燥させた。
泡に浮いた粒子のヒ素含量は400ppm、底に沈んだ粒子のヒ素含量は360ppmであった。微粉砕及びその浮遊選鉱ではヒ素は除去できないことが明らかである。
(Comparative Example 1)
Fluorite (180 g) sold as acid-grade purified fluorite from Mexico MEXCHEM FLUOR (high purity fluorite suitable for hydrogen fluoride production, CaF 2 purity 97.2 wt%) in pure water (420 g) Dispersed, 5 wt% sodium polyacrylate (Jurimer AC-103 made by Nippon Pure Chemicals) was added as a dispersant, and pulverized with a wet bead mill (Starmill Nano Getter DMS65, manufactured by Ashizawa Finetech) (Zirconia balls (φ0 .3mm) 70vol%). The average particle diameter of the finely ground fluorite in the obtained slurry was 0.18 μm. When the components of the finely ground fluorite were analyzed, the arsenic content was 394 ppm.
Potassium Amyl Xanthate (PAX) is added to the resulting slurry containing finely ground fluorite as a collector, microbubble flotation machine (pressurization method, bubble diameter 40μm, 30g fluorite sample / 2000ml Flotation with water, PAX: 5g). The foam and the precipitate were each collected and dried with a hot air dryer (80 to 90 ° C.) for 24 hours.
The arsenic content of the particles floating in the foam was 400 ppm, and the arsenic content of the particles sinking to the bottom was 360 ppm. It is clear that arsenic cannot be removed by fine grinding and its flotation.

(実施例1)
比較例1の微粉砕蛍石を含むスラリーに、NaHSを0.1wt%入れ、硫酸でpH=2.2に調整して攪拌した(20℃1時間)。さらに比較例1と同様に、マイクロバブル浮選機で浮遊選鉱した。泡に浮いた粒子のヒ素含量は270ppm、底に沈んだ粒子のヒ素含量は223ppmであった。NaHSで処理することによりヒ素が除去できることが明らかである。
Example 1
To the slurry containing the finely pulverized fluorite of Comparative Example 1, 0.1 wt% of NaHS was added, adjusted to pH = 2.2 with sulfuric acid, and stirred (20 ° C. for 1 hour). Further, in the same manner as in Comparative Example 1, flotation was performed with a microbubble flotation machine. The arsenic content of the particles floating in the foam was 270 ppm, and the arsenic content of the particles sinking to the bottom was 223 ppm. It is clear that arsenic can be removed by treatment with NaHS.

(実施例2)
pHを2.5とした以外は実施例1と同様に処理し、マイクロバブル浮選機で浮遊選鉱した。泡に浮いた粒子のヒ素は303ppm、底に沈んだ粒子のヒ素は336ppmであった。
実施例1及び2の結果から、低いpHの方がヒ素の除去効果が高いことが明らかである。
(Example 2)
The same treatment as in Example 1 was carried out except that the pH was 2.5, and flotation was performed with a microbubble flotation machine. The arsenic of the particles floating in the foam was 303 ppm, and the arsenic of the particles sinking to the bottom was 336 ppm.
From the results of Examples 1 and 2, it is clear that the lower pH has a higher effect of removing arsenic.

