JP2009229325A - Method and device of evaluating performance of active magnetic shield - Google Patents

Method and device of evaluating performance of active magnetic shield Download PDF

Info

Publication number
JP2009229325A
JP2009229325A JP2008076930A JP2008076930A JP2009229325A JP 2009229325 A JP2009229325 A JP 2009229325A JP 2008076930 A JP2008076930 A JP 2008076930A JP 2008076930 A JP2008076930 A JP 2008076930A JP 2009229325 A JP2009229325 A JP 2009229325A
Authority
JP
Japan
Prior art keywords
magnetic field
compensation
shield
amount
environmental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008076930A
Other languages
Japanese (ja)
Other versions
JP5131758B2 (en
Inventor
Satoshi Ujigawa
智 宇治川
Toshifumi Niino
敏文 新納
Hiroyuki Hirano
裕之 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2008076930A priority Critical patent/JP5131758B2/en
Publication of JP2009229325A publication Critical patent/JP2009229325A/en
Application granted granted Critical
Publication of JP5131758B2 publication Critical patent/JP5131758B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To evaluate the performance of an active magnetic shield combined with a passive magnetic shield. <P>SOLUTION: In a magnetic shield room 1 in which an environmental magnetic field measurement sensor 12 and a compensation coil 10 for generating a compensation magnetic field to cancel out the environmental magnetic field are arranged, an disturbance coil 11 with the same shape for generating an disturbance magnetic field is disposed at the same position as the compensation coil 10, a test magnetic field signal V is applied to the disturbance coil 11 when the drive of the compensation coil 10 is stopped, and a magnetic field amount ratio Pv/Sv of a sensor position S and an object position P is detected. Thereafter, a magnetic field amount St after the compensation at the sensor position S is measured by driving the compensation coil 10 while applying to the disturbance coil an environmental magnetic field signal E according to an environmental magnetic field amount Se upon the design of shield. A compensation magnetic field amount Sc at the sensor position S is calculated from the magnetic field amount St after the compensation and the environmental magnetic field amount Se upon the design. A compensation magnetic field amount Pc at the object position P is calculated from the compensation magnetic field amount Sc and the magnetic field amount ratio Pv/Sv. The shield performance at the object position P is evaluated from the compensation magnetic field amount Pc and the environmental magnetic field amount Pe upon the design. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はアクティブ磁気シールドの性能評価方法及び装置に関し、とくに環境磁場を打ち消す補償磁場発生用の補償コイルが配置されたアクティブ磁気シールド室のシールド性能を評価する方法及び装置に関する。   The present invention relates to a method and apparatus for evaluating the performance of an active magnetic shield, and more particularly to a method and apparatus for evaluating the shielding performance of an active magnetic shield room in which a compensation coil for generating a compensation magnetic field that cancels an environmental magnetic field is arranged.

強磁気を利用する装置、例えば電子顕微鏡等のEB(Electron Beam、電子ビーム)装置、MRI(磁気共鳴画像診断)装置、NMR(核磁気共鳴)装置、SQUID(超電導量子干渉素子)装置等を建物内に設置する場合に、設置室からの漏洩磁場から周囲の人や機器を保護すること及び建物周囲の環境磁場(磁気ノイズ)から装置を保護して正常な動作を保証することを目的として、設置室に磁気シールドを施すことがある。例えば医療施設や半導体関連施設等においてMRI装置、EB装置等の設置室を、透磁率の高い電磁鋼板・パーマロイ等の磁性材料板(以下、磁性板ということがある)で囲まれたパッシブ(受動)磁気シールド室とする。一般にパッシブ磁気シールド室は壁面を磁性板で隙間なく覆うことで環境磁場の影響を遮断する密閉型であるが(特許文献1参照)、密閉型磁気シールド室は空気や光の透過性がないことから、図6に示すように複数の矩形短冊状の磁性板5を各々の長さ方向中心軸が同一面上に平行に並ぶように板厚方向に所要間隔で簾状に積層した簾体(以下、シールド簾体ということがある)2、3を壁面として用いた隙間のある開放型の磁気シールド室も開発されている(特許文献2参照)。   Buildings that use strong magnetism, such as electron beam (EB) devices such as electron microscopes, MRI (magnetic resonance imaging) devices, NMR (nuclear magnetic resonance) devices, SQUID (superconducting quantum interference device) devices, etc. For the purpose of protecting the surrounding people and equipment from the leakage magnetic field from the installation room and ensuring the normal operation by protecting the device from the environmental magnetic field (magnetic noise) around the building when installed inside The installation room may be magnetically shielded. For example, in medical facilities and semiconductor-related facilities, the installation room for MRI equipment, EB equipment, etc. is passively surrounded by magnetic material plates (hereinafter sometimes referred to as magnetic plates) such as high magnetic permeability steel plates and permalloy. ) Magnetic shield room. In general, a passive magnetic shield room is a sealed type that blocks the influence of an environmental magnetic field by covering the wall surface with a magnetic plate without any gap (see Patent Document 1), but the sealed magnetic shield room has no air or light permeability. As shown in FIG. 6, a plurality of rectangular strip-shaped magnetic plates 5 are laminated in a bowl shape at a required interval in the plate thickness direction so that the longitudinal center axes thereof are arranged in parallel on the same plane ( An open type magnetic shield room with a gap using the walls 2 and 3 as wall surfaces has also been developed (refer to Patent Document 2).

図6は、6つのシールド簾体2a、2b、2c、2d、2e、及び3で囲まれた開放型パッシブ磁気シールド室1を示す。5つのシールド簾体2a、2b、2c、2d、2eはそれぞれ対応する磁性板5の端縁6を重ね合わせにより列状に接合してシールド室1の側壁とし、その一端側のシールド簾体2aと他端側のシールド簾体2eとの間にシールド簾体3を配置してシールド室1の開閉部(ドアや窓等)としている。各簾体2、3の磁性板5の板厚方向の間隔から漏洩磁場が生じないように、その間隔を、磁性板5の磁束の通りやすさ(磁性板のパーミアンス)に比して間隔の磁束の通りやすさ(間隔のパーミアンス)が十分に小さくなるように設計する。また、シールド簾体2a、2eとシールド簾体3との隙間からも漏洩磁場が生じないように、その隙間に臨む各簾体2a、2e、3の磁性板5の端縁にその端縁の面積を板厚方向に拡張する磁性拡張板7を取り付け、簾体2aと3、及び簾体2eと3が磁性拡張板7により隙間を介して磁気的に結合するように設計する。必要に応じてその隙間に磁性目張り8を設けることで、隙間からの漏洩磁場を更に小さく抑える。図示例のシールド室1によれば、各簾体2、3の板厚方向間隔によって空気や光の透過性を確保しつつ、シールド室1からの漏洩磁場を最小限の磁性材料で効率的・経済的に抑えることができる。   FIG. 6 shows an open-type passive magnetic shield chamber 1 surrounded by six shield housings 2a, 2b, 2c, 2d, 2e and 3. The five shield housings 2a, 2b, 2c, 2d, and 2e are joined to form a side wall of the shield chamber 1 by overlapping the edge 6 of the corresponding magnetic plate 5 in a row, and the shield housing 2a on one end side thereof. The shield housing 3 is arranged between the shield housing 2e on the other end side and serves as an opening / closing part (door, window, etc.) of the shield chamber 1. In order to prevent a leakage magnetic field from occurring in the thickness direction of the magnetic plates 5 of the housings 2 and 3, the interval is compared with the ease of passing the magnetic flux of the magnetic plate 5 (permeance of the magnetic plate). The design is such that the ease of magnetic flux passage (permeance of spacing) is sufficiently small. Further, in order not to generate a leakage magnetic field from the gap between the shield housings 2a, 2e and the shield housing 3, the edge of the magnetic plate 5 of each of the housings 2a, 2e, 3 facing the gap is A magnetic expansion plate 7 that expands the area in the plate thickness direction is attached, and the housings 2a and 3 and the housings 2e and 3 are designed to be magnetically coupled by the magnetic expansion plate 7 via a gap. If necessary, magnetic leakage 8 is provided in the gap to further reduce the leakage magnetic field from the gap. According to the shield chamber 1 of the illustrated example, the leakage magnetic field from the shield chamber 1 can be efficiently reduced with a minimum magnetic material while ensuring the permeability of air and light by the interval in the thickness direction of the housings 2 and 3. It can be suppressed economically.

しかし、従来のパッシブ磁気シールドは何れも静的な性能・構造であるため、シールド室1からの漏洩磁場対策には有効であるが、建物周囲の鉄道の運行等で生じる変動する環境磁場からMRI装置やEB装置を効率的・経済的に保護できない場合がある。例えば、環境磁場変動のピークが一時的であっても、そのピークに対応するため多くの磁性材料を用いたシールド構造とする必要があり、シールド室1の壁が厚くなる等の問題も生じる。そのため、しばしばパッシブ磁気シールドに加えて又は代えて、図4に示すように、環境磁場の変動に応じて同振幅・逆位相の補償磁場を発生させて環境磁場の変動を打ち消すアクティブ(能動)磁気シールドが用いられる(特許文献3及び4参照)。   However, since all of the conventional passive magnetic shields have static performance and structure, they are effective for countermeasures against leakage magnetic fields from the shield room 1, but MRI from the fluctuating environmental magnetic field generated by the operation of the railway around the building, etc. In some cases, the device and the EB device cannot be protected efficiently and economically. For example, even if the peak of the environmental magnetic field fluctuation is temporary, it is necessary to provide a shield structure using a large number of magnetic materials in order to cope with the peak, and problems such as a thick wall of the shield chamber 1 occur. Therefore, in addition to or instead of a passive magnetic shield, as shown in FIG. 4, active magnetism that generates a compensation magnetic field having the same amplitude and opposite phase according to the environmental magnetic field fluctuation and cancels the environmental magnetic field fluctuation. A shield is used (see Patent Documents 3 and 4).

図4(B)に示すアクティブ磁気シールドは、同図(A)に示すようにシールド室1の中心部を通る直交3軸(X軸、Y軸、Z軸)にそれぞれ中心軸方向を一致させて配置した3組の補償コイル10、10、10と、シールド室1内の環境磁場を計測する磁気センサ12と、センサ12の計測信号に応じて補償磁場信号を算出する信号処理手段15と、その補償磁場信号に応じて補償コイル10、10、10を駆動する駆動電源14とを有する。図示例は2個のヘルムホルツコイル10X1、10X2からなるX軸方向の補償コイル10を示すが、Y軸方向及びZ軸方向の補償コイル10、10も同様の構成である。センサ12で計測された環境磁場(磁束密度)の変動を打ち消すために必要な補償磁場信号を信号処理手段15で算出し、その信号に応じた電力を駆動電源14から補償コイル10、10に供給して補償磁場を発生させることにより環境磁場の変動を打ち消す。例えば図6のパッシブ磁気シールドと図4のアクティブ磁気シールドとを組み合わせる(併用する)ことにより、変動する環境磁場にも対応可能なシールド室1を効率的・経済的に設計することが期待できる。 The active magnetic shield shown in FIG. 4 (B) has the central axis direction aligned with the three orthogonal axes (X axis, Y axis, Z axis) passing through the central portion of the shield chamber 1 as shown in FIG. 4 (A). Three sets of compensation coils 10 X , 10 Y , and 10 Z , a magnetic sensor 12 that measures an environmental magnetic field in the shield chamber 1, and a signal processing means that calculates a compensation magnetic field signal according to the measurement signal of the sensor 12 15 and a drive power supply 14 for driving the compensation coils 10 X , 10 Y , and 10 Z according to the compensation magnetic field signal. The illustrated example shows a compensation coil 10 X in the X-axis direction including two Helmholtz coils 10 X1 and 10 X2 , but the compensation coils 10 Y and 10 Z in the Y-axis direction and the Z-axis direction have the same configuration. The signal processing means 15 calculates a compensation magnetic field signal necessary for canceling the fluctuation of the environmental magnetic field (magnetic flux density) measured by the sensor 12, and the power corresponding to the signal is supplied from the drive power supply 14 to the compensation coils 10Y , 10Z. The compensation of the environmental magnetic field is canceled by generating a compensation magnetic field. For example, by combining (using together) the passive magnetic shield of FIG. 6 and the active magnetic shield of FIG. 4, it can be expected to efficiently and economically design the shield chamber 1 that can cope with a fluctuating environmental magnetic field.

