JP2009229240A - Microchip - Google Patents

Microchip Download PDF

Info

Publication number
JP2009229240A
JP2009229240A JP2008074762A JP2008074762A JP2009229240A JP 2009229240 A JP2009229240 A JP 2009229240A JP 2008074762 A JP2008074762 A JP 2008074762A JP 2008074762 A JP2008074762 A JP 2008074762A JP 2009229240 A JP2009229240 A JP 2009229240A
Authority
JP
Japan
Prior art keywords
reagent
specimen
flow path
liquid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008074762A
Other languages
Japanese (ja)
Inventor
Akihisa Nakajima
彰久 中島
Kusunoki Higashino
楠 東野
Yasuhiro Santo
康博 山東
Yoichi Aoki
洋一 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Priority to JP2008074762A priority Critical patent/JP2009229240A/en
Publication of JP2009229240A publication Critical patent/JP2009229240A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microchip for searching the characteristics of a specimen while preventing gas from getting mixed in a mixing part, with the gas used for separating a reagent from the specimen so as to prevent them from getting mixed with each other in the middle of a flow path. <P>SOLUTION: Assuming that V1 is the volume of the gas used for separating the reagent from the specimen, S1 a cross section of the mixing part for mixing the reagent with the specimen, with the cross section viewed from a flow-path direction of the mixing part, W1 the width of the flow path, and V2 the total volume of the reagent and the specimen, if the following relations hold, (2/π)×S1×W1 <V1 and (2/π)×S1×W1 <V2, then the reagent and the specimen are trapped on a wall surface of the flow path while the gas outruns the reagent and specimen. Accordingly, a mixed fluid of the reagent and the specimen remains in the flow path after the gas has passed therethrough, allowing the characteristics of the specimen to be investigated in a next process. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はマイクロチップに関する。   The present invention relates to a microchip.

近年、マイクロマシン技術及び超微細加工技術を駆使することにより、従来の検体調製、化学分析、化学合成などを行うための装置、手段(例えばポンプ、バルブ、流路、など)を微細化して1チップ上に集積化したマイクロチップを用いたシステムが注目されている。これは、μ−TAS(Micro Total Analysis System)とも呼ばれ、マイクロチップ上で、試薬と検体(例えば、検査を受ける被験者の尿、唾液、血液、検体を処理して抽出したDNA処理した抽出溶液など)を混合させ、その反応を検出することにより検体の特性を調べるシステムである。   In recent years, by making full use of micromachine technology and ultrafine processing technology, conventional chips, devices, means (for example, pumps, valves, flow paths, etc.) for sample preparation, chemical analysis, chemical synthesis, etc. have been miniaturized to one chip. A system using a microchip integrated on top attracts attention. This is also referred to as μ-TAS (Micro Total Analysis System), and a DNA-treated extraction solution extracted from a microchip by processing a reagent and a sample (for example, urine, saliva, blood, and sample of a subject to be tested) Etc.) and the characteristics of the specimen are examined by detecting the reaction.

マイクロチップは、樹脂材料やガラス材料からなる基体に、フォトリソプロセス(パターン像を薬品によってエッチングして溝を作成する方法)や、レーザ光を利用して溝加工を行い、試薬や検体を流すことができる微細な流路と試薬を蓄える液溜部を設けており、さまざまなパターンが提案されている。   Microchips use a photolithographic process (a method of creating a groove by etching a pattern image with a chemical) or a groove using a laser beam on a substrate made of a resin material or glass material, and flow a reagent or specimen. A fine channel and a liquid reservoir for storing reagents have been provided, and various patterns have been proposed.

しかし、試薬と検体を混合させる際、混合部以外のマイクロチップ流路内で混合すると正確な検体の特性を調べることができなくなる。そこで、流路の途中には試薬と検体が混合部以外の場所で混合や反応を行わないように、例えば特許文献1には、試薬と検体の間に試薬や検体に対して無反応の液体を用いて分離する技術が開示されている。   However, when mixing the reagent and the sample, if the sample is mixed in the microchip flow path other than the mixing part, it is impossible to check the characteristics of the sample accurately. Therefore, in order to prevent the reagent and the sample from mixing and reacting at a place other than the mixing part in the middle of the flow path, for example, Patent Document 1 discloses a liquid that does not react with the reagent or the sample between the reagent and the sample. A technique for separating using the method is disclosed.