(実施例3)
メキシコ MEXCHEM FLUOR 社より冶金グレード精製蛍石(製鉄用に用いられる純度の低い蛍石、CaF2純度87.1wt%)として販売されている蛍石をボールミルで粉砕(ジルコニアボール(φ1cm)70wt%、蛍石9wt%、水21wt%)後、さらに比較例1と同様に、分散剤としてポリアクリル酸ナトリウム(日本純薬製ジュリマーAC-103)を5wt%添加し、湿式ビーズミル(スターミル ナノ・ゲッターDMS65、アシザワ・ファインテック社製)で粉砕した(ジルコニアボール(φ0.3mm)70vol%)。得られたスラリー中の微粉砕蛍石の平均粒径は0.17μmであった。この微粉砕蛍石の成分を分析したところ、ヒ素は291ppmであった。
得られた微粉砕蛍石を含むスラリーに、実施例1と同様にNaHSを0.1wt%入れて硫酸でpH=2.7に調整して攪拌した(20℃1時間)。さらに比較例1と同様に、マイクロバブル浮選機で浮遊選鉱した。泡に浮いた粒子のヒ素は227ppm、底に沈んだ粒子のヒ素は198ppmであった。
(Example 3)
Fluorite sold as metallurgical grade refined fluorite from Mexico MEXCHEM FLUOR (low-purity fluorite used for iron making, CaF 2 purity 87.1 wt%) in a ball mill (zirconia ball (φ1cm) 70 wt%, fluorite After the addition of 5 wt% of sodium polyacrylate (Jurimer AC-103, manufactured by Nippon Pure Chemical) as a dispersant, after the addition of 5 wt% of the stone, the wet bead mill (Starmill Nano Getter DMS65, It was pulverized with Ashizawa Finetech Co., Ltd. (zirconia ball (φ0.3 mm) 70 vol%). The average particle diameter of the finely ground fluorite in the obtained slurry was 0.17 μm. Analysis of the finely divided fluorite component revealed that arsenic was 291 ppm.
To the obtained slurry containing finely pulverized fluorite, 0.1 wt% of NaHS was added in the same manner as in Example 1, and the pH was adjusted to 2.7 with sulfuric acid and stirred (20 ° C. for 1 hour). Further, in the same manner as in Comparative Example 1, flotation was performed with a microbubble flotation machine. The arsenic of the particles floating in the foam was 227 ppm, and the arsenic of the particles sinking to the bottom was 198 ppm.

(実施例4)
NaHS処理時のpHを5.4に調整した以外は実施例3と同様に処理し、マイクロバブル浮選機で浮遊選鉱した。泡に浮いた粒子のヒ素は303ppm、底に沈んだ粒子のヒ素は250ppmであった。
Example 4
Except that the pH during NaHS treatment was adjusted to 5.4, the same treatment as in Example 3 was carried out, followed by flotation with a microbubble flotation machine. The arsenic of the particles floating in the foam was 303 ppm, and the arsenic of the particles sinking to the bottom was 250 ppm.

(実施例5)
NaHS処理時のpHを11.8に調整した以外は実施例3と同様に処理し、マイクロバブル浮選機で浮遊選鉱した。泡に浮いた粒子のヒ素は311ppm、底に沈んだ粒子のヒ素は258ppmであった。
実施例3〜5の結果から、低pH領域の方が、より効果的に浮遊選鉱によりヒ素の分離が可能なことが明らかである。
(Example 5)
The same treatment as in Example 3 was carried out except that the pH during NaHS treatment was adjusted to 11.8, and flotation was performed with a microbubble flotation machine. The arsenic of the particles floating in the bubbles was 311 ppm, and the arsenic of the particles sinking to the bottom was 258 ppm.
From the results of Examples 3 to 5, it is clear that arsenic can be separated more effectively by flotation in the low pH region.