特開平09−162585号公報JP 09-162585 A 特開2006−351598号公報JP 2006-351598 A 特開2002−232182号公報JP 2002-232182 A 特開2006−324651号公報JP 2006-324651 A

しかし、従来のアクティブ磁気シールドは、シールド室1のシールド性能が設計仕様に適合しているか否かを評価(検証)することが難しい問題点がある。一般的にはシールド施工前の環境磁場変動を測定してシールド性能の設計仕様を決定し、シールド施工後に環境磁場変動を再度測定してシールド室1の性能(設計仕様の適合性)を評価するが、通常は環境磁場変動に再現性がないため、設計仕様の決定時と異なる環境磁場変動を用いて適合性評価を行わざるを得ない。このように環境磁場を用いた性能評価方法では、たとえ長時間をかけて環境磁場変動の近似性を高めたとしても、設計仕様に直接反映された環境磁場変動に基づく精確なシールド性能の評価は困難である。とくにアクティブ磁気シールドがパッシブ磁気シールドと併用されている場合は、環境磁場がパッシブ磁気シールドの磁性材料の影響を受けるため、アクティブ磁気シールド単体の精確な性能評価を行うことが難しくなる。   However, the conventional active magnetic shield has a problem that it is difficult to evaluate (verify) whether or not the shield performance of the shield chamber 1 conforms to the design specification. Generally, the environmental magnetic field fluctuations before the shield construction is measured to determine the design specifications of the shield performance, and the environmental magnetic field fluctuations are measured again after the shield construction to evaluate the performance of the shield room 1 (conformity of the design specifications). However, since the environmental magnetic field fluctuations are usually not reproducible, compatibility evaluation must be performed using environmental magnetic field fluctuations different from those at the time of design specification determination. In this way, with the performance evaluation method using the environmental magnetic field, even if the proximity of the environmental magnetic field fluctuation is increased over a long time, accurate shielding performance evaluation based on the environmental magnetic field fluctuation directly reflected in the design specifications is not possible. Have difficulty. In particular, when the active magnetic shield is used in combination with the passive magnetic shield, the environmental magnetic field is affected by the magnetic material of the passive magnetic shield, making it difficult to accurately evaluate the performance of the active magnetic shield alone.

環境磁場変動の発生原因が十分に遠方に存在し、ほぼ一様な磁場分布を有する変動磁場が仮定できる場合は、図4(C)に示すように、シールド室1の外側に設置した外乱コイル11で人為的に環境磁場(外乱磁場)を発生させてアクティブ磁気シールドの性能評価を行う場合がある。しかし、一様な環境磁場を再現するにはシールド室1に比して大径の外乱コイル11を十分な遠方に設置する必要があり、そのような設置は実際上困難であることから、外乱コイル11を用いた性能評価方法でもアクティブ磁気シールドの信頼性の高い評価を行うことは困難であった。また、たとえ外乱コイル11の設置が可能であるとしても、パッシブ磁気シールドと併用されている場合は、外乱コイル11で意図した磁場分布がパッシブ磁気シールドの磁性材料の影響を受けて異なる分布となるため、アクティブ磁気シールドの精確な評価ができなくなる。パッシブ磁気シールドと組み合わされている場合でも、アクティブ磁気シールドの性能を適切に評価・検証できるシステムの開発が望まれている。   When the cause of the environmental magnetic field fluctuation exists sufficiently far away and a variable magnetic field having a substantially uniform magnetic field distribution can be assumed, a disturbance coil installed outside the shield chamber 1 as shown in FIG. 11 may artificially generate an environmental magnetic field (disturbance magnetic field) to evaluate the performance of the active magnetic shield. However, in order to reproduce a uniform environmental magnetic field, it is necessary to install a large-diameter disturbance coil 11 far enough as compared to the shield chamber 1, and such an installation is practically difficult. Even with the performance evaluation method using the coil 11, it is difficult to perform a highly reliable evaluation of the active magnetic shield. Even if the disturbance coil 11 can be installed, when it is used together with the passive magnetic shield, the magnetic field distribution intended by the disturbance coil 11 is different from the distribution due to the influence of the magnetic material of the passive magnetic shield. This makes it impossible to accurately evaluate the active magnetic shield. There is a demand for the development of a system that can appropriately evaluate and verify the performance of an active magnetic shield even when combined with a passive magnetic shield.

更に、アクティブ磁気シールドがパッシブ磁気シールドと組み合わされている場合は、シールド室1のセンサ12と離れた位置のアクティブ磁気シールド性能を評価することが難しい問題点もある。例えばMRI装置を設置するシールド室1では、シールド対象であるMRI装置(デュワ部)の設置位置でシールド性能を評価することが望ましいが、MRI装置(デュワ部)には励磁に伴って数T程度の強磁場が発生しているため、そのような対象位置にセンサ12を設置して環境磁場の微弱な変動(例えば100nT以下)を計測することは困難である(数T程度で100nT程度の精度を有する幅の広いダイナミックレンジを有するセンサ12が存在しない)。また、電子顕微鏡等のEB装置ではシールド対象が鏡筒部内であるため、そもそもセンサ12を対象位置に配置することができない。そのため、MRI装置やEB装置等を設置するアクティブ磁気シールド室1では、評価対象位置Pから離れたセンサ位置Sのセンサ12でシールド性能を評価せざるを得ないことが多い。   Further, when the active magnetic shield is combined with the passive magnetic shield, it is difficult to evaluate the active magnetic shield performance at a position away from the sensor 12 in the shield chamber 1. For example, in the shield room 1 in which the MRI apparatus is installed, it is desirable to evaluate the shielding performance at the installation position of the MRI apparatus (Dewar part) that is the shield target. Since a strong magnetic field is generated, it is difficult to install a sensor 12 at such a target position and measure a slight fluctuation (for example, 100 nT or less) of the environmental magnetic field (accuracy of about 100 nT in a few T). There is no sensor 12 with a wide dynamic range having In addition, in the EB apparatus such as an electron microscope, since the shield target is in the lens barrel portion, the sensor 12 cannot be disposed at the target position in the first place. For this reason, in the active magnetic shield chamber 1 in which an MRI apparatus, an EB apparatus, or the like is installed, it is often necessary to evaluate the shield performance with the sensor 12 at the sensor position S far from the evaluation target position P.

アクティブ磁気シールドがパッシブ磁気シールドと組み合わされている場合は、シールド室1内の相互に離れたセンサ位置S及び対象位置Pにおける環境磁場(又は外乱コイル11の発生する人為的な環境磁場)は、図5(P1)及び(S1)に示すように、パッシブ磁気シールドの磁性材料の影響によって異なるものとなる。また、アクティブ磁気シールドの補償コイル10の発生する補償磁場も、同図(P2)及び(S2)に示すように、磁性材料の影響を受けて設計仕様からのずれを生じる。従って、同図(P3)及び(S3)に示すように、同じシールド室1内であっても対象位置Pとセンサ位置Sとではシールド性能が全く異なる値となり、対象位置Pのシールド性能を離れたセンサ位置Sのシールド性能から推定することは困難である。パッシブ磁気シールドと組み合わされたアクティブ磁気シールドの性能を適切に評価・検証するためには、たとえ対象位置Pとセンサ位置Sとが離れていても、対象位置Pのシールド性能を適切に評価できることが望ましい。   When the active magnetic shield is combined with the passive magnetic shield, the environmental magnetic field (or the artificial environmental magnetic field generated by the disturbance coil 11) at the sensor position S and the target position P that are separated from each other in the shield chamber 1 is As shown in FIG. 5 (P1) and (S1), it differs depending on the influence of the magnetic material of the passive magnetic shield. Further, the compensation magnetic field generated by the compensation coil 10 of the active magnetic shield also deviates from the design specification due to the influence of the magnetic material, as shown in FIGS. Therefore, as shown in FIGS. (P3) and (S3), even in the same shield chamber 1, the shield performance at the target position P and the sensor position S is completely different, leaving the shield performance at the target position P apart. It is difficult to estimate from the shielding performance of the sensor position S. In order to appropriately evaluate and verify the performance of the active magnetic shield combined with the passive magnetic shield, it is possible to appropriately evaluate the shielding performance of the target position P even if the target position P and the sensor position S are separated. desirable.

そこで本発明の目的は、パッシブ磁気シールドと組み合わされた場合でもアクティブ磁気シールドの性能を適切に評価できる評価方法及び装置を提供することにある。   Accordingly, an object of the present invention is to provide an evaluation method and apparatus capable of appropriately evaluating the performance of an active magnetic shield even when combined with a passive magnetic shield.

図1の実施例及び図2の流れ図を参照するに、本発明によるアクティブ磁気シールドの性能評価方法は、環境磁場の計測センサ12とその環境磁場を打ち消す補償磁場発生用の補償コイル10とが配置されたアクティブ磁気シールド室1内の評価対象位置Pのシールド性能を評価する方法において、補償コイル10と同じ位置に同じ形状の外乱磁場発生用の外乱コイル11を配置し(図2のステップS002〜S005)、補償コイル10の駆動停止時に外乱コイル11に試験磁場信号Vを印加してセンサ位置S及び対象位置Pの間の磁場量比Pv/Svを検出し(ステップS006〜S007)、外乱コイルにセンサ位置Sのシールド設計時の環境磁場量Seに応じた環境磁場信号Eを印加しつつ補償コイル10を駆動してセンサ位置Sの補償後磁場量Stを計測し(ステップS008)、センサ位置Sの補償後磁場量Stと設計時の環境磁場量Seとの差(=St−Se)からセンサ位置Sの補償磁場量Scを算出し且つその補償磁場量Scと磁場量比Pv/Svとから対象位置Pの補償磁場量Pcを算出し(ステップS009)、対象位置Pの補償磁場量Pcと対象位置Pのシールド設計時の環境磁場量Peとにより対象位置Pのシールド性能を評価し(ステップS012)てなるものである。   Referring to the embodiment of FIG. 1 and the flowchart of FIG. 2, the active magnetic shield performance evaluation method according to the present invention includes an environmental magnetic field measurement sensor 12 and a compensation coil 10 for generating a compensation magnetic field that cancels the environmental magnetic field. In the method for evaluating the shielding performance at the evaluation target position P in the active magnetic shield chamber 1, the disturbance coil 11 for generating a disturbance magnetic field having the same shape is arranged at the same position as the compensation coil 10 (step S002 in FIG. 2). S005), when the driving of the compensation coil 10 is stopped, the test magnetic field signal V is applied to the disturbance coil 11 to detect the magnetic field amount ratio Pv / Sv between the sensor position S and the target position P (steps S006 to S007). The compensation coil 10 is driven while the environmental magnetic field signal E corresponding to the environmental magnetic field amount Se at the time of designing the shield at the sensor position S is applied to the sensor position S. The post-compensation magnetic field amount St is measured (step S008), and the compensation magnetic field amount Sc at the sensor position S is calculated from the difference (= St−Se) between the compensated magnetic field amount St at the sensor position S and the design environment magnetic field amount Se. In addition, the compensation magnetic field amount Pc at the target position P is calculated from the compensation magnetic field amount Sc and the magnetic field amount ratio Pv / Sv (step S009), and the environment at the time of the shield design of the compensation magnetic field amount Pc at the target position P and the target position P is calculated. The shield performance at the target position P is evaluated based on the magnetic field amount Pe (step S012).