さらに特許文献2には、試薬と検体との間に気体を用いて分離する方法が記載されており、このときに発生する気体が、反応部などの次の流路に流出しないように流路の溝に段差をつけ液滴をトラップする技術が開示されている。
特開2005−274199号公報 特開2006−266924号公報
Furthermore, Patent Document 2 describes a method of separating a reagent and a sample using a gas, and the gas generated at this time is a flow path so that it does not flow out to the next flow path such as a reaction section. A technique for trapping droplets by forming a step in the groove is disclosed.
JP 2005-274199 A JP 2006-266924 A

しかしながら、特許文献1に開示されているような液体を用いて分離する技術手段では試薬と検体の間に液体を供給するために、新たな流路を設けなければならない。そのためマイクロチップの流路パターンが複雑になり、さらに液体をタイミング良く供給するための制御を行わなければならないという問題や、正確な制御を行うためにコストが上がると言う新たな問題が発生する。   However, in the technical means that uses a liquid as disclosed in Patent Document 1, a new flow path must be provided in order to supply the liquid between the reagent and the specimen. Therefore, the flow pattern of the microchip becomes complicated, and there arises a problem that the control for supplying the liquid in a timely manner and a new problem that the cost increases for performing the accurate control occur.

また特許文献2に開示されている技術手段では、気体をトラップするために、試薬などを送液するためのポンプなどの送液圧力を制御しなければならないという問題がある。   Further, the technical means disclosed in Patent Document 2 has a problem that the liquid feeding pressure of a pump or the like for feeding a reagent or the like must be controlled in order to trap gas.

本発明は、試薬と検体が流路の途中で混合しないように分離させる気体が、混合部に混入しないようして検体の特性を調べることが可能なマイクロチップを提供することである。   It is an object of the present invention to provide a microchip capable of examining the characteristics of a sample so that a gas to be separated so that the reagent and the sample are not mixed in the middle of a flow path is not mixed in a mixing part.

上記目的は、下記構成により達成できる。
1.少なくとも1種類の試薬と、前記試薬と反応させる検体とを、間に気体を介して送液させる流路と、
前記流路内に設けた前記試薬と前記検体とを混合する混合部と、
を有するマイクロチップであって、
前記気体の体積をV1、前記送液方向から見た前記混合部の断面積をS1、幅をW1、前記試薬と前記検体の合計の体積をV2としたとき、以下の関係式(1)、(2)を満たすことを特徴とするマイクロチップ。
(2/π)×S1×W1<V1 (1)
(2/π)×S1×W1<V2 (2)
2.前記試薬又は前記検体と、前記流路の壁面との接触角が90°以上であり、かつ前記試薬又は前記検体と、前記混合部の壁面との接触角が90°以上であることを特徴とする1に記載のマイクロチップ。
3.前記混合部の送液方向上流側の流路の前記送液方向から見た断面積をS2、幅をW2としたとき以下の関係式(3)を満たすことを特徴とする1又は2に記載のマイクロチップ。
(2/π)×S2×W2>V1 (3)
The above object can be achieved by the following configuration.
1. A flow path for sending at least one kind of reagent and a specimen to be reacted with the reagent via a gas therebetween;
A mixing section for mixing the reagent and the specimen provided in the flow path;
A microchip having
When the volume of the gas is V1, the cross-sectional area of the mixing unit viewed from the liquid feeding direction is S1, the width is W1, and the total volume of the reagent and the specimen is V2, the following relational expression (1): (2) The microchip characterized by satisfy | filling.
(2 / π) × S1 × W1 <V1 (1)
(2 / π) × S1 × W1 <V2 (2)
2. The contact angle between the reagent or the sample and the wall surface of the flow path is 90 ° or more, and the contact angle between the reagent or the sample and the wall surface of the mixing unit is 90 ° or more, 2. The microchip according to 1.
3. 1 or 2 satisfying the following relational expression (3), where S2 is the cross-sectional area of the flow path upstream of the mixing unit in the liquid feeding direction, and W2 is the width. Microchip.
(2 / π) × S2 × W2> V1 (3)

本発明によれば、試薬と検体とを分離する気体の体積V1が、試薬と検体とを混合する混合部の流路方向から見た断面積をS1、流路の幅をW1、試薬と検体の合計の体積をV2としたとき、
(2/π)×S1×W1<V1 (1)
(2/π)×S1×W1<V2 (2)
の式(1)、(2)関係が成り立つと、混合部で試薬及び検体が流路壁面にトラップされ気体は試薬と検体をすり抜けるので、気体が混合することがない。
According to the present invention, the volume V1 of the gas that separates the reagent and the sample is S1, the cross-sectional area of the mixing unit that mixes the reagent and the sample viewed from the flow direction, the width of the flow channel is W1, and the reagent and the sample When the total volume of V2 is V2,
(2 / π) × S1 × W1 <V1 (1)
(2 / π) × S1 × W1 <V2 (2)
When the relations (1) and (2) are established, the reagent and the sample are trapped on the channel wall surface in the mixing unit, and the gas passes through the reagent and the sample, so that the gas is not mixed.

本発明の実施の形態を説明する。なお、本発明を図示の実施の形態に基づいて説明するが、本発明は該実施の形態に限らない。また、以下の、本発明の実施の形態における断定的な説明は、ベストモードを示すものであって、本発明の用語の意義や技術的範囲を限定するものではない。   An embodiment of the present invention will be described. In addition, although this invention is demonstrated based on embodiment of illustration, this invention is not restricted to this embodiment. In addition, the following assertive description in the embodiment of the present invention shows the best mode, and does not limit the meaning or technical scope of the terms of the present invention.

図1に本実施の形態に係るマイクロチップを示す。マイクロチップ1は、略矩形のカード形状であり、一連の流路が形成されている。マイクロチップ1の壁面を構成する基材BPは、例えばシリコン、ガラス、セラミックス、石英などで製作される一枚のチップから構成されている。これら基材BPは、外部からの圧力に対して液体が移動して他の試薬が混入するのを防止するために、撥水性が優れていることが望ましい。具体的には基材BPと、試薬L、検体Q、との接触角ψはそれぞれ90°以上になるように撥水処理を施してある(図3参照)。   FIG. 1 shows a microchip according to the present embodiment. The microchip 1 has a substantially rectangular card shape, and a series of flow paths are formed. The base material BP constituting the wall surface of the microchip 1 is composed of a single chip made of, for example, silicon, glass, ceramics, quartz or the like. These base materials BP desirably have excellent water repellency in order to prevent the liquid from moving due to external pressure and mixing of other reagents. Specifically, water repellent treatment is performed so that the contact angles ψ between the base material BP, the reagent L, and the specimen Q are each 90 ° or more (see FIG. 3).

もちろんマイクロチップ1は図1に示す形状に限定されるものではなく、その配置、形状、寸法、大きさなどは、検体の種類、検査項目などに応じて変更可能である。   Of course, the microchip 1 is not limited to the shape shown in FIG. 1, and its arrangement, shape, size, size, and the like can be changed according to the type of specimen, examination items, and the like.

図1において、P1、P2は、駆動液Dを注入する注入口である。駆動液Dはマイクロチップ1内の液状の試薬Lや検体Qを流路に沿って送液するための液であり、試薬Lや検体Qに対して反応しない純水などの液体が用いられる。駆動液Dは、液を送液する液駆動ポンプ(不図示)によって送液される。   In FIG. 1, P1 and P2 are injection ports for injecting the driving liquid D. The driving liquid D is a liquid for sending the liquid reagent L and the specimen Q in the microchip 1 along the flow path, and a liquid such as pure water that does not react with the reagent L and the specimen Q is used. The driving liquid D is fed by a liquid driving pump (not shown) that feeds the liquid.

符号2は検体Qを貯留する検体貯留部であり、検体Qは注入口P3から液駆動ポンプを用いて注入される。符号3、4は気体E及び試薬Lを貯留する流路であり、注入口P5から液駆動ポンプを用いて注入される。なお、液駆動ポンプは、複数の注入口に対してそれぞれ専用に用意されている。   Reference numeral 2 denotes a sample storage unit for storing the sample Q, and the sample Q is injected from the injection port P3 using a liquid drive pump. Reference numerals 3 and 4 are flow paths for storing the gas E and the reagent L, and are injected from the injection port P5 using a liquid drive pump. In addition, the liquid drive pump is prepared for each of the plurality of injection ports.

