JP2009228705A - Merging porion structure of piping - Google Patents

Merging porion structure of piping Download PDF

Info

Publication number
JP2009228705A
JP2009228705A JP2008071934A JP2008071934A JP2009228705A JP 2009228705 A JP2009228705 A JP 2009228705A JP 2008071934 A JP2008071934 A JP 2008071934A JP 2008071934 A JP2008071934 A JP 2008071934A JP 2009228705 A JP2009228705 A JP 2009228705A
Authority
JP
Japan
Prior art keywords
pipe
branch pipe
fluid
diameter
main pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008071934A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kitahata
慶之 北畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008071934A priority Critical patent/JP2009228705A/en
Publication of JP2009228705A publication Critical patent/JP2009228705A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a merging portion structure obtaining a flow rate commensurate to the power of a pump. <P>SOLUTION: The merging portion structure of piping connects a branch pipe 20 in which a second fluid flows to a main pipe 10 in which a first fluid flows. To the first fluid of the main pipe 10, the second fluid is made to flow from an outflow port 21 of the branch pipe 20 and mixed. An expanding portion 22 is provided immediately before the outflow port 21 of the branch pipe 20, thereby expanding a diameter immediately before the outflow port 21 in the branch pipe 20 to be equivalent to the diameter of the main pipe 10. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、配管を接続して流体を混合するための配管の合流部構造に関する。   The present invention relates to a joining part structure of piping for connecting piping and mixing fluid.

配管は、各種流体を移送するために様々な工場で設置されている。
製鉄業では、配管により燃焼ガスや循環水等の様々な流体を移送しており、具体的な例を挙げると、図4に示すように、熱間圧延の工程100においては鋼板101の表面に発生した酸化鉄(以下、スケールという。)を取り除くために、スプレーノズル102等から、加圧した水を鋼板101に吹きかけたり、圧延機のワークロール103を冷却するために、スプレーノズル102等から、ワークロール103に水を供給したりする等している。
Piping is installed at various factories to transport various fluids.
In the iron and steel industry, various fluids such as combustion gas and circulating water are transferred by pipes. To give a specific example, as shown in FIG. In order to remove the generated iron oxide (hereinafter referred to as scale), pressurized water is sprayed on the steel plate 101 from the spray nozzle 102 or the like, or the work roll 103 of the rolling mill is cooled from the spray nozzle 102 or the like. For example, water is supplied to the work roll 103.

また、熱間圧延の工程100において使用した水は使用箇所によって粗ミル環水と仕上ミル環水とに分けられる。これらはあわせてミル環水と呼ばれる。図5に示すように、ミル環水は、スルース104で回収されて、ビット105から沈殿槽106及びろ過器107を通して水に含まれるスケール等の不純物が除去され、給水槽108へ送られる。その後、不純物が除去された水は、ミルに戻されることで、循環利用されている。また、除去した不純物は、濃縮槽109で濃縮され、スラリーにされて脱水機110にかけられる。脱水機110の圧搾水、濃縮槽上澄液及び循環水の一部はブロー水として排水設備111を通して、系外に放出される。そして、これらの水を移送するために、工場内には、適宜合流及び分岐させられた配管が設置されている。また、水の移送は、配管上に適宜配置したポンプ112によりなされている。   Further, the water used in the hot rolling step 100 is divided into rough mill water and finishing mill water depending on the location of use. These are collectively called mill ring water. As shown in FIG. 5, the mill water is collected by the sluice 104, impurities such as scale contained in the water are removed from the bit 105 through the settling tank 106 and the filter 107, and sent to the water supply tank 108. Thereafter, the water from which impurities have been removed is recycled by being returned to the mill. Further, the removed impurities are concentrated in the concentration tank 109, made into a slurry, and applied to the dehydrator 110. A part of the compressed water, the concentrated tank supernatant, and the circulating water of the dehydrator 110 is discharged out of the system through the drainage equipment 111 as blow water. And in order to transfer these water, the pipe | tube which was made to join and branch appropriately is installed in the factory. Further, the water is transferred by a pump 112 appropriately disposed on the pipe.

