JP2009227571A - Glass powder for forming resistor - Google Patents

Glass powder for forming resistor Download PDF

Info

Publication number
JP2009227571A
JP2009227571A JP2009037588A JP2009037588A JP2009227571A JP 2009227571 A JP2009227571 A JP 2009227571A JP 2009037588 A JP2009037588 A JP 2009037588A JP 2009037588 A JP2009037588 A JP 2009037588A JP 2009227571 A JP2009227571 A JP 2009227571A
Authority
JP
Japan
Prior art keywords
glass
resistor
glass powder
forming
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009037588A
Other languages
Japanese (ja)
Other versions
JP2009227571A5 (en
JP5467495B2 (en
Inventor
Kunihiko Kano
邦彦 加納
Kazuyoshi Shindo
和義 新藤
Masaaki Hayashi
雅章 林
Yasushi Amano
康司 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2009037588A priority Critical patent/JP5467495B2/en
Publication of JP2009227571A publication Critical patent/JP2009227571A/en
Publication of JP2009227571A5 publication Critical patent/JP2009227571A5/ja
Application granted granted Critical
Publication of JP5467495B2 publication Critical patent/JP5467495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve the reliability and productivity of a small-sized spark plug by creating a glass powder for forming a resistor, having high ability to absorb high frequency noise radio waves and properly functioning as block particles, in order to form a resistor efficiently absorbing the high frequency noise radio waves. <P>SOLUTION: The glass powder for forming a resistor contains, by mol, 40-60% SiO<SB>2</SB>, 28-40% B<SB>2</SB>O<SB>3</SB>, 1-20% of Li<SB>2</SB>O+Na<SB>2</SB>O+K<SB>2</SB>O, 0.1-20% CaO, and 0-7% BaO, as a glass composition. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、抵抗体形成用ガラス粉末に関し、特に点火プラグの抵抗体の形成に好適な抵抗体形成用ガラス粉末に関する。   The present invention relates to a resistor forming glass powder, and more particularly to a resistor forming glass powder suitable for forming a resistor of a spark plug.

自動車等のエンジンの点火プラグとして、抵抗体入り点火プラグが広く使用されている。図1に示すように、抵抗体入り点火プラグは、絶縁碍子(図示せず)の内孔中に端子電極1と接する導電ガラス体2aと、中心電極3と接する導電ガラス体2bとの間に抵抗体4を介在させたものである。点火プラグに抵抗体を導入すると、点火プラグの点火時に発生する高周波雑音電波の漏洩を抑制することができる。   2. Description of the Related Art Resistor-containing spark plugs are widely used as spark plugs for engines such as automobiles. As shown in FIG. 1, the spark plug with a resistor is provided between a conductive glass body 2 a in contact with the terminal electrode 1 and a conductive glass body 2 b in contact with the center electrode 3 in an inner hole of an insulator (not shown). The resistor 4 is interposed. If a resistor is introduced into the spark plug, leakage of high-frequency noise radio waves generated when the spark plug is ignited can be suppressed.

一般的に、抵抗体入り点火プラグは、次のようにして作製される。絶縁碍子の内孔の下端に中心電極3を挿入し、所定量の導電ガラス体材料を絶縁碍子の内孔に充填した後、導電ガラス体材料にプレス圧力を加え、導電ガラス体材料の表面を平坦にする。次に、導電ガラス体材料上に、所定量の抵抗体材料を充填した後、抵抗体材料にプレス圧力を加え、抵抗体材料の表面を平坦にする。その後、抵抗体材料上に導電ガラス体材料を所定量充填する。ここで、導電ガラス体材料および抵抗体材料は、絶縁碍子の内孔に充填しやすくするために顆粒に加工されている。次いで、端子電極1を絶縁碍子の内孔の上端に挿入した後、約900℃で加熱しながら端子電極1に荷重をかける、いわゆるホットプレス工程により、導電ガラス体材料および抵抗体材料を焼結させて導電ガラス体2a、2bおよび抵抗体4を形成するとともに、導電ガラス体2a中に端子電極1の先端を圧入し、導電ガラス体2b中に中心電極3の先端を圧入する。最後に、接地電極を備えたハウジングに絶縁碍子を固定し、点火プラグとする。   Generally, a spark plug with a resistor is manufactured as follows. After inserting the center electrode 3 into the lower end of the inner hole of the insulator and filling the inner hole of the insulator with a predetermined amount of the conductive glass body material, press pressure is applied to the conductive glass body material to Make it flat. Next, after filling a predetermined amount of resistor material on the conductive glass body material, a pressing pressure is applied to the resistor material to flatten the surface of the resistor material. Thereafter, a predetermined amount of conductive glass body material is filled on the resistor material. Here, the conductive glass body material and the resistor material are processed into granules in order to easily fill the inner holes of the insulator. Next, after inserting the terminal electrode 1 into the upper end of the inner hole of the insulator, the conductive glass body material and the resistor material are sintered by a so-called hot pressing process in which a load is applied to the terminal electrode 1 while heating at about 900 ° C. Then, the conductive glass bodies 2a, 2b and the resistor 4 are formed, the tip of the terminal electrode 1 is press-fitted into the conductive glass body 2a, and the tip of the center electrode 3 is press-fitted into the conductive glass body 2b. Finally, an insulator is fixed to a housing provided with a ground electrode to form a spark plug.

一般的に、抵抗体材料は、粗粒ガラス粉末、微粒ガラス粉末、セラミック粉末、導電粉末等からなる抵抗体材料を顆粒化したものが使用される。この抵抗体材料を用いて作製された抵抗体は、粗粒ガラス粉末やセラミック粉末がその原型を留めるとともに、これらの粒子の間隙に、微粒ガラス粉末が溶融固化した結合ガラス相が存在した状態となる。また結合ガラス相中には導電粉末が分散しており、粗粒ガラス粉末は導電パスを曲折(迂回)させるブロック粒子として機能する(例えば特許文献1、2参照)。そして、導電パスを曲折させると、抵抗体の高周波雑音電波の吸収能が高まることが知られている。   In general, a resistor material obtained by granulating a resistor material made of coarse glass powder, fine glass powder, ceramic powder, conductive powder or the like is used. The resistor produced using this resistor material has a state in which a coarse glass powder or a ceramic powder retains its original shape, and a bonded glass phase in which the fine glass powder is melted and solidified exists in the gap between these particles. Become. In addition, conductive powder is dispersed in the binder glass phase, and the coarse glass powder functions as block particles that bend (detour) the conductive path (see, for example, Patent Documents 1 and 2). It is known that when the conductive path is bent, the resistance of the resistor to absorb high-frequency noise radio waves increases.

特開平9−306636号公報JP 9-306636 A 特開2005−340171号公報JP 2005-340171 A 特開2007−122879号公報JP 2007-122879 A

近年、エンジンは小型化される傾向にあり、点火プラグも小型化される傾向にある。しかし、点火プラグが小型化されると、絶縁碍子の内孔に形成される抵抗体の含有量を減少させる必要があるため、換言すれば、点火プラグ内部で高周波雑音電波を吸収する粗粒ガラス粉末等の含有量(ガラス層)を減少させる必要があるため、このことに起因して、抵抗体は、高周波雑音電波の漏洩を抑制し難くなる。なお、点火プラグの点火時には、高周波雑音電波が発生するが、この高周波雑音電波が多量に漏洩すれば、車載用のTV、ラジオ、無線等を妨害するおそれがある。   In recent years, engines tend to be miniaturized, and spark plugs also tend to be miniaturized. However, when the spark plug is reduced in size, it is necessary to reduce the content of the resistor formed in the inner hole of the insulator. In other words, coarse glass that absorbs high-frequency noise radio waves inside the spark plug Since it is necessary to reduce the content (glass layer) of the powder or the like, the resistor is difficult to suppress leakage of high-frequency noise radio waves due to this. Note that, when the spark plug is ignited, high-frequency noise radio waves are generated. If a large amount of this high-frequency noise radio waves leaks, there is a risk that the vehicle-mounted TV, radio, radio, etc. will be disturbed.