符号5は、試薬Lと検体Qを混合させる混合部である。符号RBは、疎水性バルブ(バルブRBという)であり、マイクロチップ1内に送液される液体を所定の位置で一旦停止させるために設けるものである。バルブRBは、断面積が送液流路よりもさらに小さく、幅及び深さとも絞られた短い流路形状である。液駆動ポンプが、マイクロチップ1内にある試薬Lや検体Qなどの液体を所定圧力よりも低い圧力で送液したときには、液体がバルブRBから広幅の流路に出ようとする際に、液体の表面に働く表面張力によって液体の送液が妨げられるので送液は停止される。液体を所定圧力以上で送液したときには、この表面張力に打ち勝ち、液体はバルブRBを通過し下流に送液される。このように、バルブRBを設けることにより試薬保管時には落下などの衝撃に対してそれぞれの液体の位置が不動である一方で、送液時には高抵抗の流路を通過することが可能な圧力をかけることで送液を可能にしている。   Reference numeral 5 denotes a mixing unit that mixes the reagent L and the sample Q. Reference numeral RB denotes a hydrophobic valve (referred to as valve RB), which is provided to temporarily stop the liquid fed into the microchip 1 at a predetermined position. The valve RB has a short channel shape in which the cross-sectional area is smaller than that of the liquid-feed channel and the width and depth are reduced. When the liquid-driven pump sends the liquid such as the reagent L or the specimen Q in the microchip 1 at a pressure lower than a predetermined pressure, when the liquid is about to flow out from the valve RB to the wide channel, the liquid Since the liquid feeding is hindered by the surface tension acting on the surface, the liquid feeding is stopped. When the liquid is sent at a predetermined pressure or higher, this surface tension is overcome, and the liquid passes through the valve RB and is sent downstream. As described above, by providing the valve RB, the position of each liquid does not move against an impact such as a drop when the reagent is stored, while a pressure capable of passing through the high resistance channel is applied when the liquid is sent. This makes it possible to send liquids.

本実施例では、流路6の断面積は50000μm2(幅200μm×深さ250μm)であり、バルブRBの断面積は625μm2(幅25μm×深さ25μm)とした。 In this example, the cross-sectional area of the flow path 6 was 50000 μm 2 (width 200 μm × depth 250 μm), and the cross-sectional area of the valve RB was 625 μm 2 (width 25 μm × depth 25 μm).

符号7は流路4と混合部5との間を繋ぐ混合部前流路である。   Reference numeral 7 denotes a pre-mixing section flow path connecting the flow path 4 and the mixing section 5.

図2は、マイクロチップ1内に貯留されている試薬Lと検体Qが、駆動液Dによって順次送液されるところを示す図である。なお図中、網模様部は検体Q、細かいハッチング部は気体E、粗いハッチング部は試薬L1を示す。   FIG. 2 is a view showing a state where the reagent L and the specimen Q stored in the microchip 1 are sequentially sent by the driving liquid D. In the figure, the net pattern portion indicates the specimen Q, the fine hatching portion indicates the gas E, and the rough hatching portion indicates the reagent L1.

図2(a)において、流路3には気体が注入口P4から注入され、流路4には試薬L1が貯留されている。また検体貯留部2には検体Qが貯留され、それぞれバルブRB1、RB2によって液が流れ出さないようになっている。   In FIG. 2A, gas is injected into the flow path 3 from the injection port P4, and the reagent L1 is stored in the flow path 4. In addition, the sample Q is stored in the sample storage unit 2, and the liquid is prevented from flowing out by the valves RB1 and RB2, respectively.

次いで図2(b)に示すように、注入口P1から駆動液Dが所定の圧力で注入され、検体貯留部2に貯留されている検体QはバルブRB1に抗して下流に押し出され、流路6に貯蔵される。   Next, as shown in FIG. 2B, the driving liquid D is injected at a predetermined pressure from the injection port P1, and the sample Q stored in the sample storage unit 2 is pushed downstream against the valve RB1 and flows. Stored in path 6.

次いで図2(c)に示すように、注入口P2から駆動液Dが所定の圧力で注入され、検体QはバルブRB2を通って流路3に押し出される。検体Qが流路3に貯留されるに伴って、気体Eと試薬L1は順次流路4、混合部前流路7に移動する。   Next, as shown in FIG. 2C, the driving liquid D is injected at a predetermined pressure from the injection port P2, and the specimen Q is pushed out to the flow path 3 through the valve RB2. As the sample Q is stored in the flow path 3, the gas E and the reagent L 1 sequentially move to the flow path 4 and the pre-mixing section flow path 7.

更に図2(d)に示すように、注入口P2から注入された駆動液Dがさらに注入され、気体Eは混合部前流路7に移動する。これにより図2(e)に示すように、検体Qも混合部前流路7に送液される。   Further, as shown in FIG. 2D, the driving liquid D injected from the injection port P2 is further injected, and the gas E moves to the pre-mixing section flow path 7. As a result, as shown in FIG. 2 (e), the specimen Q is also fed to the pre-mixing section flow path 7.

また、図6は混合部前流路7に試薬Lと検体Qが壁面にトラップされているところを示す図2(e)の拡大図である。   FIG. 6 is an enlarged view of FIG. 2 (e) showing the reagent L and the sample Q trapped on the wall surface in the pre-mixing section flow path 7.

ここで、混合部前流路7には、気体Eが同時に混入されている。この気体Eが混入された混合液は、例えば反応部などの後次工程で加熱したりすると気体Eの膨張などにより正確な検査が行えない等の問題が発生する。   Here, the gas E is mixed in the pre-mixing section flow path 7 at the same time. For example, when the mixed liquid in which the gas E is mixed is heated in a subsequent process such as a reaction section, there is a problem that an accurate inspection cannot be performed due to the expansion of the gas E.

本発明は、流路壁面に試薬や検体などの液体(単に液体という)を付着(トラップという)させた状態にして、その間に気体Eを流路から通過させ、次工程に気体Eが混入しないようにしたマイクロチップである。以下にその詳細を説明する。   In the present invention, a liquid such as a reagent or a specimen (simply referred to as a liquid) is attached (referred to as a trap) to the wall surface of the flow path, and the gas E is passed through the flow path during that time, so that the gas E does not enter the next process. This is a microchip. Details will be described below.

一般に、空中の液体(液滴という)は、表面張力により液滴の表面積を最小にしようとするので球状になる。ここで液滴が流路を流れるとすると、液滴と流路の壁面との接触角ψが90°以上になるような表面処理を施した流路の壁面を液滴が通過する際に、球状を保つか、壁面に付着して半球になるか否かは液滴の表面積に依存し、表面積が小さい方が壁面に付着する。計算によれば同体積の液滴のとき、液滴が半球状のときの表面積の方が球状の表面積より小さいので壁面へ付着し続ける。   In general, liquids in the air (referred to as droplets) become spherical because they attempt to minimize the surface area of the droplets due to surface tension. Here, when the liquid droplet flows through the flow path, when the liquid droplet passes through the wall surface of the flow path subjected to the surface treatment such that the contact angle ψ between the liquid droplet and the wall surface of the flow path is 90 ° or more, Whether to maintain a spherical shape or adhere to the wall surface to become a hemisphere depends on the surface area of the droplet, and the smaller surface area adheres to the wall surface. According to the calculation, when the droplets have the same volume, the surface area when the droplets are hemispherical is smaller than the spherical surface area, so that they continue to adhere to the wall surface.

液滴は全ての壁に接すると壁に付着し続ける(安定するという)が、ある程度壁との距離が離れると表面積が大きくなり、付着力が減少して移動する。このときの壁との距離を臨界幅という。液滴が壁側に付着してその横を液滴が追い越すがどうかは
1)流路の幅が臨界幅以上であること。
2)液滴の横を流れる気体の圧力に抗して、液滴が壁面に付着し続けること。
を満足していることである。
(臨界幅を求める)
液滴が流路全周面に接触しているときの流路の断面形状を矩形としたとき、液滴の形状は角柱となる(図4参照)。送液方向から見たその幅をw(臨界幅という)、高さをh、液滴の長さをlとすると、
液滴の体積v=whl・・・・・・・・・・・・・・・・・・(4)
液滴の面積s1=2wh・・・・・・・・・・・・・・・・・(5)
液滴付着力f1=2σ(w+h)・・・・・・・・・・・・・(6)
である。なお、σは液体の表面張力である。
The droplet continues to adhere to the wall when it touches all the walls (it is said to be stable). However, when the distance from the wall is increased to some extent, the surface area increases and the adhesion force decreases and moves. The distance from the wall at this time is called the critical width. Whether the droplet adheres to the wall side and the droplet overtakes the side 1) The width of the flow path is not less than the critical width.
2) The droplet continues to adhere to the wall against the pressure of the gas flowing next to the droplet.
Is satisfied.
(Determine critical width)
When the cross-sectional shape of the flow channel when the liquid droplet is in contact with the entire circumferential surface of the flow channel is rectangular, the shape of the liquid droplet is a prism (see FIG. 4). When the width viewed from the liquid feeding direction is w (referred to as critical width), the height is h, and the droplet length is l,
Droplet volume v = whl (4)
Droplet area s1 = 2wh (5)
Droplet adhesion force f1 = 2σ (w + h) (6)
It is. Here, σ is the surface tension of the liquid.