ところで、配管で合流させるために、図6に示すようなT字型合流管121を用いる場合がある。しかし、T字型合流管121では本管131に接続される支管132を流れる流体の圧力損失(以下、圧損という。)が大きいために、図7に示すようなY字型合流管122を用いることが多い。Y字型合流管122の場合、本管131と支管132との合流角度(本管131の中心軸と支管132の中心軸とがなす角度)θによって支管132の圧損が異なり、合流角度θを小さくなるほど(支管132が本管131の上流側に倒れているほど)、支管132の圧損が小さくなる。
しかし、このように多用されるY字型合流管122でも、本管131の流量が支管132の流量よりも圧倒的に多い場合、支管132を流れる流体が本管131を流れる流体に押し負けて、ポンプの能力通りの流量が得られない、という問題がある。
本発明の課題は、ポンプの能力通りの流量が得られる合流部構造にすることである。
By the way, in order to join with piping, the T-shaped joining pipe 121 as shown in FIG. 6 may be used. However, since the pressure loss (hereinafter referred to as pressure loss) of the fluid flowing through the branch pipe 132 connected to the main pipe 131 is large in the T-shaped joining pipe 121, a Y-shaped joining pipe 122 as shown in FIG. 7 is used. There are many cases. In the case of the Y-shaped joining pipe 122, the pressure loss of the branch pipe 132 differs depending on the joining angle between the main pipe 131 and the branch pipe 132 (the angle formed by the central axis of the main pipe 131 and the central axis of the branch pipe 132). The smaller the branch pipe 132 is tilted to the upstream side of the main pipe 131, the smaller the pressure loss of the branch pipe 132 becomes.
However, even in the Y-shaped merging pipe 122 that is frequently used in this manner, when the flow rate of the main pipe 131 is overwhelmingly higher than the flow rate of the branch pipe 132, the fluid flowing through the branch pipe 132 is pushed against the fluid flowing through the main pipe 131. There is a problem that the flow rate according to the capacity of the pump cannot be obtained.
The subject of this invention is making it the confluence | merging part structure from which the flow volume according to the capability of a pump is obtained.

前記課題を解決するために、本発明に係る請求項1に記載の配管の合流部構造は、第1の流体を流している本管に第2の流体が流れる支管を接続して、前記本管の第1の流体に、前記第2の流体を前記支管の流出口から流出させて混合させる配管の合流部構造において、前記支管における前記流出口の直前の直径を、前記本管の直径相当に拡大していることを特徴とする。
また、本発明に係る請求項2に記載の配管の合流部構造は、請求項1に記載の配管の合流部構造において、前記支管の流出口の直前に拡大管を設けることで、前記支管における流出口の直前の直径を、本管の直径相当に拡大していることを特徴とする。
In order to solve the above-described problem, the pipe junction part structure according to claim 1 according to the present invention is configured such that a branch pipe through which a second fluid flows is connected to a main pipe through which the first fluid flows, In the junction structure of a pipe that causes the second fluid to flow out from the outlet of the branch pipe and mix it with the first fluid of the pipe, the diameter immediately before the outlet in the branch pipe corresponds to the diameter of the main pipe It is characterized by being expanded to.
Moreover, the junction part structure of the pipe according to claim 2 according to the present invention is the junction part structure of the pipe according to claim 1, wherein an enlarged pipe is provided immediately before the outlet of the branch pipe. The diameter just before the outflow port is enlarged to the diameter of the main pipe.

本発明によれば、支管の流出口直前の直径を、本管の直径相当に拡大させることで、支管から本管への流出量が多くすることができ、ポンプの能力通りの流量を得ることができる。   According to the present invention, by increasing the diameter of the branch pipe just before the outlet to the main pipe diameter, the amount of outflow from the branch pipe to the main pipe can be increased, and the flow rate according to the capacity of the pump can be obtained. Can do.

本発明を実施するための最良の形態(以下、実施形態という。)を図面を参照しながら詳細に説明する。
(構成)
図1は、本発明を適用した配管の合流部構造を示す。
図1に示すように、配管の合流部構造は、第1の流体に第2の流体を混合させるために、第1の流体が流れる本管10に第2の流体が流れる支管20を接続している。ここで、第1及び第2の流体は、配管が製鉄業において配置されているものであれば、循環水等である。
The best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described in detail with reference to the drawings.
(Constitution)
FIG. 1 shows a junction part structure of a pipe to which the present invention is applied.
As shown in FIG. 1, the junction structure of the pipe connects the branch pipe 20 through which the second fluid flows to the main pipe 10 through which the first fluid flows in order to mix the second fluid with the first fluid. ing. Here, the 1st and 2nd fluids are circulating water etc., if piping is arranged in the steel industry.

