JP2009232338A - Surface-acoustic wave device - Google Patents

Surface-acoustic wave device Download PDF

Info

Publication number
JP2009232338A
JP2009232338A JP2008077419A JP2008077419A JP2009232338A JP 2009232338 A JP2009232338 A JP 2009232338A JP 2008077419 A JP2008077419 A JP 2008077419A JP 2008077419 A JP2008077419 A JP 2008077419A JP 2009232338 A JP2009232338 A JP 2009232338A
Authority
JP
Japan
Prior art keywords
groove
substrate
depth
acoustic wave
saw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008077419A
Other languages
Japanese (ja)
Other versions
JP2009232338A5 (en
Inventor
Shozo Matsumoto
省三 松本
Yuji Ogawa
祐史 小川
Keiichi Suzuki
桂一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2008077419A priority Critical patent/JP2009232338A/en
Publication of JP2009232338A publication Critical patent/JP2009232338A/en
Publication of JP2009232338A5 publication Critical patent/JP2009232338A5/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a SAW (surface-acoustic wave) device which suppresses spuriousness generated at the side of high zone in the passing zone of SAW device employing LBO for a substrate while standing against thermal shock test and drop test. <P>SOLUTION: In the SAW device, the LBO substrate 2, in which an IDT electrode is formed on the front side and a groove 3 of depth d is formed on the rear side thereof, is mounted on a package by ultraviolet curing type adhesive. In this case, when the thickness of the LBO substrate 2 is shown by t (μm), the wavelength of elastic surface wave oscillated by the IDT electrode is shown by λ (μm) and the depth of the groove 3 is shown by d (μm), the depth d of the groove 3 is predetermined so as to be within the range of 8λ≤d≤(t-150). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、裏面が凹凸化した圧電基板を用いた弾性表面波デバイスに関し、特に通過帯域の高域側に生じるスプリアスを抑圧すると共に、熱衝撃、落下に対して強く、且つ弾性表面波デバイスとパッケージ底面との接着に、紫外線硬化型接着剤を使えるようにした弾性表面波デバイスに関する。   The present invention relates to a surface acoustic wave device using a piezoelectric substrate with an uneven back surface, and in particular, suppresses spurious generated on the high frequency side of a pass band, and is resistant to thermal shock and dropping, and a surface acoustic wave device. The present invention relates to a surface acoustic wave device in which an ultraviolet curable adhesive can be used for bonding to a package bottom surface.

近年、弾性表面波デバイス(SAWデバイス)は通信分野で広く利用され、高性能、小型、量産性等の優れた特徴を有することから特に携帯電話、LAN等に多く用いられている。圧電材料を基板として用いたSAWデバイスでは、表面波が励振されると共に、バルク波が基板中に放射され、これが受信されてスプリアスとなり、SAWデバイスの特性を劣化させている。
バルク波を抑圧する手段は古くより種々提案されており、特許文献1にはタンタル酸リチウム基板の裏面に溝を形成したTV用フィルタが開示されている。特許文献1では、112.2°YカットLiTaO3基板の裏面に、第1の劈開線から角度θ1(47.5°)だけ傾斜した方向に溝を形成し、溝のピッチは0.3mm以下、溝幅80μm〜90μm、溝深さ80μm以上としている。
また、特許文献2には、振幅リップル、位相リップルを小さくするため、基板底面を溝加工した表面波デバイスが開示されている。
図12は特許文献2に開示されている従来の表面波デバイスを示した図であり(a)は底面図、(b)は(a)のX−X線の断面図である。
図12(a)(b)に示すSAW基板51の表面には、図示しないがBGS波用IDTが形成されている。一方、SAW基板51の裏面には、図12(a)に示すように、BGS波の進行方向(矢印方向)と45゜の角度で、SAW基板51の厚みTに対して33%以上の深さdの溝51aが複数本形成されている。
この場合、基板の材質はPZT、溝51aの幅は100μm、基板の厚みTは450μm、溝51aの間隔は300μm、溝51aの深さdは0〜180μmに設定されている。特許文献2には溝51aの深さ率(d/T)を増していくと、振幅リップルが減少し、群遅延リップルも減少すると開示されている。
In recent years, surface acoustic wave devices (SAW devices) have been widely used in the communication field, and are widely used especially for cellular phones, LANs, and the like because they have excellent characteristics such as high performance, small size, and mass productivity. In a SAW device using a piezoelectric material as a substrate, a surface wave is excited and a bulk wave is radiated into the substrate, which is received and spurious, degrading the characteristics of the SAW device.
Various means for suppressing the bulk wave have been proposed for a long time. Patent Document 1 discloses a TV filter in which a groove is formed on the back surface of a lithium tantalate substrate. In Patent Document 1, grooves are formed on the back surface of the 112.2 ° Y-cut LiTaO 3 substrate in a direction inclined by an angle θ1 (47.5 °) from the first cleavage line, and the groove pitch is 0.3 mm or less. The groove width is 80 μm to 90 μm, and the groove depth is 80 μm or more.
Patent Document 2 discloses a surface wave device in which a substrate bottom surface is grooved to reduce amplitude ripple and phase ripple.
12A and 12B are diagrams showing a conventional surface acoustic wave device disclosed in Patent Document 2. FIG. 12A is a bottom view, and FIG. 12B is a cross-sectional view taken along line XX in FIG.
Although not shown, a BGS wave IDT is formed on the surface of the SAW substrate 51 shown in FIGS. On the other hand, as shown in FIG. 12A, the back surface of the SAW substrate 51 has a depth of 33% or more with respect to the thickness T of the SAW substrate 51 at a 45 ° angle with the BGS wave traveling direction (arrow direction). A plurality of grooves 51a each having a length d are formed.
In this case, the material of the substrate is PZT, the width of the groove 51a is 100 μm, the thickness T of the substrate is 450 μm, the interval between the grooves 51a is 300 μm, and the depth d of the grooves 51a is set to 0 to 180 μm. Patent Document 2 discloses that as the depth ratio (d / T) of the groove 51a is increased, the amplitude ripple decreases and the group delay ripple also decreases.