また図1のブロック図を参照するに、本発明によるアクティブ磁気シールドの性能評価装置は、環境磁場の計測センサ12とその環境磁場を打ち消す補償磁場発生用の補償コイル10とが配置されたアクティブ磁気シールド室1内の評価対象位置Pのシールド性能を評価する装置において、シールド室1の補償コイル10と同じ位置に同じ形状で配置された外乱磁場発生用の外乱コイル11、センサ位置S及び対象位置Pのシールド設計時の環境磁場量Se、Peを記録する記憶手段23、補償コイル10の駆動停止時に外乱コイル11に試験磁場信号Vを印加してセンサ位置S及び対象位置Pの間の磁場量比Pv/Svを検出する検出手段24、外乱コイル11に設計時のセンサ位置Sの環境磁場量Seに応じた環境磁場信号Eを印加しつつ補償コイル10を駆動してセンサ位置Sの補償後磁場量Stを計測する計測手段25、センサ位置Sの補償後磁場量Stと設計時の環境磁場量Seとの差(=St−Se)からセンサ位置Sの補償磁場量Scを算出し且つその補償磁場量Scと磁場量比Pv/Svとから対象位置Pの補償磁場量Pcを算出する算出手段26、並びに対象位置Pの補償磁場量Pcと設計時の対象位置Pの環境磁場量Peとにより対象位置Pのシールド性能を評価する評価手段27を備えてなるものである。   Referring to the block diagram of FIG. 1, the active magnetic shield performance evaluation apparatus according to the present invention is an active magnetism in which an environmental magnetic field measurement sensor 12 and a compensation coil 10 for generating a compensation magnetic field that cancels the environmental magnetic field are arranged. In the apparatus for evaluating the shielding performance at the evaluation target position P in the shield chamber 1, the disturbance coil 11 for generating a disturbance magnetic field, the sensor position S, and the target position, which are arranged in the same position as the compensation coil 10 in the shield chamber 1 Storage means 23 for recording the amount of environmental magnetic field Se, Pe at the time of shield design of P, and the amount of magnetic field between sensor position S and target position P by applying test magnetic field signal V to disturbance coil 11 when driving of compensation coil 10 is stopped An environmental magnetic field signal E corresponding to the amount of environmental magnetic field Se at the sensor position S at the time of design is applied to the detecting means 24 for detecting the ratio Pv / Sv and the disturbance coil 11. Measuring means 25 for driving the compensation coil 10 to measure the post-compensation magnetic field amount St at the sensor position S, from the difference (= St−Se) between the post-compensation magnetic field amount St at the sensor position S and the design environment magnetic field amount Se. The calculating means 26 for calculating the compensation magnetic field amount Sc at the sensor position S and calculating the compensation magnetic field amount Pc at the target position P from the compensation magnetic field amount Sc and the magnetic field amount ratio Pv / Sv, and the compensation magnetic field amount Pc at the target position P And an evaluation means 27 for evaluating the shield performance of the target position P based on the amount of environmental magnetic field Pe at the target position P at the time of design.

好ましくは、図2のステップS010〜S011に示すように、センサ位置Sの補償後磁場量Stの計測(ステップS008)と対象位置Pの補償磁場量Pcの算出(ステップS009)とを複数回反復し、対象位置Pの補償磁場量Pcの複数回の平均値により対象位置Pのシールド性能を評価する。更に好ましくは、図1に示すように、シールド室1の内側又は外側周辺に検査位置Rを定め、試験磁場信号Vの印加時に検査位置Rとセンサ位置Sとの間の磁場量比Sv/Rvを検出し(図2のステップS007)、環境磁場信号Eの印加時にセンサ位置Sの補償後磁場量Stに代えて検査位置Rの補償後磁場量Rtを計測し且つその補償後磁場量Rtと磁場量比Sv/Rvとからセンサ位置Sの補償後磁場量Stを算出する(ステップS008)。   Preferably, as shown in steps S010 to S011 in FIG. 2, the measurement of the compensated magnetic field amount St at the sensor position S (step S008) and the calculation of the compensation magnetic field amount Pc at the target position P (step S009) are repeated a plurality of times. Then, the shielding performance of the target position P is evaluated based on the average value of the compensation magnetic field amount Pc at the target position P for a plurality of times. More preferably, as shown in FIG. 1, an inspection position R is defined inside or outside the shield chamber 1, and a magnetic field amount ratio Sv / Rv between the inspection position R and the sensor position S when the test magnetic field signal V is applied. (Step S007 in FIG. 2), when the environmental magnetic field signal E is applied, the compensated magnetic field amount Rt at the inspection position R is measured instead of the compensated magnetic field amount St at the sensor position S, and the compensated magnetic field amount Rt A post-compensation magnetic field amount St at the sensor position S is calculated from the magnetic field amount ratio Sv / Rv (step S008).

本発明によるアクティブ磁気シールドの性能評価方法及び装置は、シールド室1に補償磁場発生用の補償コイル10と外乱磁場発生用の外乱コイル11と同じ位置に同じ形状で配置し、補償コイル10の駆動停止時に外乱コイル11に試験磁場信号Vを印加してセンサ位置Sと対象位置Pとの間の磁場量比Pv/Svを検出したうえで、外乱コイルにセンサ位置Sのシールド設計時の環境磁場量Seに応じた環境磁場信号Eを印加しつつ補償コイル10を駆動してセンサ位置Sの補償後磁場量Stを計測し、センサ位置Sの補償後磁場量Stと設計時の環境磁場量Seとの差(=St−Se)からセンサ位置Sの補償磁場量Scを算出し、その補償磁場量Scと磁場量比Pv/Svとから対象位置Pの補償磁場量Pcを算出し、対象位置Pの補償磁場量Pcと対象位置Pのシールド設計時の環境磁場量Peとにより対象位置Pのシールド性能を評価するので、次の有利な効果を奏する。   The method and apparatus for evaluating the performance of an active magnetic shield according to the present invention are arranged in the same position in the shield chamber 1 at the same position as the compensation coil 10 for generating a compensation magnetic field and the disturbance coil 11 for generating a disturbance magnetic field, and driving the compensation coil 10. The test magnetic field signal V is applied to the disturbance coil 11 at the time of stopping to detect the magnetic field amount ratio Pv / Sv between the sensor position S and the target position P, and then the environmental magnetic field at the time of designing the shield at the sensor position S in the disturbance coil. The compensation coil 10 is driven while applying the environmental magnetic field signal E corresponding to the quantity Se to measure the compensated magnetic field quantity St at the sensor position S, and the compensated magnetic field quantity St at the sensor position S and the environmental magnetic field quantity Se at the time of design. The compensation magnetic field amount Sc at the sensor position S is calculated from the difference between the compensation position (= St−Se), and the compensation magnetic field amount Pc at the target position P is calculated from the compensation magnetic field amount Sc and the magnetic field amount ratio Pv / Sv. P Since evaluating the shielding performance of the target position P by the environmental magnetic field amount Pe when the shield design of 償磁 field amount Pc and the target position P, exhibits the following advantageous effects.

(イ)補償コイル10と外乱コイル11とを同じ位置に同じ形状で配置するので、補償コイル10の発生する補償磁場分布と外乱コイル11の発生する環境磁場分布とを一致させ、対象位置Pから離れたセンサ位置Sの計測値により対象位置Pのシールド性能を適切に評価することができる。
(ロ)また、アクティブ磁気シールドの設計仕様に直接反映された環境磁場量Se、Peを再現してシールド性能を評価するので、設計仕様に基づいたシールド性能の精確な評価・検証(検収)が可能となる。
(ハ)パッシブ磁気シールドを併用したアクティブ磁気シールド室1においても、磁性材料の影響を受ける環境磁場分布及び補償磁場分布を一致させることでシールド性能を直接的に評価することが可能であり、仮定された磁場分布(例えば均一な磁場分布)等を用いた性能評価方法に比して評価結果の信頼性を高めることできる。
(A) Since the compensation coil 10 and the disturbance coil 11 are arranged at the same position and in the same shape, the compensation magnetic field distribution generated by the compensation coil 10 and the environmental magnetic field distribution generated by the disturbance coil 11 are made to coincide with each other from the target position P. The shield performance of the target position P can be appropriately evaluated based on the measured value of the separated sensor position S.
(B) In addition, because the shield performance is evaluated by reproducing the environmental magnetic field quantities Se and Pe directly reflected in the design specifications of the active magnetic shield, accurate evaluation and verification (acceptance) of the shield performance based on the design specifications is possible. It becomes possible.
(C) Even in the active magnetic shield chamber 1 combined with a passive magnetic shield, it is possible to directly evaluate the shield performance by matching the environmental magnetic field distribution and the compensation magnetic field distribution affected by the magnetic material. The reliability of the evaluation result can be improved as compared with the performance evaluation method using the magnetic field distribution (for example, uniform magnetic field distribution).

(ニ)また、パッシブ磁気シールドの磁性材料の影響によりシールド性能評価のS/N比が劣化する場合でも、センサ位置Sの補償後磁場量Stの計測を繰り返すことにより、複数回の性能評価値の平均操作によってS/N比を簡単に改善できる。
(ホ)センサ位置Sの補償後磁場量Stを計測する比較的短時間の作業で対象位置Pのシールド性能を評価することができ、アクティブ磁気シールドの評価・検証作業の迅速化を図ると共に、シールド室周囲の環境磁界が弱い時間帯に素早く実施して性能評価の精度を高めることもできる。
(ヘ)シールド室1の内側だけでなく外側周辺でも外乱コイル11の環境磁場分布と補償コイル10の補償磁場分布とを一致させることができ、シールド室1に入室することなく室外周囲の検査位置Rで対象位置Pのシールド性能評価を実施することも期待できる。
(ト)センサ位置S及び対象位置Pの設計時の環境磁場量Se、Peと磁場量比Pv/Svとを記録しておけば、検収時だけでなく定期的な保守点検の際にも、シールド室1内の装置(MRI装置やEB装置)を稼動させたままシールド室1内の対象位置Pのシールド性能を評価することができる。
(D) Even when the S / N ratio of the shield performance evaluation deteriorates due to the influence of the magnetic material of the passive magnetic shield, the performance evaluation value can be obtained multiple times by repeating the measurement of the compensated magnetic field amount St at the sensor position S. The S / N ratio can be easily improved by the average operation.
(E) The shield performance of the target position P can be evaluated in a relatively short time of measuring the compensated magnetic field amount St of the sensor position S, and the evaluation and verification work of the active magnetic shield can be speeded up. It can be carried out quickly in a time zone where the environmental magnetic field around the shield room is weak to increase the accuracy of performance evaluation.
(F) The ambient magnetic field distribution of the disturbance coil 11 and the compensation magnetic field distribution of the compensation coil 10 can be matched not only inside the shield chamber 1 but also around the outside, so that the inspection position around the outside without entering the shield chamber 1 It can also be expected that the shield performance evaluation of the target position P is performed with R.
(G) If the environmental magnetic field quantities Se and Pe and the magnetic field quantity ratio Pv / Sv at the time of designing the sensor position S and the target position P are recorded, not only at the time of acceptance but also at the time of periodic maintenance and inspection. The shield performance of the target position P in the shield chamber 1 can be evaluated while the apparatus (MRI apparatus or EB apparatus) in the shield chamber 1 is operating.