支管20の流出口21よりも上流における直径D1は、本管10の直径D2よりも小さく、本管10と支管20との接続部では、本管10と支管20との合流角度(本管10の中心軸と支管20の中心軸とがなす角度)θが、支管20が本管10の上流側に倒れる角度となっている。
また、支管20では、流出口21の直前の直径D3を、本管10の直径D2相当に拡大させている。具体的には、本管10の直径D2よりも小さい直径D1の支管20に拡大部(ディフューザ)22を設けることで、流出口21を含めた流出口21の直前の直径D3を、本管10の直径D2相当に拡大(拡径)させている。
(作用及び効果)
作用及び効果は次のようになる。
A diameter D1 upstream of the outlet 21 of the branch pipe 20 is smaller than a diameter D2 of the main pipe 10, and a junction angle between the main pipe 10 and the branch pipe 20 (main pipe 10) at a connection portion between the main pipe 10 and the branch pipe 20. Angle θ) between the central axis of the branch pipe 20 and the central axis of the branch pipe 20 is an angle at which the branch pipe 20 falls to the upstream side of the main pipe 10.
Further, in the branch pipe 20, the diameter D <b> 3 immediately before the outlet 21 is enlarged to the diameter D <b> 2 of the main pipe 10. Specifically, by providing an enlarged portion (diffuser) 22 in the branch pipe 20 having a diameter D1 smaller than the diameter D2 of the main pipe 10, the diameter D3 immediately before the outlet 21 including the outlet 21 is changed to the main pipe 10. Is expanded (expanded) to a diameter D2.
(Function and effect)
The action and effect are as follows.

前述のように、配管の合流部構造では、第1の流体を流している本管10に第2の流体が流れる支管20を接続することで、本管10の第1の流体に第2の流体を支管20から流出させて混合させている。
そして、支管20において本管10との合流点の径、すなわち本管10への接続部の径を、流出口21の直前で拡大していることで、支管20から本管10に流出する第2の流体の流量を増加させることができる。
As described above, in the junction structure of the pipe, the second fluid is connected to the first fluid in the main pipe 10 by connecting the branch pipe 20 through which the second fluid flows to the main pipe 10 in which the first fluid is flowing. The fluid is discharged from the branch pipe 20 and mixed.
Then, the diameter of the junction point with the main pipe 10 in the branch pipe 20, that is, the diameter of the connecting portion to the main pipe 10 is enlarged immediately before the outlet 21, so that the first flow out of the branch pipe 20 to the main pipe 10 occurs. The flow rate of the second fluid can be increased.

これは、図1に示すように、本管10と支管20との接続部、すなわち支管20の端面(流出口21)付近では、本管10の第1の流体が支管20の第2の流体を巻き込むように流れている。例えば支管20の流出口21の外周から本管10の流れが剥離して、その剥離のために支管20の流出口21が負圧になり、その負圧により支管20の第2の流体が本管10の第1の流体に巻き込まれるようになる。   As shown in FIG. 1, the first fluid of the main pipe 10 is the second fluid of the branch pipe 20 at the connection portion between the main pipe 10 and the branch pipe 20, that is, in the vicinity of the end surface (outflow port 21) of the branch pipe 20. It is flowing to involve. For example, the flow of the main pipe 10 is separated from the outer periphery of the outlet 21 of the branch pipe 20, and the outlet 21 of the branch pipe 20 becomes negative pressure due to the separation, and the second fluid of the branch pipe 20 is caused by the negative pressure. The tube 10 is entrained in the first fluid.

このようなことから、前述のように、支管20を流出口21の直前で拡大して、支管20の管断面積を大きくすることで、本管10の第1の流体の流れに巻き込まれる第2の流体の流量を増やすことができる。
また、本管10と支管20との接続部で、支管20が本管10の上流側に倒れるような合流角度θとして、本管10に接続される支管20の端部の流出口21を本管10内で下流側に向けることで、本管10の第1の流体の流れに支管20の第2の流体をより効果的に巻き込むようにしている。
For this reason, as described above, the branch pipe 20 is enlarged immediately before the outflow port 21 to increase the pipe cross-sectional area of the branch pipe 20, so that the first fluid caught in the first fluid flow in the main pipe 10 can be obtained. The flow rate of the second fluid can be increased.
Further, at the connecting portion between the main pipe 10 and the branch pipe 20, the outlet 21 at the end of the branch pipe 20 connected to the main pipe 10 is set as the merging angle θ such that the branch pipe 20 falls to the upstream side of the main pipe 10. The second fluid in the branch pipe 20 is more effectively involved in the flow of the first fluid in the main pipe 10 by being directed downstream in the pipe 10.