また、特許文献3には、36°Yカット−X伝播LiTaO3基板上に複数のSAW共振子を形成し、該SAW共振子を配線で接続して構成したラダー型SAWフィルタが開示されている。SAW共振子は櫛形電極および反射器で構成され、ラダー型SAWフィルタの入力側から第1段目の並列共振子の略直下に、断面形状が半円状の溝を、IDT電極に平行に形成し、基板の最も薄い部分の厚みを約150μmに薄板化する。基板の一部を溝状に薄板化した構造により、バルク波の反射の影響を抑えたSAWデバイスを得ることができると記述されている。
また、特許文献4には、45°XカットZ伝搬四棚酸リチウム(45°X−Z Li247)基板の裏面に溝を形成した弾性表面波素子が開示されている。
図13は特許文献4に開示されている従来の弾性表面波素子を示した断面図である。
図13に示す弾性表面波素子61は、45°X−Z Li247基板62の表面上に、励振用の複数の電極指から成る櫛歯型電極(IDT電極)63、64が形成されている。この弾性表面波素子61は、弾性表面波の伝搬方向Bに対して直交するように、ダイサーカット加工により複数の溝65が形成され、各溝65の側壁面65aによってバルク波を抑圧することにより、受信側IDT電極でのバルク波の受信を抑えている。
各IDT電極63、64から夫々圧電基板裏面に向けて放射されるバルク波(実線矢印:1回反射、破線矢印:2回反射)を各溝65の側壁面65aで遮蔽するための条件、つまり各溝65の配置位置は、裏面1回反射、裏面2回反射について、夫々求められる。IDT電極63、64の中心間距離を2Lとしたときに、実線で示すように裏面で1回反射するバルク波を抑圧する為の溝65の形成位置を、IDT電極63の中心部であるA位置から伝播方向Bへ向けて距離L離間した部位とする。破線で示す裏面で2回反射するバルク波を抑圧する為の2つの溝65−2、65−3の形成位置をA位置から伝播方向Bへ向けて距離L/2、3L/2離間した部位としている。
図13のように内部伝搬するバルク波が基板裏面で等角入・反射を起こして送・受波される時が、スプリアスの影響が一番大きいと考えられる。そこで、特許文献4では、各溝の形成位置を決め、各位置にダイサーカット加工によって溝を形成することにより、各溝によりバルク波スプリアスを抑圧するようにしている。
特開昭60−153616号公報 特開平8−32403号公報 特開平11−330899号公報 特開2002−246876号公報
Patent Document 3 discloses a ladder-type SAW filter configured by forming a plurality of SAW resonators on a 36 ° Y-cut-X propagation LiTaO 3 substrate and connecting the SAW resonators with wiring. . The SAW resonator is composed of a comb-shaped electrode and a reflector, and a groove having a semicircular cross section is formed in parallel with the IDT electrode, just below the first-stage parallel resonator from the input side of the ladder-type SAW filter. The thickness of the thinnest part of the substrate is reduced to about 150 μm. It is described that a SAW device in which the influence of bulk wave reflection is suppressed can be obtained by a structure in which a part of the substrate is thinned into a groove shape.
Patent Document 4 discloses a surface acoustic wave device in which a groove is formed on the back surface of a 45 ° X-cut Z-propagating lithium four-tartrate (45 ° X-Z Li 2 B 4 O 7 ) substrate.
FIG. 13 is a cross-sectional view showing a conventional surface acoustic wave element disclosed in Patent Document 4. In FIG.
The surface acoustic wave element 61 shown in FIG. 13 has comb-teeth electrodes (IDT electrodes) 63 and 64 made up of a plurality of electrode fingers for excitation on the surface of a 45 ° X-Z Li 2 B 4 O 7 substrate 62. Is formed. In the surface acoustic wave element 61, a plurality of grooves 65 are formed by dicer cutting so as to be orthogonal to the propagation direction B of the surface acoustic wave, and bulk waves are suppressed by the side wall surface 65a of each groove 65. The reception of bulk waves at the receiving side IDT electrode is suppressed.
Conditions for shielding bulk waves (solid arrows: reflected once, broken arrows: reflected twice) radiated from the IDT electrodes 63, 64 toward the back surface of the piezoelectric substrate by the side wall surfaces 65a of the grooves 65, that is, The arrangement position of each groove 65 is determined for each of the back surface reflection once and the back surface reflection twice. When the distance between the centers of the IDT electrodes 63 and 64 is set to 2L, the formation position of the groove 65 for suppressing the bulk wave reflected once on the back surface as shown by the solid line is the center portion of the IDT electrode 63. It is assumed that the distance L is a distance L from the position in the propagation direction B. Parts where the formation positions of the two grooves 65-2 and 65-3 for suppressing the bulk wave reflected twice on the back surface indicated by the broken line are separated from the position A in the propagation direction B by distances L / 2 and 3L / 2. It is said.
As shown in FIG. 13, when the internally propagating bulk wave is transmitted and received by causing equiangular reflection and reflection on the back surface of the substrate, it is considered that the influence of spurious is the greatest. Therefore, in Patent Document 4, the formation position of each groove is determined, and a groove is formed at each position by dicer cutting, thereby suppressing bulk wave spurious by each groove.
JP 60-153616 A JP-A-8-32403 Japanese Patent Laid-Open No. 11-330899 JP 2002-246876 A

