JP2009231509A - Method of manufacturing electronic component package, and the electronic component package - Google Patents

Method of manufacturing electronic component package, and the electronic component package Download PDF

Info

Publication number
JP2009231509A
JP2009231509A JP2008074628A JP2008074628A JP2009231509A JP 2009231509 A JP2009231509 A JP 2009231509A JP 2008074628 A JP2008074628 A JP 2008074628A JP 2008074628 A JP2008074628 A JP 2008074628A JP 2009231509 A JP2009231509 A JP 2009231509A
Authority
JP
Japan
Prior art keywords
electronic component
hole
forming
cavity
component package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008074628A
Other languages
Japanese (ja)
Other versions
JP5108579B2 (en
Inventor
Yuta Kanamori
裕太 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Finetech Miyota Co Ltd
Original Assignee
Citizen Finetech Miyota Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Finetech Miyota Co Ltd filed Critical Citizen Finetech Miyota Co Ltd
Priority to JP2008074628A priority Critical patent/JP5108579B2/en
Publication of JP2009231509A publication Critical patent/JP2009231509A/en
Application granted granted Critical
Publication of JP5108579B2 publication Critical patent/JP5108579B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an electronic component package which can be manufactured readily and is low cost, and to provide the electronic component package. <P>SOLUTION: The method of manufacturing the electronic component package includes steps of forming a cavity for storing an electronic component in a plate substrate; forming a tapered through-hole with its diameter becoming smaller, as going toward the bottom of the plate substrate, in part of the bottom of the cavity; forming an insulating film on the cavity formation surface of the plate substrate, on the surface of the plate substrate opposite to the cavity forming surface, and on the internal surface of the through-hole; forming a metal film on the insulating film, formed on the cavity forming surface and the internal surface of the through-hole; forming a through-hole electrode, by blocking up near a smallest-diameter portion of the through-hole with a conductive member; and, by removing unnecessary portions of the metal film, except for a portion which serves as an electronic component mounting pad and an interconnecting portion for connecting the electronic component mounting pad and the through-hole, forming the electronic component mounting pad and the interconnecting portion. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子部品パッケージの製造方法および電子部品パッケージに関するものである。   The present invention relates to an electronic component package manufacturing method and an electronic component package.

近年、高密度化された電子部品は、電子機器等に搭載する際に、電子部品本体への外乱の影響を抑えるために、各種パッケージ内に前記電子部品を実装してから前記電子機器等に搭載される。このようにして形成した電子部品パッケージには、導体パターンが形成された電子部品搭載パッドと外部端子とが電気的に接続されており、これを利用した電子部品の例としては前記電子部品パッケージ内に圧電振動片を収納した圧電振動子が挙げられる。   In recent years, in order to suppress the influence of disturbance on the electronic component body when mounting the electronic component with a higher density on the electronic device or the like, the electronic component is mounted in various packages and then applied to the electronic device or the like. Installed. In the electronic component package thus formed, an electronic component mounting pad on which a conductor pattern is formed and an external terminal are electrically connected. As an example of an electronic component using this, an electronic component package includes There is a piezoelectric vibrator that houses a piezoelectric vibrating piece.

前記圧電振動子は、携帯用通信機器や電子機器などに数多く組み込まれ、機器の小型化に伴って圧電振動子の小型化も急速に進められてきている。中でも、表面実装にも対応した圧電振動子の開発が行われてきており、その実現のために前記圧電振動片と前記実装基板との電気的接続のために、前記圧電振動子に貫通電極を形成する事が知られている。(例えば、特許文献1参照。)   A large number of the piezoelectric vibrators are incorporated in portable communication devices, electronic devices, and the like, and miniaturization of piezoelectric vibrators has been promoted rapidly with the miniaturization of devices. In particular, the development of piezoelectric vibrators compatible with surface mounting has been carried out, and in order to realize this, a through electrode is provided in the piezoelectric vibrator for electrical connection between the piezoelectric vibrating piece and the mounting substrate. It is known to form. (For example, refer to Patent Document 1.)

図5は前記圧電振動子の全体構造を示す図である。前記圧電振動子41は、励振電極(不図示)を形成した圧電振動片42を、前記電子部品搭載パッド43に搭載し、前記貫通電極44を通じて前記外部端子45と電気的に接続している。前記電子部品を収納するパッケージ46内に前記圧電振動片42を搭載した後、前記電子部品パッケージ46上部に蓋47を接合してパッケージ内部48を気密封止している。   FIG. 5 is a diagram showing the overall structure of the piezoelectric vibrator. In the piezoelectric vibrator 41, a piezoelectric vibrating piece 42 in which an excitation electrode (not shown) is formed is mounted on the electronic component mounting pad 43 and electrically connected to the external terminal 45 through the through electrode 44. After the piezoelectric vibrating piece 42 is mounted in the package 46 that houses the electronic component, a lid 47 is joined to the upper part of the electronic component package 46 to hermetically seal the package interior 48.

前記貫通電極44は、前記電子部品パッケージ46に貫通孔49を形成し、当該貫通孔49内面に絶縁膜50を形成して絶縁処理をした上、その内面に導電性部材51を充填して形成されるものである。ここで、電子部品搭載パッド43と導電性部材51は、同一部材で一体的に形成できる。   The through electrode 44 is formed by forming a through hole 49 in the electronic component package 46, forming an insulating film 50 on the inner surface of the through hole 49, performing insulation treatment, and filling the inner surface with a conductive member 51. It is what is done. Here, the electronic component mounting pad 43 and the conductive member 51 can be integrally formed of the same member.

図4−1、図4−2は従来技術による電子部品パッケージの製造方法を説明する図で、(a)〜(j)は、各工程におけるパッケージ形成の状態を示す断面図である。以下、図4−1、図4−2を参照して従来技術の電子部品パッケージの製造方法を説明する。   FIGS. 4A and 4B are diagrams for explaining a method of manufacturing an electronic component package according to the prior art, and FIGS. 4A to 4J are cross-sectional views showing a package formation state in each process. Hereinafter, a conventional method for manufacturing an electronic component package will be described with reference to FIGS. 4A and 4B.

(a)は基板裏面に絶縁膜を形成する工程を示す図である。
101は基板であり、基板材料は、例えばシリコンである。まず前記基板101の裏面に絶縁膜102を形成する。この絶縁膜は例えばシリコン酸化膜(SiO)であり、スパッタリング法やCVD(Chemical Vapor Deposition)法によって形成される。
(A) is a figure which shows the process of forming an insulating film in a substrate back surface.
Reference numeral 101 denotes a substrate, and the substrate material is, for example, silicon. First, an insulating film 102 is formed on the back surface of the substrate 101. This insulating film is, for example, a silicon oxide film (SiO 2 ), and is formed by a sputtering method or a CVD (Chemical Vapor Deposition) method.