次に、配管の合流部の圧力損失を検討してみる。配管の合流部における圧力損失(損失ヘッド)hは、下記(1)式のような関係で表せる。
h=ζ・v/(2・g) ・・・(1)
ここで、ζは圧力損失係数である。圧力損失係数とは、配管内を流れる流体が受けた圧損を算出するために用いる値である。また、vは支管内の流速であり、gは重力加速度である。この(1)式によれば、圧力損失係数ζが小さくなるほど、圧力損失hは小さくなる。
Next, let us examine the pressure loss at the junction of the pipes. The pressure loss (loss head) h at the junction of the pipes can be expressed by the relationship shown in the following formula (1).
h = ζ · v 2 / (2 · g) (1)
Here, ζ is a pressure loss coefficient. The pressure loss coefficient is a value used for calculating the pressure loss received by the fluid flowing in the pipe. Further, v is a flow velocity in the branch pipe, and g is a gravitational acceleration. According to the equation (1), the pressure loss h decreases as the pressure loss coefficient ζ decreases.

図2は、合流後の流量比、すなわち支管20の流量Qと、支管20の流量Qが本管10の流量Qに合流した後の流量Q(=Q+Q)との比である流量比Q/Qを0.1としたときに(Q/Q=0.1)、支管20の拡径部22の断面積Aと本管10の断面積Aとの比である断面積比A/Aを変化させた場合の、圧力損失係数の変化を示す。また、図3は、前記流量比Q/Qを0.5としたときに(Q/Q=0.5)、断面積比A/Aを変化させた場合の、圧力損失係数の変化を示す。また、図2及び図3では、合流角度θをパラメータとしている。 Figure 2 is a flow ratio after the confluence, i.e. the flow rate Q 2 of the branch pipe 20, the flow rate Q 2 of the branch pipe 20 is flow Q 3 after merged in the flow rate to Q 1 mains 10 (= Q 1 + Q 2 ) and the When the flow rate ratio Q 1 / Q 3 , which is the ratio, is 0.1 (Q 1 / Q 3 = 0.1), the cross-sectional area A 2 of the enlarged diameter portion 22 of the branch pipe 20 and the cross-sectional area A of the main pipe 10 The change of the pressure loss coefficient when the cross-sectional area ratio A 2 / A 1 , which is a ratio to 1 , is changed is shown. FIG. 3 shows the pressure when the cross-sectional area ratio A 2 / A 1 is changed when the flow rate ratio Q 1 / Q 3 is 0.5 (Q 1 / Q 3 = 0.5). Shows the change in loss factor. 2 and 3, the merging angle θ is used as a parameter.

図2及び図3に示すように、断面積比A/Aが1に近くなるほど、すなわち、支管20の流出口21直前の直径D3が、本管10の直径D2に近づくほど、合流点での圧力損失係数が小さくなり、合流点での流体の圧損が小さくなる。
このような結果から、配管に接続されるポンプを、より本来の能力に近い吐出圧で運転でき、支管20から本管10への流入量を多くすることができる。
なお、前記実施形態を次のような構成により実現することもできる。
すなわち、前記実施形態では、液体の合流について説明したが、これに限定されるものではなく、気体や混相流体等の流体を用いる場合にも本発明を適用できる。
As shown in FIGS. 2 and 3, the closer the cross-sectional area ratio A 2 / A 1 is to 1, that is, the closer the diameter D 3 immediately before the outlet 21 of the branch pipe 20 is to the diameter D 2 of the main pipe 10, the junction point. And the pressure loss coefficient of the fluid at the junction is reduced.
From such a result, the pump connected to the pipe can be operated at a discharge pressure closer to the original capacity, and the amount of inflow from the branch pipe 20 to the main pipe 10 can be increased.
In addition, the said embodiment can also be implement | achieved by the following structures.
That is, in the said embodiment, although the confluence | merging of the liquid was demonstrated, it is not limited to this, This invention is applicable also when using fluids, such as gas and a multiphase fluid.