しかしながら、四棚酸リチウムLi247基板の裏面に、特許文献1〜4に開示されているように溝を形成してバルク波を抑圧することで、通過域の高域側に生じるスプリアスを低減することは可能であるものの、基板の機械的強度が劣化し、熱衝撃試験(ヒートサイクル試験)や落下試験により破損が起こるという虞があった。
また、基板の裏面を粗化させてバルク波を抑圧することも提案されているが、このようなSAWデバイスでは、SAWデバイスをパッケージの底面に接着、固定する際に、紫外線硬化型接着剤を用いると裏面により紫外線が散乱され、接着剤の硬化が阻害されるという問題があった。
本発明は、上記問題を解決するためになされたものであり、バルク波に起因するスプリアスを抑圧しつつ、熱衝撃、落下に強いLBO基板を用いたSAWデバイスを提供する。また、バルク波に起因するスプリアスを抑圧しつつ、パッケージ等への固着に紫外線硬化型接着剤を使用可能なLBO基板を用いたSAWデバイスを提供することにある。
However, a groove is formed on the back surface of the lithium tetratartrate Li 2 B 4 O 7 substrate to suppress bulk waves as disclosed in Patent Documents 1 to 4, thereby generating a high frequency side of the passband. Although it is possible to reduce spurious, there is a risk that the mechanical strength of the substrate deteriorates and breakage occurs due to a thermal shock test (heat cycle test) or a drop test.
It has also been proposed to suppress the bulk wave by roughening the back surface of the substrate. In such a SAW device, an ultraviolet curable adhesive is used when bonding and fixing the SAW device to the bottom surface of the package. When used, there is a problem that ultraviolet rays are scattered by the back surface and the curing of the adhesive is inhibited.
The present invention has been made to solve the above problems, and provides a SAW device using an LBO substrate that is resistant to thermal shock and dropping while suppressing spurious due to bulk waves. Another object of the present invention is to provide a SAW device using an LBO substrate that can use an ultraviolet curable adhesive for fixing to a package or the like while suppressing spurious due to bulk waves.

本発明は、上記の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]本発明のSAWデバイスは、一方の面を粗にした四硼酸リチウム基板の他方の面上に櫛歯型電極を形成し、該四硼酸リチウム基板の一方の面をパッケージに紫外線硬化型接着剤により実装したSAWデバイスであって、前記四硼酸リチウム基板の一方の面に溝を形成し、前記四硼酸リチウム基板の厚さをt(μm)、前記櫛歯型電極により励振される弾性表面波の波長をλ(μm)、前記溝の深さをd(μm)としたときに、前記溝の深さdが、8λ≦d≦(t−150)の範囲内であることを特徴とする。   [Application Example 1] In the SAW device of the present invention, a comb-shaped electrode is formed on the other surface of a lithium tetraborate substrate having one surface roughened, and one surface of the lithium tetraborate substrate is used as a package for ultraviolet light. A SAW device mounted with a curable adhesive, wherein a groove is formed on one surface of the lithium tetraborate substrate, the thickness of the lithium tetraborate substrate is t (μm), and is excited by the comb electrode. When the surface acoustic wave wavelength is λ (μm) and the groove depth is d (μm), the groove depth d is in the range of 8λ ≦ d ≦ (t−150). It is characterized by.

上記のように構成すると、通過域の高域側に生じるバルク波に起因するスプリアスを抑圧し、熱衝撃試験、落下試験といった環境試験に耐用するSAWデバイスが実現できる。また、四硼酸リチウム基板の裏面に溝を設けたので、該溝の部分が薄くなり、紫外線の透過がよくなるため四硼酸リチウム基板をパッケージに実装する際に、紫外線硬化型接着剤を用いることができるという利点がある。   If comprised as mentioned above, the SAW device which suppresses the spurious resulting from the bulk wave which arises in the high region side of a passage zone, and withstands environmental tests, such as a thermal shock test and a drop test, is realizable. In addition, since the groove is provided on the back surface of the lithium tetraborate substrate, the groove portion becomes thin and the ultraviolet ray can be transmitted. Therefore, when the lithium tetraborate substrate is mounted on the package, an ultraviolet curable adhesive may be used. There is an advantage that you can.

[適用例2]本発明のSAWデバイスは、前記溝を形成する前記四硼酸リチウム基板の一方の面をポリシュ仕上げしたことを特徴とする適用例1に記載のSAWデバイスである。   Application Example 2 The SAW device according to Application Example 1 is characterized in that one surface of the lithium tetraborate substrate on which the groove is formed is polished.

上記のように構成すると、通過域の高域側に生じるバルク波に起因するスプリアスを抑圧すると共に、熱衝撃試験、落下試験に耐用するSAWデバイスを構成することができる。その上、裏面側もポリッシュ仕上げされているので、紫外線の透過が一層よくなり、紫外線硬化型接着剤の硬化が促進される。   If comprised as mentioned above, while suppressing the spurious resulting from the bulk wave which arises in the high region side of a passage region, the SAW device which can be used for a thermal shock test and a drop test can be constituted. In addition, since the back side is also polished, the transmission of ultraviolet rays is further improved, and the curing of the ultraviolet curable adhesive is promoted.

[適用例3]本発明のSAWデバイスは、前記溝と前記弾性表面波の伝搬方向となす角が、略45°であることを特徴とする適用例1又は2に記載のSAWデバイスである。   Application Example 3 The SAW device according to Application Example 1 or 2, wherein an angle formed between the groove and the propagation direction of the surface acoustic wave is approximately 45 °.