図1は、パッシブ磁気シールドとアクティブ磁気シールドとが併用されたシールド室1に本発明の性能評価装置を適用した実施例を示す。図示例のシールド室1は漏洩磁場対策として、図6のパッシブ磁気シールド室1と同様、複数の磁性板5を板厚方向に所要間隔で積層したシールド簾体2で構成された周壁を有する。ただし、本発明の適用対象の磁気シールド室1はシールド簾体2を用いたものに限定されず、例えば特許文献1のように隙間のないパッシブ磁気シールドで周壁を構成したシールド室1であってもよい。また図示例のシールド室1は、図4のアクティブ磁気シールド室1と同様に、シールド室1内のセンサ位置Sで環境磁場を計測する磁気センサ12と、その環境磁場を打ち消す補償磁場を発生するためシールド室1の直交3軸(X軸、Y軸、Z軸)に中心軸方向を一致させて配置された補償コイル(例えばヘルムホルツコイル)10、10、10と、補償コイル10、10、10を駆動する駆動電源14と、センサ12及び駆動電源14に接続されたコンピュータ20とを有する。 FIG. 1 shows an embodiment in which the performance evaluation apparatus of the present invention is applied to a shield chamber 1 in which a passive magnetic shield and an active magnetic shield are used together. The shield chamber 1 in the illustrated example has a peripheral wall composed of a shield housing 2 in which a plurality of magnetic plates 5 are stacked at a required interval in the plate thickness direction, as a passive magnetic shield chamber 1 in FIG. However, the magnetic shield chamber 1 to which the present invention is applied is not limited to the one using the shield housing 2, and is, for example, a shield chamber 1 in which a peripheral wall is configured with a passive magnetic shield without a gap as in Patent Document 1. Also good. The shield chamber 1 in the illustrated example, like the active magnetic shield chamber 1 in FIG. 4, generates a magnetic sensor 12 that measures the environmental magnetic field at the sensor position S in the shield chamber 1 and a compensation magnetic field that cancels the environmental magnetic field. Therefore, the compensation coils (for example, Helmholtz coils) 10 X , 10 Y , 10 Z and the compensation coil 10 X are arranged so that the central axis direction coincides with the three orthogonal axes (X axis, Y axis, Z axis) of the shield chamber 1. It has a drive power supply 14 for driving 10 Y and 10 Z , and a computer 20 connected to the sensor 12 and the drive power supply 14.

図示例では、説明簡単化のためにアクティブ磁気シールドのX軸方向の補償コイル10X1、10X2のみを示しているが、Y軸方向及びZ軸方向の補償コイル10、10も同様の構成とすることができる。補償コイル10、10、10は、パッシブ磁気シールド(図示例ではシールド簾体)の内側又は外側の何れに配置してもよく、パッシブ磁気シールドの内部又は近傍に一体的に配置してもよい。また図示例のコンピュータ20は、磁気センサ12の計測信号を入力する入力手段21と、入力手段21の入力信号に応じて補償磁場信号を算出して駆動電源14に出力する信号処理手段15とを有する。また、入力手段21及び信号処理手段15の間にスイッチ手段28を設け、スイッチ手段28の制御により補償コイル10の駆動/駆動停止を切り替え可能としている。入力手段21、信号処理手段15、スイッチ手段28はそれぞれコンピュータ20の内蔵プログラムである。 In the illustrated example, only the compensation coils 10 X1 and 10 X2 in the X-axis direction of the active magnetic shield are shown for simplicity of explanation, but the same applies to the compensation coils 10 Y and 10 Z in the Y-axis direction and the Z-axis direction. It can be configured. The compensation coils 10 X , 10 Y , and 10 Z may be disposed either inside or outside the passive magnetic shield (shield housing in the illustrated example), and are integrally disposed inside or near the passive magnetic shield. Also good. The computer 20 in the illustrated example includes an input unit 21 that inputs a measurement signal of the magnetic sensor 12 and a signal processing unit 15 that calculates a compensation magnetic field signal according to the input signal of the input unit 21 and outputs the signal to the drive power source 14. Have. Further, a switch unit 28 is provided between the input unit 21 and the signal processing unit 15, and the driving / stopping of the compensation coil 10 can be switched by the control of the switch unit 28. The input means 21, the signal processing means 15, and the switch means 28 are programs built in the computer 20, respectively.

図示例の性能評価装置は、シールド室1の補償コイル10、10、10と同じ位置に同じ形状で配置された外乱磁場発生用の外乱コイル11、11、11と、外乱コイル11、11、11を駆動する駆動電源16と、コンピュータ20の記憶手段23及び後述する内蔵プログラムとで構成されている。外乱コイル11、11、11は例えば補償コイル10、10、10と同様のヘルムホルツコイルであるが、図示例では補償コイル10との識別容易化のために外乱コイル11を点線で表している。また、説明簡単化のためにX軸方向の外乱コイル11X1、11X2のみを示しているが、Y軸方向及びZ軸方向の外乱コイル11、11も同様の構成とすることができる。 The performance evaluation apparatus of the illustrated example includes disturbance coils 11 X , 11 Y , 11 Z for generating a disturbance magnetic field arranged in the same position at the same positions as the compensation coils 10 X , 10 Y , 10 Z of the shield chamber 1, and disturbances The driving power source 16 drives the coils 11 X , 11 Y , 11 Z , the storage unit 23 of the computer 20, and a built-in program to be described later. The disturbance coils 11 X , 11 Y , and 11 Z are Helmholtz coils similar to the compensation coils 10 X , 10 Y , and 10 Z , for example, but in the illustrated example, the disturbance coil 11 is indicated by a dotted line for easy identification from the compensation coil 10. It is represented by Further, for simplification of explanation, only the disturbance coils 11 X1 and 11 X2 in the X-axis direction are shown, but the disturbance coils 11 Y and 11 Z in the Y-axis direction and the Z-axis direction can also have the same configuration. .

コンピュータ20の記憶手段23には、後述するようにアクティブ磁気シールドの設計仕様決定の際のセンサ位置S及び評価対象位置Pの環境磁場量Se(t)、Pe(t)を記録する。対象位置Pは、上述したようにシールド室1内に設置する装置に応じて決定される(例えばMRI装置のデュワ部、電子顕微鏡の鏡筒部等)。またセンサ位置Sは、その装置の設置・操作の邪魔にならないシールド室1内の任意位置とすることができる。なお、図示例では対象位置Pに環境磁場量Peを計測する磁気センサ12aを設けているが、環境磁場量Peはセンサ位置Sの磁気センサ12を対象位置Pに移動させて計測することが可能であり、磁気センサ12aは本発明の性能評価装置に必須のものではない。またコンピュータ20は、性能評価のための内蔵プログラムとして、外乱コイル11の磁場信号を駆動電源16に出力する信号処理手段17と、その信号処理手段17を介して試験磁場信号Vを外乱コイル11に印加する検出手段24と、信号処理手段17を介して環境磁場信号Eを外乱コイル11に印加する計測手段25と、算出手段26及び評価手段27とを有している。   As will be described later, the sensor position S and the environmental magnetic field quantities Se (t) and Pe (t) at the evaluation target position P are recorded in the storage means 23 of the computer 20. The target position P is determined according to the apparatus installed in the shield chamber 1 as described above (for example, the dewar part of the MRI apparatus, the lens barrel part of the electron microscope, etc.). The sensor position S can be an arbitrary position in the shield chamber 1 that does not interfere with the installation / operation of the apparatus. In the illustrated example, the magnetic sensor 12a that measures the environmental magnetic field amount Pe is provided at the target position P. However, the environmental magnetic field amount Pe can be measured by moving the magnetic sensor 12 at the sensor position S to the target position P. Thus, the magnetic sensor 12a is not essential for the performance evaluation apparatus of the present invention. The computer 20 also has a signal processing means 17 for outputting the magnetic field signal of the disturbance coil 11 to the driving power supply 16 as a built-in program for performance evaluation, and the test magnetic field signal V to the disturbance coil 11 via the signal processing means 17. It has a detecting means 24 to be applied, a measuring means 25 for applying the environmental magnetic field signal E to the disturbance coil 11 via the signal processing means 17, a calculating means 26 and an evaluating means 27.

図2は、図1の性能評価装置を用いた本発明の性能評価方法の流れ図の一例を示す。以下、図2の流れ図を参照して本発明の性能評価方法及びコンピュータ20の内蔵プログラムの作用を説明する。先ずステップS001において上述したパッシブ磁気シールドをシールド室1に施工したのち、ステップS002においてシールド室1内のセンサ位置S及び対象位置Pの環境磁場量Se(t)、Pe(t)を磁気センサ12で計測し、計測した環境磁場量Se(t)、Pe(t)をコンピュータ20に入力して記憶手段23に記録する。環境磁場量Se(t)、Pe(t)の波形の一例を図3(P1)及び(S1)に示す。記録した環境磁場量Se、Peは、ステップS008においてシールド性能評価の際に環境磁場を再現するために利用する。なお、ステップS002においてセンサ位置Sが未確定である場合は、センサ位置Sの複数の候補点で環境磁場量Se(t)を計測することで対応してもよい。   FIG. 2 shows an example of a flowchart of the performance evaluation method of the present invention using the performance evaluation apparatus of FIG. The operation of the performance evaluation method of the present invention and the built-in program of the computer 20 will be described below with reference to the flowchart of FIG. First, in step S001, the above-described passive magnetic shield is applied to the shield chamber 1, and then in step S002, the sensor position S in the shield chamber 1 and the environmental magnetic field quantities Se (t) and Pe (t) at the target position P are set to the magnetic sensor 12. The measured environmental magnetic field quantities Se (t) and Pe (t) are input to the computer 20 and recorded in the storage means 23. An example of the waveforms of the environmental magnetic field quantities Se (t) and Pe (t) is shown in FIGS. 3 (P1) and (S1). The recorded environmental magnetic field quantities Se and Pe are used for reproducing the environmental magnetic field at the time of shield performance evaluation in step S008. In addition, when the sensor position S is undecided in step S002, you may respond | correspond by measuring environmental magnetic field amount Se (t) in the several candidate point of the sensor position S. FIG.