このような事情に鑑み、特許文献3の明細書の段落[0011]〜[0013]には、「本発明のスパークプラグは、軸方向に延びる貫通孔を有し、該貫通孔が第1貫通孔及び該第1貫通孔よりも後端側に当該第1貫通孔よりも孔径が大きい第2貫通孔となる絶縁体と、前記絶縁体の第1貫通孔内に配置される中心電極と、前記絶縁体の第2貫通孔内に配置される端子金具と、を備えるスパークプラグであって、前記第2貫通孔内に、導電性セラミック焼結体で形成されると共に、前記中心電極と前記端子金具とを電気的に接続するセラミック焼結体抵抗器が配置されてなり、前記セラミック焼結体抵抗器の軸方向長さが前記第2貫通孔の軸方向長さの40%以上であることを特徴とする。本発明では、このような抵抗体として予め焼結されたセラミック焼結体抵抗器を絶縁体の第2貫通孔に挿入するものとすることで、従来のような製造上の長さの制約を受けず、セラミック焼結体抵抗器の長さを十分に長くすることができる。これにより、中心電極と端子電極との間の実効誘電率を小さくし、点火時に発生する容量放電電流を小さくし、雑音防止効果を大きくすることができる。そして、セラミック焼結体抵抗器の長さ(LR)を第2貫通孔の長さ(LH)の40%以上とする((LR/LH)×100≧40)ことで、中心電極と端子電極との間の実効誘電率を小さくし、点火時に発生する容量放電電流を小さくし、十分な雑音防止効果を得ることが可能となる。なお、セラミック焼結体抵抗器の長さ(LR)が第2貫通孔の長さ(LH)の40%未満であると、十分な効果を得られにくい。さらに、より好ましいセラミック焼結体抵抗器の長さ(LR)は、第2貫通孔の長さ(LH)の50%以上である((LR/LH)×100≧50)。」と記載されており、点火プラグの構造を最適化することにより、端子電極と中心電極間の実効誘電率を低下させて、高周波雑音電波の発生を防止することが示されている。しかし、このような最適化を行ったとしても、十分には高周波雑音電波の漏洩を抑制することができない。   In view of such circumstances, in paragraphs [0011] to [0013] of the specification of Patent Document 3, “the spark plug of the present invention has a through hole extending in the axial direction, and the through hole is the first through hole. An insulator serving as a second through hole having a hole diameter larger than that of the first through hole on the rear end side of the hole and the first through hole; and a center electrode disposed in the first through hole of the insulator; A spark plug comprising a terminal fitting disposed in the second through hole of the insulator, and formed of a conductive ceramic sintered body in the second through hole, and the center electrode and the A ceramic sintered body resistor that is electrically connected to the terminal fitting is disposed, and an axial length of the ceramic sintered body resistor is 40% or more of an axial length of the second through hole. In the present invention, it is preliminarily sintered as such a resistor. By inserting the ceramic sintered body resistor into the second through-hole of the insulator, the length of the ceramic sintered body resistor is sufficiently long without being restricted by the length of manufacturing as in the prior art. As a result, the effective dielectric constant between the center electrode and the terminal electrode can be reduced, the capacitive discharge current generated during ignition can be reduced, and the noise prevention effect can be increased. By setting the length (LR) of the combined resistor to 40% or more of the length (LH) of the second through hole ((LR / LH) × 100 ≧ 40), the distance between the center electrode and the terminal electrode is increased. It is possible to reduce the effective dielectric constant, reduce the capacity discharge current generated at the time of ignition, and obtain a sufficient noise prevention effect.The length (LR) of the ceramic sintered body resistor is the second through hole. When the length (LH) is less than 40%, sufficient effect is obtained. Furthermore, the more preferable length (LR) of the ceramic sintered body resistor is 50% or more of the length (LH) of the second through hole ((LR / LH) × 100 ≧ 50). It is shown that by optimizing the structure of the spark plug, the effective dielectric constant between the terminal electrode and the center electrode is reduced to prevent the generation of high-frequency noise radio waves. However, even if such optimization is performed, leakage of high-frequency noise radio waves cannot be sufficiently suppressed.

また、点火プラグが小型化されると、抵抗体の機械的強度が低下、或いは端子電極の圧入時の摩擦抵抗が大きくなることから、端子電極を圧入し難くなり、抵抗体の抵抗値のばらつきやすくなる。加えて、ホットプレス温度の変動に対しても影響を受けやすくなり、さらに抵抗体の抵抗値がばらつきやすくなると考えられる。なお、点火プラグの製造工程において、ホットプレス温度を厳密に規制することは困難であり、ホットプレス温度は、ある程度の変動幅で管理せざるを得ないのが実情である。   In addition, when the spark plug is downsized, the mechanical strength of the resistor decreases, or the frictional resistance at the time of press-fitting the terminal electrode increases, so that it becomes difficult to press-fit the terminal electrode, and the resistance value of the resistor varies. It becomes easy. In addition, it is considered that it is easily affected by fluctuations in the hot press temperature, and the resistance values of the resistors are likely to vary. In the spark plug manufacturing process, it is difficult to strictly regulate the hot press temperature, and the hot press temperature must be managed with a certain fluctuation range.

そこで、本発明は、高周波雑音電波を効率良く吸収する抵抗体を形成すべく、高周波雑音電波の吸収能が高く、且つブロック粒子として適正に機能し得る抵抗体形成用ガラス組成物を創案することにより、小型の点火プラグの信頼性を向上させることを技術的課題とする。   In view of the above, the present invention is to create a resistor-forming glass composition that has a high high-frequency noise radio wave absorption capability and can function properly as block particles in order to form a resistor that efficiently absorbs high-frequency noise radio waves. Therefore, it is a technical subject to improve the reliability of a small spark plug.

本発明者等は、鋭意努力の結果、ガラスの軟化特性を維持しながら、ガラスの誘電率を低下させること、具体的にはガラス組成にCaOを導入しつつ、ガラス組成中のBaOの含有量を所定量以下に規制することにより、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明の抵抗体形成用ガラス粉末は、ガラス組成として、モル%で、SiO 40〜60%、B 28〜40%、LiO+NaO+KO 1〜20%、CaO 0.1〜20%、BaO 0〜7%を含有することを特徴とする。 As a result of diligent efforts, the present inventors reduced the dielectric constant of the glass while maintaining the softening properties of the glass. Specifically, the content of BaO in the glass composition while introducing CaO into the glass composition. It is found that the above-mentioned technical problem can be solved by regulating the amount to a predetermined amount or less, and is proposed as the present invention. That is, the glass powder for the resistor forming the present invention, as a glass composition, in mol%, SiO 2 40~60%, B 2 O 3 28~40%, Li 2 O + Na 2 O + K 2 O 1~20%, CaO It contains 0.1 to 20% and BaO 0 to 7%.

本発明の抵抗体形成用ガラス粉末は、ガラス組成範囲、特にCaOとBaOの含有範囲を上記のように規制している。このようにすれば、ガラスの誘電率を下げることができるため、ガラスの高周波雑音電波の吸収能を顕著に高めることができ、その結果、点火プラグの小型化を容易に図ることができる。また、このようにすれば、ガラスの屈伏点を不当に上昇させずに、ガラスの熱的安定性を向上させつつ、ガラスの熱膨張係数を下げることができる。   The glass powder for resistor formation of the present invention regulates the glass composition range, particularly the CaO and BaO content range as described above. In this way, since the dielectric constant of the glass can be lowered, the glass's ability to absorb high-frequency noise radio waves can be significantly increased, and as a result, the spark plug can be easily downsized. In this way, the thermal expansion coefficient of the glass can be lowered while improving the thermal stability of the glass without unduly increasing the yield point of the glass.

第二に、本発明の抵抗体形成用ガラス粉末は、ガラス組成として、CaOの含有量が3モル%以上であることを特徴とする。   Secondly, the resistor-forming glass powder of the present invention is characterized in that the CaO content is 3 mol% or more as a glass composition.

第三に、本発明の抵抗体形成用ガラス粉末は、ガラス組成として、Bの含有量が30〜35モル%であることに特徴付けられる。 Thirdly, the glass powder for the resistor forming the present invention, a glass composition, the content of B 2 O 3 is characterized in that it is 30 to 35 mol%.

第四に、本発明の抵抗体形成用ガラス粉末は、粒度が150〜450μmであることを特徴とする。上記のようにガラス粉末の粒度を規制すれば、ホットプレス工程で導電粉末を取り込まずに変形できるとともに、顆粒に加工すれば、絶縁碍子の内孔にガラス粉末を充填しやすくなる。   Fourthly, the resistor forming glass powder of the present invention is characterized in that the particle size is 150 to 450 μm. If the particle size of the glass powder is regulated as described above, it can be deformed without taking in the conductive powder in the hot pressing process, and if processed into granules, it becomes easy to fill the glass powder in the inner holes of the insulator.

第五に、本発明の抵抗体形成用ガラス粉末は、25℃、1MHzにおける誘電率が5.5以下であることに特徴付けられる。このようにすれば、ガラスの高周波雑音電波の吸収能が顕著に向上し、抵抗体中のガラスの含有量が少なくても、高周波雑音電波を十分に吸収できるため、点火プラグを小型化しやすくなる。ここで、「25℃、1MHzにおける誘電率」は、50×50×3mmのガラス基板(ガラス粉末を緻密に焼結させたもの)、或いは50×50×3mmのガラスインゴットを測定試料として用い、光学研磨されたガラス基板の表裏面に30mmφの電極を貼り付け、電極間に電圧を印加して測定した値を指す。   Fifth, the resistor-forming glass powder of the present invention is characterized in that the dielectric constant at 25 ° C. and 1 MHz is 5.5 or less. In this way, the ability of glass to absorb high-frequency noise radio waves is significantly improved, and even if the glass content in the resistor is small, high-frequency noise radio waves can be sufficiently absorbed, making it easier to reduce the size of the spark plug. . Here, the “dielectric constant at 25 ° C. and 1 MHz” is a glass substrate of 50 × 50 × 3 mm (a glass powder densely sintered) or a glass ingot of 50 × 50 × 3 mm as a measurement sample. It refers to a value measured by attaching electrodes of 30 mmφ to the front and back surfaces of an optically polished glass substrate and applying a voltage between the electrodes.

本発明者等は、ガラスの誘電率を低下させると、抵抗体の誘電率を低下させることができる点に着目し、そのためには上記のようにガラス組成範囲を規制すればよいことを見出した。これにより、中心電極―端子電極間の実行誘電率が小さくなり、点火プラグの点火時に発生する容量放電電流を小さくすることができ、結果として、高周波雑音電波の吸収能を向上させることができる。   The inventors of the present invention focused on the fact that the dielectric constant of the resistor can be reduced by reducing the dielectric constant of the glass, and for this purpose, the inventors have found that the glass composition range should be regulated as described above. . As a result, the effective dielectric constant between the center electrode and the terminal electrode is reduced, the capacity discharge current generated when the ignition plug is ignited can be reduced, and as a result, the ability to absorb high-frequency noise radio waves can be improved.

第六に、本発明の抵抗体形成用ガラス粉末は、25℃、1MHzにおける誘電正接が0.0018より大きいことを特徴とする。ここで、「25℃、1MHzにおける誘電正接」は、50×50×3mmのガラス基板(ガラス粉末を緻密に焼結させたもの)、或いは50×50×3mmのガラスインゴットを測定試料として用い、光学研磨されたガラス基板の表裏面に30mmφの電極を貼り付け、電極間に電圧を印加して測定した値を指す。   Sixth, the resistor-forming glass powder of the present invention is characterized in that the dielectric loss tangent at 25 ° C. and 1 MHz is larger than 0.0018. Here, “dielectric loss tangent at 25 ° C., 1 MHz” is a glass substrate of 50 × 50 × 3 mm (a glass powder densely sintered) or a glass ingot of 50 × 50 × 3 mm as a measurement sample. It refers to a value measured by attaching electrodes of 30 mmφ to the front and back surfaces of an optically polished glass substrate and applying a voltage between the electrodes.