(b)は前記基板101の表面の所定位置に配列するキャビティ103(凹部)を形成する工程を示す図である。前記キャビティ103の形成にはフォトリソグラフィー手法、エッチング手法を用いる。不図示ではあるが、前記基板101の表面にレジストをスピンコート法やスプレーコート法等で塗布した後、フォトマスクを前記基板101に被せて紫外線露光を行い、現像液によって不要な部分を取り除いてパターンを形成後、エッチングプロセスによって、基板表面が露出した部分をエッチングし、その後、前記レジストをアセトンなどの有機溶剤等を用いて剥離し、キャビティ103を形成する。本工程はポジ型のフォトレジストによるものであるが、ネガ型であっても同様に形成可能である。   FIG. 6B is a diagram illustrating a process of forming cavities 103 (concave portions) arranged at predetermined positions on the surface of the substrate 101. The cavity 103 is formed using a photolithography technique or an etching technique. Although not shown, after a resist is applied to the surface of the substrate 101 by a spin coat method, a spray coat method, or the like, a photomask is placed on the substrate 101 and ultraviolet exposure is performed, and unnecessary portions are removed with a developer. After the pattern is formed, the exposed portion of the substrate surface is etched by an etching process, and then the resist is removed using an organic solvent such as acetone to form the cavity 103. Although this step is based on a positive type photoresist, a negative type can be formed in the same manner.

(c)は前記キャビティ103内に搭載する電子部品と外部端子とを接続するための貫通電極用の貫通孔104を形成する工程を示す図である。前記キャビティ103の形成と同様にフォトリソグラフィーによってパターンを形成した後、所定位置をドライおよびウェットエッチングによって絶縁膜102までエッチングを行い貫通孔104を形成する。   (C) is a diagram illustrating a process of forming a through hole 104 for a through electrode for connecting an electronic component mounted in the cavity 103 and an external terminal. Similar to the formation of the cavity 103, a pattern is formed by photolithography, and then a predetermined position is etched to the insulating film 102 by dry and wet etching to form a through hole 104.

(d)は、前記基板101の表面に絶縁膜105を形成する工程を示す図であり、後の工程で前記貫通孔104内を導電性部材で充填する際に、前記基板101と電気的絶縁を取るために形成される。前記絶縁膜105は、スパッタリング法やCVD法によって成膜されたものであり、例えばシリコン酸化膜(SiO)である。 (D) is a diagram showing a step of forming an insulating film 105 on the surface of the substrate 101. When the inside of the through hole 104 is filled with a conductive member in a later step, the substrate 101 is electrically insulated. Formed to take. The insulating film 105 is formed by sputtering or CVD, and is, for example, a silicon oxide film (SiO 2 ).

続いて、前記貫通孔104内に導電性部材を充填する工程を実施する。導電性部材として種々のものが選択可能であるが、小径の孔内を充填させるには電解メッキが適している。
(e)は前記絶縁膜上に共通電極膜106を形成する工程を示す図である。共通電極膜106の形成は、貫通孔104内に電解メッキを行うための前処理であり、まず前記基板101上の前記絶縁膜105上にスパッタリング法や真空蒸着法によって形成する。前記共通電極膜106の材料は、例えば金(Au)である。
Subsequently, a step of filling the through hole 104 with a conductive member is performed. Various conductive members can be selected, but electrolytic plating is suitable for filling the small-diameter holes.
(E) is a diagram showing a step of forming a common electrode film 106 on the insulating film. The formation of the common electrode film 106 is a pretreatment for performing electroplating in the through-hole 104. First, the common electrode film 106 is formed on the insulating film 105 on the substrate 101 by a sputtering method or a vacuum evaporation method. The material of the common electrode film 106 is, for example, gold (Au).

図4−2に示す(f)は前記共通電極上にフォトリソグラフィーによってマスクパターンを形成する工程である。前記共通電極膜106上に電解メッキ用レジスト膜107を塗布し、フォトマスク108を被せ、紫外線露光を行い、現像液によって光の照射された部分の除去を行い、前記電解メッキ用のパターンが形成される。本工程はポジ型のフォトレジストによるものであるが、ネガ型であっても同様に形成可能である。   (F) shown in FIG. 4B is a step of forming a mask pattern on the common electrode by photolithography. An electroplating resist film 107 is applied on the common electrode film 106, covered with a photomask 108, exposed to ultraviolet light, and a portion irradiated with light is removed by a developer to form the pattern for electroplating. Is done. Although this step is based on a positive type photoresist, a negative type can be formed in the same manner.

(g)は、前記貫通孔104内に導電性部材を充填する工程である。前記(e)、(f)工程によって、電解メッキ用の共通電極膜106と、パターン化された電解メッキ用レジスト膜107を形成した後、電解メッキを行い貫通孔104内に導電性部材109を充填する。尚、前記導電性部材は前記共通電極と同様に金(Au)である。   (G) is a step of filling the through hole 104 with a conductive member. After the common electrode film 106 for electrolytic plating and the patterned resist film 107 for electrolytic plating are formed by the steps (e) and (f), electrolytic plating is performed and the conductive member 109 is formed in the through hole 104. Fill. The conductive member is gold (Au) like the common electrode.

(h)は前記貫通孔104内を導電性部材で充填した後、前記電解メッキ用レジスト膜107および前記共通電極膜106を剥離する工程である。   (H) is a step of peeling the resist film 107 for electrolytic plating and the common electrode film 106 after filling the through hole 104 with a conductive member.

(i)は前記貫通孔104直下の前記基板101の裏面に形成されている絶縁膜102と、前記基板101の表面で前記貫通孔104内の絶縁膜105を開口させるためのマスクパターンを示す図である。この工程においてもフォトリソグラフィー、エッチングによって行われる。前記基板101の裏面の絶縁膜102上にレジスト膜110を塗布し、フォトマスクを被せ、紫外線露光を行い、現像液によって光の照射された部分の除去を行い、前記絶縁膜102開口用のパターンを形成する。本工程はポジ型のフォトレジストによるものであるが、ネガ型であっても同様に形成可能である。その後、ウェットおよびドライエッチングによって前記基板101の表面と裏面に形成された絶縁膜105および絶縁膜102を同時にエッチングし、導電性部材109を露出させる。   (I) is a diagram showing an insulating film 102 formed on the back surface of the substrate 101 immediately below the through hole 104 and a mask pattern for opening the insulating film 105 in the through hole 104 on the surface of the substrate 101. It is. This process is also performed by photolithography and etching. A resist film 110 is coated on the insulating film 102 on the back surface of the substrate 101, covered with a photomask, exposed to ultraviolet light, a portion irradiated with light by a developer is removed, and a pattern for opening the insulating film 102 is formed. Form. Although this step is based on a positive type photoresist, a negative type can be formed in the same manner. Thereafter, the insulating film 105 and the insulating film 102 formed on the front and back surfaces of the substrate 101 are simultaneously etched by wet and dry etching to expose the conductive member 109.

(j)は、前記キャビティ103内部に存在する電子部品搭載部(不図示)と外部端子(不図示)を前記導電性部材109を通して電気的に接続させるための工程を示す図である。前記基板101の裏面の絶縁膜102上に、スパッタリング法や真空蒸着法によって金属膜111を形成し、前記絶縁膜102および絶縁膜105の開口部上を金属で充填させ、前記導電性部材109と電気的接続を行う。   (J) is a diagram showing a process for electrically connecting an electronic component mounting portion (not shown) and an external terminal (not shown) existing in the cavity 103 through the conductive member 109. A metal film 111 is formed on the insulating film 102 on the back surface of the substrate 101 by a sputtering method or a vacuum deposition method, and the openings of the insulating film 102 and the insulating film 105 are filled with metal, and the conductive member 109 and Make electrical connections.