ステップS003において、記録した環境磁場量Se(t)、Pe(t)に基づきアクティブ磁気シールドの設計仕様(補償コイル10、10、10の配置位置や形状、磁気センサ12のセンサ位置S、信号処理手段15のプログラム等)を決定したのち、ステップS004において上述したアクティブ磁気シールドを施工する。具体的には、設計仕様に応じて補償コイル10、10、10及び磁気センサ12をシールド室1内に配置する。更にステップS005において、シールド室1の補償コイル10、10、10と同じ位置に、補償コイル10、10、10と同じ形状で外乱コイル11、11、11を配置する。図示例のようにパッシブ磁気シールドを併用したシールド室1では、磁性板5の影響により補償コイル10、10、10の発生する補償磁場分布が設計仕様と異なることも想定されるが、外乱コイル11、11、11を補償コイル10、10、10と同じ位置に同じ形状で配置することで、外乱コイル11の発生する環境磁場分布を補償コイル10の発生する補償磁場分布と一致させることできる。 In step S003, based on the recorded environmental magnetic field quantities Se (t) and Pe (t), the design specifications of the active magnetic shield (arrangement positions and shapes of the compensation coils 10 X , 10 Y , and 10 Z , the sensor position S of the magnetic sensor 12). After determining the program of the signal processing means 15, etc., the above-described active magnetic shield is applied in step S004. Specifically, the compensation coils 10 X , 10 Y , 10 Z and the magnetic sensor 12 are arranged in the shield chamber 1 according to the design specifications. Further, in step S005, the compensation coil 10 X of the shield room 1, in the same position as 10 Y, 10 Z, arranged the disturbance coil 11 X, 11 Y, 11 Z in the same shape as the compensation coil 10 X, 10 Y, 10 Z To do. In the shield chamber 1 that also uses a passive magnetic shield as in the illustrated example, it is assumed that the compensation magnetic field distribution generated by the compensation coils 10 X , 10 Y , and 10 Z is different from the design specification due to the influence of the magnetic plate 5. The disturbance coils 11 X , 11 Y , and 11 Z are arranged in the same position as the compensation coils 10 X , 10 Y , and 10 Z in the same shape, thereby compensating the environmental magnetic field distribution generated by the disturbance coil 11 by the compensation coil 10. It can be matched with the magnetic field distribution.

アクティブ磁気シールドを施工したのち、補償コイル10を駆動する前に、ステップS007においてコンピュータ20の検出手段24によって外乱コイル11に正弦波等の試験磁場信号Vを印加し、センサ位置S及び対象位置Pの試験磁場量Sv(t)、Pv(t)を磁気センサ12で計測し、計測された試験磁場量Sv(t)、Pv(t)を検出手段24に入力してセンサ位置S及び対象位置Pの間の磁場量比(振幅比)Pv/Svを検出する。補償コイル10が既に駆動されている場合は、ステップS006において例えば検出手段24によりスイッチ手段28を制御して補償コイル10の駆動を停止したうえで、ステップS007において磁場量比Pv/Svを検出する。補償コイル10の駆動停止は、例えばコンピュータ20に設けた手動スイッチ(図示せず)等で行うこともできる。試験磁場量Sv(t)、Pv(t)の波形の一例を図3(P2)及び(S2)に示す。図示例では、試験磁場量Sv(t)、Pv(t)の振幅比率から、例えば磁場量比Pv/Sv=1/0.7と検出することができる。検出した磁場量比Pv/Svはコンピュータ20の記憶手段23に記録し、後述するステップS009においてアクティブ磁気シールド駆動後の対象位置Pの補償磁場量Pt(t)を算出するために利用する。   After the active magnetic shield is applied and before the compensation coil 10 is driven, a test magnetic field signal V such as a sine wave is applied to the disturbance coil 11 by the detecting means 24 of the computer 20 in step S007, and the sensor position S and the target position P The test magnetic field amounts Sv (t) and Pv (t) are measured by the magnetic sensor 12, and the measured test magnetic field amounts Sv (t) and Pv (t) are input to the detection means 24 to detect the sensor position S and the target position. The magnetic field amount ratio (amplitude ratio) Pv / Sv between P is detected. If the compensation coil 10 has already been driven, the switch means 28 is controlled by the detecting means 24 in step S006 to stop the driving of the compensation coil 10, and then the magnetic field amount ratio Pv / Sv is detected in step S007. . The driving of the compensation coil 10 can be stopped by a manual switch (not shown) provided in the computer 20, for example. An example of the waveforms of the test magnetic field quantities Sv (t) and Pv (t) is shown in FIGS. 3 (P2) and (S2). In the illustrated example, the magnetic field amount ratio Pv / Sv = 1 / 0.7 can be detected from the amplitude ratio of the test magnetic field amounts Sv (t) and Pv (t), for example. The detected magnetic field amount ratio Pv / Sv is recorded in the storage means 23 of the computer 20 and used to calculate the compensation magnetic field amount Pt (t) at the target position P after the active magnetic shield driving in step S009 described later.

なお、ステップS007で用いる試験磁場の周波数は、磁場量比Pv/Svに対する環境磁場の影響をできるだけ小さく抑えてS/N比を高めるため、ステップS002で計測した環境磁場量Se(t)、Pe(t)のスペクトル強度が十分に低い周波数帯とすることが望ましい。例えば、ステップS002で記憶手段23に記録された環境磁場量Se(t)、Pe(t)の波形に応じて、商用電源周波数(50Hz/60Hz)及びその高調波周波数(100、150、200……Hz/120、180、240……Hz)による雑音や鉄道・自動車・エレベータ等の直流磁場による10Hz程度以下の雑音の混入を避けるため、検出手段24によりステップS007で用いる試験磁場の周波数帯を110Hz等と定める。   The frequency of the test magnetic field used in step S007 is the environmental magnetic field amount Se (t), Pe measured in step S002 in order to suppress the influence of the environmental magnetic field on the magnetic field amount ratio Pv / Sv as much as possible and increase the S / N ratio. It is desirable to use a frequency band in which the spectral intensity of (t) is sufficiently low. For example, the commercial power supply frequency (50 Hz / 60 Hz) and its harmonic frequencies (100, 150, 200...) According to the waveforms of the environmental magnetic field quantities Se (t) and Pe (t) recorded in the storage unit 23 in step S002. ... Hz / 120, 180, 240 ... Hz) and the frequency band of the test magnetic field used in step S007 by the detection means 24 in order to avoid mixing of noise of about 10 Hz or less due to DC magnetic fields such as railways, automobiles, and elevators. It is determined as 110 Hz.

また、ステップS007で用いる試験磁場の大きさは、パッシブ磁気シールドの非線形な特性の影響を受けないように、アクティブ磁気シールド駆動後の対象位置Pの補償後磁場量Pt(t)(又はセンサ位置Sの補償後磁場量St(t))と同程度とすることが望ましい。例えばアクティブ磁気シールドの補償コイル10がパッシブ磁気シールドの近傍に配置されている場合は、補償コイル10の発生する補償磁場の影響によってパッシブ磁気シールドの磁性材料の特性(パッシブ磁気シールド性能)が変動し、センサ位置S及び対象位置Pの磁場量比(振幅比)Pv/Svを変動させる可能性がある。アクティブ磁気シールド駆動後の磁場(設計磁場)と同程度の大きさの試験磁場を用いて磁場量比Pv/Svを検出しておけば、その磁場量比Pv/Svを用いてパッシブ磁気シールド駆動後の補償磁場量Pt、Stを算出する際に(後述のステップS009)、パッシブ磁気シールドの非線形な特性変動の影響を小さく抑えることができる。例えば、アクティブ磁気シールドによって対象位置Pの磁場量を10〜100nT程度に抑える設計の場合は、その設計仕様に合わせて試験磁場の大きさも10〜100nT程度とする。   Also, the magnitude of the test magnetic field used in step S007 is the compensated magnetic field amount Pt (t) (or sensor position) of the target position P after driving the active magnetic shield so that it is not affected by the nonlinear characteristics of the passive magnetic shield. It is desirable that the magnetic field amount be equal to the post-compensation magnetic field amount St (t)). For example, when the compensation coil 10 of the active magnetic shield is disposed in the vicinity of the passive magnetic shield, the characteristics of the magnetic material of the passive magnetic shield (passive magnetic shield performance) fluctuate due to the influence of the compensation magnetic field generated by the compensation coil 10. There is a possibility that the magnetic field amount ratio (amplitude ratio) Pv / Sv between the sensor position S and the target position P is changed. If the magnetic field amount ratio Pv / Sv is detected using a test magnetic field having the same magnitude as the magnetic field (design magnetic field) after driving the active magnetic shield, the passive magnetic shield drive is performed using the magnetic field amount ratio Pv / Sv. When calculating the subsequent compensation magnetic field amounts Pt and St (step S009 described later), it is possible to suppress the influence of nonlinear characteristic fluctuation of the passive magnetic shield. For example, in the case of a design in which the amount of magnetic field at the target position P is suppressed to about 10 to 100 nT by the active magnetic shield, the magnitude of the test magnetic field is also set to about 10 to 100 nT according to the design specifications.

次いでステップS008において、コンピュータ20の計測手段25により、ステップS002のセンサ位置Sのシールド設計時の環境磁場量Seに応じた環境磁場信号Eを外乱コイル11に印加する。例えばセンサ位置Sの磁場波形データSe(t)を磁気センサ12で計測してモニタしながら外乱コイル11を駆動し、図3(S3)に示すようにセンサ位置Sの磁場波形データSe(t)の振幅が同図(S1)に示す環境磁場量Se(t)の振幅と一致するように外乱コイル11に印加する環境磁場信号Eの電流等を調整し、シールド室1内のセンサ位置Sにシールド設計時の環境磁場量Seを再現する。またステップS008において、シールド室1内に環境磁場量Seを再現したのちアクティブ磁気シールドの補償コイル10を駆動し、センサ位置Sの補償後磁場量St(t)を磁気センサ12で計測して計測手段25に入力する。計測手段25で計測された補償後磁場量St(t)の波形の一例を図3(S4)に示す。   Next, in step S008, the measurement means 25 of the computer 20 applies an environmental magnetic field signal E corresponding to the environmental magnetic field amount Se at the time of designing the shield at the sensor position S in step S002 to the disturbance coil 11. For example, the disturbance coil 11 is driven while measuring and monitoring the magnetic field waveform data Se (t) at the sensor position S with the magnetic sensor 12, and the magnetic field waveform data Se (t) at the sensor position S as shown in FIG. 3 (S3). Is adjusted to the sensor position S in the shield chamber 1 by adjusting the current of the environmental magnetic field signal E applied to the disturbance coil 11 so as to match the amplitude of the environmental magnetic field amount Se (t) shown in FIG. Reproduces the amount of ambient magnetic field Se when designing a shield. In step S008, after reproducing the environmental magnetic field amount Se in the shield chamber 1, the compensation coil 10 of the active magnetic shield is driven, and the compensated magnetic field amount St (t) at the sensor position S is measured by the magnetic sensor 12. Input to means 25. An example of the waveform of the compensated magnetic field amount St (t) measured by the measuring means 25 is shown in FIG. 3 (S4).

更にステップS009において、計測手段25で計測したセンサ位置Sの補償後磁場量St(t)を算出手段26に入力し、算出手段26においてセンサ位置Sの補償後磁場量St(t)と記憶手段23に記録したセンサ位置Sのシールド設計時の環境磁場量Se(t)との差として、アクティブ磁気シールドの補償コイル10により発生したセンサ位置Sの補償磁場量Sc(t)(=St−Se)を算出する。算出手段26で算出されたセンサ位置Sの補償磁場量Sc(t)の波形の一例を図3(S5)に示す。また算出手段26により、センサ位置Sの補償磁場量Sc(t)と記憶手段23に記録した磁場量比Pv/Svとから、対象位置Pの補償磁場量Pc(t)(=Sc(t)×Pv/Sv)を算出する。図3(P6)に示す対象位置Pの補償磁場量Pc(t)の波形の一例は、同図(S5)の補償磁場量Sc(t)の波形と磁場量比Pv/Sv=1/0.7との積として算出したものである。   Further, in step S009, the compensated magnetic field amount St (t) of the sensor position S measured by the measurement unit 25 is input to the calculation unit 26, and the post-compensation magnetic field amount St (t) of the sensor position S is stored in the calculation unit 26. 23, the compensation magnetic field amount Sc (t) of the sensor position S generated by the compensation coil 10 of the active magnetic shield (= St−Se) ) Is calculated. An example of the waveform of the compensation magnetic field amount Sc (t) at the sensor position S calculated by the calculation means 26 is shown in FIG. 3 (S5). Further, the calculation means 26 calculates the compensation magnetic field amount Pc (t) (= Sc (t) at the target position P from the compensation magnetic field quantity Sc (t) at the sensor position S and the magnetic field quantity ratio Pv / Sv recorded in the storage means 23. X Pv / Sv) is calculated. An example of the waveform of the compensation magnetic field amount Pc (t) at the target position P shown in FIG. 3 (P6) is the waveform of the compensation magnetic field amount Sc (t) in FIG. 3 (S5) and the magnetic field amount ratio Pv / Sv = 1/0. Calculated as a product of .7.