上記のように構成すると、通過域の高域側に生じるバルク波に起因するスプリアスを最もよく抑圧することができる。   If comprised as mentioned above, the spurious resulting from the bulk wave which arises in the high region side of a passband can be suppressed most.

以下、図面を参照して本発明の弾性表面波デバイス(以下、SAWデバイスと称す)の実施形態を詳細に説明する。
図1は本発明の実施形態に係るSAWデバイスの概略構成を示した図である。
この図1に示す本実施形態のSAWデバイス1は、表面上に櫛歯型電極(以下、IDT電極と称す)10が形成された四硼酸リチウムLi247(以下、LBOと称す)基板2が、紫外線硬化型接着剤11によりパッケージ20に実装(固着)されている。LBO基板2の裏面には複数の溝3が形成されている。なお、必要ならLBO基板2の主表面には反射器(図示しない)が配置される。パッケージ20は例えばセラミック基板により構成される。
Hereinafter, embodiments of a surface acoustic wave device (hereinafter referred to as a SAW device) of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of a SAW device according to an embodiment of the present invention.
The SAW device 1 according to this embodiment shown in FIG. 1 has a lithium tetraborate Li 2 B 4 O 7 (hereinafter referred to as LBO) having a comb-shaped electrode (hereinafter referred to as IDT electrode) 10 formed on the surface. The substrate 2 is mounted (fixed) to the package 20 with an ultraviolet curable adhesive 11. A plurality of grooves 3 are formed on the back surface of the LBO substrate 2. If necessary, a reflector (not shown) is disposed on the main surface of the LBO substrate 2. The package 20 is constituted by a ceramic substrate, for example.

図2は本実施形態に係るSAWデバイスのLBO基板の構成を示した図であり、(a)はその底面図、(b)は(a)のQ−Q線における断面図であり、一方の面をポリッシュ仕上げ、他方の面を粗とした厚さtのLBO基板の裏面に幅w2、深さdの溝3が、周期w1で形成されている。
LBO基板2の裏面に表面波の伝搬方向に対し、略45°の角度で複数の溝3が形成されている。また図2(b)に示すように、両面がポリッシュ仕上げされた厚さtのLBO基板2の裏面には、幅w2、深さdの溝3が周期w1で形成されている。
LBO基板2を用いたSAWデバイス1の裏面に溝3を形成する目的は、例えばSAWフィルタの場合、通過帯域の高域側に発生するスプリアスを抑圧することであるが、SAWデバイスが要求される環境試験、例えば熱衝撃試験(ヒートサイクル試験)、落下試験等にも十分に耐えられる必要がある。
そこで、LBO基板2上に250MHz帯(波長λ=13.61μm)のSAWフィルタを試作し、裏面に形成する溝の深さと、スプリアス抑圧との関係、熱衝撃試験による挿入損失変動量、周波数変動量との関係、落下試験による挿入損失変動量、周波数変動量との関係を実験的に求めた。LBO基板の板厚tを350μm、溝の幅w2を150μm、溝の周期w1を550μとし、溝の深さdをパラメータとし、90μmから240μmまで変化させた。なお、LBO基板は全ての実験に共通であるので、記述を省略する。
2A and 2B are views showing the configuration of the LBO substrate of the SAW device according to the present embodiment. FIG. 2A is a bottom view thereof, and FIG. 2B is a cross-sectional view taken along the line QQ in FIG. A groove 3 having a width w2 and a depth d is formed with a period w1 on the back surface of the LBO substrate having a thickness t and having the surface polished and the other surface roughened.
A plurality of grooves 3 are formed on the back surface of the LBO substrate 2 at an angle of approximately 45 ° with respect to the propagation direction of the surface wave. Further, as shown in FIG. 2B, a groove 3 having a width w2 and a depth d is formed at a period w1 on the back surface of the LBO substrate 2 having a thickness t whose both surfaces are polished.
The purpose of forming the groove 3 on the back surface of the SAW device 1 using the LBO substrate 2 is, for example, in the case of a SAW filter, to suppress spurious generated on the high frequency side of the pass band, but the SAW device is required. It is necessary to sufficiently withstand environmental tests such as thermal shock tests (heat cycle tests) and drop tests.
Therefore, a 250 MHz band (wavelength λ = 13.61 μm) SAW filter was prototyped on the LBO substrate 2, and the relationship between the depth of the groove formed on the back surface and spurious suppression, the amount of insertion loss variation due to thermal shock tests, and frequency variation. The relationship with the amount, the amount of variation in insertion loss due to a drop test, and the amount of frequency variation were experimentally determined. The plate thickness t of the LBO substrate was 350 μm, the groove width w2 was 150 μm, the groove period w1 was 550 μm, and the groove depth d was a parameter, and was changed from 90 μm to 240 μm. Since the LBO substrate is common to all experiments, description thereof is omitted.