その後不図示ではあるが、前記電子部品パッケージ内に搭載される電子部品を前記キャビティ103内に搭載し、前記電子部品パッケージ上部に前記キャビティ内部を気密封止するために蓋をし、その後個々の製品毎に分割して一つの電子部品が完成する。   Thereafter, although not shown, an electronic component to be mounted in the electronic component package is mounted in the cavity 103, a lid is formed on the electronic component package to seal the inside of the cavity in a hermetic manner, and then each individual component is sealed. One electronic component is completed by dividing each product.

特開2007−267101号公報JP 2007-267101 A

しかしながら、前述の従来技術による電子部品パッケージの製造方法には、一部工程において以下のような問題点がある。   However, the above-described conventional method for manufacturing an electronic component package has the following problems in some steps.

前記電子部品パッケージを作製する上で、パッケージ基板としてシリコンを用いる場合には、シリコン自体も導電性を持つため、パッケージ基板となるシリコン全面はキャビティ内に収納される電子部品との導通を防ぐために、絶縁処理を行わなければならない。   In the case of using silicon as a package substrate in manufacturing the electronic component package, since the silicon itself has conductivity, the entire silicon surface serving as the package substrate is to prevent conduction with the electronic component housed in the cavity. Insulation treatment must be performed.

前述した従来の製造工程では、まず、前記基板の裏面にスパッタリング法やCVD法等で絶縁膜を形成してキャビティおよび貫通孔を形成し、さらにキャビティと貫通孔形成後にも前記基板の表面にスパッタリング法やCVD法等で絶縁膜を形成しており、絶縁膜の成膜工程を2回に分けて行っている。したがって工数増の一因となっている。   In the conventional manufacturing process described above, first, an insulating film is formed on the back surface of the substrate by a sputtering method, a CVD method, or the like to form cavities and through-holes, and sputtering is performed on the surface of the substrate even after the cavities and through-holes are formed. An insulating film is formed by a method, a CVD method, or the like, and the film forming process of the insulating film is performed in two steps. Therefore, it contributes to the increase in man-hours.

例えば、前記基板に絶縁膜を形成する他の手法として、熱酸化法を用いて裏表ともに1回で絶縁処理を行う方法も考えられるが、前記キャビティや前記貫通孔形成前に熱酸化を行ってしまうと、前記基板の全面に絶縁膜が形成されるため、前記キャビティや前記貫通孔形成の前に絶縁膜を開口させなければならず、工数増になることは避けられない。   For example, as another method of forming an insulating film on the substrate, a method of performing an insulating treatment once on both sides using a thermal oxidation method is conceivable. However, thermal oxidation is performed before forming the cavity and the through hole. In other words, since an insulating film is formed on the entire surface of the substrate, the insulating film must be opened before the formation of the cavity and the through hole, and it is inevitable that the number of processes is increased.

また、電子部品パッケージを作製する上で、パッケージ基板としてSOI(Silicon on Insulator)ウェハを使用する事も考えられるが、前記SOIウェハ自体が多工程によって作製されるものであるため、一般的なシリコン基板に比べて高価になってしまう。   Moreover, when manufacturing an electronic component package, it is conceivable to use an SOI (Silicon on Insulator) wafer as a package substrate. However, since the SOI wafer itself is manufactured by a multi-step process, a general silicon is used. It becomes expensive compared with the substrate.

また、従来の製造方法では、貫通電極と外部端子の接続の際に、両者のコンタクトを可能にするため、絶縁膜の一部を開口させる工程が必要となっており、これも工数増の一要因となっていた。   Further, in the conventional manufacturing method, in order to enable contact between the through electrode and the external terminal, a step of opening a part of the insulating film is necessary, which also increases man-hours. It was a factor.

本発明は、上記問題点に鑑み、製造が容易且つ安価な電子部品パッケージの製造方法および電子部品パッケージを提供することを目的とするものである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an electronic component package manufacturing method and an electronic component package that are easy and inexpensive to manufacture.

前記目的を達成するため、本発明の電子部品パッケージの製造方法は、平板基板に電子部品を収納するためのキャビティを形成する工程と、前記キャビティの底面部の一部に前記平板基板底部に向かって孔径が小さくなるようにテーパー状の貫通孔を形成する工程と、前記平板基板のキャビティ形成面とこれに対向する面と前記貫通孔内面に絶縁膜を形成する工程と、前記キャビティ形成面と前記貫通孔内面に形成された前記絶縁膜上に金属膜を形成する工程と、前記貫通孔の最小径部近傍を導電性部材で塞いで貫通電極を形成する工程と、前記金属膜の内、電子部品搭載パッドと、該電子部品搭載パッドと前記貫通電極とを接続する接続配線部となる部位を残し、それ以外の不要な金属膜を除去して前記電子部品搭載パッドと前記接続配線部を形成する工程と、を有することを特徴とする。   In order to achieve the above object, an electronic component package manufacturing method of the present invention includes a step of forming a cavity for housing an electronic component in a flat substrate, and a portion of the bottom surface of the cavity toward the flat substrate bottom. Forming a tapered through-hole so as to reduce the hole diameter, forming a cavity forming surface of the flat plate substrate, a surface opposed thereto, and an insulating film on the inner surface of the through-hole, and the cavity forming surface, A step of forming a metal film on the insulating film formed on the inner surface of the through hole, a step of forming a through electrode by closing the vicinity of the minimum diameter portion of the through hole with a conductive member, The electronic component mounting pad and the connection wiring portion that connects the electronic component mounting pad and the through electrode are left, and other unnecessary metal films are removed to remove the electronic component mounting pad and the connection wiring. And having a step of forming a.

前記キャビティ形成面と貫通孔内面の前記絶縁膜上に金属膜を形成する工程は、スパッタリング法若しくは真空蒸着法であり、前記貫通孔の最小径部近傍を前記導電性部材で塞いで貫通電極を形成する工程は、前記金属膜を形成する工程と同時に行うことができる。   The step of forming a metal film on the insulating film on the cavity forming surface and the inner surface of the through hole is a sputtering method or a vacuum deposition method, and the through electrode is formed by closing the vicinity of the minimum diameter portion of the through hole with the conductive member. The step of forming can be performed simultaneously with the step of forming the metal film.

前記貫通孔の最小径部近傍を導電性部材で塞いで貫通電極を形成する工程は、電解メッキにより行うことができる。   The step of forming a through electrode by closing the vicinity of the minimum diameter portion of the through hole with a conductive member can be performed by electrolytic plating.

前記貫通孔の最小径部近傍を導電性部材で塞いで貫通電極を形成する工程は、導電性部材を貫通孔上部に設置した後、該導電性部材を加熱溶融して充填させることができる。   In the step of forming the through electrode by closing the vicinity of the minimum diameter portion of the through hole with a conductive member, the conductive member can be heated and melted and filled after the conductive member is placed on the top of the through hole.

前記平板基板はシリコン基板であり、キャビティを形成する工程と貫通孔を形成する工程は、エッチングにより形成することができる。   The flat substrate is a silicon substrate, and the step of forming a cavity and the step of forming a through hole can be formed by etching.