ステップS012において、算出手段26で算出した対象位置Pの補償磁場量Pc(t)を評価手段27に入力し、評価手段27において対象位置Pの補償磁場量Pc(t)と記憶手段23に記録した対象位置Pのシールド設計時の環境磁場量Pe(t)とから対象位置Pのシールド性能を評価する。例えばステップS012において評価手段27により、図3(P7)に示すように、対象位置Pの補償磁場量Pc(t)と環境磁場量Pe(t)との和として、アクティブ磁気シールドの補償コイル10により補償された対象位置Pの補償後磁場量Pt(t)(=Pc+Pe)を算出する。また、環境磁場量Pe(t)に対する補償後磁場量Pt(t)の比として、対象位置Pにおけるアクティブ磁気シールド単体の磁場(磁束密度)の減衰率(=Pt(t)/Pe(t))を算出する。図3(P1)と(P7)との振幅比率から、シールド室1の対象位置Pの環境磁場をアクティブ磁気シールドによって1/6.4に減衰できたことが分かる。   In step S012, the compensation magnetic field amount Pc (t) at the target position P calculated by the calculation unit 26 is input to the evaluation unit 27, and the evaluation unit 27 records the compensation magnetic field amount Pc (t) at the target position P in the storage unit 23. The shield performance of the target position P is evaluated from the environmental magnetic field amount Pe (t) at the time of designing the shield of the target position P. For example, as shown in FIG. 3 (P7), the compensation coil 10 of the active magnetic shield is set as the sum of the compensation magnetic field amount Pc (t) and the environmental magnetic field amount Pe (t) at the target position P by the evaluation means 27 in step S012. The post-compensation magnetic field amount Pt (t) (= Pc + Pe) of the target position P compensated by is calculated. Further, as the ratio of the compensated magnetic field amount Pt (t) to the environmental magnetic field amount Pe (t), the attenuation factor (= Pt (t) / Pe (t) of the magnetic field (magnetic flux density) of the active magnetic shield alone at the target position P ) Is calculated. From the amplitude ratio of FIG. 3 (P1) and (P7), it can be seen that the environmental magnetic field at the target position P in the shield chamber 1 can be attenuated to 1 / 6.4 by the active magnetic shield.

図2の流れ図では、センサ位置S及び対象位置Pにおける補償コイル10の補償磁場分布と外乱コイル11の環境磁場分布とを一致させたうえで(ステップS005)、両位置S、Pにおける外乱コイル11の磁場量比Pv/Svを検出し(ステップS007)、その磁場量比Pv/Svとセンサ位置Sにおける補償コイル10の補償磁場量Scとから対象位置Pにおける補償コイル10の補償磁場量Pcを算出するので(ステップS009)、対象位置Pのアクティブ磁気シールド性能(補償後磁場量)をその対象位置Pから離れたセンサ位置Sにおいて適切に評価することができる。また、パッシブ磁気シールドが併用されていても、環境磁場分布及び補償磁場分布を一致させることで磁性材料の影響を相殺し、対象位置Pのシールド性能を直接的に評価することができ、アクティブ磁気シールド単体の信頼性の高い性能評価を行うことができる。更に、外乱コイル11によりアクティブ磁気シールドの設計仕様に直接反映されたセンサ位置Sの環境磁場量Seを再現することで、ステップS012において設計仕様に基づいた対象位置Pのシールド性能(磁場減衰率)を評価・検証することが可能となる。   In the flowchart of FIG. 2, after the compensation magnetic field distribution of the compensation coil 10 at the sensor position S and the target position P is matched with the environmental magnetic field distribution of the disturbance coil 11 (step S005), the disturbance coil 11 at both positions S and P. The magnetic field amount ratio Pv / Sv of the compensation coil 10 is detected (step S007), and the compensation magnetic field amount Pc of the compensation coil 10 at the target position P is determined from the magnetic field amount ratio Pv / Sv and the compensation magnetic field amount Sc of the compensation coil 10 at the sensor position S. Since the calculation is performed (step S009), the active magnetic shield performance (post-compensation magnetic field amount) at the target position P can be appropriately evaluated at the sensor position S away from the target position P. Even when a passive magnetic shield is used in combination, the influence of the magnetic material can be offset by matching the environmental magnetic field distribution and the compensation magnetic field distribution, and the shield performance at the target position P can be directly evaluated. A highly reliable performance evaluation of the shield alone can be performed. Further, by reproducing the ambient magnetic field amount Se at the sensor position S directly reflected in the design specifications of the active magnetic shield by the disturbance coil 11, the shield performance (magnetic field attenuation rate) at the target position P based on the design specifications in step S012. Can be evaluated and verified.

こうして本発明の目的である「パッシブ磁気シールドと組み合わされた場合でもアクティブ磁気シールドの性能を適切に評価できる評価方法及び装置」の提供を達成できる。   Thus, it is possible to achieve the “evaluation method and apparatus capable of appropriately evaluating the performance of an active magnetic shield even when combined with a passive magnetic shield”, which is an object of the present invention.

なお、図2のステップS010〜S011は、ステップS008の計測手段25によるセンサ位置Sの補償後磁場量Stの計測と、ステップS009の算出手段26による対象位置Pの補償磁場量Pcの算出とを複数回反復し、対象位置Pの補償磁場量Pcの複数回の平均値を求める処理を示す。図2の流れ図では、ステップS008において計測する補償後磁場量Stがシールド室1のその時点における環境磁場の影響を受け、ステップS012で求める対象位置Pのシールド性能のS/N比が劣化する場合も考えられるが、補償後磁場量Stを複数回計測した平均値を用いることにより、シールド性能のS/N比の改善を図ることができる。しかも、ステップS008におけるシールド設計時の環境磁場量Seの再現は比較的短時間(数分〜数十分)で実施可能であり、ステップS009はコンピュータ処理であるから、反復した場合でも性能評価に要する時間があまり長くなることはない。   Steps S010 to S011 in FIG. 2 include the measurement of the post-compensation magnetic field amount St at the sensor position S by the measurement unit 25 in step S008 and the calculation of the compensation magnetic field amount Pc at the target position P by the calculation unit 26 in step S009. A process of obtaining a plurality of average values of the compensation magnetic field amount Pc at the target position P by repeating a plurality of times is shown. In the flowchart of FIG. 2, the compensated magnetic field amount St measured in step S008 is affected by the environmental magnetic field at that time in the shield chamber 1, and the S / N ratio of the shield performance of the target position P obtained in step S012 deteriorates. However, the S / N ratio of the shield performance can be improved by using an average value obtained by measuring the compensated magnetic field amount St a plurality of times. Moreover, the reproduction of the environmental magnetic field amount Se at the time of designing the shield in step S008 can be performed in a relatively short time (several minutes to several tens of minutes), and step S009 is a computer process. The time required will not be too long.

また、上述したように本発明はパッシブ磁気シールドが併用されていても対象位置Pのシールド性能を適切に評価できる利点を有しているが、本発明の適用範囲はパッシブ磁気シールドが併用されたシールド室1に限定されるものではなく、アクティブ磁気シールドのみを用いたシールド室1にも適用可能である。更に、アクティブ磁気シールドの検収時にステップS002で求めたセンサ位置S及び対象位置Pのシールド設計時の環境磁場量Se、Peと、ステップS007で求めた磁場量比Pv/Svとをコンピュータ20の記憶手段23に記録しておけば、定期的な保守点検の際にステップS008〜S012を実施することで、シールド室1内の装置(MRI装置やEB装置)を稼動させたままシールド室1内の対象位置Pのシールド性能を評価することができる。   Further, as described above, the present invention has an advantage that the shield performance at the target position P can be appropriately evaluated even when the passive magnetic shield is used in combination, but the application range of the present invention is that the passive magnetic shield is used together. The present invention is not limited to the shield room 1 but can be applied to the shield room 1 using only the active magnetic shield. Further, the computer 20 stores the ambient magnetic field quantities Se and Pe at the time of designing the shield at the sensor position S and the target position P obtained at step S002 when the active magnetic shield is accepted, and the magnetic field quantity ratio Pv / Sv obtained at step S007. If recorded in the means 23, steps S008 to S012 are carried out during periodic maintenance and inspection, so that the apparatus (MRI apparatus or EB apparatus) in the shield chamber 1 can be operated while the shield chamber 1 is in operation. The shield performance of the target position P can be evaluated.

以上、シールド室1の内側のセンサ位置Sの計測値を用いて対象位置Pのシールド性能を評価する方法について説明したが、本発明(図2のステップS005)ではシールド室1の内側だけでなく外側周辺においても外乱コイル11の発生する環境磁場分布を補償コイル10の発生する補償磁場分布と一致させることができ、センサ位置Sに代えて、シールド室1の内側の任意位置R又は外側周辺の任意位置Rの計測値を用いて対象位置Pのシールド性能を評価することも可能である。例えば図1に示すように、図2のステップS006においてシールド室1の外側周辺に検査位置Rを定めることにより、シールド室1に入室することなく室外周囲の検査位置Rでシールド室1内の対象位置Pのシールド性能評価を実施することが期待できる。   The method for evaluating the shield performance of the target position P using the measurement value of the sensor position S inside the shield chamber 1 has been described above. However, in the present invention (step S005 in FIG. 2), not only the inside of the shield chamber 1 but also the inside. Even in the outer periphery, the environmental magnetic field distribution generated by the disturbance coil 11 can be made to coincide with the compensation magnetic field distribution generated by the compensation coil 10, and instead of the sensor position S, the arbitrary position R inside the shield chamber 1 or the outer peripheral area. It is also possible to evaluate the shielding performance of the target position P using the measured value of the arbitrary position R. For example, as shown in FIG. 1, by setting the inspection position R around the outside of the shield room 1 in step S006 of FIG. 2, the object in the shield room 1 can be detected at the inspection position R outside the room without entering the shield room 1. It can be expected that the shield performance evaluation at the position P will be performed.