図3は、溝3の深さdを120μmとしたSAWフィルタの熱衝撃試験の回数(サイクル数)と挿入損失変動量(dB)との関係を示した図である。
溝3の深さdが120μmのSAWフィルタは、3000サイクルの熱衝撃試験後の挿入損失変動量が極めて小さいことが分かる。
図4(a)は、溝3の深さdを120μmとしたSAWフィルタの、熱衝撃試験の回数(サイクル数)と、周波数変動量(ppm)との関係を示した図である。
溝3の深さdが120μmのSAWフィルタは、3000サイクルの熱衝撃試験後の周波数変動量が小さいことが分かる。
図4(b)、(c)は夫々溝3の深さdを120μmとしたSAWフィルタの、落下試験の回数と、挿入損失変動量(dB)及び周波数変動量(ppm)との関係を示した図である。
落下試験は1.5mの高さからコンクリート上に自然に落下させて行った。図4(b)より27回の落下試験後の挿入損失変動量(dB)は極めて小さいことが分かる。
また、図4(c)より27回の落下試験後の周波数変動量(ppm)は小さいことが分かった。
FIG. 3 is a diagram showing the relationship between the number of thermal shock tests (number of cycles) and the insertion loss variation (dB) of the SAW filter in which the depth d of the groove 3 is 120 μm.
It can be seen that the SAW filter in which the depth d of the groove 3 is 120 μm has a very small insertion loss fluctuation amount after the thermal shock test of 3000 cycles.
FIG. 4A is a diagram showing the relationship between the number of thermal shock tests (number of cycles) and the amount of frequency fluctuation (ppm) of the SAW filter in which the depth d of the groove 3 is 120 μm.
It can be seen that the SAW filter in which the depth d of the groove 3 is 120 μm has a small amount of frequency fluctuation after the thermal shock test of 3000 cycles.
4 (b) and 4 (c) show the relationship between the number of drop tests, insertion loss fluctuation (dB) and frequency fluctuation (ppm), respectively, for SAW filters with a groove 3 depth d of 120 μm. It is a figure.
The drop test was conducted by dropping naturally onto concrete from a height of 1.5 m. It can be seen from FIG. 4B that the insertion loss fluctuation amount (dB) after 27 drop tests is extremely small.
Further, it was found from FIG. 4C that the frequency fluctuation amount (ppm) after 27 drop tests was small.

図5(a)、(b)は、夫々溝3の深さdを160μmとしたSAWフィルタの、熱衝撃試験の回数(サイクル数)と、挿入損失変動量(dB)、及び周波数変動量(ppm)との関係を示した図である。
図5(a)より、溝の深さdが160μmのSAWフィルタは、3000サイクルの熱衝撃試験後の挿入損失変動量が、極めて小さいことが分かる。
また、図5(b)より溝3の深さdが160μmのSAWフィルタは、3000サイクルの熱衝撃試験後の周波数変動量(ppm)が小さいことが分かった。
図5(c)は、溝3の深さdを160μmとしたSAWフィルタの、落下試験の回数と、挿入損失変動量(dB)との関係を示した図である。
この図より27回の落下試験後の挿入損失変動量(dB)は極めて小さいことが分かる。
FIGS. 5A and 5B show the number of thermal shock tests (number of cycles), the amount of insertion loss fluctuation (dB), and the amount of frequency fluctuation (with a depth d of the groove 3 of 160 μm, respectively). (ppm).
FIG. 5A shows that the SAW filter having a groove depth d of 160 μm has a very small insertion loss fluctuation amount after the thermal shock test of 3000 cycles.
Further, from FIG. 5B, it was found that the SAW filter in which the depth d of the groove 3 is 160 μm has a small amount of frequency fluctuation (ppm) after a 3000 cycle thermal shock test.
FIG. 5C is a diagram showing the relationship between the number of drop tests and the insertion loss fluctuation amount (dB) of the SAW filter in which the depth d of the groove 3 is 160 μm.
From this figure, it can be seen that the insertion loss fluctuation amount (dB) after 27 drop tests is extremely small.

図6は、溝3の深さdを160μmとしたSAWフィルタの、落下試験の回数と、周波数変動量(ppm)との関係を示した図である。
この図より27回の落下試験後の周波数変動量(ppm)は小さいことが分かった。
また、図7(a)、(b)は、夫々溝3の深さdを200μmとしたSAWフィルタの、熱衝撃試験の回数(サイクル数)と、挿入損失変動量(dB)、及び周波数変動量(ppm)との関係を示した図である。
図7(a)より、溝3の深さdが200μmのSAWフィルタは、3000サイクルの熱衝撃試験後の挿入損失変動量(dB)が、極めて小さいことが分かる。
また、図7(b)より溝3の深さdが200μmのSAWフィルタは、3000サイクルの熱衝撃試験後の周波数変動量(ppm)は、若干生じるが実用上問題とならない範囲であることが分かる。
FIG. 6 is a diagram showing the relationship between the number of drop tests and the frequency fluctuation amount (ppm) of the SAW filter in which the depth d of the groove 3 is 160 μm.
From this figure, it was found that the frequency fluctuation amount (ppm) after 27 drop tests was small.
FIGS. 7A and 7B show the number of thermal shock tests (number of cycles), insertion loss fluctuation amount (dB), and frequency fluctuation of the SAW filter in which the depth d of the groove 3 is 200 μm, respectively. It is the figure which showed the relationship with quantity (ppm).
FIG. 7A shows that the SAW filter having the groove 3 having a depth d of 200 μm has a very small insertion loss fluctuation (dB) after a 3000-cycle thermal shock test.
Further, as shown in FIG. 7B, the SAW filter having a groove 3 with a depth d of 200 μm has a frequency fluctuation amount (ppm) after a 3000-cycle thermal shock test, but it is in a range where there is no practical problem. I understand.

図8(a)、(b)は、夫々溝3の深さdを200μmとしたSAWフィルタの、落下試験の回数と、挿入損失変動量(dB)、及び周波数変動量(ppm)との関係を示した図である。
図8(a)より27回の落下試験後の挿入損失変動量(dB)は極めて小さいことが分かる。
また、図8(b)より27回の落下試験後の周波数変動量(ppm)は小さいことが分かる。
図9は、溝3の深さdを240μmとしたSAWフィルタの、熱衝撃試験の回数(サイクル数)と、挿入損失変動量(dB)との関係を示した図である。
この図から溝の深さdを240μm、つまり溝部における基板の残存厚が略110μmとなると、1000、2000、3000サイクルで夫々若干の不良が生じることが判明した。
8A and 8B show the relationship between the number of drop tests, the amount of insertion loss fluctuation (dB), and the amount of frequency fluctuation (ppm) of a SAW filter in which the depth d of the groove 3 is 200 μm, respectively. FIG.
FIG. 8A shows that the insertion loss fluctuation amount (dB) after 27 drop tests is extremely small.
Further, it can be seen from FIG. 8B that the frequency fluctuation amount (ppm) after 27 drop tests is small.
FIG. 9 is a diagram showing the relationship between the number of thermal shock tests (number of cycles) and the insertion loss fluctuation amount (dB) of the SAW filter in which the depth d of the groove 3 is 240 μm.
From this figure, it was found that when the depth d of the groove is 240 μm, that is, the remaining thickness of the substrate in the groove portion is approximately 110 μm, a slight defect occurs at 1000, 2000, and 3000 cycles.

図10(a)は溝3の深さdを240μmとしたSAWフィルタの、熱衝撃試験の回数(サイクル数)と、周波数変動量(ppm)との関係を示した図である。
この図からも1000、2000、3000サイクルで夫々若干の不良が生じることが判明した。
図10(b)、(c)は、夫々溝3の深さdを240μmとしたSAWフィルタの、落下試験の回数と、挿入損失変動量(dB)、及び周波数変動量(ppm)との関係を示した図である。
図10(b)、(c)より明らかなように、溝の深さdを240μmとした場合、27回の自然落下試験後でも挿入損失変動量及び周波数変動量の不良は生じていないことが分かる。
FIG. 10A is a diagram showing the relationship between the number of thermal shock tests (number of cycles) and the frequency fluctuation amount (ppm) of the SAW filter in which the depth d of the groove 3 is 240 μm.
From this figure, it was found that some defects occurred in 1000, 2000, and 3000 cycles.
FIGS. 10B and 10C show the relationship between the number of drop tests, the amount of insertion loss fluctuation (dB), and the amount of frequency fluctuation (ppm) of the SAW filter in which the depth d of the groove 3 is 240 μm, respectively. FIG.
As is clear from FIGS. 10B and 10C, when the groove depth d is 240 μm, the insertion loss fluctuation amount and the frequency fluctuation amount are not defective even after 27 natural drop tests. I understand.

図11は、SAWフィルタの裏面に溝3を形成し、溝3の深さdと、SAWフィルタの通過域の高域側に生じる、バルク波に起因するスプリアスの大きさ(減衰量(dB))と、の関係を示した所謂箱ひげ図である。
周知のように、箱ひげ図からは最小値、中央値、最大値、25%点、75%点が視覚的に読み取れる。
横軸は溝3の深さd(mm)であり、0.09mm、0.11mm、0.13mm、0.15mm、0.17mmと変化させた。その時の通過域の高域側に生じるスプリアスの大きさを縦軸(dB)に示した。
図11より溝3の深さdが0.11mm以上あれば、所要の規格35.5dBを満たし、溝を0.11mmより深くしてもスプリアスの大きさは変わらないことが判明した。
SAWフィルタの通過域の高域側に生じるバルク波に起因するスプリアスは、弾性表面波の波長λに依存するので、溝3の深dさ0.11mm(110μm)を波長λ(13.61μm)で規格化すると8λとなり、これ以上の深さdがあればスプリアスを抑圧し、規格(35.5dB)を満たすことができる。
FIG. 11 shows that the groove 3 is formed on the back surface of the SAW filter, and the depth d of the groove 3 and the size of the spurious due to the bulk wave (attenuation amount (dB)) generated on the high frequency side of the pass band of the SAW filter. ) And a so-called box-and-whisker diagram.
As is well known, the minimum, median, maximum, 25% point, and 75% point can be visually read from the boxplot.
The horizontal axis represents the depth d (mm) of the groove 3 and was changed to 0.09 mm, 0.11 mm, 0.13 mm, 0.15 mm, and 0.17 mm. The vertical axis (dB) shows the magnitude of spurious generated on the high frequency side of the passband at that time.
From FIG. 11, it was found that if the depth d of the groove 3 is 0.11 mm or more, the required standard 35.5 dB is satisfied, and the spurious size does not change even if the groove is deeper than 0.11 mm.
Since the spurious due to the bulk wave generated on the high frequency side of the pass band of the SAW filter depends on the wavelength λ of the surface acoustic wave, the depth d of the groove 3 is 0.11 mm (110 μm) and the wavelength λ (13.61 μm). When it is standardized by λ, it becomes 8λ, and if there is a depth d larger than this, spurious can be suppressed and the standard (35.5 dB) can be satisfied.

また、以上に説明した熱衝撃試験、落下試験の結果から、溝3の深さdは、200μm以下であることが望ましいことが分かった。
LBO基板2の厚みをt(μm)とし、溝3の残存部の厚さ(t−d)が(350−200)=150μmより厚ければ、熱衝撃試験、落下試験に耐えられることが実験より判明した。つまり、溝の深さdは(t−150μm)より小さくする必要がある。
従って、通過域の高域側のスプリアスと、熱衝撃試験及び落下試験と、を同時に満した溝3の深さdの範囲は、8λ≦d≦(t−150μm)となる。
LBO基板の一方の面(裏面)、つまりパッケージ内面に接着される面を、粗にし、該面にバルク波を抑圧する溝3を形成したが、溝3の部分は薄くなるので紫外線の透過率がよく、紫外線硬化型接着剤を硬化させるには十分であった。
また、両主面をポリッシュ加工したLBO基板の裏面に溝3を形成したSAWデバイスについても実験したが、通過域高周波側に生じるバルク波に起因するスプリアスを抑圧することができた。その上、裏面側もポリッシュ加工されているので、紫外線の透過率がよく、紫外線硬化型接着剤を十分に硬化させた。
In addition, from the results of the thermal shock test and the drop test described above, it was found that the depth d of the groove 3 is desirably 200 μm or less.
If the thickness of the LBO substrate 2 is t (μm) and the thickness (t−d) of the remaining portion of the groove 3 is larger than (350−200) = 150 μm, it is possible to withstand the thermal shock test and the drop test. It turned out more. That is, the depth d of the groove needs to be smaller than (t−150 μm).
Therefore, the range of the depth d of the groove 3 satisfying both the spurious on the high band side of the pass band, the thermal shock test and the drop test is 8λ ≦ d ≦ (t−150 μm).
One surface (back surface) of the LBO substrate, that is, the surface to be bonded to the inner surface of the package is roughened, and the groove 3 for suppressing bulk waves is formed on the surface. It was sufficient to cure the UV curable adhesive.
In addition, the SAW device in which the groove 3 was formed on the back surface of the LBO substrate whose both main surfaces were polished was also tested, but spurious due to the bulk wave generated on the high frequency side of the passband could be suppressed. Moreover, since the back side is also polished, the ultraviolet ray transmittance is good and the ultraviolet curable adhesive is sufficiently cured.

本発明の実施形態に係るSAWデバイスの概略構成を示した図。The figure which showed schematic structure of the SAW device which concerns on embodiment of this invention. 本実施形態に係るSAWデバイスのLBO基板の構成を示した図であり、(a)は底面図、(b)は(a)のQ−Q線における断面図。It is the figure which showed the structure of the LBO board | substrate of the SAW device which concerns on this embodiment, (a) is a bottom view, (b) is sectional drawing in the QQ line of (a). 熱衝撃試験の回数と挿入損失変動量との関係を示す図。The figure which shows the relationship between the frequency | count of a thermal shock test, and insertion loss fluctuation amount. (a)は熱衝撃試験と周波数変動量、(b)、(c)は落下試験と、夫々挿入損失変動量、周波数変動量との関係を示す図。(A) is a thermal shock test and frequency fluctuation amount, (b), (c) is a figure which shows the relationship between a drop test and insertion loss fluctuation amount and frequency fluctuation amount, respectively. (a)、(b)は熱衝撃試験と、夫々挿入損失変動量、周波数変動量との関係を示す図、(c)は落下試験と、挿入損失変動量との関係を示す図。(A), (b) is a figure which shows the relationship between a thermal shock test and the amount of fluctuations of insertion loss, and the amount of frequency fluctuation, respectively, (c) is a figure which shows the relationship between a drop test and the amount of fluctuation of insertion loss. 落下試験と、周波数変動量との関係を示す図。The figure which shows the relationship between a drop test and the amount of frequency fluctuations. (a)、(b)は熱衝撃試験と、夫々挿入損失変動量、周波数変動量との関係を示す図。(A), (b) is a figure which shows the relationship between a thermal shock test, and insertion loss fluctuation amount and frequency fluctuation amount, respectively. (a)、(b)は落下試験と、夫々挿入損失変動量、周波数変動量との関係を示す図。(A), (b) is a figure which shows the relationship between a drop test and an insertion loss fluctuation amount and a frequency fluctuation amount, respectively. 熱衝撃試験と、挿入損失変動量との関係を示す図。The figure which shows the relationship between a thermal shock test and an insertion loss fluctuation amount. (a)は熱衝撃試験と、周波数変動量との関係を示す図、(b)、(c)は落下試験と、夫々挿入損失変動量、周波数変動量との関係を示す図。(A) is a figure which shows the relationship between a thermal shock test and a frequency fluctuation amount, (b), (c) is a figure which shows the relationship between a drop test and an insertion loss fluctuation amount and a frequency fluctuation amount, respectively. (a)は溝の深さとスプリアスとの関係を示す箱ひげ図、(b)は溝の深さ、その実測値、スプリアスの最少、最大、平均値、標準偏差等を示す図。(A) is a box-and-whisker diagram showing the relationship between the depth of the groove and the spurious, and (b) is a diagram showing the depth of the groove, its measured value, the minimum, maximum, average value and standard deviation of the spurious. 従来のSAWデバイスの構成を示した図であり、(a)は底面図、(b)は断面図。It is the figure which showed the structure of the conventional SAW device, (a) is a bottom view, (b) is sectional drawing. 従来のSAWデバイスの他の構成を示す断面図。Sectional drawing which shows the other structure of the conventional SAW device.

符号の説明Explanation of symbols

1…SAWデバイス、2…LBO基板、3…溝、4…裏面、10…IDT電極、11…紫外線硬化型接着剤、20…パッケージ、t…LBO基板の厚さ、w1…溝の周期、w2…溝の幅、d…溝の深さ、θ…表面波の伝搬方向と溝とのなす角度   DESCRIPTION OF SYMBOLS 1 ... SAW device, 2 ... LBO substrate, 3 ... Groove, 4 ... Back surface, 10 ... IDT electrode, 11 ... Ultraviolet curable adhesive, 20 ... Package, t ... Thickness of LBO substrate, w1 ... Groove period, w2 ... groove width, d ... groove depth, θ ... angle between surface wave propagation direction and groove

Claims (3)