本発明の電子部品パッケージは、前記の電子部品パッケージの製造方法により、少なくとも、電子部品収納部、電子部品搭載パッド、貫通電極、前記電子部品搭載パッドと前記貫通電極を接続する接続配線部が形成されて成ることを特徴とする。   According to the electronic component package of the present invention, at least an electronic component storage unit, an electronic component mounting pad, a through electrode, and a connection wiring unit that connects the electronic component mounting pad and the through electrode are formed by the electronic component package manufacturing method. It is characterized by being made.

本発明によれば、前記基板にエッチングストップ層となる絶縁膜を形成する事なく、前記キャビティおよび前記貫通孔を形成した後、熱酸化法によって前記シリコン基板の表面と裏面に一括で絶縁膜を形成できるため、工程の簡略化が実現できる。   According to the present invention, after forming the cavity and the through hole without forming an insulating film to be an etching stop layer on the substrate, the insulating film is collectively formed on the front surface and the back surface of the silicon substrate by a thermal oxidation method. Since it can be formed, the process can be simplified.

また、貫通電極と外部端子の接続の際に、両者のコンタクトを可能にするために絶縁膜の一部を開口させる工程が必要なくなるので、工程の簡略化が実現できる。   In addition, when the through electrode and the external terminal are connected, a process of opening a part of the insulating film is not required to enable contact between the two electrodes, so that the process can be simplified.

以下、本発明の電子部品パッケージの製造方法について、図面に基づいて詳細に説明する。図1−1、図1−2は、本発明の電子部品パッケージの製造方法を説明する図で、(a)〜(f)は各工程における電子部品パッケージの状態を示す断面図である。   Hereinafter, the manufacturing method of the electronic component package of this invention is demonstrated in detail based on drawing. FIGS. 1-1 and 1-2 are views for explaining a method of manufacturing an electronic component package according to the present invention, and FIGS. 1A to 1F are cross-sectional views showing states of the electronic component package in each step.

図1−1(a)は、シリコン基板11の表面の所定位置に配列されるキャビティ12(凹部)を形成する工程である。不図示ではあるが、前記シリコン基板11の表面にレジストをスピンコート法やスプレーコート法等で塗布した後、フォトマスクを前記シリコン基板11の上部に被せて紫外線露光を行い、現像液によって不要な部分を取り除いてパターンを形成後、エッチングプロセスによってシリコン基板面が露出した部分をエッチングし、その後前記レジストをアセトンなどの有機溶剤等を用いて剥離し、キャビティ12が形成させる。尚、本工程はポジ型のフォトレジストを用いているが、ネガ型のフォトレジストを採用しても同様に形成可能である。   FIG. 1A is a process of forming cavities 12 (concave portions) arranged at predetermined positions on the surface of the silicon substrate 11. Although not shown, after a resist is applied to the surface of the silicon substrate 11 by spin coating or spray coating, a photomask is placed on the silicon substrate 11 and ultraviolet exposure is performed. After removing the portion and forming the pattern, the portion where the silicon substrate surface is exposed is etched by an etching process, and then the resist is removed using an organic solvent such as acetone to form the cavity 12. Note that although a positive type photoresist is used in this step, it can be similarly formed even if a negative type photoresist is employed.

(b)は前記キャビティ12内に搭載する電子部品と外部端子とを電気的に接続をするための貫通孔13を形成する工程を示す図である。前記キャビティ12形成同様にフォトリソグラフィーによって、貫通孔13以外の部分にレジストを残すようにパターン化し、ドライおよびウェットエッチングによって貫通孔13をテーパー状に形成する。テーパー状に形成する目的は、後に形成される前記電子部品パッケージ内の前記電子部品搭載パッド部14(破線で示す仮想線)と、前記貫通孔13から前記電子部品搭載パッド部14までの電気的接続の際に、金属膜が短絡しないように形成するためである。さらにこの時、前記貫通孔13の最小径部15の径は可能な限り小さくなるように形成するのが好ましい。   (B) is a figure which shows the process of forming the through-hole 13 for electrically connecting the electronic component mounted in the said cavity 12, and an external terminal. Similar to the formation of the cavity 12, patterning is performed by photolithography so that the resist is left in portions other than the through holes 13, and the through holes 13 are formed in a tapered shape by dry and wet etching. The purpose of forming the taper shape is to electrically connect the electronic component mounting pad portion 14 (virtual line indicated by a broken line) in the electronic component package to be formed later and the through hole 13 to the electronic component mounting pad portion 14. This is because the metal film is formed so as not to be short-circuited at the time of connection. Further, at this time, it is preferable that the diameter of the minimum diameter portion 15 of the through-hole 13 is formed to be as small as possible.

(c)は、前記キャビティ12、前記貫通孔13および前記シリコン基板11の全面に熱酸化法によってシリコン酸化膜16を形成する工程である。キャビティ12および貫通孔13が形成されたシリコン基板11を石英管炉の中などに入れ、高温で加熱する事によってシリコン基板11の表面にシリコン酸化膜16が形成される。この工程により、前記シリコン基板11の必要な部位に一括して絶縁膜の形成が可能となる。また、貫通孔13が完全に開口した状態で絶縁膜であるシリコン酸化膜16の形成を行うので、従来の製造方法に示したように、貫通電極と外部端子のコンタクトを可能にするために行う絶縁膜の一部を開口させる工程は必要なくなり、工程の簡略化が可能となる。   (C) is a step of forming a silicon oxide film 16 on the entire surface of the cavity 12, the through hole 13 and the silicon substrate 11 by a thermal oxidation method. A silicon oxide film 16 is formed on the surface of the silicon substrate 11 by placing the silicon substrate 11 in which the cavities 12 and the through holes 13 are formed in a quartz tube furnace and heating the silicon substrate 11 at a high temperature. By this step, an insulating film can be formed at a necessary portion of the silicon substrate 11 at once. Further, since the silicon oxide film 16 which is an insulating film is formed with the through hole 13 being completely opened, as shown in the conventional manufacturing method, it is performed to enable contact between the through electrode and the external terminal. A process of opening a part of the insulating film is not necessary, and the process can be simplified.

図1−2(d)は、前記シリコン基板11の全面に形成されたシリコン酸化膜16上に、電子部品と外部端子とを電気的に接続をさせるための電極配線となる金属膜17を形成する工程である。前記金属膜17は主にスパッタリング法や真空蒸着法などによって形成され、成膜される金属は特に制限はない。ただし、前記金属膜17は、シリコン基板11全面に形成す工程において、前記貫通孔13の最小径部15を金属膜17で充填することが可能であり、この観点からすれば、厚膜に形成可能な金属とすることが望ましい。また、スパッタリングや真空蒸着の際に、前記貫通孔13のテーパー部に金属膜17が堆積しやすくするために、斜方スパッタリング法や斜方蒸着法によって金属膜17を成膜するのが好ましい。こうすることにより、貫通孔13のテーパ−部への金属膜17の形成がし易く、確実なものとなる。前記貫通孔13はテーパー状に形成され、前記シリコン基板11の裏面側で貫通孔幅を極微小の径に形成されているので、金属膜17の形成時に用いられるスパッタリング法や真空蒸着法などによって、極微小な最径部に金属膜17を充填させ貫通電極とすることができる。   In FIG. 1-2D, a metal film 17 is formed on the silicon oxide film 16 formed on the entire surface of the silicon substrate 11 to be an electrode wiring for electrically connecting the electronic component and the external terminal. It is a process to do. The metal film 17 is mainly formed by a sputtering method, a vacuum deposition method, or the like, and the metal to be formed is not particularly limited. However, in the step of forming the metal film 17 on the entire surface of the silicon substrate 11, the minimum diameter portion 15 of the through hole 13 can be filled with the metal film 17. From this viewpoint, the metal film 17 is formed in a thick film. Desirable metals are desirable. Further, in order to facilitate the deposition of the metal film 17 on the tapered portion of the through hole 13 during sputtering or vacuum deposition, the metal film 17 is preferably formed by the oblique sputtering method or the oblique evaporation method. By doing so, it is easy to form the metal film 17 on the tapered portion of the through hole 13 and it is reliable. The through-hole 13 is formed in a tapered shape, and the width of the through-hole is formed on the back surface side of the silicon substrate 11 with a very small diameter. The through-electrode can be formed by filling the metal film 17 in the extremely small diameter portion.

図6は、斜方蒸着法の概念図である。斜方蒸着は、真空蒸着法であれば蒸着源52に対して成膜されるシリコン基板56は平行に設置されるが、基板ホルダー53から真空チャンバー55の外に出された基板ホルダー回転棒54を回転させることによって、基板に意中の角度を付けて真空蒸着が可能となる。この斜方蒸着法によれば、成膜される金属にあえて膜厚分布を形成することが可能になったり、シリコン基板56を平行に置いた場合に金属膜が付着しにくい部分も基板ホルダー53の回転によって成膜しやすくなる。尚、斜方スパッタリング法を採用する場合にも、その概念図は図6とほぼ同様である。   FIG. 6 is a conceptual diagram of the oblique deposition method. In the oblique vapor deposition, the silicon substrate 56 to be deposited with respect to the vapor deposition source 52 is installed in parallel in the case of the vacuum vapor deposition method, but the substrate holder rotating rod 54 that is taken out of the vacuum chamber 55 from the substrate holder 53. By rotating, vacuum deposition can be performed at an intended angle on the substrate. According to this oblique vapor deposition method, it becomes possible to form a film thickness distribution on the metal to be deposited, or a portion where the metal film is difficult to adhere when the silicon substrate 56 is placed in parallel is also the substrate holder 53. It becomes easy to form a film by the rotation. Note that the conceptual diagram of the oblique sputtering method is almost the same as that in FIG.

(e)は、前記キャビティ12内面と貫通孔13内面に成膜された金属膜17の内、貫通孔13内面の金属膜17とこれに連結するキャビティ12底面部において電子部品搭載用パッド部となる部位以外の金属膜17を除去する工程である。不図示ではあるが、ポジ型もしくはネガ型のレジストを前記金属膜17の表面に成膜し、その上にフォトマスクを被せ、紫外線露光を行い現像液に浸すことでパターニングし、露出した部分を金属エッチングによって除去して貫通孔13の最小径部15に金属膜17による貫通電極を形成し、これに連結した状態で、キャビティ12底面部に金属膜17による電子部品搭載パッドを形成する。貫通孔13のテーパー形状部に残る金属膜17が、電子部品搭載パッドと貫通電極を接続する接続配線部となる。   (E) of the metal film 17 formed on the inner surface of the cavity 12 and the inner surface of the through hole 13, the metal film 17 on the inner surface of the through hole 13, and the electronic component mounting pad portion on the bottom surface of the cavity 12 connected thereto. This is a step of removing the metal film 17 other than the portion to be formed. Although not shown, a positive-type or negative-type resist is formed on the surface of the metal film 17, and a photomask is placed on the resist, followed by ultraviolet exposure and patterning by immersing in a developing solution. A through electrode formed of the metal film 17 is formed on the minimum diameter portion 15 of the through hole 13 by metal etching, and an electronic component mounting pad formed of the metal film 17 is formed on the bottom surface of the cavity 12 while being connected to the through electrode. The metal film 17 remaining in the tapered portion of the through hole 13 becomes a connection wiring portion that connects the electronic component mounting pad and the through electrode.

(f)は、前記シリコン基板11裏面に金属膜18を形成する工程であり、この金属膜18がパターニングされることによって、前記キャビティ12内に搭載される電子部品と電気的に接続した外部端子用のパッドとなる。金属膜18は前記貫通孔13の最小径部15に露出する金属膜17と接触した状態になる。前記シリコン基板11裏面に、スパッタリング法もしくは真空蒸着法によって金属膜18を形成し、不図示ではあるが、この金属膜18をパターンニングし、所定の位置に外部端子用のパッド部を形成する。ここで、前記キャビティ12の上面に蓋をし、前記キャビティ内を真空封止する場合においては、その真空度の要求精度によっては、前記金属膜18を厚膜に形成することで貫通孔13の最小径部15近傍が厚膜化できるのでキャビティ内の真空度を保つ事が可能となる。   (F) is a step of forming a metal film 18 on the back surface of the silicon substrate 11, and by patterning the metal film 18, an external terminal electrically connected to an electronic component mounted in the cavity 12 It becomes the pad for. The metal film 18 comes into contact with the metal film 17 exposed at the minimum diameter portion 15 of the through hole 13. A metal film 18 is formed on the back surface of the silicon substrate 11 by a sputtering method or a vacuum deposition method. Although not shown, the metal film 18 is patterned to form a pad portion for an external terminal at a predetermined position. Here, when the upper surface of the cavity 12 is covered and the inside of the cavity is vacuum-sealed, depending on the required accuracy of the degree of vacuum, the metal film 18 may be formed into a thick film to form the through-hole 13. Since the vicinity of the minimum diameter portion 15 can be thickened, the degree of vacuum in the cavity can be maintained.

図2は、他の実施例による電子部品パッケージの製造方法を説明する図である。ここでは、前記実施例1で示した工程の中で、前記貫通孔内の導電性部材の充填方法について他の例を説明する。具体的には前記実施例1で示したように、前記貫通孔の最底部の径は可能な限り小さいものになるように形成するが、それが不可能な場合の前記貫通孔内の導電性部材充填方法について述べるものとする。   FIG. 2 is a diagram for explaining a method of manufacturing an electronic component package according to another embodiment. Here, another example of the method for filling the conductive member in the through hole will be described in the process shown in the first embodiment. Specifically, as shown in the first embodiment, the diameter of the bottom part of the through hole is formed to be as small as possible, but the conductivity in the through hole when this is not possible. The member filling method will be described.

実施例1で説明したように、シリコン基板11表面にエッチングによってキャビティ12を形成し、その後再度エッチングによって貫通孔13を形成する。前記キャビティ12および前記貫通孔13のパターン形成はフォトリソグラフィーで行うものとし、使用レジストはポジ型・ネガ型ともに利用可能である。   As described in the first embodiment, the cavity 12 is formed on the surface of the silicon substrate 11 by etching, and then the through hole 13 is formed again by etching. The pattern formation of the cavity 12 and the through-hole 13 is performed by photolithography, and the resist used can be a positive type or a negative type.