(実施例6)
実施例3で用いたボールミルで粉砕後のMEXCHEM FLUOR 社冶金グレード精製蛍石(180g)を硫酸でpH=1.8に調整した水溶液(420g)中に分散させ、NaHSを0.1wt%とポリアクリル酸ナトリウム(日本純薬製ジュリマーAC-103)を5wt%添加し、湿式ビーズミル(スターミル ナノ・ゲッターDMS65、アシザワ・ファインテック社製)で粉砕した(ジルコニアボール(φ0.3mm)70vol%)。比較例1と同様に、マイクロバブル浮選機で浮遊選鉱した。泡に浮いた粒子のヒ素含量は207ppm、底に沈んだ粒子のヒ素含量は193ppmであった。
実施例3及び6の結果から、NaHS処理と粉砕を同時におこなうことによりヒ素除去効率が上がることが明らかである。
(Example 6)
MEXCHEM FLUOR metallurgical grade refined fluorite (180 g) after pulverization by the ball mill used in Example 3 was dispersed in an aqueous solution (420 g) adjusted to pH = 1.8 with sulfuric acid, 0.1 wt% of NaHS and sodium polyacrylate (Jurimer AC-103 manufactured by Nippon Pure Chemicals) was added in an amount of 5 wt%, and pulverized with a wet bead mill (Star Mill Nano Getter DMS65, manufactured by Ashizawa Finetech Co., Ltd.) (zirconia ball (φ0.3 mm) 70 vol%). In the same manner as in Comparative Example 1, flotation was performed with a microbubble flotation machine. The arsenic content of the particles floating in the foam was 207 ppm, and the arsenic content of the particles sinking to the bottom was 193 ppm.
From the results of Examples 3 and 6, it is clear that the arsenic removal efficiency is increased by performing NaHS treatment and pulverization simultaneously.

(実施例7)
水酸化ナトリウムでpHを5.0に調整した以外は実施例6と同様に処理し、マイクロバブル浮選機で浮遊選鉱した。泡に浮いた粒子のヒ素は205ppm、底に沈んだ粒子のヒ素は218ppmであった。
(Example 7)
The same treatment as in Example 6 was carried out except that the pH was adjusted to 5.0 with sodium hydroxide, and flotation was performed with a microbubble flotation machine. The arsenic of the particles floating in the bubbles was 205 ppm, and the arsenic of the particles sinking to the bottom was 218 ppm.

(実施例8)
水酸化ナトリウムでpHを9.4に調整した以外は実施例6と同様に処理し、マイクロバブル浮選機で浮遊選鉱した。泡に浮いた粒子のヒ素は229ppm、底に沈んだ粒子のヒ素は220ppmであった。
(Example 8)
The same treatment as in Example 6 was carried out except that the pH was adjusted to 9.4 with sodium hydroxide, and flotation was performed with a microbubble flotation machine. The arsenic of particles floating in the foam was 229 ppm, and the arsenic of particles sinking to the bottom was 220 ppm.

(実施例9)
水酸化ナトリウムでpHを12.2に調整した以外は実施例6と同様に処理し、マイクロバブル浮選機で浮遊選鉱した。泡に浮いた粒子のヒ素は215ppm、底に沈んだ粒子のヒ素は223ppmであった。
実施例6〜9の結果から、NaHS処理と粉砕を同時におこなうことにより処理時のpHの影響が小さくなることが明らかである。
Example 9
The same treatment as in Example 6 was carried out except that the pH was adjusted to 12.2 with sodium hydroxide, and flotation was performed with a microbubble flotation machine. The arsenic of the particles floating in the foam was 215 ppm, and the arsenic of the particles sinking to the bottom was 223 ppm.
From the results of Examples 6 to 9, it is clear that the influence of pH during the treatment is reduced by simultaneously performing the NaHS treatment and the pulverization.

(実施例10)
比較例1で用いた MEXCHEM FLUOR 社アシッドグレード精製蛍石を用い、pHを2.1にした以外は実施例6と同様に処理し、マイクロバブル浮選機で浮遊選鉱した。泡に浮いた粒子のヒ素は161ppm、底に沈んだ粒子のヒ素は164ppmであった。
実施例6及び10の結果から、高ヒ素濃度の方が除去効率が高くなることが明らかである。
(Example 10)
MEXCHEM FLUOR acid grade purified fluorite used in Comparative Example 1 was used in the same manner as in Example 6 except that the pH was adjusted to 2.1, followed by flotation using a microbubble flotation machine. The arsenic of the particles floating in the foam was 161 ppm, and the arsenic of the particles sinking to the bottom was 164 ppm.
From the results of Examples 6 and 10, it is clear that the removal efficiency is higher at higher arsenic concentrations.

(実施例11)
pHを4.9にした以外は実施例10と同様に処理し、マイクロバブル浮選機で浮遊選鉱した。泡に浮いた粒子のヒ素は264ppm、底に沈んだ粒子のヒ素は258ppmであった。
Example 11
The same treatment as in Example 10 was conducted except that the pH was changed to 4.9, and flotation was performed with a microbubble flotation machine. The arsenic of the particles floating in the foam was 264 ppm, and the arsenic of the particles sinking to the bottom was 258 ppm.

(実施例12)
pHを12.2にした以外は実施例10と同様に処理し、マイクロバブル浮選機で浮遊選鉱した。泡に浮いた粒子のヒ素は295ppm、底に沈んだ粒子のヒ素は262ppmであった。
実施例10〜12の結果から、pHが低い方が除去効率が高くなることが明らかである。
なお、比較例1並びに実施例1〜12のヒ素含量の分析は、次のようにして行った。蛍石0.5gに塩酸(30%)を6ml、硫酸(30%)を5ml、硝酸(60%)を2ml、飽和臭素水を5ml加えて225℃に設定したホットプレートで0.5〜1時間加熱した。これに水を加えて全量を100mlとし、メンブランフィルターでろ過してICP分析した。
Example 12
The same treatment as in Example 10 was carried out except that the pH was 12.2, and flotation was carried out with a microbubble flotation machine. The arsenic of the particles floating in the foam was 295 ppm, and the arsenic of the particles sinking to the bottom was 262 ppm.
From the results of Examples 10 to 12, it is clear that the lower the pH, the higher the removal efficiency.
In addition, the analysis of the arsenic content of the comparative example 1 and Examples 1-12 was performed as follows. Add 0.5 ml of fluorite (6%) hydrochloric acid (30%), 5 ml of sulfuric acid (30%), 2 ml of nitric acid (60%), 5 ml of saturated bromine water and heat on a hot plate set at 225 ° C for 0.5-1 hour . Water was added to this to make a total volume of 100 ml, which was filtered through a membrane filter and analyzed by ICP.

Claims (10)

CaF2及びヒ素を含む鉱石を精製する方法であって、CaF2及びヒ素を含む鉱石を還元剤と接触させることを含む前記精製方法。 A method of purifying ores containing CaF 2 and arsenic, the purification method comprises contacting the ore containing CaF 2 and arsenic with a reducing agent. 還元剤がNaHS又はH2Sを含む、請求項1記載の精製方法。 The purification method according to claim 1, wherein the reducing agent contains NaHS or H 2 S. CaF2及びヒ素を含む鉱石を還元剤と接触させる工程において、平均粒径が10μm以下の鉱石を用いる、請求項1又は2記載の精製方法。 The purification method according to claim 1 or 2, wherein an ore having an average particle size of 10 µm or less is used in the step of contacting the ore containing CaF 2 and arsenic with a reducing agent. さらに浮遊選鉱を行うことを含む請求項1〜3のいずれか1項記載の精製方法。   The purification method according to any one of claims 1 to 3, further comprising performing flotation. 浮遊選鉱の平均泡径が100μm以下である、請求項4記載の精製方法。   The purification method according to claim 4, wherein the average bubble diameter of the flotation is 100 μm or less. 還元剤存在下でCaF2及びヒ素を含む鉱石を粉砕することを含む請求項1〜5のいずれか1項記載の精製方法。 Purification method according to any one of claims 1 to 5, comprising grinding the ore containing CaF 2 and arsenic at the presence of a reducing agent. 粉砕後の鉱石の平均粒径が10μm以下である、請求項6記載の精製方法。   The purification method according to claim 6, wherein the average particle size of the ore after pulverization is 10 μm or less. 鉱石を還元剤と接触させる際のpHが7以下である、請求項1〜7のいずれか1項記載の精製方法。   The purification method according to any one of claims 1 to 7, wherein a pH at which the ore is brought into contact with the reducing agent is 7 or less. 請求項1〜8のいずれか1項記載の精製方法により得られた鉱石。   The ore obtained by the refinement | purification method of any one of Claims 1-8. 請求項9記載の鉱石を原料として用いる、フッ化水素の製造方法。   The manufacturing method of hydrogen fluoride which uses the ore of Claim 9 as a raw material.
JP2008081429A 2008-03-26 2008-03-26 METHOD FOR PURIFYING ORE CONTAINING CaF2 AND ARSENIC Pending JP2009234834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081429A JP2009234834A (en) 2008-03-26 2008-03-26 METHOD FOR PURIFYING ORE CONTAINING CaF2 AND ARSENIC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008081429A JP2009234834A (en) 2008-03-26 2008-03-26 METHOD FOR PURIFYING ORE CONTAINING CaF2 AND ARSENIC

Publications (1)

Publication Number Publication Date
JP2009234834A true JP2009234834A (en) 2009-10-15

Family

ID=41249273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081429A Pending JP2009234834A (en) 2008-03-26 2008-03-26 METHOD FOR PURIFYING ORE CONTAINING CaF2 AND ARSENIC

Country Status (1)

Country Link
JP (1) JP2009234834A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391320A (en) * 2016-11-28 2017-02-15 北京矿冶研究总院 Beneficiation method for high-calcium fluorite
CN108855628A (en) * 2018-06-01 2018-11-23 洛阳丰瑞氟业有限公司 A kind of Fluorspar Powder production collecting agent preparation method
CN111960456A (en) * 2020-08-06 2020-11-20 六盘水师范学院 Recycling and treating process for calcium-containing waste acid after acid leaching of fluorite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391320A (en) * 2016-11-28 2017-02-15 北京矿冶研究总院 Beneficiation method for high-calcium fluorite
CN108855628A (en) * 2018-06-01 2018-11-23 洛阳丰瑞氟业有限公司 A kind of Fluorspar Powder production collecting agent preparation method
CN111960456A (en) * 2020-08-06 2020-11-20 六盘水师范学院 Recycling and treating process for calcium-containing waste acid after acid leaching of fluorite

Similar Documents

Publication Publication Date Title
JP4969313B2 (en) Recovery method of rare earth elements
AU2020104144A4 (en) Purification method of superfine graphite ore
JP2009057250A (en) Purification method of fluorite
RU2769121C2 (en) Lithium extraction method
JP4730903B2 (en) Method for recovering raw materials for cerium-based abrasives
JP5908992B2 (en) Recovery method for continuous calcium extraction and PCC production
RU2500480C2 (en) Method for extraction of nano-sized particles from man-made wastes by flotation
US20200361781A1 (en) Method and system for recycling carbon dioxide
WO2007105714A1 (en) Method of recovering rare earth element from composition containing rare earth fluoride
US9309447B2 (en) Method for recovery of cerium oxide
CN110292991A (en) A kind of fluorite method for concentrating
CN106587046A (en) Purification method of artificial diamond
KR20210065457A (en) Method for manufacturing nano calcium carbonate using waste concrete and apparatus thereof
US7494631B2 (en) Titaniferous ore beneficiation
JP2009234834A (en) METHOD FOR PURIFYING ORE CONTAINING CaF2 AND ARSENIC
WO2010110088A1 (en) Fluorite purification method
US20210047197A1 (en) Integrated Process for Mineral Carbonation
JP2009083082A (en) Method for recovering rare earth elements
WO2011049218A1 (en) Method of molybdenum refining
US20120263637A1 (en) System and Method For Recovering Boron Values From Plant Tailings
CN108946791A (en) The preparation method of micron order scandium fluoride
JP2010222211A (en) Method for refining fluorite
Taşkin et al. Direct alkaline leaching of mechanically activated diasporic bauxite
FR2651798A1 (en) PROCESS FOR TREATING ORES CONTAINING RARE EARTH.
CN108929706A (en) A kind of method of relieving haperacidity coproduction magnalium composite flame-retardant agent