次に、半球状になる場合は(図5参照)、
液滴の半径をr、高さをhとすると、
液滴の体積sv=(1/2)πr2h・・・・・・・・・・・(7)
液滴の面積s2=πrh・・・・・・・・・・・・・・・・・(8)
液滴付着力fv=2σ(πr+h)・・・・・・・・・・・・(9)
液滴の面積が小さい方が安定するから、
2wh>πrh・・・・・・・・・・・・・・・・・・・・・(10)
よって臨界幅wは
w=(1/2)πr・・・・・・・・・・・・・・・・・・・(11)
であり、それ以上のとき液滴が安定する。
(流路断面形状との関係)
(11)を変形して
(2/π)w=r・・・・・・・・・・・・・・・・・・・・(12)
流路の断面積をs1とすると
s1=whであるので
h=s1/w・・・・・・・・・・・・・・・・・・・・・・(13)
(12)を(7)に代入して
sv=(1/2)π×((2/π)w)2×s1/w
=(2/π)×S1×w・・・・・・・・・・・・・・・(14)
となる。
液滴が壁面にトラップされるためには
sv<(2/π)×S1×w・・・・・・・・・・・・・・・(15)
となる。
Next, when it becomes hemispherical (see FIG. 5),
If the radius of the droplet is r and the height is h,
Droplet volume sv = (1/2) πr 2 h (7)
Droplet area s2 = πrh (8)
Droplet adhesion force fv = 2σ (πr + h) (9)
Because the smaller the droplet area, the more stable
2wh> πrh ... (10)
Therefore, the critical width w is w = (1/2) πr (11)
And the liquid droplet is stabilized when it is more than that.
(Relationship with channel cross-sectional shape)
(11) is transformed to (2 / π) w = r (12)
If the cross-sectional area of the flow path is s1, s1 = wh, so h = s1 / w (13)
Substituting (12) into (7), sv = (1/2) π × ((2 / π) w) 2 × s1 / w
= (2 / π) × S1 × w (14)
It becomes.
In order for the droplet to be trapped on the wall surface, sv <(2 / π) × S1 × w (15)
It becomes.

ここで、試薬と検体を流路内で分離するために設けた気体Eの体積をV1とすると、液滴が流路壁面にトラップされ、気体Eが液体をすり抜けるためには、
V1>sv・・・・・・・・・・・・・・・・・・・・・・・(16)
であり、さらに、
V1>(2/π)×S1×w・・・・・・・・・・・・・・・(1)
が成り立つ必要がある。
Here, when the volume of the gas E provided for separating the reagent and the specimen in the flow path is V1, a droplet is trapped on the flow wall and the gas E passes through the liquid.
V1> sv (16)
And, moreover,
V1> (2 / π) × S1 × w (1)
Need to hold.

さらに混合部は、液滴が逆流しないようにするために試薬と検体の合計の体積V2より小さい体積にする必要がある。すなわち
(2/π)×S1×W1<V2・・・・・・・・・・・・・・(2)
となる。
Further, the mixing unit needs to have a volume smaller than the total volume V2 of the reagent and the specimen so that the liquid droplets do not flow backward. That is, (2 / π) × S1 × W1 <V2 (2)
It becomes.

混合部前の流路7は試薬Lや検体Qを一旦トラップし、その間に液滴を通過させるための流路であり、気体の体積V1と混合部の手前の流路7の断面積をS2、手前の流路7の幅をW2とすると、
(2/π)×S2×W2>V1・・・・・・・・・・・・・・(3)
であるときに、液滴V1が混合部前の流路7を通過し、液体が壁面にトラップされる。
The channel 7 before the mixing unit is a channel for temporarily trapping the reagent L and the specimen Q and allowing the liquid droplets to pass therethrough. The gas volume V1 and the cross-sectional area of the channel 7 before the mixing unit are represented by S2. If the width of the flow path 7 on the near side is W2,
(2 / π) × S2 × W2> V1 (3)
In this case, the droplet V1 passes through the flow path 7 before the mixing unit, and the liquid is trapped on the wall surface.

以上の(1)、(2)、(3)を満足する形状を有するマイクロチップの流路を用いれば、液滴は流路の壁面にトラップされるので、液滴V1は液体を追い越して混合部5の送液方向下流側に送液することができる。以降の工程において、検体の特性を調べることができる。   If a microchip channel having a shape satisfying the above (1), (2), and (3) is used, the droplet is trapped on the wall surface of the channel, so that the droplet V1 overtakes the liquid and mixes. The liquid can be fed to the downstream side of the part 5 in the liquid feeding direction. In the subsequent steps, the characteristics of the specimen can be examined.

本実施の形態に係るマイクロチップを示す図である。It is a figure which shows the microchip which concerns on this Embodiment. 図2(a)は、2つの流路に異なる試薬が貯留され、検体貯留部に検体が貯留されたところを示す図である。図2(b)は、注入口から駆動液が注入され、検体が流路に貯蔵されるところを示す図である。図2(c)は、駆動液の注入により、検体が流路に押し出されたところを示す図である。図2(d)は、駆動液がさらに注入され、試薬が混合部に送液されたところを示す図でる。図2(e)は、検体も混合部に送液されたところを示す図である。FIG. 2A is a diagram illustrating a state where different reagents are stored in two flow paths and a sample is stored in the sample storage unit. FIG. 2B is a diagram illustrating a state where the driving liquid is injected from the injection port and the specimen is stored in the flow path. FIG. 2C is a diagram showing a state where the specimen is pushed out into the flow path by the injection of the driving liquid. FIG. 2D is a diagram showing a state where the driving liquid is further injected and the reagent is sent to the mixing unit. FIG. 2E is a diagram showing a state where the specimen is also sent to the mixing unit. 基材BPと、試薬L、検体Q、との接触角ψを示す図である。It is a figure which shows the contact angle (psi) of the base material BP, the reagent L, and the sample Q. 液体の形状が角柱のときを示す図である。It is a figure which shows when the shape of a liquid is a prism. 液体が半球形になる場合を示す図である。It is a figure which shows the case where a liquid becomes hemispherical. 図2(e)の混合部前流路付近を拡大した図である。It is the figure which expanded the vicinity of the flow path before a mixing part of FIG.2 (e).

符号の説明Explanation of symbols

1 マイクロチップ
2 検体貯留部
5 混合部
7 混合部前の流路
P1〜P5 注入口
S1 混合部断面
W1 流路の幅
V1 気体の体積
D 駆動液
L 試薬
Q 検体
DESCRIPTION OF SYMBOLS 1 Microchip 2 Sample storage part 5 Mixing part 7 Flow path before mixing part P1-P5 Inlet S1 Cross section of mixing part W1 Channel width V1 Gas volume D Driving liquid L Reagent Q Sample

Claims (3)