一方の面を粗にした四硼酸リチウム基板の他方の面上に櫛歯型電極を形成し、該四硼酸リチウム基板の一方の面をパッケージに紫外線硬化型接着剤により実装した弾性表面波デバイスであって、
前記四硼酸リチウム基板の一方の面に溝を形成し、
前記四硼酸リチウム基板の厚さをt(μm)、前記櫛歯型電極により励振される弾性表面波の波長をλ(μm)、前記溝の深さをd(μm)としたときに、
前記溝の深さdが、8λ≦d≦(t−150)の範囲内であることを特徴とする弾性表面波デバイス。
A surface acoustic wave device in which a comb-shaped electrode is formed on the other surface of a lithium tetraborate substrate roughened on one surface, and one surface of the lithium tetraborate substrate is mounted on a package with an ultraviolet curable adhesive. There,
Forming a groove on one surface of the lithium tetraborate substrate;
When the thickness of the lithium tetraborate substrate is t (μm), the wavelength of the surface acoustic wave excited by the comb electrode is λ (μm), and the depth of the groove is d (μm),
A surface acoustic wave device, wherein a depth d of the groove is in a range of 8λ ≦ d ≦ (t−150).
前記溝を形成する前記四硼酸リチウム基板の一方の面をポリシュ仕上げしたことを特徴とする請求項1に記載の弾性表面波デバイス。   2. The surface acoustic wave device according to claim 1, wherein one surface of the lithium tetraborate substrate forming the groove is polished. 前記溝と前記弾性表面波の伝搬方向となす角が、略45°であることを特徴とする請求項1又は2に記載の弾性表面波デバイス。   3. The surface acoustic wave device according to claim 1, wherein an angle between the groove and a propagation direction of the surface acoustic wave is approximately 45 °.
JP2008077419A 2008-03-25 2008-03-25 Surface-acoustic wave device Withdrawn JP2009232338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008077419A JP2009232338A (en) 2008-03-25 2008-03-25 Surface-acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008077419A JP2009232338A (en) 2008-03-25 2008-03-25 Surface-acoustic wave device

Publications (2)

Publication Number Publication Date
JP2009232338A true JP2009232338A (en) 2009-10-08
JP2009232338A5 JP2009232338A5 (en) 2010-06-03

Family

ID=41247192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008077419A Withdrawn JP2009232338A (en) 2008-03-25 2008-03-25 Surface-acoustic wave device

Country Status (1)

Country Link
JP (1) JP2009232338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161899A (en) * 2019-03-25 2020-10-01 太陽誘電株式会社 Acoustic wave device, filter, and multiplexer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228838A (en) * 1975-08-29 1977-03-04 Matsushita Electric Ind Co Ltd Production method of elastic surface-wave device
JPH0832403A (en) * 1994-07-18 1996-02-02 Murata Mfg Co Ltd Surface acoustic wave device
JPH1168496A (en) * 1997-08-11 1999-03-09 Toyo Commun Equip Co Ltd Structure of surface acoustic wave device and its manufacture
JP2000124763A (en) * 1998-10-13 2000-04-28 Toyo Commun Equip Co Ltd Analyzing method for saw grating waveguide
JP2007150931A (en) * 2005-11-30 2007-06-14 Hitachi Media Electoronics Co Ltd Surface acoustic wave device and telecommunication terminal mounting it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228838A (en) * 1975-08-29 1977-03-04 Matsushita Electric Ind Co Ltd Production method of elastic surface-wave device
JPH0832403A (en) * 1994-07-18 1996-02-02 Murata Mfg Co Ltd Surface acoustic wave device
JPH1168496A (en) * 1997-08-11 1999-03-09 Toyo Commun Equip Co Ltd Structure of surface acoustic wave device and its manufacture
JP2000124763A (en) * 1998-10-13 2000-04-28 Toyo Commun Equip Co Ltd Analyzing method for saw grating waveguide
JP2007150931A (en) * 2005-11-30 2007-06-14 Hitachi Media Electoronics Co Ltd Surface acoustic wave device and telecommunication terminal mounting it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161899A (en) * 2019-03-25 2020-10-01 太陽誘電株式会社 Acoustic wave device, filter, and multiplexer

Similar Documents

Publication Publication Date Title
CN110383688B (en) Notch filter
US7830067B2 (en) Elastic boundary wave device
US10461718B2 (en) Acoustic wave resonator, filter, and multiplexer
KR101913933B1 (en) Acoustic wave device
CN1921300B (en) Surface acoustic wave apparatus
US10270425B2 (en) Acoustic wave resonator, filter, and multiplexer
US10193051B2 (en) Acoustic wave device
JP4571200B2 (en) Elastic wave filter
KR102132777B1 (en) Seismic device, high frequency front end circuit and communication device
JP2024001367A (en) Converter structure for generation source suppression in saw filter device
JP2009232338A (en) Surface-acoustic wave device
US9887343B2 (en) Acoustic wave element
JP2006080873A (en) Surface acoustic wave device and communication apparatus comprising the same
JP2006211187A (en) Surface acoustic wave device
JP2000106519A (en) Surface acoustic wave element
JP4995923B2 (en) Boundary acoustic wave device and communication device using the same
JP2010050626A (en) Surface acoustic wave filter
EP1100194A2 (en) Surface acoustic wave filter
JP2005203996A (en) Transversal saw filter
JP2014007581A (en) Longitudinal coupling surface acoustic wave filter and cascade connection filter
JP2008283336A (en) Surface acoustic wave device and manufacturing method thereof
JP2021158553A (en) Elastic wave device and manufacturing method thereof, filter, multiplexer and wafer
JP2008124703A (en) Surface acoustic wave filter
JP2012034082A (en) Surface acoustic wave device
JP2003298384A (en) Longitudinal coupling resonator type surface wave device

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20100421

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20100421

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

A131 Notification of reasons for refusal

Effective date: 20111025

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20111206

Free format text: JAPANESE INTERMEDIATE CODE: A761