(実施例)
実施例は次のようになる。
配管の合流部構造を図1に示す合流部構造にして、本管10として、外径(径称)250AのSGP管(配管用炭素鋼鋼管)を用い、支管20として、ディフューザ前で外径(D4)150A、ディフューザ後で外径(D3)250AのSGP管を用いている。一方、比較例(従来例)として、配管の合流部構造を前記図6(T字型)又は図7(Y字型)に示す合流部構造にして、本管131として、外径(径称)250AのSGP管を用い、支管132として、外径150AのSGP配管を用いている。本発明を適用した場合(図1)及び比較例の場合ともに、本管のポンプ能力は、流量180m/h、揚程40mであり、支管のポンプ能力は、流量20m/h、揚程35mである。
図6に示すようなT型字型合流管121の場合、支管132の実際の流量が5m/hとなった。これは、前述のように、支管132の流量よりも本管131の流量が圧倒的に多いために、支管132の流体が本管131の流体に押し負けて、合流し難くなっていることが原因になっていると考えられる。
(Example)
An example is as follows.
1 is used, and the main pipe 10 is an SGP pipe (carbon steel pipe for piping) having an outer diameter (diameter) 250A, and the branch pipe 20 is an outer diameter in front of the diffuser. (D4) 150A, SGP pipe with outer diameter (D3) 250A is used after the diffuser. On the other hand, as a comparative example (conventional example), the joining portion structure of the pipe is changed to the joining portion structure shown in FIG. 6 (T-shaped) or FIG. 7 (Y-shaped), and the main pipe 131 has an outer diameter (diameter name). ) A 250 A SGP pipe is used, and an SGP pipe having an outer diameter of 150 A is used as the branch pipe 132. In the case of applying the present invention (FIG. 1) and the comparative example, the pump capacity of the main pipe is 180 m 3 / h with a flow rate of 40 m, and the pump capacity of the branch pipe is 20 m 3 / h with a flow rate of 35 m. is there.
In the case of the T-shaped joining pipe 121 as shown in FIG. 6, the actual flow rate of the branch pipe 132 is 5 m 3 / h. As described above, since the flow rate of the main pipe 131 is overwhelmingly higher than the flow rate of the branch pipe 132, the fluid of the branch pipe 132 is pushed against the fluid of the main pipe 131 and is difficult to join. It seems to be the cause.

また、図7に示すY型字型合流管122の場合、支管の実際の流量は、T型字型合流管121の場合と比較して流量は増加したものの、9m/hとなった。これは、前述のように、T型字型合流管121の場合と同様、支管132の流量よりも本管131の流量が圧倒的に多いために、支管132の流体が本管131の流体に押し負けて、合流し難くなっていることが原因していると考えられる。
これに対して、本発明を適用した場合(図1に示す合流部構造の場合)、支管20の実際の流量は、12m/hとなり、比較例(T型字型合流管、Y型字型合流管)よりも流量が多くなっている。
In the case of the Y-shaped joining pipe 122 shown in FIG. 7, the actual flow rate of the branch pipe was 9 m 3 / h, although the flow rate increased compared to the case of the T-shaped joining pipe 121. As described above, this is because the flow rate of the main pipe 131 is overwhelmingly higher than the flow rate of the branch pipe 132 as in the case of the T-shaped joining pipe 121, so that the fluid of the branch pipe 132 becomes the fluid of the main pipe 131. This is thought to be due to the fact that it is difficult to join due to defeat.
On the other hand, when the present invention is applied (in the case of the merging portion structure shown in FIG. 1), the actual flow rate of the branch pipe 20 is 12 m 3 / h, which is a comparative example (T-shaped merging tube, Y-shaped character). The flow rate is higher than that of the type merge pipe).

本発明の実施形態の配管の合流部構造を示す図である。It is a figure which shows the junction part structure of piping of embodiment of this invention. 流量比Q/Q=0.1とした場合の、断面積比A/A及び合流角と圧力損失係数ζとの関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the cross-sectional area ratio A 2 / A 1, the merging angle and the pressure loss coefficient ζ when the flow rate ratio Q 1 / Q 3 = 0.1. 流量比Q/Q=0.5とした場合の、断面積比A/A及び合流角と圧力損失係数ζとの関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the cross-sectional area ratio A 2 / A 1 and the merging angle and the pressure loss coefficient ζ when the flow rate ratio Q 1 / Q 3 = 0.5. 熱間圧延の工程において、鋼板の表面の酸化鉄をスプレーノズルで取り除く処理の説明に使用した図である。It is the figure used for description of the process which removes the iron oxide on the surface of a steel plate with a spray nozzle in the process of hot rolling. 熱間圧延の工程を実現する配管の例を示す図である。It is a figure which shows the example of piping which implement | achieves the process of hot rolling. 従来の配管の合流部構造であるT字型合流管を示す図である。It is a figure which shows the T-shaped joining pipe which is the joining part structure of the conventional piping. 従来の配管の合流部構造であるY字型合流管を示す図である。It is a figure which shows the Y-shaped joining pipe which is the joining part structure of the conventional piping.