少なくとも1種類の試薬と、前記試薬と反応させる検体とを、間に気体を介して送液させる流路と、
前記流路内に設けた前記試薬と前記検体とを混合する混合部と、
を有するマイクロチップであって、
前記気体の体積をV1、前記送液方向から見た前記混合部の断面積をS1、幅をW1、前記試薬と前記検体の合計の体積をV2としたとき、以下の関係式(1)、(2)を満たすことを特徴とするマイクロチップ。
(2/π)×S1×W1<V1 (1)
(2/π)×S1×W1<V2 (2)
A flow path for sending at least one kind of reagent and a specimen to be reacted with the reagent via a gas therebetween;
A mixing section for mixing the reagent and the specimen provided in the flow path;
A microchip having
When the volume of the gas is V1, the cross-sectional area of the mixing unit viewed from the liquid feeding direction is S1, the width is W1, and the total volume of the reagent and the specimen is V2, the following relational expression (1): (2) The microchip characterized by satisfy | filling.
(2 / π) × S1 × W1 <V1 (1)
(2 / π) × S1 × W1 <V2 (2)
前記試薬又は前記検体と、前記流路の壁面との接触角が90°以上であり、かつ前記試薬又は前記検体と、前記混合部の壁面との接触角が90°以上であることを特徴とする請求項1に記載のマイクロチップ。 The contact angle between the reagent or the sample and the wall surface of the flow path is 90 ° or more, and the contact angle between the reagent or the sample and the wall surface of the mixing unit is 90 ° or more, The microchip according to claim 1. 前記混合部の送液方向上流側の流路の前記送液方向から見た断面積をS2、幅をW2としたとき以下の関係式(3)を満たすことを特徴とする請求項1又は2に記載のマイクロチップ。
(2/π)×S2×W2>V1 (3)
The following relational expression (3) is satisfied, where S2 is a cross-sectional area of the flow path upstream of the mixing section in the liquid feeding direction as viewed from the liquid feeding direction, and W2 is a width thereof. A microchip according to claim 1.
(2 / π) × S2 × W2> V1 (3)
JP2008074762A 2008-03-22 2008-03-22 Microchip Withdrawn JP2009229240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008074762A JP2009229240A (en) 2008-03-22 2008-03-22 Microchip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008074762A JP2009229240A (en) 2008-03-22 2008-03-22 Microchip

Publications (1)

Publication Number Publication Date
JP2009229240A true JP2009229240A (en) 2009-10-08

Family

ID=41244814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008074762A Withdrawn JP2009229240A (en) 2008-03-22 2008-03-22 Microchip

Country Status (1)

Country Link
JP (1) JP2009229240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056188A (en) * 2019-10-02 2021-04-08 積水化学工業株式会社 Micro flow passage chip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056188A (en) * 2019-10-02 2021-04-08 積水化学工業株式会社 Micro flow passage chip
WO2021065777A1 (en) * 2019-10-02 2021-04-08 積水化学工業株式会社 Microchannel chip
CN114430702A (en) * 2019-10-02 2022-05-03 积水化学工业株式会社 Micro flow path chip
JP7164505B2 (en) 2019-10-02 2022-11-01 積水化学工業株式会社 microfluidic chip

Similar Documents

Publication Publication Date Title
US7686029B2 (en) Microfluidic device for trapping air bubbles
US8944083B2 (en) Generation of monodisperse droplets by shape-induced shear and interfacial controlled fusion of individual droplets on-demand
KR100941069B1 (en) Microfluidic dilution device
US8889085B2 (en) Microfluidic channel for removing bubbles in fluid
JP5246167B2 (en) Microchip and liquid feeding method of microchip
US20070243111A1 (en) Microchip
JP2005519751A (en) Microfluidic channel network device
US20220055035A1 (en) Microfluidic device and methods
JPWO2009008236A1 (en) Micro inspection chip liquid mixing method and inspection apparatus
US20080112849A1 (en) Micro total analysis chip and micro total analysis system
JP2007225438A (en) Microfluid chip
CN109070075A (en) Microfluidic device with capillary chamber
EP1927401A1 (en) Micro total analysis chip and micro total analysis system
JP5077227B2 (en) Reaction method and analysis device in flow path of microchip
US9839932B2 (en) Surface chemical treatment apparatus for drawing predetermined pattern by carrying out a chemical treatment
JP2009229240A (en) Microchip
JP2020531267A (en) A device for mixing fluids in capillary driven fluid systems
JP2009229262A (en) Microchip
WO2010092845A1 (en) Micro-flow passage structure and micropump
JP2004053545A (en) Micro-reactor, reaction analytical system and their manufacturing method
KR20100060466A (en) Microchannel for merging of multiple droplets and method of generating quantitatively merged droplets using the same
JP2008122234A (en) Micro-integrated analysis chip and micro-integrated analysis system
CN110719814B (en) Device for dissolving reagents in a fluid in a capillary driven microfluidic system
JP2007237021A (en) Microreactor
JP2009019890A (en) Micro inspection chip and inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100913

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20110222

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A761 Written withdrawal of application

Effective date: 20110513

Free format text: JAPANESE INTERMEDIATE CODE: A761