図2のステップS006においてセンサ位置S以外の検査位置Rを定めた場合は、ステップS007において外乱コイル11に試験磁場信号Vを印加した際に、センサ位置S及び対象位置Pと共に検査位置Rにおいて試験磁場量Rv(t)を磁気センサ13で計測し、検出手段24において検査位置Rとセンサ位置Sとの間の磁場量比(振幅比)Sv/Rvを検出する。試験磁場量Rv(t)の波形の一例を図3(R2)に示す。図示例では、試験磁場量Sv(t)、Rv(t)の振幅比率から、例えば磁場量比Sv/Rv=0.7/0.5と検出することができる。検出した磁場量比Sv/Rvは、磁場量比Pv/Svと共にコンピュータ20の記憶手段23に記録しておく。   When the inspection position R other than the sensor position S is determined in step S006 in FIG. 2, when the test magnetic field signal V is applied to the disturbance coil 11 in step S007, the test is performed at the inspection position R together with the sensor position S and the target position P. The magnetic field amount Rv (t) is measured by the magnetic sensor 13, and the detection unit 24 detects the magnetic field amount ratio (amplitude ratio) Sv / Rv between the inspection position R and the sensor position S. An example of the waveform of the test magnetic field amount Rv (t) is shown in FIG. 3 (R2). In the illustrated example, the magnetic field amount ratio Sv / Rv = 0.7 / 0.5 can be detected from the amplitude ratio of the test magnetic field amounts Sv (t) and Rv (t), for example. The detected magnetic field amount ratio Sv / Rv is recorded in the storage means 23 of the computer 20 together with the magnetic field amount ratio Pv / Sv.

また、図2のステップS008において外乱コイル11に環境磁場信号Eを印加する際に、検査位置Rの磁場波形データRe(t)を磁気センサ12で計測してモニタしながら外乱コイル11を駆動し、例えば図3(R3)に示すような検査位置Rの磁場波形データRe(t)と磁場量比Sv/Rvとの積によりセンサ位置Sの磁場波形データSe(t)(=Re(t)×Sv/Rv、図3の例ではRe(t)×0.7/0.5)を算出する。そして、算出したセンサ位置Sの磁場波形データSe(t)の振幅がセンサ位置Sの環境磁場量Se(t)の振幅と一致するように外乱コイル11に印加する環境磁場信号Eの電流等を調整する。こうすれば、センサ位置Sの磁場波形データSe(t)を実際にモニタすることなく、シールド室1内のセンサ位置Sにシールド設計時の環境磁場量Seを再現することができる。   Further, when the environmental magnetic field signal E is applied to the disturbance coil 11 in step S008 of FIG. 2, the disturbance coil 11 is driven while the magnetic sensor 12 measures and monitors the magnetic field waveform data Re (t) at the inspection position R. For example, the magnetic field waveform data Se (t) (= Re (t) at the sensor position S is obtained by multiplying the magnetic field waveform data Re (t) at the inspection position R and the magnetic field amount ratio Sv / Rv as shown in FIG. 3 (R3). * Sv / Rv, Re (t) * 0.7 / 0.5) in the example of FIG. Then, the current of the environmental magnetic field signal E applied to the disturbance coil 11 so that the calculated amplitude of the magnetic field waveform data Se (t) at the sensor position S coincides with the amplitude of the environmental magnetic field amount Se (t) at the sensor position S. adjust. By doing so, it is possible to reproduce the environmental magnetic field amount Se at the time of designing the shield at the sensor position S in the shield chamber 1 without actually monitoring the magnetic field waveform data Se (t) at the sensor position S.

更にステップS008において、シールド室1内にシールド設計時の環境磁場量Seを再現したのち、アクティブ磁気シールドの補償コイル10を駆動する際に、センサ位置Sの補償後磁場量Stに代えて検査位置Rの補償後磁場量Rt(t)を磁気センサ12で計測して計測手段25に入力する。計測手段25において、図3(R4)に示すような検査位置Rの補償後磁場量Rt(t)と磁場量比Sv/Rvとの積を求めることにより、センサ位置Sの補償後磁場量St(t)(=Rt(t)×Sv/Rv、図3の例ではRt(t)×0.7/0.5)を算出する。こうすれば、センサ位置Sの補償後磁場量Rt(t)を実際に計測せずとも、検査位置Rの補償後磁場量Rtからセンサ位置Sの補償後磁場量Rt(t)を推定して求めることができる。図3(S3)及び(S4)の点線枠は、センサ位置S以外の検査位置Rの測定値を用いた場合に、センサ位置Sでは実際に磁場波形データRe(t)及び補償後磁場量Rt(t)をモニタ又は計測する必要がなくなることを示す。   Further, in Step S008, after reproducing the environmental magnetic field amount Se at the time of designing the shield in the shield chamber 1, when driving the compensation coil 10 of the active magnetic shield, the inspection position is replaced with the post-compensation magnetic field amount St of the sensor position S. The compensated magnetic field amount Rt (t) of R is measured by the magnetic sensor 12 and input to the measuring means 25. The measuring means 25 calculates the product of the compensated magnetic field amount St at the sensor position S by obtaining the product of the compensated magnetic field amount Rt (t) at the inspection position R and the magnetic field amount ratio Sv / Rv as shown in FIG. (T) (= Rt (t) × Sv / Rv, Rt (t) × 0.7 / 0.5 in the example of FIG. 3) is calculated. In this way, the post-compensation magnetic field amount Rt (t) at the sensor position S is estimated from the post-compensation magnetic field amount Rt at the inspection position R without actually measuring the post-compensation magnetic field amount Rt (t) at the sensor position S. Can be sought. 3 (S3) and 3 (S4), when the measurement values at the inspection position R other than the sensor position S are used, the dotted line frame actually shows the magnetic field waveform data Re (t) and the compensated magnetic field amount Rt at the sensor position S. (T) indicates that there is no need to monitor or measure.

ステップS009において、検査位置Rの補償後磁場量Rt(t)に基づき算出されたセンサ位置Sの補償後磁場量St(t)を算出手段26に入力し、上述した処理と同様にセンサ位置Sの補償磁場量Sc(t)(=St−Se)を算出し、更に対象位置Pの補償磁場量Pc(t)を算出する。必要に応じてステップS008〜S010を繰り返したのちステップS011からS012へ進み、上述した処理と同様にステップS012において対象位置Pの補償磁場量Pc(t)に基づき対象位置Pのシールド性能を評価する。すなわち、検査位置Rの計測値から対象位置Pのシールド性能を評価する方法によれば、センサ位置Sの磁場波形の実際に計測する必要がないので、シールド室1に入室することなく室外の検査位置Rでシールド室1内のシールド性能を評価することが可能となる。   In step S009, the compensated magnetic field amount St (t) of the sensor position S calculated based on the compensated magnetic field amount Rt (t) of the inspection position R is input to the calculation means 26, and the sensor position S is similar to the above-described processing. The compensation magnetic field amount Sc (t) (= St−Se) is calculated, and the compensation magnetic field amount Pc (t) at the target position P is further calculated. After repeating steps S008 to S010 as necessary, the process proceeds from step S011 to S012, and the shielding performance of the target position P is evaluated based on the compensation magnetic field amount Pc (t) of the target position P in step S012, similarly to the above-described processing. . That is, according to the method for evaluating the shielding performance at the target position P from the measurement value at the inspection position R, it is not necessary to actually measure the magnetic field waveform at the sensor position S. The shield performance in the shield chamber 1 can be evaluated at the position R.

本発明による性能評価装置の一実施例のブロック図である。It is a block diagram of one Example of the performance evaluation apparatus by this invention. 本発明による性能評価方法を示す流れ図の一例である。It is an example of the flowchart which shows the performance evaluation method by this invention. 図2の流れ図に対応する対象位置P、センサ位置S(、及び検査位置R)の磁束密度の変化を示す説明図である。It is explanatory drawing which shows the change of the magnetic flux density of the object position P and the sensor position S (and test | inspection position R) corresponding to the flowchart of FIG. 従来のアクティブ磁気シールド方法の一例の説明図である。It is explanatory drawing of an example of the conventional active magnetic shielding method. 図4のアクティブ磁気シールド方法における対象位置P及びセンサ位置Sのシールド性能評価手法の説明図である。It is explanatory drawing of the shield performance evaluation method of the target position P and the sensor position S in the active magnetic shielding method of FIG. 従来のパッシブ磁気シールド方法の一例の説明図である。It is explanatory drawing of an example of the conventional passive magnetic shielding method.

符号の説明Explanation of symbols

1…磁気シールド室 2…磁気シールド壁(シールド簾体)
3…磁気シールド開閉部(シールド簾体)
5…磁性材料板(磁性板) 6…重ね合わせ部
7…拡張部 8…磁性目張り
10…補償コイル 11…外乱コイル
12、12a、13…計測センサ(磁気センサ)
14…補償コイルの駆動電源 15…補償コイルの信号処理手段
16…外乱コイルの駆動電源 17…外乱コイルの信号処理手段
20…コンピュータ 21、22…入力手段
23…記憶手段 24…検出手段
25…計測手段 26…算出手段
27…評価手段 28…スイッチ手段
29…出力手段
P…評価対象位置 R…検査位置
S…センサ位置
E…環境磁場信号 V…試験磁場信号
Pe…対象位置の環境磁場量の記録値
Se…センサ位置の環境磁場量の記録値
Pv/Sv、Sv/Rv…磁場量比
1 ... Magnetic shield room 2 ... Magnetic shield wall (shield housing)
3. Magnetic shield opening / closing part (shield housing)
DESCRIPTION OF SYMBOLS 5 ... Magnetic material board (magnetic board) 6 ... Overlapping part 7 ... Expansion part 8 ... Magnetic weathering 10 ... Compensation coil 11 ... Disturbance coils 12, 12a, 13 ... Measurement sensor (magnetic sensor)
DESCRIPTION OF SYMBOLS 14 ... Compensation coil drive power supply 15 ... Compensation coil signal processing means 16 ... Disturbance coil drive power supply 17 ... Disturbance coil signal processing means 20 ... Computer 21, 22 ... Input means 23 ... Storage means 24 ... Detection means 25 ... Measurement Means 26 ... Calculation means 27 ... Evaluation means 28 ... Switch means 29 ... Output means P ... Evaluation target position R ... Inspection position S ... Sensor position E ... Environmental magnetic field signal V ... Test magnetic field signal Pe ... Recording of the amount of environmental magnetic field at the target position Value Se: Recording value Pv / Sv, Sv / Rv: Magnetic field ratio of the environmental magnetic field at the sensor position

Claims (8)