その後、前記シリコン基板11および前記キャビティ12、前記貫通孔13の全面に1回の熱酸化法によってシリコン酸化膜16を形成し、前記シリコン基板11表面すなわち前記キャビティ12と前記貫通孔13内の前記シリコン酸化膜16上に金属膜17を形成する。この前記金属膜17はスパッタリング法もしくは真空蒸着法によって形成される。これによって、図2(a)に示すような状態となる。なお、本実施例においては前記金属膜17を薄く形成した時の状態であり、この時点では、まだ貫通孔13の最小径部は塞がれておらず開口した状態である。   Thereafter, a silicon oxide film 16 is formed on the entire surface of the silicon substrate 11, the cavity 12, and the through-hole 13 by a single thermal oxidation method, and the surface of the silicon substrate 11, that is, the cavity 12 and the through-hole 13. A metal film 17 is formed on the silicon oxide film 16. The metal film 17 is formed by sputtering or vacuum deposition. As a result, the state shown in FIG. In this embodiment, the metal film 17 is thinly formed. At this point, the minimum diameter portion of the through hole 13 is not closed and is open.

図2(b)は、前記金属膜17上に電解メッキ用のマスクパターンを形成する工程である。前記金属膜上にレジスト膜19を塗布し、フォトマスク20を被せて紫外線露光を行い、現像液によって光の照射された部分の除去を行い、電解メッキ用のパターンを形成する。本工程はポジ型のフォトレジストによるものであるが、ネガ型であっても同様に形成可能である。   FIG. 2B is a process of forming a mask pattern for electrolytic plating on the metal film 17. A resist film 19 is applied on the metal film, a photomask 20 is placed thereon, UV exposure is performed, a portion irradiated with light is removed by a developer, and a pattern for electrolytic plating is formed. Although this step is based on a positive type photoresist, a negative type can be formed in the same manner.

図2(c)は、電解メッキにより貫通孔13内を導電性部材で充填する工程である。これによって前記レジスト膜19の無い部分に導電性部材として電解メッキ膜21が形成され、貫通孔13の最小径部が電解メッキ膜21で充填され貫通電極となる。   FIG. 2C shows a step of filling the through hole 13 with a conductive member by electrolytic plating. As a result, an electrolytic plating film 21 is formed as a conductive member in a portion where the resist film 19 is not present, and the minimum diameter portion of the through hole 13 is filled with the electrolytic plating film 21 to form a through electrode.

図2(d)は、前記電解メッキ用のレジスト19と不要部分の前記金属膜を剥離する工程である。金属膜17を剥離する場合には、不図示ではあるが、前記貫通孔13内と電子部品パッドとなる部位とその両者を接続する配線のみを残すようにしてフォトリソグラフィーによってパターン化し、エッチングによって不要部分を剥離除去する。   FIG. 2D shows a step of peeling off the resist 19 for electrolytic plating and the unnecessary metal film. When the metal film 17 is peeled off, although not shown in the drawing, it is patterned by photolithography so as to leave only the portion in the through-hole 13 and the part to be the electronic component pad and the wiring connecting both, and unnecessary by etching. Peel and remove the part.

図2(e)は前記キャビティ12内部と電子部品パッケージの外部端子を電気的に接続させるための工程を示す図である。前記シリコン基板11の裏面のシリコン酸化膜16上に、スパッタリング法や真空蒸着法によって金属膜22を形成し、前記絶縁膜開口部上を金属で充填させ、前記貫通孔13内の電解メッキ膜21と電気的接続を行う。外部端子は前記金属膜22を任意形状にパターニングして形成する。   FIG. 2E is a diagram showing a process for electrically connecting the inside of the cavity 12 and the external terminals of the electronic component package. A metal film 22 is formed on the silicon oxide film 16 on the back surface of the silicon substrate 11 by a sputtering method or a vacuum deposition method, and the insulating film opening is filled with a metal, and the electrolytic plating film 21 in the through hole 13 is filled. And make electrical connection. The external terminal is formed by patterning the metal film 22 into an arbitrary shape.

前記した通り、導電性部材の充填に電解メッキを用いることによって、前記貫通孔13内への導電性部材の充填が容易且つ確実となり、キャビティ12内の気密性の確保も充分なものとなる。   As described above, by using electrolytic plating for filling the conductive member, the filling of the conductive member into the through-hole 13 becomes easy and reliable, and the airtightness in the cavity 12 is sufficiently ensured.

図3は、さらに他の実施例による電子部品パッケージの製造方法を説明する図である。ここでは、前記実施例1で示した工程の中で、前記貫通孔内の充填方法について他の例を説明する。具体的には前記実施例1で示したように、前記貫通孔の最底部の径は可能な限り小さいものになるように形成するが、それが不可能な場合の前記貫通孔充填の方法例について述べるものとする。   FIG. 3 is a view for explaining a method of manufacturing an electronic component package according to still another embodiment. Here, another example of the filling method in the through hole will be described in the steps shown in the first embodiment. Specifically, as shown in the first embodiment, the diameter of the bottom part of the through hole is formed to be as small as possible, but the method of filling the through hole when this is not possible Shall be described.

前記実施例1のように、シリコン基板表面11にエッチングによってキャビティ12を形成し、その後再度エッチングによって貫通孔13を形成する。前記キャビティ12および前記貫通孔13のパターン形成はフォトリソグラフィーで行うものとし、使用レジストはポジ型・ネガ型ともに形成可能である。   As in the first embodiment, the cavity 12 is formed on the silicon substrate surface 11 by etching, and then the through hole 13 is formed again by etching. The pattern formation of the cavity 12 and the through-hole 13 is performed by photolithography, and the resist used can be formed in either a positive type or a negative type.

その後、前記シリコン基板11および前記キャビティ12、前記貫通孔13の全面に1回の熱酸化法によってシリコン酸化膜16を形成し、前記シリコン基板11表面すなわち前記キャビティ12と前記貫通孔13内の前記シリコン酸化膜16上に金属膜17を形成する。この金属膜17はスパッタリング法もしくは真空蒸着法によって形成される。これによって、図3(a)で示したような状態になる。なお、本図は金属膜17を薄く形成した時の状態であり、この時点では、まだ前記貫通孔13の最小径部は塞がれておらず開口した状態である。   Thereafter, a silicon oxide film 16 is formed on the entire surface of the silicon substrate 11, the cavity 12, and the through-hole 13 by a single thermal oxidation method, and the surface of the silicon substrate 11, that is, the cavity 12 and the through-hole 13. A metal film 17 is formed on the silicon oxide film 16. This metal film 17 is formed by sputtering or vacuum deposition. As a result, the state as shown in FIG. This figure shows a state when the metal film 17 is thinly formed. At this time, the minimum diameter portion of the through-hole 13 is not closed and opened.

図3(b)は、前記貫通孔13部に導電性部材であるハンダボール23を設置する工程である。少なくとも、前記貫通孔13のキャビティ12側の最大径よりも小さい径を持つ前記ハンダボール23を前記貫通孔13のキャビティ側に搭載する。   FIG. 3B is a step of installing a solder ball 23 as a conductive member in the through hole 13. At least the solder ball 23 having a diameter smaller than the maximum diameter of the through hole 13 on the cavity 12 side is mounted on the cavity side of the through hole 13.

図3(c)は前記ハンダボール23を溶融した前記貫通孔内を充填する工程である。前記キャビティ12側からレーザー光を照射する事によって前記ハンダボール23が溶融して貫通孔13が充填され貫通電極となる。   FIG. 3C shows a process of filling the through hole in which the solder ball 23 is melted. By irradiating laser light from the cavity 12 side, the solder ball 23 is melted and the through hole 13 is filled to form a through electrode.

図3(d)は、前記金属膜17を剥離する工程である。金属膜17を剥離する場合には、不図示ではあるが、前記貫通孔13と電子部品パッドとその両者を接続する接続配線部のみを残すようにフォトリソグラフィーによってパターニングし、エッチングによって不要部分を剥離除去する。   FIG. 3D is a process of peeling the metal film 17. When the metal film 17 is peeled off, although not shown, patterning is performed by photolithography so as to leave only the through hole 13, the electronic component pad, and the connection wiring portion connecting both of them, and unnecessary portions are peeled off by etching. Remove.

図3(e)は前記キャビティ12内部と電子部品パッケージの外部端子を電気的に接続させるための工程を示す図である。前記シリコン基板11の裏面のシリコン酸化膜16上に、スパッタリング法や真空蒸着法によって金属膜24を形成する。これにより、前記貫通孔13の最小径部に露出する導電性部材(溶融したハンダボール13)と前記金属膜24が接触し、電気的接続が可能となる。   FIG. 3E is a diagram showing a process for electrically connecting the inside of the cavity 12 and the external terminals of the electronic component package. A metal film 24 is formed on the silicon oxide film 16 on the back surface of the silicon substrate 11 by sputtering or vacuum evaporation. As a result, the conductive member (molten solder ball 13) exposed to the minimum diameter portion of the through hole 13 and the metal film 24 come into contact with each other, and electrical connection becomes possible.

前記した通り、導電性部材の充填にハンダボールを用いることによって、前記貫通孔13内への導電性部材の充填が容易且つ確実となり、キャビティ12内の気密性の確保も充分なものとなる。外部端子は前記金属膜24を任意形状にパターニングして形成する。   As described above, by using a solder ball for filling the conductive member, the filling of the conductive member into the through hole 13 becomes easy and reliable, and the airtightness in the cavity 12 is sufficiently secured. The external terminal is formed by patterning the metal film 24 into an arbitrary shape.

前述の電子部品パージの製造方法によれば、製作が容易で信頼性の高い電子部品パッケージが得られる。   According to the electronic component purge manufacturing method described above, an electronic component package that is easy to manufacture and highly reliable can be obtained.

電子部品パッケージの実施方法を示した説明図。(実施例1)Explanatory drawing which showed the implementation method of an electronic component package. Example 1 電子部品パッケージの実施方法を示した説明図。(実施例1)Explanatory drawing which showed the implementation method of an electronic component package. Example 1 電子部品パッケージの実施方法を示した説明図。(実施例2)Explanatory drawing which showed the implementation method of an electronic component package. (Example 2) 電子部品パッケージの実施方法を示した説明図。(実施例3)Explanatory drawing which showed the implementation method of an electronic component package. (Example 3) 電子部品パッケージの実施方法を示した説明図。(従来例)Explanatory drawing which showed the implementation method of an electronic component package. (Conventional example) 電子部品パッケージの実施方法を示した説明図。(従来例)Explanatory drawing which showed the implementation method of an electronic component package. (Conventional example) 電子部品パッケージ内に電子部品を搭載した際の完成例。Example of completion when electronic components are mounted in an electronic component package. 斜方蒸着法の概念図Conceptual diagram of oblique deposition

符号の説明Explanation of symbols

11 シリコン基板
12 キャビティ
13 貫通孔
14 電子部品搭載用パット
15 貫通孔最小径部
16 シリコン酸化膜
17 金属膜
18 金属膜
19 レジスト膜
20 フォトマスク
21 電解メッキ膜
22 金属膜
23 ハンダボール
24 金属膜
41 圧電振動子
42 圧電振動片
43 電子部品搭載パッド
44 貫通電極
45 外部端子
46 電子部品パッケージ
47 蓋
48 パッケージ内部
49 貫通孔
50 絶縁膜
51 導電性部材
52 蒸着源
53 基板ホルダー
54 基板ホルダー回転棒
55 真空チャンバー
56 シリコン基板
101 基板
102 絶縁膜
103 キャビティ
104 貫通孔
105 絶縁膜
106 共通電極膜
107 電解メッキ用レジスト膜
108 フォトマスク
109 導電性部材
110 レジスト膜
111 金属膜
DESCRIPTION OF SYMBOLS 11 Silicon substrate 12 Cavity 13 Through-hole 14 Pad for electronic component mounting 15 Through-hole minimum diameter part 16 Silicon oxide film 17 Metal film 18 Metal film 19 Resist film 20 Photomask 21 Electroplating film 22 Metal film 23 Solder ball 24 Metal film 41 Piezoelectric vibrator 42 Piezoelectric vibrating piece 43 Electronic component mounting pad 44 Through electrode 45 External terminal 46 Electronic component package 47 Lid 48 Package inside 49 Through hole 50 Insulating film 51 Conductive member 52 Deposition source 53 Substrate holder 54 Substrate holder rotating rod 55 Vacuum Chamber 56 Silicon substrate 101 Substrate 102 Insulating film 103 Cavity 104 Through hole 105 Insulating film 106 Common electrode film 107 Resist film for electroplating 108 Photomask 109 Conductive member 110 Resist film 111 Metal film

Claims (6)