本発明者等の詳細な調査により、ガラスの誘電正接を上昇させると、ガラスの高周波雑音電波の吸収能が高まることを見出した。なお、このメカニズムの詳細は明らかではなく、現在、鋭意調査中であるが、本発明者等は、ガラスの誘電正接が大きいと、点火プラグの点火時に、抵抗体の粗粒ガラスの界面において高周波雑音電波のエネルギーが熱エネルギーに変換されやすく、高周波雑音電波が減衰するものと推定している。   Through detailed investigations by the present inventors, it has been found that increasing the dielectric loss tangent of glass increases the ability of glass to absorb high frequency noise. The details of this mechanism are not clear and are currently under scrutiny. It is estimated that the noise radio wave energy is easily converted into thermal energy, and the high frequency noise radio wave is attenuated.

第七に、本発明の抵抗体形成用ガラス粉末は、分相特性を有することに特徴付けられる。ここで、「分相特性を有する」とは、600〜900℃のいずれかの温度で10分間熱処理を加えた場合にガラスが分相する場合を指し、例えば、TEM(Transmission Electron Microscope)等で観察すれば、ガラスが分相しているか否かを判定することができる。なお、抵抗体形成用ガラス粉末が、熱処理を加える前に、既に分相している場合も「分相特性を有する」と判断する。   Seventh, the resistor-forming glass powder of the present invention is characterized by having phase separation characteristics. Here, “having phase separation characteristics” refers to a case where glass undergoes phase separation when heat treatment is performed at any temperature of 600 to 900 ° C. for 10 minutes, for example, by TEM (Transmission Electron Microscope) or the like. If observed, it can be determined whether the glass is phase-separated. In addition, when the glass powder for forming a resistor is already phase-divided before the heat treatment is performed, it is determined that it has “phase-separation characteristics”.

一般的に、分相とは、ガラス成分が、SiOを主成分とする高粘性のシリカリッチ相と、その他の成分からなる低粘性ガラス相とに分離する状態を指し、分相したガラスは、通常、シリカリッチ相が骨格をなし、その間隙に低粘性ガラス相が存在する構造となる。抵抗体形成用ガラス粉末が分相特性を有すると、粗粒ガラス粉末は、ホットプレス工程でカーボンブラック、炭化チタン、窒化チタン、炭化珪素等の導電粉末をガラス中に溶解し難くなる。一方、細粒ガラス粉末は、ホットプレス工程で導電粉末をガラス中に溶解する。その結果、粗粒ガラス粉末の近傍に導電粉末からなる導電パスを形成することができる。なお、ホットプレス工程で粗粒ガラス粉末が導電粉末を取り込まない理由は、ガラスの分相性に起因していると考えられるが、詳細なメカニズムは不明であり、現在、鋭意調査中である。また、抵抗体形成用ガラス粉末が分相特性を有すると、粗粒ガラス粉末は、ホットプレス工程で低粘性ガラス相の軟化流動に起因して塑性変形が生じるものの、シリカリッチ相の存在によってその形状を維持することができ、ブロック粒子として機能することができる。 In general, the phase separation refers to a state in which the glass component is separated into a high-viscosity silica-rich phase mainly composed of SiO 2 and a low-viscosity glass phase composed of other components. Usually, the silica-rich phase has a skeleton, and a low-viscosity glass phase exists in the gap. When the resistor forming glass powder has phase separation characteristics, the coarse glass powder hardly dissolves conductive powder such as carbon black, titanium carbide, titanium nitride, and silicon carbide in the glass in the hot pressing step. On the other hand, the fine glass powder dissolves the conductive powder in the glass in a hot pressing process. As a result, a conductive path made of conductive powder can be formed in the vicinity of the coarse glass powder. The reason why the coarse glass powder does not take in the conductive powder in the hot pressing process is thought to be due to the phase separation of the glass, but the detailed mechanism is unknown and is currently under intensive investigation. In addition, when the resistor forming glass powder has phase separation characteristics, the coarse glass powder undergoes plastic deformation due to the softening flow of the low-viscosity glass phase in the hot pressing process. The shape can be maintained and it can function as a block particle.

第八に、本発明の抵抗体形成用ガラス粉末は、ガラス転移点が485〜560℃であることに特徴付けられる。ここで、「ガラス転移点」とは、押棒式熱膨張係数測定(TMA)装置で測定した値を指す。   Eighth, the resistor-forming glass powder of the present invention is characterized by having a glass transition point of 485 to 560 ° C. Here, the “glass transition point” refers to a value measured by a push rod type thermal expansion coefficient measurement (TMA) apparatus.

第九に、本発明の抵抗体形成用ガラス粉末は、屈伏点が530〜700℃であることに特徴付けられる。ここで、「屈伏点」とは、TMA装置で測定した値を指す。   Ninthly, the glass powder for resistor formation of this invention is characterized by a yield point being 530-700 degreeC. Here, the “bend point” refers to a value measured with a TMA apparatus.

第十に、本発明の抵抗体形成用ガラス粉末は、熱膨張係数が40〜60×10−7/℃であることに特徴付けられる。ここで、「熱膨張係数」とは、TMA装置で測定した値を指し、30〜380℃の温度範囲で測定した値を指す。 Tenth, the glass powder for forming a resistor of the present invention is characterized by a thermal expansion coefficient of 40 to 60 × 10 −7 / ° C. Here, the “thermal expansion coefficient” refers to a value measured with a TMA apparatus, and refers to a value measured within a temperature range of 30 to 380 ° C.

第十一に、本発明の抵抗体形成用ガラス粉末は、実質的にPbOを含有しないことに特徴付けられる。このようにすれば、近年の環境的要請を満たすことができる。ここで、「実質的にPbOを含有しない」とは、ガラス組成中のPbOの含有量が1000ppm(質量)以下の場合を指す。   Eleventh, the glass powder for forming a resistor according to the present invention is characterized by containing substantially no PbO. In this way, environmental demands in recent years can be satisfied. Here, “substantially no PbO” refers to the case where the content of PbO in the glass composition is 1000 ppm (mass) or less.

第十二に、本発明の抵抗体形成用ガラス粉末は、点火プラグに用いることに特徴付けられる。   Twelfth, the glass powder for forming a resistor of the present invention is characterized by being used for a spark plug.

抵抗体入り点火プラグの要部を示す説明図である。It is explanatory drawing which shows the principal part of a spark plug with a resistor.

本発明の抵抗体形成用ガラス粉末において、ガラス組成範囲を上記のように限定した理由を下記に示す。   The reason for limiting the glass composition range as described above in the resistor-forming glass powder of the present invention will be described below.

SiOは、ガラスの骨格を形成する成分であり、ガラスを熱的に安定化させるとともに、ガラスの熱膨張係数を下げる成分であり、その含有量は40〜60%、好ましくは45〜58%、より好ましくは48〜54%である。SiOの含有量が40%より少ないと、ガラスが熱的に不安定になり、ガラスを安定生産し難くなることに加えて、ガラスの熱膨張係数が上昇し過ぎて、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなる。一方、SiOの含有量が60%より多いと、ガラスの屈伏点が不当に上昇し、ホットプレス工程でガラスが変形し難くなり、端子浮き等の不具合が発生しやすくなる。 SiO 2 is a component that forms a skeleton of the glass, is a component that thermally stabilizes the glass and lowers the thermal expansion coefficient of the glass, and its content is 40 to 60%, preferably 45 to 58%. More preferably, it is 48 to 54%. When the content of SiO 2 is less than 40%, the glass becomes thermally unstable, and it becomes difficult to stably produce the glass. In addition, the thermal expansion coefficient of the glass increases too much, and the resistor and the conductive glass. Peeling or cracking is likely to occur at the interface of the body or insulator. On the other hand, when the content of SiO 2 is more than 60%, the yield point of the glass is unreasonably raised, and the glass is difficult to be deformed in the hot press process, and problems such as terminal floating are likely to occur.

は、ガラスの骨格を形成する成分であり、ガラスを熱的に安定化させるとともに、ガラスの屈伏点を下げる成分であり、更にはガラスを分相させるための成分であり、その含有量は28〜40%、好ましくは30〜37%、より好ましくは31〜35%である。Bの含有量が28%より少ないと、ガラスが熱的に不安定になり、ガラスを安定生産し難くなることに加えて、ガラスの屈伏点が不当に上昇し、ホットプレス工程でガラスが変形し難くなり、端子浮き等の不具合が発生しやすくなる。一方、Bの含有量が40%より多いと、ガラスの熱膨張係数が上昇し過ぎて、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなる。 B 2 O 3 is a component that forms the skeleton of the glass, is a component that thermally stabilizes the glass and lowers the yield point of the glass, and further is a component that causes phase separation of the glass. The content is 28 to 40%, preferably 30 to 37%, more preferably 31 to 35%. If the content of B 2 O 3 is less than 28%, the glass becomes thermally unstable and it becomes difficult to stably produce the glass, and the yield point of the glass is unreasonably raised, Glass becomes difficult to be deformed, and problems such as terminal floating are likely to occur. On the other hand, when the content of B 2 O 3 is more than 40%, the thermal expansion coefficient of the glass is excessively increased, and peeling or cracking is likely to occur at the interface between the resistor and the conductive glass body or the insulator.

LiO+NaO+KOは、ガラスの屈伏点を低下させるとともに、ガラスの分相を促進させるための成分であり、その含有量は1〜20%、好ましくは3〜17%、より好ましくは5〜15%、更に好ましくは7〜13%である。LiO+NaO+KOの含有量が20%より多いと、ガラスの熱膨張係数が上昇し過ぎて、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなる。 Li 2 O + Na 2 O + K 2 O is a component for lowering the yield point of glass and promoting phase separation of glass, and its content is 1 to 20%, preferably 3 to 17%, more preferably 5 to 15%, more preferably 7 to 13%. When the content of Li 2 O + Na 2 O + K 2 O is more than 20%, the thermal expansion coefficient of the glass is excessively increased, and peeling or cracking is likely to occur at the interface between the resistor and the conductive glass body or the insulator.

LiOは、ガラスの屈伏点を低下させるとともに、ガラスの分相を促進させるための成分であり、その含有量は0〜15%、好ましくは0.1〜13%、より好ましくは1〜13%、更に好ましくは2.5〜12%、特に好ましくは5〜10%である。LiOの含有量が15%より多いと、ガラスの熱膨張係数が上昇し過ぎて、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなる。なお、ガラスの分相を促進させる観点から、ガラス組成中にLiOを必須成分として1%以上含有させることが好ましい。 Li 2 O is a component for reducing the yield point of glass and promoting phase separation of glass, and its content is 0 to 15%, preferably 0.1 to 13%, more preferably 1 to 1. 13%, more preferably 2.5 to 12%, particularly preferably 5 to 10%. When the content of Li 2 O is more than 15%, the thermal expansion coefficient of the glass is excessively increased, and peeling or cracking is likely to occur at the interface between the resistor and the conductive glass body or the insulator. In addition, from the viewpoint of promoting the phase separation of glass, it is preferable to contain 1% or more of Li 2 O as an essential component in the glass composition.

NaOは、ガラスの屈伏点を低下させるとともに、ガラスの分相を促進させるための成分であり、その含有量は0〜15%、好ましくは0〜12%であり、より好ましくは0〜3%である。NaOの含有量が15%より多いと、ガラスの熱膨張係数が上昇し過ぎて、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなる。 Na 2 O is a component for reducing the yield point of glass and promoting phase separation of glass, and its content is 0 to 15%, preferably 0 to 12%, more preferably 0 to 0%. 3%. When the content of Na 2 O is more than 15%, the thermal expansion coefficient of the glass is excessively increased, and peeling or cracking is likely to occur at the interface between the resistor and the conductive glass body or the insulator.

Oは、ガラスの屈伏点を低下させるとともに、ガラスの分相を促進させるための成分であり、その含有量は0〜15%、好ましくは0〜12%であり、より好ましくは0〜3%である。KOの含有量が15%より多いと、ガラスの熱膨張係数が上昇し過ぎて、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなる。 K 2 O is a component for reducing the yield point of the glass and promoting phase separation of the glass, and its content is 0 to 15%, preferably 0 to 12%, more preferably 0 to 0%. 3%. When the content of K 2 O is more than 15%, the thermal expansion coefficient of the glass is excessively increased, and peeling or cracking is likely to occur at the interface between the resistor and the conductive glass body or the insulator.

CaOは、ガラスの誘電率を顕著に低下させる主要成分であるとともに、ガラスの屈伏点を低下させる成分であり、その含有量は0.1〜20%、好ましくは1〜15%、より好ましくは3〜12%、更に好ましくは5〜10%である。CaOの含有量が20%より多いと、ガラスの熱膨張係数が上昇し過ぎて、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなる。一方、CaOの含有量が0.1%より少ないと、ガラスの高周波雑音電波の吸収能が低下し、その結果、点火プラグを小型化することが困難になる。また、CaOの含有量が0.1%より少ないと、ガラスの屈伏点が不当に上昇し、ホットプレス工程でガラスが変形し難くなり、端子浮き等の不具合が発生しやすくなる。   CaO is a main component that significantly lowers the dielectric constant of glass and a component that lowers the yield point of glass, and its content is 0.1 to 20%, preferably 1 to 15%, more preferably. 3 to 12%, more preferably 5 to 10%. When the content of CaO is more than 20%, the thermal expansion coefficient of the glass is excessively increased, and peeling or cracking is likely to occur at the interface between the resistor and the conductive glass body or the insulator. On the other hand, if the content of CaO is less than 0.1%, the glass's ability to absorb high-frequency noise radio waves decreases, and as a result, it is difficult to reduce the size of the spark plug. On the other hand, when the CaO content is less than 0.1%, the yield point of the glass is unreasonably raised, and the glass is hardly deformed in the hot pressing process, and problems such as terminal floating are likely to occur.

BaOは、ガラスの屈伏点を低下させる成分であるとともに、ホットプレス温度が変動すると、点火プラグの抵抗値がばらつく不具合を防止する成分であり、その含有量は0〜7%、好ましくは0〜5%、より好ましくは0.1〜3%である。BaOの含有量が7%より多いと、ガラスの誘電率が上昇し、ガラスの高周波雑音電波の吸収能が低下する。また、BaOの含有量が7%より多いと、ガラスの熱膨張係数が上昇し過ぎて、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなる。なお、ガラスの誘電率を確実に低下させる観点から、ガラス組成として、BaOを実質的に含有しないことが好ましい。ここで、「実質的にBaOを含有しない」とは、ガラス組成中において、BaOの含有量が3000ppm(質量)以下の場合を指す。   BaO is a component that lowers the yield point of the glass, and also prevents a variation in the resistance value of the spark plug when the hot press temperature fluctuates, and its content is 0 to 7%, preferably 0 to 0%. 5%, more preferably 0.1 to 3%. When the content of BaO is more than 7%, the dielectric constant of the glass increases, and the high-frequency noise radio wave absorption ability of the glass decreases. On the other hand, if the content of BaO is more than 7%, the thermal expansion coefficient of the glass is excessively increased, and peeling or cracking is likely to occur at the interface between the resistor and the conductive glass body or the insulator. In addition, it is preferable that BaO is not substantially contained as a glass composition from a viewpoint of reducing the dielectric constant of glass reliably. Here, “substantially does not contain BaO” refers to a case where the content of BaO is 3000 ppm (mass) or less in the glass composition.

本発明の抵抗体形成用ガラス粉末は、ガラス組成として、上記成分以外にも、例えば、以下の成分を含有させることができる。   The glass powder for resistor formation of this invention can contain the following components other than the said component as a glass composition, for example.

Alは、ガラスの耐水性を向上させる成分とともに、ガラスの熱膨張係数を下げる成分であり、その含有量は0〜10%、好ましくは0〜5%である。Alの含有量が10%より多いと、ガラスの屈伏点が不当に上昇し、ホットプレス工程でガラスが変形し難くなり、端子浮き等の不具合が発生しやすくなる。 Al 2 O 3 is a component that lowers the thermal expansion coefficient of glass together with a component that improves the water resistance of glass, and its content is 0 to 10%, preferably 0 to 5%. When the content of Al 2 O 3 is more than 10%, the yield point of the glass is unreasonably raised, the glass is hardly deformed in the hot pressing process, and problems such as terminal floating are likely to occur.

MgOは、ガラスの誘電率を顕著に低下させるとともに、ガラスの屈伏点を低下させる成分であり、またガラスの分相を促進させるための成分であり、その含有量は0〜20%、好ましくは0〜15%、より好ましくは0〜10%、より好ましくは0〜7%である。MgOの含有量が20%より多いと、ガラスの熱膨張係数が上昇し過ぎて、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなる。   MgO is a component that significantly lowers the dielectric constant of the glass and lowers the yield point of the glass, and is a component for promoting the phase separation of the glass, and its content is 0 to 20%, preferably It is 0 to 15%, more preferably 0 to 10%, more preferably 0 to 7%. When the content of MgO is more than 20%, the thermal expansion coefficient of the glass is excessively increased, and peeling or cracking is likely to occur at the interface between the resistor and the conductive glass body or the insulator.

SrOは、ガラスの誘電率を低下させるとともに、ガラスの屈伏点を低下させる成分であり、また、ホットプレス温度が変動すると、点火プラグの抵抗値がばらつく不具合を防止する成分である。その含有量は0〜20%、好ましくは0〜15%、より好ましくは0〜10%、より好ましくは0〜7%である。SrOの含有量が20%より多いと、ガラスの熱膨張係数が上昇し過ぎて、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなる。   SrO is a component that lowers the dielectric constant of the glass and lowers the yield point of the glass, and is a component that prevents a problem that the resistance value of the spark plug varies when the hot press temperature fluctuates. The content is 0 to 20%, preferably 0 to 15%, more preferably 0 to 10%, and more preferably 0 to 7%. When the content of SrO is more than 20%, the thermal expansion coefficient of the glass is excessively increased, and peeling or cracking is likely to occur at the interface between the resistor and the conductive glass body or the insulator.

アルカリ土類金属酸化物(MgO、CaO、SrO、BaO)は、ガラスの分相を促進させるための成分であると同時に、ガラスの誘電率に影響を与える成分である。アルカリ土類金属酸化物のイオン半径が小さい程、ガラスが分相しやすくなり、具体的にはMgO、CaO、SrO、BaOの順で、ガラスが分相しやすくなる。ガラスの分相傾向が高くなると、熱処理温度の小さな変化に対しても、分相状態が大きく変動しやすくなり、その影響により、ホットプレス温度が変動すると、点火プラグの抵抗値がばらつく不具合が生じやすくなる。一方、アルカリ土類金属酸化物の分子量が小さい程、ガラスの誘電率が小さくなり、具体的にはMgO、CaO、SrO、BaOの順で、ガラスの誘電率が小さくなる。誘電率、分相、屈伏点等の特性を総合的に考慮すると、本願明細書の段落[0034]および[0035]に記載の通り、ガラス組成中のCaOの含有量を0.1〜20%、好ましくは1〜15%、より好ましくは3〜12%、更に好ましくは5〜10%に規制し、さらにガラス組成中のBaOの含有量を0〜7%、好ましくは0〜5%、より好ましくは0.1〜3%に規制すべきである。このようにすれば、高周波雑音電波の吸収能を飛躍的に高めることができ、更には点火プラグの抵抗値がばらつく不具合を防止することができ、結果として、点火プラグの信頼性および生産性を向上させることができる。   Alkaline earth metal oxides (MgO, CaO, SrO, BaO) are components for promoting the phase separation of glass and at the same time, components that affect the dielectric constant of glass. The smaller the ionic radius of the alkaline earth metal oxide, the easier the glass is phase-separated. Specifically, the glass is more likely to phase-separate in the order of MgO, CaO, SrO, BaO. When the phase separation tendency of glass becomes high, the phase separation state easily fluctuates even with a small change in the heat treatment temperature. As a result, when the hot press temperature fluctuates, the resistance value of the spark plug varies. It becomes easy. On the other hand, the smaller the molecular weight of the alkaline earth metal oxide, the smaller the dielectric constant of the glass. Specifically, the dielectric constant of the glass decreases in the order of MgO, CaO, SrO, BaO. When characteristics such as dielectric constant, phase separation, yield point, etc. are comprehensively considered, as described in paragraphs [0034] and [0035] of the present specification, the content of CaO in the glass composition is 0.1 to 20%. The content of BaO in the glass composition is preferably 0 to 7%, preferably 0 to 5%, more preferably 1 to 15%, more preferably 3 to 12%, and still more preferably 5 to 10%. Preferably, it should be restricted to 0.1 to 3%. In this way, the ability to absorb high-frequency noise radio waves can be dramatically increased, and further, it is possible to prevent a problem that the resistance value of the spark plug varies. As a result, the reliability and productivity of the spark plug are improved. Can be improved.

また、本発明の抵抗体形成用ガラス粉末は、ガラス組成として、更に種々の成分を10%まで添加することができる。例えば、TiO、ZrO、Bi、CsO、La、Gd、V、WO、Sb、SnO、Nb、Y、CeO、P等を添加することができる。なお、本発明の抵抗体形成用ガラス粉末は、PbOの含有を完全に排除するものではないが、既述の通り、環境的観点から実質的にPbOを含有しないことが好ましい。 Moreover, the glass powder for resistor formation of this invention can add a various component to 10% further as a glass composition. For example, TiO 2, ZrO 2, Bi 2 O 3, Cs 2 O, La 2 O 3, Gd 2 O 3, V 2 O 5, WO 3, Sb 2 O 3, SnO 2, Nb 2 O 5, Y 2 O 3 , CeO 2 , P 2 O 5 and the like can be added. In addition, although the glass powder for resistor formation of this invention does not exclude inclusion of PbO completely, it is preferable not to contain PbO substantially from an environmental viewpoint as stated above.

本発明の抵抗体形成用ガラス粉末において、ガラス粉末の粒度は150〜450μm、好ましくは200〜350μmである。ガラス粉末の粒度を150〜450μmにすれば、ブロック粒子として適正に機能することができる。つまり、ガラス粉末の粒度を150〜450μmにすれば、ホットプレス工程で導電粉末を取り込まずに変形できるとともに、顆粒に加工すれば、絶縁碍子の内孔にガラス粉末を充填しやすくなる。ガラス粉末の粒度が150μmより小さいと、ホットプレス工程でガラス粉末が導電粉末を溶解し、粗粒ガラス粉末が導電路を迂回させるブロック粒子として機能し難くなり、抵抗体の高周波雑音電波の吸収能が低下しやすくなる。一方、ガラス粉末の粒度が450μmより大きいと、顆粒に加工し難く、絶縁碍子の内孔にガラス粉末を充填し難くなることに加えて、ホットプレス工程でガラス粉末が変形し難くなり、端子浮き等の不具合が発生しやすくなる。   In the resistor forming glass powder of the present invention, the particle size of the glass powder is 150 to 450 μm, preferably 200 to 350 μm. If the particle size of the glass powder is 150 to 450 μm, it can function properly as block particles. That is, if the particle size of the glass powder is 150 to 450 μm, the glass powder can be deformed without taking in the conductive powder in the hot pressing process, and if processed into granules, it becomes easy to fill the glass powder into the inner holes of the insulator. If the particle size of the glass powder is smaller than 150 μm, the glass powder dissolves the conductive powder in the hot pressing process, and the coarse glass powder becomes difficult to function as block particles that bypass the conductive path, and the resistor absorbs high frequency noise waves. Tends to decrease. On the other hand, when the particle size of the glass powder is larger than 450 μm, it becomes difficult to process into granules and it becomes difficult to fill the glass powder into the inner hole of the insulator, and in addition, the glass powder is difficult to deform in the hot pressing process, and the terminal floats. Etc. are likely to occur.

本発明の抵抗体形成用ガラス粉末において、ガラス粉末の平均粒子径D50は150〜450μmが好ましく、200〜350μmがより好ましい。ガラス粉末の平均粒子径D50を150〜450μmにすれば、ブロック粒子として適正に機能することができる。つまり、ガラス粉末の平均粒子径D50を150〜450μmにすれば、ホットプレス工程で導電粉末を取り込まずに変形できるとともに、顆粒に加工すれば、絶縁碍子の内孔にガラス粉末を充填しやすくなる。ガラス粉末の平均粒子径D50が150μmより小さいと、ホットプレス工程でガラス粉末が導電粉末を溶解し、粗粒ガラス粉末が導電路を迂回させるブロック粒子として機能し難くなり、抵抗体の高周波雑音電波の吸収能が低下しやすくなる。一方、ガラス粉末の平均粒子径D50が450μmより大きいと、顆粒に加工し難く、絶縁碍子の内孔にガラス粉末を充填し難くなることに加えて、ホットプレス工程でガラス粉末が変形し難くなり、端子浮き等の不具合が発生しやすくなる。ここで、「平均粒子径D50」は、レーザー回折法で測定した値を指し、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径を表す。 In the glass powder for the resistor forming the present invention, the average particle diameter D 50 of the glass powder is preferably 150~450μm, 200~350μm is more preferable. If the average particle diameter D 50 of the glass powder 150~450Myuemu, can function properly as a block particles. That is, if the average particle diameter D 50 of the glass powder 150~450Myuemu, it is possible to deform without incorporating the conductive powder by hot pressing step, be processed into granules, easily the glass powder was filled in the inner hole of the insulator Become. And 150μm smaller than the average particle diameter D 50 of the glass powder, the glass powder is dissolved conductive powder by hot pressing step, coarse glass powder becomes difficult to function as a block particles divert conductive path, high frequency noise of the resistor The ability to absorb radio waves tends to decrease. On the other hand, the average particle diameter D 50 of the glass powder is larger than 450 [mu] m, hardly processed into granules, in addition to being difficult to fill the glass powder in the inner hole of the insulator, the glass powder is hardly deformed by hot pressing step Thus, problems such as terminal floating are likely to occur. Here, the “average particle diameter D 50 ” refers to a value measured by the laser diffraction method. In the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle. The particle diameter is 50%.

本発明の抵抗体形成用ガラス粉末において、ガラス粉末の最大粒子径Dmaxは450μm以下が好ましく、400μm以下がより好ましい。ガラス粉末の平均粒子径Dmaxが450μmより大きいと、顆粒に加工し難くなり、絶縁碍子の内孔が細径化された場合に、絶縁碍子の内孔にガラス粉末を充填し難くなる。ここで、「最大粒子径Dmax」は、レーザー回折法で測定した値を指し、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒子径を表す。 In the glass powder for forming a resistor of the present invention, the maximum particle diameter Dmax of the glass powder is preferably 450 μm or less, and more preferably 400 μm or less. When the average particle diameter Dmax of the glass powder is larger than 450 μm, it becomes difficult to process into granules, and when the inner hole of the insulator is reduced in diameter, it becomes difficult to fill the inner hole of the insulator with the glass powder. Here, the “maximum particle diameter D max ” refers to a value measured by the laser diffraction method. In the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle. The particle diameter is 99%.

本発明の抵抗体形成用ガラス粉末は、抵抗体を形成するための細粒ガラス粉末としても使用することができる。その場合、ガラス粉末の平均粒子径D50は150μm未満が好ましく、100μm以下がより好ましい。ガラス粉末の平均粒子径D50が150μm以上であると、ホットプレス工程でガラス粉末が溶融し難くなり、端子浮き等の不具合が発生しやすくなる。なお、粗粒ガラス粉末と細粒ガラス粉末を同一のガラス組成とすれば、ホットプレス工程で両者が強固に結合するため、抵抗体の機械的強度を高めることができる。 The resistor-forming glass powder of the present invention can also be used as a fine-grained glass powder for forming a resistor. In that case, the average particle diameter D 50 of the glass powder is preferably less than 150 [mu] m, more preferably at most 100 [mu] m. If the average of the glass powder the particle diameter D 50 is at 150μm or more, hardly glass powder melted in the hot pressing process, defects such as pin lifting is likely to occur. Note that if the coarse glass powder and the fine glass powder have the same glass composition, the two are firmly bonded in the hot pressing step, so that the mechanical strength of the resistor can be increased.

本発明の抵抗体形成用ガラス粉末において、25℃、1MHzにおける誘電率は、5.5以下が好ましく、5.3以下がより好ましく、5.2以下が更に好ましい。25℃、1MHzにおける誘電率が5.5より大きいと、ガラスの高周波雑音電波の吸収能が低くなり、点火プラグを小型化した場合、高周波雑音電波を十分に吸収し難くなり、車載用のTV、ラジオ、無線等を妨害するおそれがある。   In the resistor forming glass powder of the present invention, the dielectric constant at 25 ° C. and 1 MHz is preferably 5.5 or less, more preferably 5.3 or less, and even more preferably 5.2 or less. If the dielectric constant at 25 ° C. and 1 MHz is greater than 5.5, the glass's ability to absorb high-frequency noise radio waves will be low, and if the spark plug is downsized, it will be difficult to absorb high-frequency noise radio waves. May interfere with radio, radio, etc.

本発明の抵抗体形成用ガラス粉末において、25℃、1MHzにおける誘電正接は、0.018より大きいことが好ましく、0.0020以上がより好ましく、0.0025以上が更に好ましい。25℃、1MHzにおける誘電正接が0.0018より小さいと、ガラスの高周波雑音電波の吸収能を高め難くなり、点火プラグを小型化した場合、高周波雑音電波を十分に吸収し難くなり、車載用のTV、ラジオ、無線等を妨害するおそれがある。   In the glass powder for forming a resistor of the present invention, the dielectric loss tangent at 25 ° C. and 1 MHz is preferably larger than 0.018, more preferably 0.0020 or more, and further preferably 0.0025 or more. If the dielectric loss tangent at 25 ° C. and 1 MHz is less than 0.0018, it will be difficult to increase the high frequency noise absorption capability of the glass, and if the spark plug is downsized, it will be difficult to sufficiently absorb the high frequency noise radio waves. May interfere with TV, radio, radio, etc.

本発明の抵抗体形成用ガラス粉末において、密度は、2.55g/cm未満が好ましく、2.50g/cm以下がより好ましく、2.45g/cm以下が更に好ましい。密度が小さい程、ガラスを軽量化することができ、結果として、点火プラグを軽量化することができる。 In the glass powder for the resistor forming the present invention, the density is preferably less than 2.55 g / cm 3, more preferably 2.50 g / cm 3 or less, more preferably 2.45 g / cm 3 or less. The smaller the density, the lighter the glass and, as a result, the lighter the spark plug.

本発明の抵抗体形成用ガラス粉末において、ガラス転移点は485〜590℃が好ましく、490〜550℃がより好ましく、500〜540℃が更に好ましい。ガラス転移点が485℃より低いと、ホットプレス工程で粗粒ガラス粉末が導電粉末を溶解しやすくなるため、粗粒ガラス粉末が導電路を迂回させるブロック粒子として機能し難くなり、抵抗体の高周波雑音電波の吸収能が低下しやすくなる。一方、ガラス転移点が590℃より高いと、ホットプレス工程でガラスが変形し難くなり、端子浮き等の不具合が発生しやすくなる。   In the glass powder for forming a resistor of the present invention, the glass transition point is preferably 485 to 590 ° C, more preferably 490 to 550 ° C, and further preferably 500 to 540 ° C. When the glass transition point is lower than 485 ° C., the coarse glass powder easily dissolves the conductive powder in the hot pressing process, so that the coarse glass powder hardly functions as a block particle that bypasses the conductive path, and the high frequency of the resistor Noise absorption capacity is likely to decrease. On the other hand, when the glass transition point is higher than 590 ° C., it is difficult for the glass to be deformed in the hot pressing process, and problems such as terminal floating are likely to occur.

本発明の抵抗体形成用ガラス粉末において、屈伏点は530〜700℃が好ましく、540〜650℃がより好ましく、550〜600℃が更に好ましい。屈伏点が530℃より低いと、ホットプレス工程で粗粒ガラス粉末が導電粉末を溶解しやすくなるため、粗粒ガラス粉末が導電路を迂回させるブロック粒子として機能し難くなり、抵抗体の高周波雑音電波の吸収能が低下しやすくなる。一方、屈伏点が700℃より高いと、ホットプレス工程でガラスが変形し難くなり、端子浮き等の不具合が発生しやすくなる。   In the glass powder for forming a resistor of the present invention, the yield point is preferably 530 to 700 ° C, more preferably 540 to 650 ° C, and further preferably 550 to 600 ° C. When the yield point is lower than 530 ° C., the coarse glass powder easily dissolves the conductive powder in the hot pressing process, so that the coarse glass powder hardly functions as a block particle that bypasses the conductive path, and the high-frequency noise of the resistor The ability to absorb radio waves tends to decrease. On the other hand, if the yield point is higher than 700 ° C., the glass is not easily deformed in the hot pressing process, and problems such as floating of the terminal are likely to occur.

本発明の抵抗体形成用ガラス粉末において、熱膨張係数は40〜60×10−7/℃が好ましく、45〜58×10−7/℃がより好ましく、53〜58×10−7/℃が更に好ましい。熱膨張係数を40×10−7/℃より低くするためには、ガラス組成中のSiO等の含有量を増加させる必要があるため、このような場合、ガラスの屈伏点が高くなることに起因して、ホットプレス工程でガラスが変形し難くなり、端子浮き等の不具合が発生しやすくなる。一方、熱膨張係数が60×10−7/℃より高いと、抵抗体と導電ガラス体または絶縁碍子の界面で剥離またはクラックが発生しやすくなる。 In the glass powder for the resistor forming the present invention, the thermal expansion coefficient is preferably 40 to 60 × 10 -7 / ° C., more preferably 45~58 × 10 -7 / ℃, is 53~58 × 10 -7 / ℃ Further preferred. In order to make the thermal expansion coefficient lower than 40 × 10 −7 / ° C., it is necessary to increase the content of SiO 2 or the like in the glass composition. In such a case, the yield point of the glass becomes high. As a result, the glass becomes difficult to be deformed in the hot pressing process, and problems such as terminal floating easily occur. On the other hand, if the thermal expansion coefficient is higher than 60 × 10 −7 / ° C., peeling or cracking is likely to occur at the interface between the resistor and the conductive glass body or the insulator.

本発明の抵抗体形成用ガラス粉末は、分相特性を有することが好ましい。好ましい理由は、既述であるため、ここでは、便宜上、その記載を省略する。   The resistor-forming glass powder of the present invention preferably has phase separation characteristics. Since the preferable reason has already been described, the description thereof is omitted here for convenience.

本発明の抵抗体形成用ガラス粉末は、点火プラグに使用することが好ましい。本発明の抵抗体形成用ガラス粉末は、ガラス粉末の充填量を減らしても、高周波雑音電波を十分に吸収できるため、点火プラグが小型化された場合に有利である。   The glass powder for forming a resistor of the present invention is preferably used for a spark plug. The resistor-forming glass powder of the present invention is advantageous when the spark plug is miniaturized because it can sufficiently absorb high-frequency noise radio waves even if the filling amount of the glass powder is reduced.

以下、実施例に基づいて、本発明を詳細に説明する。表1〜5は、本発明の実施例(試料No.1〜28)、比較例(試料No.29)を示している。なお、試料No.29は、従来の抵抗体形成用ガラス粉末である。   Hereinafter, based on an Example, this invention is demonstrated in detail. Tables 1 to 5 show examples (sample Nos. 1 to 28) and comparative examples (sample No. 29) of the present invention. Sample No. 29 is a conventional resistor forming glass powder.

まず、表中のガラス組成となるように、各種酸化物、炭酸塩等の原料を調合したガラスバッチを準備し、これを白金坩堝に入れて1300℃で2時間溶融した。次に、溶融ガラスの一部をカーボン製の型に流し出し、板状のガラス試料を得た。また、水冷ローラーにより、溶融ガラスの一部を薄片状に成形した後、ボールミルにて粉砕後、試験篩で分級し、粒度が150〜450μm(平均粒子径D50=300μm)の各ガラス粉末を得た。分級に際し、目開き450μmの試験篩を通過し、目開き150μmの試験篩を通過しないガラス粉末を採取した。 First, a glass batch in which raw materials such as various oxides and carbonates were prepared so as to have the glass composition in the table was prepared, and this was put in a platinum crucible and melted at 1300 ° C. for 2 hours. Next, a part of the molten glass was poured out into a carbon mold to obtain a plate-like glass sample. Further, the water-cooled rollers, after forming a portion of the molten glass in the flake, after grinding in a ball mill and then classified with test sieves, particle size of each glass powder 150~450Myuemu (average particle diameter D 50 = 300 [mu] m) Obtained. During classification, glass powder that passed through a test sieve having an opening of 450 μm and not passed through a test sieve having an opening of 150 μm was collected.

試料No.1〜29につき、ガラス転移点、屈伏点、熱膨張係数、誘電率、誘電正接、体積抵抗率、ブロック粒子としての機能、焼結性、分相性を評価した。   Sample No. For 1 to 29, the glass transition point, yield point, thermal expansion coefficient, dielectric constant, dielectric loss tangent, volume resistivity, function as block particles, sinterability, and phase separation were evaluated.

ガラス転移点および屈伏点は、TMA装置で測定した。なお、TMAの測定試料は、ガラス粉末を焼結させたものを使用した。   The glass transition point and yield point were measured with a TMA apparatus. In addition, the measurement sample of TMA used what sintered the glass powder.

熱膨張係数は、TMA装置を用いて、30〜380℃の温度範囲で測定した。なお、TMAの測定試料は、ガラス粉末を焼結させたものを使用した。   The thermal expansion coefficient was measured in a temperature range of 30 to 380 ° C. using a TMA apparatus. In addition, the measurement sample of TMA used what sintered the glass powder.

誘電率および誘電正接は、50mm×50mm×3mm厚のガラス基板(ガラス粉末を緻密に焼結させたもの、表裏面を光学研磨)を測定試料として用い、ガラス基板の表裏面に30mmφの電極を貼り付け、電極間に電圧を印加して測定した。測定条件は、25℃、1MHzとし、ガラス基板の表裏面を光学研磨した。   The dielectric constant and dielectric loss tangent were measured using a glass substrate of 50 mm × 50 mm × 3 mm thickness (glass powder densely sintered, front and back surfaces optically polished) as the measurement sample, and electrodes of 30 mmφ on the front and back surfaces of the glass substrate. The measurement was performed by applying a voltage between the electrodes. The measurement conditions were 25 ° C. and 1 MHz, and the front and back surfaces of the glass substrate were optically polished.

体積抵抗率は、ASTM C657−78に準拠した方法で測定した。50mm×50mm×0.7mm厚のガラス基板(ガラス粉末を緻密に焼結させたもの、表裏面を光学研磨)を測定試料とした。このガラス基板の表裏面に、蒸着法で金属Al膜を形成し、厚み約2000nmの電極を形成した。主電極は直径29mmの円形、ガード電極は外径44mm、内径31mmの環状、ボトム電極は直径44mmの円形とした。次いで、表中の各温度の体積抵抗率を測定した。   The volume resistivity was measured by a method based on ASTM C657-78. A 50 mm × 50 mm × 0.7 mm thick glass substrate (glass powder densely sintered, front and back surfaces optically polished) was used as a measurement sample. A metal Al film was formed on the front and back surfaces of this glass substrate by vapor deposition to form an electrode having a thickness of about 2000 nm. The main electrode was a circle with a diameter of 29 mm, the guard electrode was a ring with an outer diameter of 44 mm and an inner diameter of 31 mm, and the bottom electrode was a circle with a diameter of 44 mm. Next, the volume resistivity at each temperature in the table was measured.

ブロック粒子としての機能は、次のようにして測定した。まずガラスの密度に相当する質量の各ガラス粉末にカーボンブラックを5質量%添加した試料を金型により外径20mmのボタン状にプレスした。続いて、得られたボタン試料をアルミナ基板で挟んだ後、900℃に保持された電気炉に投入し、100kg/cmのプレス圧力を加えて10分間加熱し、次いで電気炉からボタン試料を取り出し、得られたボタン試料の外観を観察することで評価した。ガラス粉末が多少変形しているが、完全に溶融しておらず、ガラス中にカーボンブラックが溶解していないものを「○」とし、ガラス粉末が完全に溶融し、或いはガラス中にカーボンブラックが溶解しているものを「×」として評価した。 The function as a block particle was measured as follows. First, a sample in which 5% by mass of carbon black was added to each glass powder having a mass corresponding to the density of the glass was pressed into a button shape having an outer diameter of 20 mm using a mold. Subsequently, after the obtained button sample was sandwiched between alumina substrates, it was put into an electric furnace maintained at 900 ° C., heated at a press pressure of 100 kg / cm 2 for 10 minutes, and then the button sample was removed from the electric furnace. The button sample was taken out and evaluated by observing the appearance of the obtained button sample. The glass powder is slightly deformed, but it is not completely melted and the carbon black is not dissolved in the glass is marked with “O”, the glass powder is completely melted, or the carbon black is not in the glass. What was melt | dissolved was evaluated as "x".

焼結性は、ガラスの密度に相当する質量のガラス粉末(平均粒子径D50=50μm)を金型により外径20mmのボタン状にプレスし、次に得られたボタン試料をアルミナ基板上に載置した後、電気炉で20℃/分で昇温し、900℃で10分間保持した上で、20℃/分の速度で降温し、得られたボタン試料の外観を観察することで評価した。ボタン試料が光沢を有しており、ボタン試料の直径が17.8mm以下のものを「○」とし、ボタン試料に光沢がなく、或いはボタン試料の直径が17.8mmより大きいのものを「×」として評価した。 For sinterability, glass powder having a mass corresponding to the density of glass (average particle diameter D 50 = 50 μm) was pressed into a button shape having an outer diameter of 20 mm using a mold, and the obtained button sample was placed on an alumina substrate. After mounting, the temperature was raised at 20 ° C./min in an electric furnace, held at 900 ° C. for 10 minutes, lowered at a rate of 20 ° C./min, and evaluated by observing the appearance of the obtained button sample. did. If the button sample is glossy and the button sample has a diameter of 17.8 mm or less, “○” is given. If the button sample is not glossy or if the button sample has a diameter greater than 17.8 mm, “×” ".

分相性は、上記ボタン試料を所定形状に加工したものを測定試料とし、TEMで観察することで評価した。ガラスが分相しているものを「○」、分相していないものを「×」とした。   The phase separation was evaluated by observing with a TEM a sample obtained by processing the button sample into a predetermined shape. The glass was phase-separated as “◯”, and the glass not phase-separated as “x”.

表1〜5から明らかなように、試料No.1〜28は、ガラス転移点、屈伏点、熱膨張係数、誘電率、誘電正接、ブロック粒子としての機能、焼結性および分相性の評価が良好であった。特に、試料No.1〜28は、誘電率が低いため、端子電極と中心電極間の実効誘電率を低下させることができ、結果として、点火プラグを小型化しても、高周波雑音電波を的確に吸収することができると考えられる。一方、試料No.29は、ガラス組成中にBaOを多量に含有し、且つCaOを含有していないため、誘電率が高く、点火プラグを小型化すると、高周波雑音電波が漏洩してしまうと考えられる。   As is apparent from Tables 1 to 5, sample No. In Nos. 1 to 28, the glass transition point, yield point, thermal expansion coefficient, dielectric constant, dielectric loss tangent, function as block particles, sinterability and phase separation were good. In particular, sample no. 1 to 28 can reduce the effective dielectric constant between the terminal electrode and the center electrode because the dielectric constant is low. As a result, even if the spark plug is downsized, high-frequency noise radio waves can be absorbed accurately. it is conceivable that. On the other hand, sample No. No. 29 contains a large amount of BaO in the glass composition and does not contain CaO, and therefore has a high dielectric constant. If the spark plug is downsized, it is considered that high frequency noise radio waves leak.

ガラス粉末の粒度の影響を調査するために、実験を行なった。その実験結果を表6に示す。   An experiment was conducted to investigate the effect of the particle size of the glass powder. The experimental results are shown in Table 6.

まず、表中のガラス組成となるように、各種酸化物、炭酸塩等の原料を調合したガラスバッチを準備し、これを白金坩堝に入れて1300℃で2時間溶融した。次に、水冷ローラーにより、溶融ガラスの一部を薄片状に成形した後、ボールミルにて各種条件で粉砕後、試験篩で分級し、各ガラス粉末を得た。なお、試料No.32〜35は、分級に際し、目開き450μmの篩を通過し、目開き150μmの篩を通過しないガラス粉末を採取した。   First, a glass batch in which raw materials such as various oxides and carbonates were prepared so as to have the glass composition in the table was prepared, and this was put in a platinum crucible and melted at 1300 ° C. for 2 hours. Next, a part of the molten glass was formed into a flake shape with a water-cooled roller, pulverized with a ball mill under various conditions, and then classified with a test sieve to obtain each glass powder. Sample No. In the case of classification, 32-35 collected glass powder that passed through a sieve having an opening of 450 μm and not passed through a sieve having an opening of 150 μm.

ガラス粉末の平均粒子径D50は、レーザー回折装置で測定した。 The average particle diameter D 50 of the glass powder was measured by a laser diffraction apparatus.

ブロック粒子としての機能は、次のようにして測定した。まずガラスの密度に相当する質量の各ガラス粉末にカーボンブラックを5質量%添加した試料を金型により外径20mmのボタン状にプレスした。続いて、得られたボタン試料をアルミナ基板で挟んだ後、900℃に保持された電気炉に投入し、100kg/cmのプレス圧力を加えて10分間加熱し、次いで電気炉からボタン試料を取り出し、得られたボタン試料の外観を観察することで評価した。ガラス粉末が多少変形しているが、完全に溶融しておらず、ガラス中にカーボンブラックが溶解していないものを「○」とし、ガラス粉末が完全に溶融し、或いはガラス中にカーボンブラックが溶解しているものを「×」として評価した。 The function as a block particle was measured as follows. First, a sample in which 5% by mass of carbon black was added to each glass powder having a mass corresponding to the density of the glass was pressed into a button shape having an outer diameter of 20 mm using a mold. Subsequently, after the obtained button sample was sandwiched between alumina substrates, it was put into an electric furnace maintained at 900 ° C., heated at a press pressure of 100 kg / cm 2 for 10 minutes, and then the button sample was removed from the electric furnace. The button sample was taken out and evaluated by observing the appearance of the obtained button sample. The glass powder is slightly deformed, but it is not completely melted and the carbon black is not dissolved in the glass is marked with “O”, the glass powder is completely melted, or the carbon black is not in the glass. What was melt | dissolved was evaluated as "x".

表6から明らかなように、試料No.32〜35は、ガラス粉末の粒度が適正であるため、ブロック粒子として機能すると考えられる。一方、試料No.30、31は、ガラス粉末の粒度が小さいため、細粒ガラス粉末に使用可能であるが、ブロック粒子としては機能し難いと考えられる。   As apparent from Table 6, the sample No. 32 to 35 are considered to function as block particles because the particle size of the glass powder is appropriate. On the other hand, sample No. Nos. 30 and 31 can be used for fine glass powder because the particle size of the glass powder is small, but it is considered difficult to function as block particles.

以上の説明から明らかなように、本発明の抵抗体形成用ガラス粉末は、点火プラグの絶縁碍子の内孔に抵抗体を形成するための粗粒ガラス粉末として好適である。   As apparent from the above description, the glass powder for forming a resistor of the present invention is suitable as a coarse glass powder for forming a resistor in the inner hole of an insulator of a spark plug.

1 端子電極
2a、2b 導電ガラス体
3 中心電極
4 抵抗体
DESCRIPTION OF SYMBOLS 1 Terminal electrode 2a, 2b Conductive glass body 3 Center electrode 4 Resistor

Claims (12)

ガラス組成として、モル%で、SiO 40〜60%、B 28〜40%、LiO+NaO+KO 1〜20%、CaO 0.1〜20%、BaO 0〜7%を含有することを特徴とする抵抗体形成用ガラス粉末。 As a glass composition, in mol%, SiO 2 40~60%, B 2 O 3 28~40%, Li 2 O + Na 2 O + K 2 O 1~20%, CaO 0.1~20%, the 0 to 7% BaO A glass powder for forming a resistor, comprising: ガラス組成として、CaOの含有量が3モル%以上であることを特徴とする請求項1に記載の抵抗体形成用ガラス粉末。   The glass powder for forming a resistor according to claim 1, wherein the glass composition has a CaO content of 3 mol% or more. ガラス組成として、Bの含有量が30〜35モル%であることを特徴とする請求項1または2に記載の抵抗体形成用ガラス粉末。 The glass powder for forming a resistor according to claim 1 or 2, wherein the glass composition has a content of B 2 O 3 of 30 to 35 mol%. 粒度が150〜450μmであることを特徴とする請求項1〜3のいずれかに記載の抵抗体形成用ガラス粉末。   4. The resistor forming glass powder according to claim 1, wherein the particle size is 150 to 450 [mu] m. 25℃、1MHzにおける誘電率が5.5以下であることを特徴とする請求項1〜4のいずれかに記載の抵抗体形成用ガラス粉末。   5. The resistor-forming glass powder according to claim 1, wherein a dielectric constant at 25 ° C. and 1 MHz is 5.5 or less. 25℃、1MHzにおける誘電正接が0.0018より大きいことを特徴とする請求項1〜5のいずれかに記載の抵抗体形成用ガラス組成物。   6. The glass composition for forming a resistor according to claim 1, wherein a dielectric loss tangent at 25 ° C. and 1 MHz is larger than 0.0018. 分相特性を有することを特徴とする請求項1〜6のいずれかに記載の抵抗体形成用ガラス粉末。   The glass powder for forming a resistor according to any one of claims 1 to 6, which has phase separation characteristics. ガラス転移点が485〜560℃であることを特徴とする請求項1〜7のいずれかに記載の抵抗体形成用ガラス粉末。   A glass transition point is 485-560 degreeC, The glass powder for resistor formation in any one of Claims 1-7 characterized by the above-mentioned. 屈伏点が530〜700℃であることを特徴とする請求項1〜8のいずれかに記載の抵抗体形成用ガラス粉末。   A yield point is 530-700 degreeC, The glass powder for resistor formation in any one of Claims 1-8 characterized by the above-mentioned. 熱膨張係数が40〜60×10−7/℃であることを特徴とする請求項1〜9のいずれかに記載の抵抗体形成用ガラス粉末。 The thermal expansion coefficient is 40 to 60 × 10 −7 / ° C., the resistor-forming glass powder according to claim 1. 実質的にPbOを含有しないことを特徴とする請求項1〜10のいずれかに記載の抵抗体形成用ガラス粉末。   The glass powder for forming a resistor according to any one of claims 1 to 10, which does not substantially contain PbO. 点火プラグに用いることを特徴とする請求項1〜11のいずれかに記載の抵抗体形成用ガラス粉末。   The resistor forming glass powder according to claim 1, wherein the resistor forming glass powder is used for a spark plug.
JP2009037588A 2008-02-28 2009-02-20 Resistor forming glass powder Active JP5467495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037588A JP5467495B2 (en) 2008-02-28 2009-02-20 Resistor forming glass powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008047210 2008-02-28
JP2008047210 2008-02-28
JP2009037588A JP5467495B2 (en) 2008-02-28 2009-02-20 Resistor forming glass powder

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2010242603A Division JP2011026200A (en) 2008-02-28 2010-10-28 Ignition plug
JP2013253744A Division JP5748079B2 (en) 2008-02-28 2013-12-09 Resistor forming glass powder

Publications (3)

Publication Number Publication Date
JP2009227571A true JP2009227571A (en) 2009-10-08
JP2009227571A5 JP2009227571A5 (en) 2010-12-24
JP5467495B2 JP5467495B2 (en) 2014-04-09

Family

ID=41243396

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2009037588A Active JP5467495B2 (en) 2008-02-28 2009-02-20 Resistor forming glass powder
JP2010242603A Pending JP2011026200A (en) 2008-02-28 2010-10-28 Ignition plug
JP2013253744A Active JP5748079B2 (en) 2008-02-28 2013-12-09 Resistor forming glass powder

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2010242603A Pending JP2011026200A (en) 2008-02-28 2010-10-28 Ignition plug
JP2013253744A Active JP5748079B2 (en) 2008-02-28 2013-12-09 Resistor forming glass powder

Country Status (1)

Country Link
JP (3) JP5467495B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227570A (en) * 2008-02-28 2009-10-08 Nippon Electric Glass Co Ltd Glass composition for forming resistor
JP2011026200A (en) * 2008-02-28 2011-02-10 Ngk Spark Plug Co Ltd Ignition plug
JP2011070890A (en) * 2009-09-25 2011-04-07 Ngk Spark Plug Co Ltd Spark plug for internal combustion engine
JP2012066942A (en) * 2010-09-21 2012-04-05 Nippon Electric Glass Co Ltd Glass for forming resistor
CN113213734A (en) * 2021-05-27 2021-08-06 三瑞科技(江西)有限公司 High-strength glass insulator material

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968131A (en) * 1972-09-15 1974-07-02
JPS58151345A (en) * 1982-02-26 1983-09-08 Asahi Glass Co Ltd Glass composition with low dielectric constant
JPS6139386A (en) * 1984-07-28 1986-02-25 株式会社デンソー Ignition plug
JPS6139385A (en) * 1984-07-28 1986-02-25 株式会社デンソー Ignition plug
JPS62226839A (en) * 1986-03-27 1987-10-05 Nippon Sheet Glass Co Ltd Glass fiber having low dielectric constant
JP2002211953A (en) * 2001-01-05 2002-07-31 Nippon Electric Glass Co Ltd Glass for sealing, conductive sealing composition and hermetic package
JP2003007421A (en) * 2001-06-26 2003-01-10 Ngk Spark Plug Co Ltd Spark plug
JP2005340171A (en) * 2004-04-30 2005-12-08 Ngk Spark Plug Co Ltd Spark plug
JP2009227570A (en) * 2008-02-28 2009-10-08 Nippon Electric Glass Co Ltd Glass composition for forming resistor
JP2011026200A (en) * 2008-02-28 2011-02-10 Ngk Spark Plug Co Ltd Ignition plug
JP2011079734A (en) * 2009-09-09 2011-04-21 Ngk Spark Plug Co Ltd Ignition plug
JP2011084463A (en) * 2009-09-15 2011-04-28 Ngk Spark Plug Co Ltd Spark plug

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2245403C2 (en) * 1972-09-15 1984-04-05 Robert Bosch Gmbh, 7000 Stuttgart Electrically conductive sealant for spark plugs and methods of manufacturing the same
JP2003007424A (en) * 2001-06-26 2003-01-10 Ngk Spark Plug Co Ltd Spark plug

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4968131A (en) * 1972-09-15 1974-07-02
JPS58151345A (en) * 1982-02-26 1983-09-08 Asahi Glass Co Ltd Glass composition with low dielectric constant
JPS6139386A (en) * 1984-07-28 1986-02-25 株式会社デンソー Ignition plug
JPS6139385A (en) * 1984-07-28 1986-02-25 株式会社デンソー Ignition plug
JPS62226839A (en) * 1986-03-27 1987-10-05 Nippon Sheet Glass Co Ltd Glass fiber having low dielectric constant
JP2002211953A (en) * 2001-01-05 2002-07-31 Nippon Electric Glass Co Ltd Glass for sealing, conductive sealing composition and hermetic package
JP2003007421A (en) * 2001-06-26 2003-01-10 Ngk Spark Plug Co Ltd Spark plug
JP2005340171A (en) * 2004-04-30 2005-12-08 Ngk Spark Plug Co Ltd Spark plug
JP2009227570A (en) * 2008-02-28 2009-10-08 Nippon Electric Glass Co Ltd Glass composition for forming resistor
JP2011026200A (en) * 2008-02-28 2011-02-10 Ngk Spark Plug Co Ltd Ignition plug
JP2011057549A (en) * 2008-02-28 2011-03-24 Ngk Spark Plug Co Ltd Spark plug
JP2011079734A (en) * 2009-09-09 2011-04-21 Ngk Spark Plug Co Ltd Ignition plug
JP2011084463A (en) * 2009-09-15 2011-04-28 Ngk Spark Plug Co Ltd Spark plug

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227570A (en) * 2008-02-28 2009-10-08 Nippon Electric Glass Co Ltd Glass composition for forming resistor
JP2011026200A (en) * 2008-02-28 2011-02-10 Ngk Spark Plug Co Ltd Ignition plug
JP2011070890A (en) * 2009-09-25 2011-04-07 Ngk Spark Plug Co Ltd Spark plug for internal combustion engine
JP2012066942A (en) * 2010-09-21 2012-04-05 Nippon Electric Glass Co Ltd Glass for forming resistor
CN113213734A (en) * 2021-05-27 2021-08-06 三瑞科技(江西)有限公司 High-strength glass insulator material

Also Published As

Publication number Publication date
JP2014055107A (en) 2014-03-27
JP2011026200A (en) 2011-02-10
JP5467495B2 (en) 2014-04-09
JP5748079B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
JP5748079B2 (en) Resistor forming glass powder
JP5679273B2 (en) Resistor forming material
TWI342568B (en) Method of manufacture of semiconductor device and conductive compositions used therein
TWI388528B (en) Method for producing an electronic component passivated by lead free glass
JP2009227571A5 (en)
JP5286344B2 (en) Spark plug
WO2010026952A1 (en) Glass composition for electrode formation and electrode formation material
JP5717043B2 (en) Electrode forming glass composition and electrode forming material
CN109524150A (en) A kind of full Al-BSF back silver paste and the preparation method and application thereof
WO2012023413A1 (en) Glass for use in forming electrodes, and electrode-forming material using same
JP2005504409A (en) Silver conductor composition
JP5364669B2 (en) Spark plug
JP5850388B2 (en) Electrode forming glass and electrode forming material using the same
WO2021221173A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JP6103051B2 (en) Composition for ceramic substrate and ceramic circuit component
JP5645009B2 (en) Resistor forming glass
JP3079581B2 (en) Sealing glass
WO2023044837A1 (en) Lead-free borosilicate glass material, and preparation method therefor and use thereof
JP5325302B2 (en) Spark plug for internal combustion engine
JP4488325B2 (en) Composition for thermistor, method for producing the same, and thermistor using the composition
WO2021221175A1 (en) Thick film resistor paste, thick film resistor, and electronic component
KR102088009B1 (en) Thermoelectric composite material and preparation method thereof
JP5040574B2 (en) Resistance material
JP5095800B2 (en) Spark plug
CN102693834B (en) The manufacture method of microwave ceramic capacitor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130520

A256 Written notification of co-pending application filed on the same date by different applicants

Free format text: JAPANESE INTERMEDIATE CODE: A2516

Effective date: 20130520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Ref document number: 5467495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140119