符号の説明Explanation of symbols

10 本管、20 支管、21 流出口、22 拡大部、D1 支管の直径、D2 本管の直径、D3 拡大部の直径   10 main pipes, 20 branch pipes, 21 outlet, 22 enlarged part, D1 branch pipe diameter, D2 main pipe diameter, D3 enlarged part diameter

Claims (2)

第1の流体を流している本管に第2の流体が流れる支管を接続して、前記本管の第1の流体に、前記第2の流体を前記支管の流出口から流出させて混合させる配管の合流部構造において、
前記支管における前記流出口の直前の直径を、前記本管の直径相当に拡大していることを特徴とする配管の合流部構造。
A branch pipe through which the second fluid flows is connected to the main pipe through which the first fluid is flowing, and the second fluid flows out from the outlet of the branch pipe and is mixed with the first fluid in the main pipe. In the junction structure of piping,
A junction structure of a pipe, wherein a diameter of the branch pipe immediately before the outlet is enlarged to a diameter of the main pipe.
前記支管の流出口の直前に管径拡大部を設けることで、前記支管における流出口の直前の直径を、本管の直径相当に拡大していることを特徴とする請求項1に記載の配管の合流部構造。   The pipe according to claim 1, wherein a diameter of the branch pipe immediately before the outlet is enlarged to a diameter corresponding to a diameter of the main pipe by providing a pipe diameter enlarged portion immediately before the outlet of the branch pipe. Confluence part structure.
JP2008071934A 2008-03-19 2008-03-19 Merging porion structure of piping Pending JP2009228705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008071934A JP2009228705A (en) 2008-03-19 2008-03-19 Merging porion structure of piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008071934A JP2009228705A (en) 2008-03-19 2008-03-19 Merging porion structure of piping

Publications (1)

Publication Number Publication Date
JP2009228705A true JP2009228705A (en) 2009-10-08

Family

ID=41244350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008071934A Pending JP2009228705A (en) 2008-03-19 2008-03-19 Merging porion structure of piping

Country Status (1)

Country Link
JP (1) JP2009228705A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010046833A1 (en) 2009-09-30 2011-04-14 Hitachi Automotive Systems, Ltd., Hitachinaka-shi Shock absorber with damping force control
JP2016075381A (en) * 2014-10-09 2016-05-12 日本電気株式会社 Pipeline structure and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010046833A1 (en) 2009-09-30 2011-04-14 Hitachi Automotive Systems, Ltd., Hitachinaka-shi Shock absorber with damping force control
JP2016075381A (en) * 2014-10-09 2016-05-12 日本電気株式会社 Pipeline structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US10302104B2 (en) Helix amplifier fittings
CN103639082A (en) Gas-liquid mixing sprayer
JP2008539339A (en) Hydrocyclone apparatus for separating a suspension of fiber pulp containing relatively heavy contaminants and method for separating the suspension
CA2895242C (en) Gas desander
US20130037971A1 (en) Wetted wall venturi scrubber with a 2-stage venturi throat
JP2009228705A (en) Merging porion structure of piping
CN104019366A (en) Pulp conveying pipeline system with pipeline protection function and pulp conveying method
US20170361286A1 (en) Multiphase device and system for heating, condensing, mixing, deaerating and pumping
US20180008941A1 (en) Apparatus for dispersing particles in a liquid
CN202729831U (en) Titanium tetrachloride washing and absorbing device
CN202017824U (en) Liquid relief pipe
CN204544532U (en) Miniature hydrocone type spray gun
CN106286426B (en) Reduce the jet pump of liquid flow resistance within communicating pipe
CN203724949U (en) Venturi scrubber
CN106475916B (en) Girt-water separation device
CN209618930U (en) Multichannel mixing wastewater with air flotation device
JP2005147482A (en) Gas-liquid separator
MX2021009873A (en) Method for the removal of at least one contaminant from an aqueous liquor or a gas.
JP6007014B2 (en) Equipment for removing foreign matter in gas piping
CN107362593B (en) Slurry heavy particulate matter online separation device for wet flue gas desulfurization system
CN106439317A (en) Multistage reduced liquid input pipe joint
CN217382110U (en) Pressure increasing water pipe
JP6534882B2 (en) Spray nozzle
CN109107271A (en) A kind of water system of dynamic wave scrubbing tower overflow weir
CN204051365U (en) Wet dust separater