環境磁場の計測センサとその環境磁場を打ち消す補償磁場発生用の補償コイルとが配置されたアクティブ磁気シールド室内の評価対象位置のシールド性能を評価する方法において、前記補償コイルと同じ位置に同じ形状の外乱磁場発生用の外乱コイルを配置し、前記補償コイルの駆動停止時に外乱コイルに試験磁場信号を印加してセンサ位置及び対象位置の間の磁場量比を検出し、前記外乱コイルにセンサ位置のシールド設計時の環境磁場量に応じた環境磁場信号を印加しつつ補償コイルを駆動してセンサ位置の補償後磁場量を計測し、前記センサ位置の補償後磁場量と前記設計時の環境磁場量との差からセンサ位置の補償磁場量を算出し且つその補償磁場量と前記磁場量比とから対象位置の補償磁場量を算出し、前記対象位置の補償磁場量と対象位置のシールド設計時の環境磁場量とにより対象位置のシールド性能を評価してなるアクティブ磁気シールドの性能評価方法。 In the method for evaluating the shield performance of the evaluation target position in the active magnetic shield room in which the measurement sensor for the environmental magnetic field and the compensation coil for generating the compensation magnetic field that cancels the environmental magnetic field are arranged, the same shape is formed at the same position as the compensation coil. A disturbance coil for generating a disturbance magnetic field is arranged, and when the driving of the compensation coil is stopped, a test magnetic field signal is applied to the disturbance coil to detect a magnetic field amount ratio between the sensor position and the target position. The compensation coil is driven while applying an environmental magnetic field signal corresponding to the environmental magnetic field amount at the time of shield design to measure the compensated magnetic field amount at the sensor position, and the compensated magnetic field amount at the sensor position and the environmental magnetic field amount at the design time The compensation magnetic field amount at the target position is calculated from the compensation magnetic field amount at the sensor position and the compensation magnetic field amount at the target position from the compensation magnetic field amount and the magnetic field amount ratio. Evaluation method of the active magnetic shield formed by evaluating the shielding performance of the target position by the environmental magnetic field amount at the shield design of the target position. 請求項1の性能評価方法において、前記センサ位置の補償後磁場量の計測と前記対象位置の補償磁場量の算出とを複数回反復し、前記対象位置の補償磁場量の複数回の平均値により対象位置のシールド性能を評価してなるアクティブ磁気シールドの性能評価方法。 The performance evaluation method according to claim 1, wherein measurement of the compensated magnetic field amount at the sensor position and calculation of the compensation magnetic field amount at the target position are repeated a plurality of times, and an average value of the compensation magnetic field amount at the target position is calculated a plurality of times. A method for evaluating the performance of an active magnetic shield obtained by evaluating the shielding performance at a target position. 請求項1又は2の性能評価方法において、前記シールド室の内側又は外側周辺に検査位置を定め、前記試験磁場信号の印加時に検査位置とセンサ位置との間の磁場量比を検出し、前記環境磁場信号の印加時に前記センサ位置の補償後磁場量に代えて検査位置の補償後磁場量を計測し且つその補償後磁場量と前記磁場量比とからセンサ位置の補償後磁場量を算出してなるアクティブ磁気シールドの性能評価方法。 3. The performance evaluation method according to claim 1 or 2, wherein an inspection position is set inside or outside the shield chamber, a magnetic field amount ratio between the inspection position and the sensor position is detected when the test magnetic field signal is applied, and the environment Instead of the compensated magnetic field amount at the sensor position when applying the magnetic field signal, the compensated magnetic field amount at the inspection position is measured, and the compensated magnetic field amount at the sensor position is calculated from the compensated magnetic field amount and the magnetic field amount ratio. An active magnetic shield performance evaluation method. 請求項1から3の何れかの性能評価方法において、前記試験磁場の周波数帯を、前記センサ位置及び対象位置のシールド設計時の環境磁場に応じて定めてなるアクティブ磁気シールドの性能評価方法。 4. The performance evaluation method according to claim 1, wherein a frequency band of the test magnetic field is determined according to an environmental magnetic field when designing a shield at the sensor position and the target position. 環境磁場の計測センサとその環境磁場を打ち消す補償磁場発生用の補償コイルとが配置されたアクティブ磁気シールド室内の評価対象位置のシールド性能を評価する装置において、前記シールド室の補償コイルと同じ位置に同じ形状で配置された外乱磁場発生用の外乱コイル、前記センサ位置及び対象位置のシールド設計時の環境磁場量を記録する記憶手段、前記補償コイルの駆動停止時に外乱コイルに試験磁場信号を印加してセンサ位置及び対象位置の間の磁場量比を検出する検出手段、前記外乱コイルに前記設計時のセンサ位置の環境磁場量に応じた環境磁場信号を印加しつつ補償コイルを駆動してセンサ位置の補償後磁場量を計測する計測手段、前記センサ位置の補償後磁場量と前記設計時の環境磁場量との差からセンサ位置の補償磁場量を算出し且つその補償磁場量と前記磁場量比とから対象位置の補償磁場量を算出する算出手段、並びに前記対象位置の補償磁場量と前記設計時の対象位置の環境磁場量とにより対象位置のシールド性能を評価する評価手段を備えてなるアクティブ磁気シールドの性能評価装置。 In the apparatus for evaluating the shield performance of the evaluation target position in the active magnetic shield room in which the measurement sensor of the environmental magnetic field and the compensation coil for generating the compensation magnetic field that cancels the environmental magnetic field are arranged, the apparatus is located at the same position as the compensation coil of the shield room. Disturbing magnetic field generating disturbance coils arranged in the same shape, storage means for recording the amount of environmental magnetic field at the time of designing the shield of the sensor position and target position, and applying a test magnetic field signal to the disturbance coil when driving of the compensation coil is stopped Detecting means for detecting the magnetic field amount ratio between the sensor position and the target position, and driving the compensation coil while applying an environmental magnetic field signal corresponding to the environmental magnetic field amount of the sensor position at the design time to the disturbance coil A measuring means for measuring the amount of magnetic field after compensation of the sensor, and the compensation magnetism of the sensor position from the difference between the amount of magnetic field after compensation of the sensor position and the amount of environmental magnetic field at the design And calculating means for calculating the compensation magnetic field amount at the target position from the compensation magnetic field amount and the magnetic field amount ratio, as well as the compensation magnetic field amount at the target position and the environmental magnetic field amount at the target position at the time of design. An apparatus for evaluating the performance of an active magnetic shield, comprising evaluation means for evaluating the shield performance of a position. 請求項5の性能評価装置において、前記計測手段によるセンサ位置の補償後磁場量の計測と前記算出手段による対象位置の補償磁場量の算出とを複数回反復し、前記評価手段において前記対象位置の補償磁場量の複数回の平均値により対象位置のシールド性能を評価してなるアクティブ磁気シールドの性能評価装置。 6. The performance evaluation apparatus according to claim 5, wherein measurement of the magnetic field amount after compensation of the sensor position by the measurement unit and calculation of the compensation magnetic field amount of the target position by the calculation unit are repeated a plurality of times, and the evaluation unit calculates the position of the target position. An apparatus for evaluating the performance of an active magnetic shield obtained by evaluating the shielding performance at a target position based on an average value of compensation magnetic field multiple times. 請求項5又は6の性能評価装置において、前記検出手段により前記シールド室の内側又は外側周辺に定めた検査位置とセンサ位置との間の磁場量比を検出し、前記計測手段により前記センサ位置の補償後磁場量に代えて検査位置の補償後磁場量を計測し且つその検査位置の補償後磁場量と前記磁場量比とからセンサ位置の補償後磁場量を算出してなるアクティブ磁気シールドの性能評価装置。 7. The performance evaluation apparatus according to claim 5, wherein a magnetic field amount ratio between an inspection position and a sensor position determined inside or outside the shield chamber is detected by the detection means, and the sensor position is detected by the measurement means. Performance of an active magnetic shield obtained by measuring the compensated magnetic field quantity at the inspection position instead of the compensated magnetic field quantity and calculating the compensated magnetic field quantity at the sensor position from the compensated magnetic field quantity at the examination position and the magnetic field ratio. Evaluation device. 請求項5から7の何れかの性能評価装置において、前記試験磁場の周波数帯を、前記センサ位置及び対象位置のシールド設計時の環境磁場に応じて定めてなるアクティブ磁気シールドの性能評価装置。 8. The performance evaluation apparatus according to claim 5, wherein a frequency band of the test magnetic field is determined according to an environmental magnetic field at the time of designing a shield at the sensor position and the target position.
JP2008076930A 2008-03-25 2008-03-25 Active magnetic shield performance evaluation method and apparatus Expired - Fee Related JP5131758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008076930A JP5131758B2 (en) 2008-03-25 2008-03-25 Active magnetic shield performance evaluation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008076930A JP5131758B2 (en) 2008-03-25 2008-03-25 Active magnetic shield performance evaluation method and apparatus

Publications (2)

Publication Number Publication Date
JP2009229325A true JP2009229325A (en) 2009-10-08
JP5131758B2 JP5131758B2 (en) 2013-01-30

Family

ID=41244889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008076930A Expired - Fee Related JP5131758B2 (en) 2008-03-25 2008-03-25 Active magnetic shield performance evaluation method and apparatus

Country Status (1)

Country Link
JP (1) JP5131758B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012043998A (en) * 2010-08-19 2012-03-01 Kajima Corp Compound type magnetic shield method of disturbance magnetic field and structure
JP2014060270A (en) * 2012-09-18 2014-04-03 Seiko Epson Corp Magnetic shield device and magnetic shield method
EP2851702A1 (en) * 2013-09-11 2015-03-25 Seiko Epson Corporation Magnetic shielding apparatus and magnetic shielding method
US9451734B2 (en) 2012-09-18 2016-09-20 Seiko Epson Corporation Magnetic shielding device and magnetic shielding method
CN113702885A (en) * 2021-07-14 2021-11-26 中国电力科学研究院有限公司 Method and system for testing magnetic shielding effectiveness of current comparator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012043998A (en) * 2010-08-19 2012-03-01 Kajima Corp Compound type magnetic shield method of disturbance magnetic field and structure
JP2014060270A (en) * 2012-09-18 2014-04-03 Seiko Epson Corp Magnetic shield device and magnetic shield method
US9451734B2 (en) 2012-09-18 2016-09-20 Seiko Epson Corporation Magnetic shielding device and magnetic shielding method
EP2851702A1 (en) * 2013-09-11 2015-03-25 Seiko Epson Corporation Magnetic shielding apparatus and magnetic shielding method
US9462733B2 (en) 2013-09-11 2016-10-04 Seiko Epson Corporation Magnetic shielding apparatus and magnetic shielding method
CN113702885A (en) * 2021-07-14 2021-11-26 中国电力科学研究院有限公司 Method and system for testing magnetic shielding effectiveness of current comparator

Also Published As

Publication number Publication date
JP5131758B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5131758B2 (en) Active magnetic shield performance evaluation method and apparatus
US9958514B2 (en) Magnetic field measurement apparatus, magnetic field measurement system and magnetic field measurement method
Temnykh Vibrating wire field-measuring technique
Koruk et al. Identification and removal of adverse effects of non-contact electromagnetic excitation in Oberst Beam Test Method
JP2008078529A (en) Magnetic shielding room of internal active magnetically shielded system
JP5875440B2 (en) Method, system and program for estimating disturbance magnetic field
KR101137788B1 (en) Apparatus for degaussing an external magnetic field
US11047939B2 (en) Magnetic resonance device, magnetic resonance system and associated operating method
JP2005003503A (en) Magnetic-shielding method using induction coil
Gozen et al. Characterization of three-dimensional dynamics of piezo-stack actuators
JP3406273B2 (en) Disturbance magnetic field cancellation device
Hoek et al. Localizing partial discharge in power transformers by combining acoustic and different electrical methods
US11815575B2 (en) Magnetic resonance imaging device, computer-implemented method for operating a magnetic resonance imaging device, computer program and electronically readable storage medium
Veldman Implementation of an accelerometer transverse sensitivity measurement system
KR102310402B1 (en) External magnetization system using plurality of solenoid modules and operation method therefor
JP5453192B2 (en) Active magnetic shielding method and system for disturbance magnetic field
Wang et al. Modal analysis and testing of a thin‐walled gradient coil cylinder model
JP6015518B2 (en) Magnetic property measuring method and apparatus
JP3337712B2 (en) Magnetic resonance imaging equipment
Martin Measurement of Magnetic Field using Doppler-Free Saturation Spectroscopy (DFSS) in C-2W FRC Plasma
Amato et al. Definition and identification of an improved Preisach model for magnetic hysteresis based on the KP operator
KR102397472B1 (en) External magnetization device based on twin coil moudule and operation method therefor
Smirnov et al. Focusing strength measurements of the main quadrupoles for the LHC
JPS62246356A (en) Examination apparatus using nuclear magnetic resonance
Decker et al. First vibrating wire monitor measurements of a hard x-ray undulator beam at the Advanced Photon Source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5131758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees