JP2009224541A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2009224541A
JP2009224541A JP2008067201A JP2008067201A JP2009224541A JP 2009224541 A JP2009224541 A JP 2009224541A JP 2008067201 A JP2008067201 A JP 2008067201A JP 2008067201 A JP2008067201 A JP 2008067201A JP 2009224541 A JP2009224541 A JP 2009224541A
Authority
JP
Japan
Prior art keywords
resin film
electronic component
resin
mounting structure
temporary bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008067201A
Other languages
Japanese (ja)
Inventor
Hideo Miyasaka
英男 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008067201A priority Critical patent/JP2009224541A/en
Publication of JP2009224541A publication Critical patent/JP2009224541A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form electronic parts by temporarily bonding a resin film to a plurality of areas of a substrate at a time and dividing them into individual pieces in an individual piece making process, and to efficiently manufacture an excellent mounting structure by mounting a resin layer on the electronic parts. <P>SOLUTION: In a method of manufacturing the mounting structure, a mounting substrate and the electronic parts are provided and the electronic parts are mounted on the mounting substrate via a resin layer. The method includes a formation step of forming components of electronic parts including bumps 130 in each of a plurality of regions of the substrate 100A for formation of the electronic parts; a temporary bonding step of temporarily bonding the resin film 200 over the plurality of regions of the substrate 100A for formation at a time thereafter; an individual piece making step of dividing the substrate 100A for formation into individual pieces to form the electronic parts and also dividing the resin film 220 into individual pieces to form resin layers; and a fixing step of fixing the electronic parts to the mounting substrate with the resin layer interposed. In the temporary bonding step, the resin film 220 is arranged having a recess 240 directed to a surface as an active surface 120 of the electronic component, and then the resin film 220 is fused to fill the recess 240 with a fused resin material and to temporarily bond the resin film 2209 to the active surface 120. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device.

電子機器の分野においては、半導体装置(ベアチップ)等の電子部品を実装基板に実装する技術が用いられており、高密度かつ簡易に実装可能な実装構造が期待されている。高密度で実装する方法としては、フリップチップ方式が知られている。フリップチップ方式は、電子部品にバンプを形成しておき、電子部品と実装基板との間に樹脂材料等からなる接着剤を供給するとともにこれらを貼り合わせる方式である。電子部品に形成したバンプを介して電子部品の端子と実装基板の電極とが接触し電気的な接合が得られるとともに、硬化した接着剤によって電子部品と実装基板との間が封止されるようになっている。   In the field of electronic equipment, a technique for mounting an electronic component such as a semiconductor device (bare chip) on a mounting substrate is used, and a mounting structure that can be mounted easily at high density is expected. A flip-chip method is known as a method for mounting at a high density. The flip chip method is a method in which bumps are formed on an electronic component, an adhesive made of a resin material or the like is supplied between the electronic component and a mounting substrate, and these are bonded together. The terminal of the electronic component and the electrode of the mounting substrate are brought into contact with each other through the bump formed on the electronic component to obtain an electrical connection, and the space between the electronic component and the mounting substrate is sealed by the cured adhesive. It has become.

接着剤を供給する方法としては、接着剤を電子部品あるいは実装基板の所定領域に配置する方法が知られている。近年、電子部品の小型化に伴って電子部品も小型化してきており、小型化した樹脂フィルム(接着剤)を所定の位置に配置することが困難になってきている。その解決策として、電子部品の製造段階で樹脂フィルムを配置する方法が提案されている(例えば特許文献1)。   As a method of supplying the adhesive, a method of arranging the adhesive in a predetermined region of the electronic component or the mounting substrate is known. In recent years, electronic components have been miniaturized along with miniaturization of electronic components, and it has become difficult to arrange a miniaturized resin film (adhesive) at a predetermined position. As a solution, a method of arranging a resin film at the manufacturing stage of an electronic component has been proposed (for example, Patent Document 1).

特許文献1では、シリコンウエハ等に半導体素子等を形成した後、シリコンウエハの全面に樹脂フィルムを仮接着している。そして、シリコンウエハをダイシング(個片化)することにより、接着剤が配置された状態の電子部品が得られるようになっている。このような技術を用いた場合に、シリコンウエハと樹脂フィルムとの間に空気等の雰囲気ガスが巻き込まれてしまうことがある。これは、シリコンウエハにバンプ等の突起部が形成されており、突起部及びその周辺の凹凸に樹脂フィルムを沿わせることが難しいためである。   In Patent Document 1, after a semiconductor element or the like is formed on a silicon wafer or the like, a resin film is temporarily bonded to the entire surface of the silicon wafer. Then, by dicing (dividing into pieces) the silicon wafer, an electronic component in a state where an adhesive is disposed can be obtained. When such a technique is used, an atmospheric gas such as air may be caught between the silicon wafer and the resin film. This is because protrusions such as bumps are formed on the silicon wafer, and it is difficult to fit the resin film along the protrusions and the irregularities around the protrusions.

空気が巻き込まれると、バンプや接着剤、これが硬化した封止材等に経時劣化を生じて、機械的あるいは電気的な接続信頼性が低下することがある。また、シリコンウエハに設けられたアライメントマークが、巻き込まれた空気と重なって見えなくなってしまい、位置合わせの精度が損なわれることもある。そこで特許文献1では、減圧状態で樹脂フィルムを仮接着し、空気等の巻き込みを低減している。
特開2001−237268号公報
When air is involved, the bumps and adhesives, the sealing material with which they are cured, and the like are deteriorated with time, and the mechanical or electrical connection reliability may be lowered. Further, the alignment mark provided on the silicon wafer overlaps with the entrained air and cannot be seen, and the alignment accuracy may be impaired. Therefore, in Patent Document 1, a resin film is temporarily bonded in a reduced pressure state to reduce entrainment of air or the like.
JP 2001-237268 A

特許文献1の技術を用いると、電子部品の各々に接着剤を配置するプロセスが容易化され、かつ空気の巻き込みを防止することができると考えられるが、生産性を向上させる観点から改善点もある。特許文献1では、減圧状態で樹脂フィルムを仮接着するので、真空チャンバ等にシリコンウエハを収容して作業する必要がある。すると、複数のシリコンウエハを連続的に処理することが困難になり、大気圧雰囲気で行う場合よりも作業性が低下してしまう。また、複数の基板を一括して処理することにより生産性を向上しようとすれば、大型の真空チャンバが必要になり装置コストが高くなってしまう。   If the technique of Patent Document 1 is used, it is considered that the process of arranging an adhesive on each electronic component is facilitated and air entrainment can be prevented, but there are also improvements from the viewpoint of improving productivity. is there. In Patent Document 1, since a resin film is temporarily bonded in a reduced pressure state, it is necessary to work by accommodating a silicon wafer in a vacuum chamber or the like. Then, it becomes difficult to process a plurality of silicon wafers continuously, and workability is deteriorated as compared with the case of performing in an atmospheric pressure atmosphere. Further, if it is attempted to improve productivity by processing a plurality of substrates at once, a large vacuum chamber is required, resulting in an increase in apparatus cost.

本発明は、前記事情に鑑み成されたものであって、良好な実装構造体を効率よく製造することが可能な製造方法を提供することを目的の1つとする。   This invention is made | formed in view of the said situation, Comprising: It aims at providing the manufacturing method which can manufacture a favorable mounting structure efficiently.

本発明の実装構造体の製造方法は、実装基板と前記実装基板側に電気的に接続されたバンプを能動面に有する電子部品とを備え、前記実装基板に前記電子部品が樹脂層を介して実装された実装構造体の製造方法であって、前記電子部品の形成用基板における複数の領域の各々に、前記バンプを含んだ前記電子部品の構成要素を形成する形成工程と、
前記形成工程の後に、前記形成用基板の前記複数の領域にわたって樹脂膜を一括して仮接着する仮接着工程と、前記仮接着工程の後に、前記形成用基板を個片化して前記電子部品を形成するとともに前記樹脂膜を個片化して前記樹脂層を形成する個片化工程と、前記実装基板に前記樹脂層を介して前記電子部品を固着する固着工程と、を有し、前記仮接着工程では、溝状の凹部を有する前記樹脂膜を前記電子部品の能動面となる面に該凹部を向けて配置した後に、前記樹脂膜を溶融させ溶融した樹脂材料を前記凹部に充填するとともに該樹脂膜を前記能動面に仮接着することを特徴とする。
The mounting structure manufacturing method of the present invention includes a mounting substrate and an electronic component having a bump electrically connected to the mounting substrate side on an active surface, and the electronic component is placed on the mounting substrate via a resin layer. A method of manufacturing a mounted mounting structure, the forming step of forming a component of the electronic component including the bumps in each of a plurality of regions in the substrate for forming the electronic component;
After the forming step, a temporary bonding step in which a resin film is temporarily bonded over the plurality of regions of the forming substrate, and after the temporary bonding step, the forming substrate is separated into individual pieces. Forming and separating the resin film into pieces to form the resin layer, and a fixing step of fixing the electronic component to the mounting substrate via the resin layer, the temporary bonding In the step, the resin film having a groove-shaped recess is disposed with the recess facing the active surface of the electronic component, and then the resin film is melted to fill the recess with the molten resin material. A resin film is temporarily bonded to the active surface.

このようにすれば、仮接着工程で形成用基板の複数の領域に樹脂膜を一括して仮接着し個片化工程で個片化するので、電子部品を形成するとともにこれに樹脂層を搭載することができる。したがって、電子部品の個片化後に樹脂層を形成する場合に比べて、電子部品と樹脂層との位置合わせ等を省くことができる。よって、電子部品に樹脂層を効率よく搭載することができ、実装構造体を効率よく製造することができる。また、電子部品と樹脂層との位置合わせのマージンが不要になるので、電子部品や樹脂層の小型化が図られ、電子部品を高密度で実装することが可能になる。   In this way, the resin film is temporarily bonded to a plurality of regions of the forming substrate in the temporary bonding process, and separated into individual pieces in the singulation process, so that an electronic component is formed and a resin layer is mounted thereon. can do. Therefore, alignment between the electronic component and the resin layer can be omitted as compared with the case where the resin layer is formed after the electronic component is separated. Therefore, the resin layer can be efficiently mounted on the electronic component, and the mounting structure can be manufactured efficiently. Further, since a margin for alignment between the electronic component and the resin layer is not required, the electronic component and the resin layer can be reduced in size, and the electronic component can be mounted at a high density.

一方、電子部品はバンプ等による凹凸を有しているので、従来の方法では形成用基板と樹脂層との間、特にバンプ周辺に空気等の雰囲気ガスを巻き込んでしまい、これが残留するおそれがある。
ところが、本発明では、仮接着工程で溝状の凹部を有する樹脂膜を配置した後にこれを溶融させ凹部を溶融した樹脂材料で充填するので、巻き込んだ空気が凹部を通って排出され樹脂膜と形成基板との間の空気の残留が防止される。したがって、固着工程で実装基板に樹脂層を介して電子部品を固着すると、樹脂層によって実装基板と電子部品との間が良好に封止される。よって、接着信頼性の向上が図られるとともにガスの侵入によるバンプの劣化等が防止され、良好な実装構造体となる。また、減圧雰囲気で樹脂膜を仮接着する場合に比べ、減圧雰囲気での作業が不要になるので装置コストの低減や作業性の向上が図られる。以上のように、本発明によれば良好な実装構造体を効率よく製造することが可能になる。
On the other hand, since electronic parts have bumps and other irregularities, the conventional method entraps atmospheric gas such as air between the forming substrate and the resin layer, particularly around the bumps, which may remain. .
However, in the present invention, since the resin film having the groove-like recesses is disposed in the temporary bonding step and then melted and filled with the molten resin material, the entrained air is discharged through the recesses and the resin film. Air remaining between the forming substrate and the substrate is prevented. Therefore, when the electronic component is fixed to the mounting substrate through the resin layer in the fixing process, the resin layer provides a good seal between the mounting substrate and the electronic component. Therefore, the adhesion reliability is improved and the deterioration of the bump due to the intrusion of gas is prevented, so that a good mounting structure is obtained. Further, compared with the case where the resin film is temporarily bonded in a reduced-pressure atmosphere, the operation in the reduced-pressure atmosphere is not required, so that the apparatus cost can be reduced and the workability can be improved. As described above, according to the present invention, it is possible to efficiently manufacture a good mounting structure.

また、前記樹脂膜は、支持膜に支持されかつ面方向に沿って線状に設けられた切断部を有しており、前記仮接着工程は、前記支持膜に前記面方向において前記切断部に直交する方向の引張力を作用させて該切断部を前記凹部とした状態で該樹脂膜を配置することが好ましく、この場合には、前記電子部品の能動面となる面を鉛直上方に向けた状態で前記樹脂膜を加熱し溶融させた後に、前記支持膜を該樹脂膜から剥離することが好ましい。   In addition, the resin film has a cutting portion that is supported by the support film and linearly provided along the surface direction, and the temporary bonding step is performed on the support film at the cutting portion in the surface direction. Preferably, the resin film is disposed in a state where the tensile force in the orthogonal direction is applied to form the cut portion as the concave portion. In this case, the surface to be the active surface of the electronic component is directed vertically upward. It is preferable to peel the support film from the resin film after the resin film is heated and melted in a state.

このように支持膜の面方向において切断部と直交する方向の引張力を作用させると、切断部に対応する部分の支持膜に引張力に応じた伸びを生じる。したがって、この伸び量の幅の凹部が形成され、凹部の幅を容易に制御することが可能になる。また、例えば支持膜上に樹脂材料を成膜した後この膜のみをカッター等で切断すること(ハーフカット)等により、容易に前記樹脂膜が得られる。したがって、樹脂材料からなる膜を露光・現像等によってパターニングする場合に比べて、格段に容易に凹部を有する樹脂膜を形成することができる。   In this way, when a tensile force in a direction perpendicular to the cut portion is applied in the surface direction of the support film, an elongation corresponding to the tensile force is generated in a portion of the support film corresponding to the cut portion. Therefore, a recess having a width corresponding to the amount of elongation is formed, and the width of the recess can be easily controlled. Further, for example, the resin film can be easily obtained by forming a resin material on the support film and then cutting only this film with a cutter or the like (half-cut). Therefore, a resin film having a recess can be formed much more easily than in the case where a film made of a resin material is patterned by exposure / development or the like.

また、仮接着工程で電子部品の能動面となる面を鉛直上方に向けた状態で樹脂膜を加熱し溶融させると、溶融した樹脂材料が重力により形成基板側に流動する。したがって、凹部における形成用基板側に樹脂材料を充填することができ、バンプは形成用基板に配置されているのでバンプ周辺の空気を良好に排出することができる。また、溶融した樹脂材料が形成用基板側に流動することにより、形成用基板と樹脂膜との接面積が支持膜と樹脂膜との接面積よりも大きくなる。したがって、支持膜を剥離する際に、形成用基板と樹脂膜との密着力が剥離させる力よりも大きくなり、樹脂膜が形成用基板から剥離することが防止される。   Further, when the resin film is heated and melted in a state where the active surface of the electronic component is directed vertically upward in the temporary bonding process, the melted resin material flows toward the formation substrate due to gravity. Therefore, the resin material can be filled on the formation substrate side in the recess, and since the bumps are arranged on the formation substrate, the air around the bumps can be discharged well. Further, when the molten resin material flows toward the forming substrate, the contact area between the forming substrate and the resin film becomes larger than the contact area between the support film and the resin film. Therefore, when the support film is peeled off, the adhesion force between the forming substrate and the resin film becomes larger than the peeling force, and the resin film is prevented from peeling from the forming substrate.

また、前記電子部品は、列状に並んだ複数の前記バンプを有しており、前記仮接着工程で、前記樹脂膜を前記電子部品の能動面となる面に接触させるとともに、前記バンプの間隔よりも幅が狭い突起状の弾性体を有するローラで前記樹脂膜を押圧して、前記樹脂膜を配置することが好ましい。この場合には、前記ローラとして、前記弾性体の高さが前記バンプの高さ以上であるローラを用いることや、前記ローラを前記溝状の凹部に沿って転がし移動させて前記樹脂膜を押圧すること、前記ローラを前記バンプの並びの直交方向に沿って転がし移動させて前記樹脂膜を押圧することが、それぞれ好ましい。   Further, the electronic component has a plurality of the bumps arranged in a row, and in the temporary bonding step, the resin film is brought into contact with a surface to be an active surface of the electronic component, and the interval between the bumps It is preferable that the resin film is disposed by pressing the resin film with a roller having a protruding elastic body having a narrower width. In this case, a roller whose height of the elastic body is equal to or higher than the height of the bump is used as the roller, or the resin film is pressed by moving the roller along the groove-shaped recess. In addition, it is preferable that the resin film is pressed by rolling and moving the roller along a direction orthogonal to the arrangement of the bumps.

バンプの間隔よりも幅が狭い突起状の弾性体を有するローラで樹脂膜を押圧して樹脂膜を配置すれば、バンプ間における樹脂膜は突起状の弾性体の反発力によって形成用基板に押し付けられる。これにより、樹脂膜と形成用基板との間の空気が凹部を通って排出され、凹部の内側以外に空気が残留しなくなる。また、凹部の内側の空気は、樹脂膜を溶融させ凹部を充填することにより排出されるので、空気の残留が確実に防止される。   If the resin film is placed by pressing the resin film with a roller having a protruding elastic body that is narrower than the bump spacing, the resin film between the bumps is pressed against the forming substrate by the repulsive force of the protruding elastic body. It is done. As a result, air between the resin film and the forming substrate is discharged through the recess, and no air remains outside the recess. Further, since the air inside the recess is discharged by melting the resin film and filling the recess, the remaining of the air is surely prevented.

また、弾性体の高さが前記バンプの高さ以上であるローラを用いれば、バンプ間において弾性体が樹脂膜を形成用基板に押し付ける力が強くなるので、良好に空気を排出することができる。
ローラを前記溝状の凹部に沿って転がし移動させて前記樹脂膜を押圧すれば、ローラの進行に伴って、その後方の凹部は樹脂膜の押圧による変形で幅が狭くなる。したがって、ローラの後方に空気が逆流しにくくなり、ローラの進行方向に空気を良好に排出することができる。また、ローラで樹脂膜を擦る場合に比べて、樹脂膜の破断等が防止される。
バンプ間においては、その両側にバンプが配置されているので、空気の巻き込みを生じやすいと考えられる。ローラを前記バンプの並びの直交方向に沿って転がし移動させて前記樹脂膜を押圧すれば、バンプ間に弾性体が入り込みやすくなるのでバンプ間の空気を良好に排出することができる。
Further, if a roller having a height of the elastic body equal to or higher than the height of the bump is used, the force with which the elastic body presses the resin film against the forming substrate between the bumps becomes strong, so that air can be discharged well. .
If the roller is rolled and moved along the groove-shaped recess to press the resin film, the rear recess becomes narrower due to the deformation of the resin film as the roller advances. Therefore, it becomes difficult for the air to flow backward to the back of the roller, and the air can be discharged well in the traveling direction of the roller. In addition, the resin film can be prevented from being broken as compared with the case of rubbing the resin film with a roller.
Between the bumps, the bumps are arranged on both sides thereof, so that it is considered that air is likely to be caught. If the roller is rolled and moved along the direction perpendicular to the arrangement of the bumps to press the resin film, an elastic body easily enters between the bumps, so that the air between the bumps can be discharged well.

また、前記仮接着工程で、前記樹脂膜として、互いに平行して延びる複数の凹部を有し該凹部の間隔が前記バンプの間隔よりも狭い樹脂膜を用いることが好ましい。
このようにすれば、バンプ間に少なくとも1つの凹部が配置されるので、バンプ間における樹脂膜と形成基板との間の空気をこの凹部を通して排出することができる。
In the temporary bonding step, it is preferable to use a resin film having a plurality of recesses extending in parallel to each other as the resin film, wherein the interval between the recesses is narrower than the interval between the bumps.
In this way, since at least one recess is disposed between the bumps, air between the resin film and the formation substrate between the bumps can be discharged through the recess.

以下、本発明の一実施形態を説明するが、本発明の技術範囲は以下の実施形態に限定されるものではない。以降の説明では図面を用いて各種の構造を例示するが、構造の特徴的な部分を分かりやすく示すために、図面中の構造はその寸法や縮尺を実際の構造に対して異ならせて示す場合がある。   Hereinafter, although one embodiment of the present invention is described, the technical scope of the present invention is not limited to the following embodiment. In the following description, various structures are illustrated using drawings, but in order to show the characteristic parts of the structures in an easy-to-understand manner, the structures in the drawings are shown in different sizes and scales from the actual structures. There is.

図1(a)〜(c)は、本実施形態の形成工程を模式的に示す工程図であり、図1(a)には概略平面図を、図1(b)には電子部品の1つに対応するチップ形成領域の拡大図を、図1(c)には図1(b)におけるA−A線矢視断面図を、それぞれ示している。   FIGS. 1A to 1C are process diagrams schematically showing the formation process of the present embodiment. FIG. 1A is a schematic plan view, and FIG. The enlarged view of the chip | tip formation area corresponding to one is shown, and FIG.1 (c) shows the AA arrow sectional drawing in FIG.1 (b), respectively.

まず、図1(a)に示すように、形成用基板100Aにおける複数のチップ形成領域(領域)110に一括して、電子部品の構成要素を形成する。形成用基板100Aは、例えば単結晶シリコンからなるシリコンウエハ等である。電子部品の構成要素が形成されたチップ形成領域110の各々は、個片化後に1つの電子部品になる領域であり、以下これを電子部品の中間体100Bと称する。また、製造した電子部品で能動面となる面を、中間体100Bにおいても能動面と称す場合がある。図1(b)に示すように、本実施形態の中間体100Bは平面視略長方形のものであり、能動面120の長辺(Y方向)に沿った周縁には複数のバンプ130が形成される。   First, as shown in FIG. 1A, components of electronic components are collectively formed in a plurality of chip formation regions (regions) 110 in the formation substrate 100A. The forming substrate 100A is, for example, a silicon wafer made of single crystal silicon. Each of the chip formation regions 110 in which the components of the electronic component are formed is a region that becomes one electronic component after singulation, and is hereinafter referred to as an electronic component intermediate 100B. In addition, a surface that is an active surface in the manufactured electronic component may be referred to as an active surface in the intermediate body 100B. As shown in FIG. 1B, the intermediate body 100B of the present embodiment has a substantially rectangular shape in plan view, and a plurality of bumps 130 are formed on the periphery along the long side (Y direction) of the active surface 120. The

詳しくは、図1(c)に示すように、形成用基板100A上にトランジスタやメモリ素子、これらを覆うパッシベーション膜、内部端子等を含んだ半導体回路層140を形成する。そして、半導体回路層140上に、前記内部端子と電気的に接続された内部配線や、これを覆うパッシベーション膜、内部配線と電気的に接続されるとともにパッシベーション膜の所定領域に露出したランド等からなる配線層150を形成する。そして、配線層150上にランドと電気的に接続されたバンプ130を形成する。前記トランジスタやメモリ素子は、例えば電子部品が実装されたデバイスにおいて、駆動系や制御系、あるいはその一部として機能するものである。また、バンプ130は、電子部品が実装基板に実装された後に、これらの間の電気的な接続部となる部分である。   Specifically, as shown in FIG. 1C, a semiconductor circuit layer 140 including a transistor, a memory element, a passivation film covering these, an internal terminal, and the like is formed on the formation substrate 100A. Then, on the semiconductor circuit layer 140, the internal wiring electrically connected to the internal terminal, the passivation film covering the internal wiring, the land electrically connected to the internal wiring and exposed to a predetermined region of the passivation film, etc. A wiring layer 150 is formed. Then, bumps 130 electrically connected to the lands are formed on the wiring layer 150. The transistor and the memory element function as a drive system, a control system, or a part thereof, for example, in a device on which electronic components are mounted. The bump 130 is a portion that becomes an electrical connection portion between the electronic components after they are mounted on the mounting substrate.

図2(a)〜(c)、図3(a)〜(c)本実施形態の仮接着工程を示す工程図である。仮接着工程に先立ち、図2(a)に示すように、支持膜210上に樹脂膜220を有するフィルム200を用意する。本実施形態のフィルム200は、形成用基板100Aとほぼ同様の形状及び寸法のものである。   2 (a) to 2 (c) and FIGS. 3 (a) to 3 (c) are process diagrams showing a temporary bonding process of the present embodiment. Prior to the temporary bonding step, a film 200 having a resin film 220 on a support film 210 is prepared as shown in FIG. The film 200 of the present embodiment has substantially the same shape and dimensions as the forming substrate 100A.

樹脂膜220は、例えばポリイミド系樹脂やエポキシ系樹脂、フェノール系樹脂等の樹脂材料からなっている。樹脂膜220は、例えば60〜80℃程度に加熱するとその一部が溶融して流動性が高くなり、さらに高温にすると重合等の化学反応が進むことにより硬化して接着性を発現するようになっている。樹脂膜220には、カッター等によって複数の切断部230が所定の間隔で形成されている。本実施形態の切断部230は、一方向に沿って形成されているとともに、その直交方向にも形成されている。すなわち、切断部230は格子状に形成されている。   The resin film 220 is made of a resin material such as a polyimide resin, an epoxy resin, or a phenol resin. When the resin film 220 is heated to, for example, about 60 to 80 ° C., a part thereof is melted to increase fluidity, and when the temperature is further increased, the resin film 220 is cured by a chemical reaction such as polymerization and exhibits adhesiveness. It has become. A plurality of cutting portions 230 are formed in the resin film 220 at a predetermined interval by a cutter or the like. The cutting part 230 of the present embodiment is formed along one direction and also in the orthogonal direction. That is, the cutting part 230 is formed in a lattice shape.

次いで、図2(b)に示すように、フィルム200の支持膜210に切断部230と直交する方向の引張力Fを作用させる。これにより、支持膜210は切断部230と直交する方向に引張力Fに応じた伸びを生じ、切断部230はこの伸び量に応じてその幅が広がり溝状の凹部240となる。このようにすれば、引張力Fによって凹部240の幅を制御することができる。また、樹脂膜を部分的に除去して、除去した部分を凹部とするよりも容易に凹部240を形成することができる。   Next, as shown in FIG. 2 (b), a tensile force F in a direction orthogonal to the cut portion 230 is applied to the support film 210 of the film 200. As a result, the support film 210 is stretched in accordance with the tensile force F in a direction perpendicular to the cut portion 230, and the cut portion 230 is expanded in width according to the amount of elongation to become a groove-like recess 240. In this way, the width of the recess 240 can be controlled by the tensile force F. Further, the recess 240 can be formed more easily than removing the resin film partially and making the removed portion a recess.

ここでは、フィルム200をその面方向の互いに直交する2方向に引っ張った状態で、フィルム200の周縁を額縁状の支持部材(図示略)に固定する。これにより、格子状の切断部230は、所定間隔の格子状の凹部240となる。額縁状の支持部材に固定すれば、引張力Fが作用した状態でフィルム200が保持されるので作業性が高くなる。   Here, the peripheral edge of the film 200 is fixed to a frame-shaped support member (not shown) in a state in which the film 200 is pulled in two directions perpendicular to each other. As a result, the lattice-shaped cutting portions 230 become lattice-shaped concave portions 240 with a predetermined interval. If it fixes to a frame-shaped support member, since the film 200 is hold | maintained in the state which the tensile force F acted, workability | operativity will become high.

次いで、図2(c)に示すように、フィルム200の樹脂膜220を中間体100Bの能動面120側に接触させるとともに、ローラ300で押圧する。前記のように凹部240は格子状、つまり互いに直交する2方向にそれぞれ延びている。ここでは、この2方向が、図1(b)に示した中間体100Bの長辺方向(Y方向)、短辺方向(X方向)と一致するようにフィルム200を配置する。なお、ローラ300は以下のようなものである。   Next, as shown in FIG. 2C, the resin film 220 of the film 200 is brought into contact with the active surface 120 side of the intermediate body 100 </ b> B and pressed by the roller 300. As described above, the recesses 240 extend in a lattice shape, that is, in two directions orthogonal to each other. Here, the film 200 is arranged so that these two directions coincide with the long side direction (Y direction) and the short side direction (X direction) of the intermediate body 100B shown in FIG. The roller 300 is as follows.

図5(a)はローラ300を示す概略斜視図であり、図5(b)は、ローラ300による押圧方法を示す斜視図である。図5(a)に示すように、本実施形態のローラ300は、軸に直交する断面形状が円形となっている。その半径は、軸方向において所定の間隔ごとに変化しており、半径が大きい部分は外側に凸の弾性体310になっている。弾性体310は、シリコンゴム等の可撓性を有する材料からなっている。弾性体310の幅は、図1(b)に示した能動面120の長辺方向におけるバンプ130の間隔よりも狭くなっている。また、弾性体310の高さ、すなわち径が小さい部分と径が大きい部分との半径の差は、バンプ130(図1(c)参照)よりも高くなっている。   FIG. 5A is a schematic perspective view showing the roller 300, and FIG. 5B is a perspective view showing a pressing method by the roller 300. As shown in FIG. 5A, the roller 300 of this embodiment has a circular cross-sectional shape that is orthogonal to the axis. The radius changes at predetermined intervals in the axial direction, and a portion with a large radius is an elastic body 310 that protrudes outward. The elastic body 310 is made of a flexible material such as silicon rubber. The width of the elastic body 310 is narrower than the interval between the bumps 130 in the long side direction of the active surface 120 shown in FIG. Further, the height of the elastic body 310, that is, the difference in radius between the small diameter portion and the large diameter portion is higher than that of the bump 130 (see FIG. 1C).

本実施形態では、図5(b)に示すように、中間体100Bのバンプ130の並びに沿う方向(Y方向)とこれに直交する方向(X方向)とに、それぞれローラ300を移動させて樹脂膜220を押圧する。押圧により弾性体310は変形し、その反発力によって樹脂膜220は、バンプ130上及びバンプ130間で、中間体100Bに押圧される。これにより、樹脂膜220と中間体100Bとの間の雰囲気ガス(空気)を凹部240に追い出すことができる。   In the present embodiment, as shown in FIG. 5B, the roller 300 is moved in the direction along the bumps 130 in the intermediate body 100B (Y direction) and in the direction orthogonal to the direction (X direction), respectively. Press the membrane 220. The elastic body 310 is deformed by the pressing, and the resin film 220 is pressed against the intermediate body 100 </ b> B on the bump 130 and between the bumps 130 by the repulsive force. Thereby, the atmospheric gas (air) between the resin film 220 and the intermediate body 100 </ b> B can be driven out to the recess 240.

本実施形態ではローラ300で押圧するとともに、図3(a)に示すように、形成用基板100Aを鉛直下方側から加熱する。すると、樹脂膜220が溶融するとともに溶融した樹脂材料が凹部240の中間体100B側に流動する。樹脂膜220は加熱されたことによって変形しやすくなり、これをローラ300で押圧すると凹部240の内側に向かって変形する。すると、凹部240の内側の容積が小さくなり、ここの空気が凹部240を通って排出される。このようにして、凹部240を溶融した樹脂材料で充填する。   In this embodiment, while being pressed by the roller 300, as shown in FIG. 3A, the forming substrate 100A is heated from the vertically lower side. Then, the resin film 220 is melted and the melted resin material flows toward the intermediate body 100B of the recess 240. The resin film 220 is easily deformed by being heated. When the resin film 220 is pressed by the roller 300, the resin film 220 is deformed toward the inside of the recess 240. Then, the volume inside the recess 240 is reduced, and the air here is discharged through the recess 240. In this way, the recess 240 is filled with the molten resin material.

次いで、図3(b)に示すように、フィルム200の支持膜210を剥離する。樹脂膜220は、凹部240の中間体100B側が溶融した樹脂材料で充填されたことにより、支持膜210側との接触面積が中間体100B側との接触面積よりも小さくなっている。したがって、樹脂膜220と支持膜210側との密着力は、樹脂膜220と中間体100B側との密着力よりも小さくなるので、支持膜210の剥離によって樹脂膜220と中間体100Bとが剥離することが防止される。
次いで、図3(c)に示すように、樹脂膜220を加熱し溶融させて、溶融した樹脂材料で凹部240をさらに充填し、樹脂膜220を平坦化する。
Next, as shown in FIG. 3B, the support film 210 of the film 200 is peeled off. Since the resin film 220 is filled with the molten resin material on the intermediate body 100B side of the recess 240, the contact area with the support film 210 side is smaller than the contact area with the intermediate body 100B side. Accordingly, the adhesion force between the resin film 220 and the support film 210 side is smaller than the adhesion force between the resin film 220 and the intermediate body 100B, and therefore the resin film 220 and the intermediate body 100B are separated by the separation of the support film 210. Is prevented.
Next, as shown in FIG. 3C, the resin film 220 is heated and melted, and the recess 240 is further filled with the melted resin material, and the resin film 220 is flattened.

次いで、形成用基板100Aと樹脂膜220とを一括してダイシング(個片化)する。これにより、図4(a)に示すような電子部品100が得られる。電子部品100には、個片化された樹脂膜220である樹脂層250が搭載されている。このようにすれば、多数の電子部品100を一括して製造することができるとともに、各電子部品100に一括して樹脂層250を搭載することができる。このようにすれば、樹脂層250と電子部品100との位置ずれが防止され、位置ずれを考慮してマージンを設ける場合に比べて樹脂層250あるいは電子部品250の小型化が図られる。   Next, the forming substrate 100A and the resin film 220 are collectively diced (divided into individual pieces). Thereby, the electronic component 100 as shown to Fig.4 (a) is obtained. The electronic component 100 is provided with a resin layer 250 that is an individual resin film 220. In this way, a large number of electronic components 100 can be manufactured together, and the resin layer 250 can be mounted on each electronic component 100 collectively. In this way, the positional deviation between the resin layer 250 and the electronic component 100 is prevented, and the resin layer 250 or the electronic component 250 can be downsized as compared with the case where a margin is provided in consideration of the positional deviation.

次いで、図4(b)に示すように、実装基板400に電子部品100を実装する。この工程は、公知の方法を用いて行うことができる。例えば、配線等と電気的に接続された端子410と、これとバンプ130とを位置合わせして電子部品100を配置する。そして、パルスヒートボンディングツール、コンスタントヒートツール等の加圧加熱体により、樹脂層250を溶融した状態で、電子部品100と実装基板400とを押し合わせる。これにより、バンプ130と端子410との間の樹脂層250が排出され、バンプ130と端子410が導通接触する。このような状態で、樹脂層250を熱硬化させることにより、電子部品100と実装基板400とが固着(本接着)されるとともに、これらの間が封止される。このようにして、実装構造体1が得られる。   Next, as shown in FIG. 4B, the electronic component 100 is mounted on the mounting substrate 400. This step can be performed using a known method. For example, the electronic component 100 is arranged by aligning the terminal 410 electrically connected to the wiring or the like and the bump 130. Then, the electronic component 100 and the mounting substrate 400 are pressed together in a state where the resin layer 250 is melted by a pressure heating body such as a pulse heat bonding tool or a constant heat tool. Thereby, the resin layer 250 between the bump 130 and the terminal 410 is discharged, and the bump 130 and the terminal 410 are brought into conductive contact. In this state, the resin layer 250 is thermally cured, so that the electronic component 100 and the mounting substrate 400 are fixed (mainly bonded), and the space between them is sealed. In this way, the mounting structure 1 is obtained.

以上のような本発明の実装構造体の製造方法によれば、各々に樹脂層250が配置された多数の電子部品100を一括して製造することができ、プロセスの効率化が図られる。また、溝状の凹部240を有する樹脂膜220を電子部品100の中間体100Bに仮接着するので、樹脂膜220と中間体100Bとの間の雰囲気ガス(空気)が凹部240を通って排出される。したがって、空気の残留による端子410やバンプ130、樹脂層250等の劣化、接触面積の低下による電子部品100と実装基板400との接着強度の低下等が防止され、良好な実装構造体1となる。このように、本発明によれば良好な実装構造体を効率的に製造することができる。   According to the mounting structure manufacturing method of the present invention as described above, a large number of electronic components 100 each having the resin layer 250 disposed thereon can be manufactured in a lump, and process efficiency can be improved. Further, since the resin film 220 having the groove-shaped recess 240 is temporarily bonded to the intermediate body 100B of the electronic component 100, the atmospheric gas (air) between the resin film 220 and the intermediate body 100B is discharged through the recess 240. The Therefore, deterioration of the terminals 410, the bumps 130, the resin layer 250, and the like due to residual air, and a decrease in the adhesive strength between the electronic component 100 and the mounting substrate 400 due to a decrease in contact area are prevented, and a good mounting structure 1 is obtained. . Thus, according to the present invention, a good mounting structure can be efficiently manufactured.

なお、前記実施形態では、電子部品の周縁の長辺に沿ってバンプ130を配置したが、長辺及び短辺の4辺に沿って配置してもよい。このように周縁のみにバンプ130を配置したペリフェラル配置の他にも、能動面の全体にバンプを分布配置させたエリア配置や能動面の中央に配置したセンターパッド配置等を採用してもよい。   In the embodiment, the bumps 130 are arranged along the long side of the periphery of the electronic component. However, the bumps 130 may be arranged along the four sides of the long side and the short side. In addition to the peripheral arrangement in which the bumps 130 are arranged only on the periphery as described above, an area arrangement in which bumps are distributed over the entire active surface, a center pad arrangement in the center of the active surface, or the like may be employed.

また、樹脂膜としては、絶縁性のもの(NCF)、導電性のもの、導電性粒子を含有したもの等のいずれを用いてもよい。NCFを用いる場合には、凹部の幅を前記バンプの幅よりも広くし、凹部の内側にバンプが配置されるように位置合わせしてもよい。このようにすれば、バンプ上に樹脂膜が配置されなくなるので、電子部品を実装基板に固着する際に、バンプ上の樹脂材料の排出不良によって電気的な接続不良を生じることが防止される。また、バンプの周辺に凹部の一部が配置されるので、バンプ周辺の空気を良好に排出することができる。
また、前記実施形態のローラ300は、軸方向に沿って凹凸を有していたが、さらに周方向にも凹凸(突起)を有するものを用いてもよい。
Further, as the resin film, any of an insulating film (NCF), a conductive film, a film containing conductive particles, and the like may be used. When NCF is used, the width of the recess may be wider than the width of the bump, and alignment may be performed so that the bump is disposed inside the recess. In this way, since the resin film is not disposed on the bump, when the electronic component is fixed to the mounting substrate, it is possible to prevent an electrical connection failure due to a defective discharge of the resin material on the bump. Moreover, since a part of recessed part is arrange | positioned around a bump, the air around a bump can be discharged | emitted favorably.
Moreover, although the roller 300 of the said embodiment had an unevenness | corrugation along an axial direction, you may use what has an unevenness | corrugation (protrusion) also in the circumferential direction.

(a)〜(c)は、本発明の実装構造体の製造方法を示す工程図である。(A)-(c) is process drawing which shows the manufacturing method of the mounting structure of this invention. (a)〜(c)は、図1(c)から続く工程図である。(A)-(c) is process drawing which continues from FIG.1 (c). (a)〜(c)は、図2(c)から続く工程図である。(A)-(c) is process drawing which continues from FIG.2 (c). (a)、(b)は、図3(c)から続く工程図である。(A), (b) is process drawing which continues from FIG.3 (c). (a)は、ローラの斜視図、(b)はローラの使用方法を示す平面図である。(A) is a perspective view of a roller, (b) is a top view which shows the usage method of a roller.

符号の説明Explanation of symbols

1・・・実装構造体、100・・・電子部品、100A・・・形成用基板、100B・・・電子部品の中間体、120・・・能動面、130・・・バンプ、200・・・フィルム、210・・・支持膜、220・・・樹脂膜、230・・・切断部、240・・・凹部、250・・・樹脂層、300・・・ローラ、310・・・弾性体、400・・・実装基板、410・・・端子、F・・・引張力 DESCRIPTION OF SYMBOLS 1 ... Mounting structure, 100 ... Electronic component, 100A ... Substrate for formation, 100B ... Intermediate body of electronic component, 120 ... Active surface, 130 ... Bump, 200 ... Film 210 210 support film 220 resin film 230 cutting part 240 recess 250 resin layer 300 roller 310 elastic body 400 ... Mounting substrate, 410 ... Terminal, F ... Tensile force

Claims (8)

実装基板と前記実装基板側に電気的に接続されたバンプを能動面に有する電子部品とを備え、前記実装基板に前記電子部品が樹脂層を介して実装された実装構造体の製造方法であって、
前記電子部品の形成用基板における複数の領域の各々に、前記バンプを含んだ前記電子部品の構成要素を形成する形成工程と、
前記形成工程の後に、前記形成用基板の前記複数の領域にわたって樹脂膜を一括して仮接着する仮接着工程と、
前記仮接着工程の後に、前記形成用基板を個片化して前記電子部品を形成するとともに前記樹脂膜を個片化して前記樹脂層を形成する個片化工程と、
前記実装基板に前記樹脂層を介して前記電子部品を固着する固着工程と、を有し、
前記仮接着工程では、溝状の凹部を有する前記樹脂膜を前記電子部品の能動面となる面に該凹部を向けて配置した後に、前記樹脂膜を溶融させ溶融した樹脂材料を前記凹部に充填するとともに該樹脂膜を前記能動面に仮接着することを特徴とする実装構造体の製造方法。
A manufacturing method of a mounting structure, comprising: a mounting substrate; and an electronic component having an active surface with a bump electrically connected to the mounting substrate side, wherein the electronic component is mounted on the mounting substrate via a resin layer. And
Forming a component of the electronic component including the bump in each of a plurality of regions in the substrate for forming the electronic component; and
After the forming step, a temporary bonding step of collectively bonding the resin film over the plurality of regions of the forming substrate;
After the temporary bonding step, the forming substrate is separated into pieces to form the electronic component and the resin film is separated into pieces to form the resin layer; and
A fixing step of fixing the electronic component to the mounting substrate via the resin layer,
In the temporary bonding step, the resin film having a groove-shaped recess is disposed with the recess facing the active surface of the electronic component, and then the resin film is melted to fill the recess with the molten resin material. And a method for manufacturing a mounting structure, wherein the resin film is temporarily bonded to the active surface.
前記樹脂膜は、支持膜に支持されかつ面方向に沿って線状に設けられた切断部を有しており、前記仮接着工程は、前記支持膜に前記面方向において前記切断部に直交する方向の引張力を作用させて該切断部を前記凹部とした状態で該樹脂膜を配置することを特徴とする請求項1に記載の実装構造体。   The resin film has a cutting portion that is supported by the support film and is linearly provided along the surface direction, and the temporary bonding step is orthogonal to the cutting portion in the surface direction in the support film. The mounting structure according to claim 1, wherein the resin film is disposed in a state in which a tensile force in a direction is applied to form the cut portion as the concave portion. 前記仮接着工程で、前記電子部品の能動面となる面を鉛直上方に向けた状態で前記樹脂膜を加熱し溶融させた後に、前記支持膜を該樹脂膜から剥離することを特徴とする請求項2に記載の実装構造体の製造方法。   In the temporary bonding step, the support film is peeled from the resin film after the resin film is heated and melted in a state in which a surface to be an active surface of the electronic component is vertically upward. Item 3. A method for manufacturing a mounting structure according to Item 2. 前記電子部品は、列状に並んだ複数の前記バンプを有しており、
前記仮接着工程で、前記樹脂膜を前記電子部品の能動面となる面に接触させるとともに、前記バンプの間隔よりも幅が狭い突起状の弾性体を有するローラで前記樹脂膜を押圧して、前記樹脂膜を配置することを特徴とする請求項1〜3のいずれか一項に記載の実装構造体。
The electronic component has a plurality of the bumps arranged in a row,
In the temporary bonding step, the resin film is brought into contact with a surface to be an active surface of the electronic component, and the resin film is pressed with a roller having a protruding elastic body whose width is narrower than the interval between the bumps, The mounting structure according to claim 1, wherein the resin film is disposed.
前記仮接着工程では前記ローラとして、前記弾性体の高さが前記バンプの高さ以上であるローラを用いることを特徴とする請求項4に記載の実装構造体の製造方法。   5. The method for manufacturing a mounting structure according to claim 4, wherein a roller whose height of the elastic body is equal to or higher than a height of the bump is used as the roller in the temporary bonding step. 前記仮接着工程で、前記ローラを前記溝状の凹部に沿って転がし移動させて前記樹脂膜を押圧することを特徴とする請求項4又は5に記載の実装構造体の製造方法。   6. The method for manufacturing a mounting structure according to claim 4, wherein, in the temporary bonding step, the resin film is pressed by rolling and moving the roller along the groove-shaped recess. 前記仮接着工程で、前記ローラを前記バンプの並びの直交方向に沿って転がし移動させて前記樹脂膜を押圧することを特徴とする請求項4〜6のいずれか一項に記載の実装構造体の製造方法。   The mounting structure according to any one of claims 4 to 6, wherein, in the temporary bonding step, the resin film is pressed by rolling and moving the roller along a direction orthogonal to the arrangement of the bumps. Manufacturing method. 前記仮接着工程では前記樹脂膜として、互いに平行して延びる複数の凹部を有し該凹部の間隔が前記バンプの間隔よりも狭い樹脂膜を用いることを特徴とする請求項1〜7のいずれか一項に記載の実装構造体の製造方法。   8. The resin film according to claim 1, wherein in the temporary bonding step, a resin film having a plurality of recesses extending in parallel to each other and having an interval between the recesses smaller than an interval between the bumps is used as the resin film. A method for manufacturing a mounting structure according to one item.
JP2008067201A 2008-03-17 2008-03-17 Method of manufacturing semiconductor device Withdrawn JP2009224541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067201A JP2009224541A (en) 2008-03-17 2008-03-17 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067201A JP2009224541A (en) 2008-03-17 2008-03-17 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2009224541A true JP2009224541A (en) 2009-10-01

Family

ID=41241019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067201A Withdrawn JP2009224541A (en) 2008-03-17 2008-03-17 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2009224541A (en)

Similar Documents

Publication Publication Date Title
US7413925B2 (en) Method for fabricating semiconductor package
US8253258B2 (en) Semiconductor device with hollow and throughhole and method of manufacturing same
US7820487B2 (en) Manufacturing method of semiconductor device
JP5232185B2 (en) Manufacturing method of semiconductor device
US20100252923A1 (en) Semiconductor device and method of manufacturing same
US8138018B2 (en) Manufacturing method of semiconductor device having underfill resin formed without void between semiconductor chip and wiring board
EP0932198A1 (en) Process for manufacturing semiconductor package and circuit board assembly
JP2011040744A (en) Semiconductor chip attaching apparatus and method of the same
JP2011061004A (en) Semiconductor device, and method of manufacturing the same
KR101377812B1 (en) Method for chip to wafer bonding
JP2007110117A (en) Wafer level chip scale package of image sensor, and method of manufacturing same
JP5350980B2 (en) LED element manufacturing method
KR20090038379A (en) Sealed wafer packaging of microelectromechanical systems
US10607964B2 (en) Semiconductor device
JP2008117916A (en) Method of manufacturing semiconductor chip, and semiconductor device having the semiconductor chip
JP2009289959A (en) Bonder and bonding method
JP2013120767A (en) Semiconductor device manufacturing method
JP2012221989A (en) Semiconductor device manufacturing apparatus and semiconductor device manufacturing method
JP2012164951A (en) Device and method for peeling semiconductor chip
JP3092585B2 (en) Semiconductor chip suction tool and semiconductor device manufacturing method using the tool
JP2009224541A (en) Method of manufacturing semiconductor device
JP2009246079A (en) Semiconductor package and method of manufacturing the same
JP2007142128A (en) Semiconductor device and its production process
JP4780136B2 (en) Manufacturing method of semiconductor device
JP2016051837A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607