平板基板に電子部品を収納するためのキャビティを形成する工程と、
前記キャビティの底面部の一部に前記平板基板底部に向かって孔径が小さくなるようにテーパー状の貫通孔を形成する工程と、
前記平板基板のキャビティ形成面とこれに対向する面と前記貫通孔内面に絶縁膜を形成する工程と、
前記キャビティ形成面と前記貫通孔内面に形成された前記絶縁膜上に金属膜を形成する工程と、
前記貫通孔の最小径部近傍を導電性部材で塞いで貫通電極を形成する工程と、
前記金属膜の内、電子部品搭載パッドと、該電子部品搭載パッドと前記貫通電極とを接続する接続配線部となる部位を残し、それ以外の不要な金属膜を除去して前記電子部品搭載パッドと前記接続配線部を形成する工程と、
を有することを特徴とする電子部品パッケージの製造方法。
Forming a cavity for storing electronic components on a flat substrate;
Forming a tapered through hole in a part of the bottom surface of the cavity so that the hole diameter decreases toward the flat substrate bottom;
Forming an insulating film on the cavity forming surface of the flat plate substrate, a surface facing the cavity forming surface, and the inner surface of the through hole;
Forming a metal film on the insulating film formed on the cavity forming surface and the inner surface of the through hole;
Forming a through electrode by closing the vicinity of the minimum diameter portion of the through hole with a conductive member;
Of the metal film, the electronic component mounting pad is left, and the portion that becomes the connection wiring portion for connecting the electronic component mounting pad and the through electrode is left, and the other unnecessary metal film is removed to remove the electronic component mounting pad. And forming the connection wiring portion,
A method of manufacturing an electronic component package, comprising:
前記キャビティ形成面と貫通孔内面の前記絶縁膜上に金属膜を形成する工程は、スパッタリング法若しくは真空蒸着法であり、前記貫通孔の最小径部近傍を前記導電性部材で塞いで貫通電極を形成する工程は、前記金属膜を形成する工程と同時に行うことを特徴とする請求項1に記載の電子部品パッケージの製造方法。   The step of forming a metal film on the insulating film on the cavity forming surface and the inner surface of the through hole is a sputtering method or a vacuum deposition method, and the through electrode is formed by closing the vicinity of the minimum diameter portion of the through hole with the conductive member. The method of manufacturing an electronic component package according to claim 1, wherein the forming step is performed simultaneously with the step of forming the metal film. 前記貫通孔の最小径部近傍を導電性部材で塞いで貫通電極を形成する工程は、電解メッキにより行うことを特徴とする請求項1に記載の電子部品パッケージの製造方法。   2. The method of manufacturing an electronic component package according to claim 1, wherein the step of forming a through electrode by closing the vicinity of the minimum diameter portion of the through hole with a conductive member is performed by electrolytic plating. 前記貫通孔の最小径部近傍を導電性部材で塞いで貫通電極を形成する工程は、導電性部材を貫通孔上部に設置した後、該導電性部材を加熱溶融して充填させることを特徴とする請求項1に記載の電子部品パッケージの製造方法。   The step of forming a through electrode by closing the vicinity of the minimum diameter portion of the through hole with a conductive member is characterized in that after the conductive member is placed on the through hole, the conductive member is heated and melted and filled. The method of manufacturing an electronic component package according to claim 1. 前記平板基板はシリコン基板であり、キャビティを形成する工程と貫通孔を形成する工程は、エッチングにより形成することを特徴とする請求項1から4のいずれか1つに記載の電子部品パッケージの製造方法。   5. The electronic component package according to claim 1, wherein the flat substrate is a silicon substrate, and the step of forming a cavity and the step of forming a through hole are formed by etching. Method. 前記請求項1から5のいずれか1つに記載の電子部品パッケージの製造方法により、少なくとも、電子部品収納部、電子部品搭載パッド、貫通電極、前記電子部品搭載パッドと前記貫通電極を接続する接続配線部が形成されて成ることを特徴とする電子部品パッケージ。   The electronic component package manufacturing method according to claim 1, wherein at least an electronic component storage unit, an electronic component mounting pad, a through electrode, and a connection for connecting the electronic component mounting pad and the through electrode are provided. An electronic component package comprising a wiring portion.
JP2008074628A 2008-03-21 2008-03-21 Electronic component package manufacturing method and electronic component package Expired - Fee Related JP5108579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008074628A JP5108579B2 (en) 2008-03-21 2008-03-21 Electronic component package manufacturing method and electronic component package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008074628A JP5108579B2 (en) 2008-03-21 2008-03-21 Electronic component package manufacturing method and electronic component package

Publications (2)

Publication Number Publication Date
JP2009231509A true JP2009231509A (en) 2009-10-08
JP5108579B2 JP5108579B2 (en) 2012-12-26

Family

ID=41246588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008074628A Expired - Fee Related JP5108579B2 (en) 2008-03-21 2008-03-21 Electronic component package manufacturing method and electronic component package

Country Status (1)

Country Link
JP (1) JP5108579B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143501A (en) * 2012-01-11 2013-07-22 Seiko Instruments Inc Method of manufacturing electronic device, and electronic device
JP2013162295A (en) * 2012-02-03 2013-08-19 Seiko Epson Corp Base substrate, electronic device, manufacturing method of base substrate, and manufacturing method of electronic device
CN103385683A (en) * 2012-05-08 2013-11-13 奥林匹斯冬季和Ibe有限公司 Surgical instrument with a via hole
CN104299946A (en) * 2013-07-16 2015-01-21 精工电子有限公司 Lid body portion and electronic device package using the lid body portion and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184426A (en) * 2006-01-06 2007-07-19 Shinko Electric Ind Co Ltd Manufacturing method of semiconductor device
JP2007194553A (en) * 2006-01-23 2007-08-02 Matsushita Electric Ind Co Ltd Circuit board, and production method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184426A (en) * 2006-01-06 2007-07-19 Shinko Electric Ind Co Ltd Manufacturing method of semiconductor device
JP2007194553A (en) * 2006-01-23 2007-08-02 Matsushita Electric Ind Co Ltd Circuit board, and production method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143501A (en) * 2012-01-11 2013-07-22 Seiko Instruments Inc Method of manufacturing electronic device, and electronic device
JP2013162295A (en) * 2012-02-03 2013-08-19 Seiko Epson Corp Base substrate, electronic device, manufacturing method of base substrate, and manufacturing method of electronic device
CN103385683A (en) * 2012-05-08 2013-11-13 奥林匹斯冬季和Ibe有限公司 Surgical instrument with a via hole
JP2013233430A (en) * 2012-05-08 2013-11-21 Olympus Winter & Ibe Gmbh Surgical instrument with via
US9931020B2 (en) 2012-05-08 2018-04-03 Olympus Winter & Ibe Gmbh Surgical instrument with a via
CN104299946A (en) * 2013-07-16 2015-01-21 精工电子有限公司 Lid body portion and electronic device package using the lid body portion and electronic device
JP2015023052A (en) * 2013-07-16 2015-02-02 セイコーインスツル株式会社 Lid body part, package for electronic device using this lid body part, and electronic device
TWI613764B (en) * 2013-07-16 2018-02-01 精工電子有限公司 Lid body portion and electronic device package using the lid body portion and electronic device

Also Published As

Publication number Publication date
JP5108579B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
US6667551B2 (en) Semiconductor device and manufacturing thereof, including a through-hole with a wider intermediate cavity
US9437489B2 (en) Method of manufacturing a wiring substrate
TWI450346B (en) Methods for forming a through via
JP2003289073A (en) Semiconductor device and method of manufacturing semiconductor device
JP5568357B2 (en) Semiconductor device and manufacturing method thereof
JP2009515348A5 (en)
JP2006269968A (en) Semiconductor device and its manufacturing method
JP4055015B2 (en) Manufacturing method of semiconductor device
JP5108579B2 (en) Electronic component package manufacturing method and electronic component package
JP2001094039A (en) Forming method of insulating film, connection method of semiconductor chip, manufacturing method of the semiconductor chip, semiconductor device, substrate for connection and electronic apparatus
US20050215054A1 (en) Feed-through process and amplifier with feed-through
TWI437689B (en) Semiconductor device
JP2004119773A (en) Semiconductor device and its manufacturing method
JP2007258714A (en) Insulating structure suitable for high-temperature process, and its manufacturing method
JP5143688B2 (en) Method for manufacturing piezoelectric device
JP2010239180A (en) Method for manufacturing piezoelectric device
JP2019087768A (en) Semiconductor device
JP2006012895A (en) Semiconductor device and its manufacturing method
JP2012028453A (en) Metallic hermetic lid manufacturing method
JP2005332936A (en) Semiconductor device and method for manufacturing same
US20110272821A1 (en) Wiring Substrate Manufacturing Method and Wiring Substrate
JP2010068358A (en) Piezoelectric device and method of manufacturing the same
JP2010177477A (en) Production process of electronic component package
JP4477804B2 (en) Wiring board manufacturing method
JP5144141B2 (en) Wiring pattern forming method and electronic component mounting package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121005

R150 Certificate of patent or registration of utility model

Ref document number: 5108579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees