JP2009224141A - Slurry-using secondary battery - Google Patents

Slurry-using secondary battery Download PDF

Info

Publication number
JP2009224141A
JP2009224141A JP2008066369A JP2008066369A JP2009224141A JP 2009224141 A JP2009224141 A JP 2009224141A JP 2008066369 A JP2008066369 A JP 2008066369A JP 2008066369 A JP2008066369 A JP 2008066369A JP 2009224141 A JP2009224141 A JP 2009224141A
Authority
JP
Japan
Prior art keywords
slurry
negative electrode
positive electrode
secondary battery
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008066369A
Other languages
Japanese (ja)
Other versions
JP5211775B2 (en
Inventor
Naruaki Okuda
匠昭 奥田
Gen Sasaki
厳 佐々木
Yoshio Ukyo
良雄 右京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2008066369A priority Critical patent/JP5211775B2/en
Publication of JP2009224141A publication Critical patent/JP2009224141A/en
Application granted granted Critical
Publication of JP5211775B2 publication Critical patent/JP5211775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Fuel Cell (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a slurry-using secondary battery wherein unevenness of battery reaction is not easily caused and structural deterioration of electrodes is not caused, while making the best use of advantages of a lithium secondary battery. <P>SOLUTION: This slurry utilization type secondary battery 10 is equipped with a separator 18 to divide the inside of a case 12 into a positive electrode chamber 14 and a negative electrode chamber 16, a positive electrode current-collecting plate 20 disposed in the positive electrode chamber 14, and a negative electrode current-collecting plate 22 disposed in the negative electrode chamber 16. A positive electrode side circulation passage 26 in which a pump 28 is assembled is provided between the positive electrode chamber 14 and a positive electrode slurry tank 24 to store positive electrode slurry, and a negative electrode side circulation passage 32 in which a pump 34 is assembled is provided between the negative electrode chamber 16 and a negative electrode slurry tank 30 to store negative electrode slurry. In this slurry utilization type secondary battery 10, high discharge capacity is obtained as a result of performing charge and discharge by setting a charge and discharge current at 16 mA with the pumps 28, 34 driven. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、正極室及び負極室にそれぞれ正極スラリー及び負極スラリーが収容されたスラリー利用型二次電池に関する。   The present invention relates to a slurry-based secondary battery in which a positive electrode slurry and a negative electrode slurry are accommodated in a positive electrode chamber and a negative electrode chamber, respectively.

従来より、電池の活物質を含む電解液を循環させて充放電を行うレドックスフロー電池が知られている。例えば、特許文献1のレドックスフロー電池では、正負両極とも活物質としてバナジウムを含む電解液を使用し、各電解液をタンクからポンプでセルに送液・循環しながら充放電する。
特開2007−188729
2. Description of the Related Art Conventionally, redox flow batteries that perform charging / discharging by circulating an electrolytic solution containing a battery active material are known. For example, in the redox flow battery of Patent Document 1, an electrolyte containing vanadium as an active material is used for both positive and negative electrodes, and each electrolyte is charged and discharged while being sent and circulated from a tank to a cell by a pump.
JP2007-188729

しかしながら、レドックスフロー電池は、希硫酸水溶液などの水系電解液を用いているため、電池電圧が1.3〜1.5V程度と低く、エネルギー密度も低いという問題があった。   However, since the redox flow battery uses an aqueous electrolyte such as dilute sulfuric acid aqueous solution, there are problems that the battery voltage is as low as about 1.3 to 1.5 V and the energy density is low.

一方、電解液に非水系電解液を用いるリチウム二次電池(リチウムイオン二次電池や金属リチウム二次電池を含む)では、正極と負極との間でリチウムイオンをやり取りすることによって充放電が行われる。こうしたリチウム二次電池では、水の電気分解電圧を超える高い電池電圧が得られるうえ、エネルギー密度も高いという利点がある。   On the other hand, in lithium secondary batteries (including lithium ion secondary batteries and metallic lithium secondary batteries) that use a non-aqueous electrolyte as the electrolyte, charging and discharging are performed by exchanging lithium ions between the positive electrode and the negative electrode. Is called. Such a lithium secondary battery has an advantage that a high battery voltage exceeding the electrolysis voltage of water can be obtained and the energy density is also high.

しかしながら、電極内部で不均一な反応が起こると電池反応のムラが蓄積し、電池の持つエネルギーを十分に利用することができなくなるという問題があった。すなわち、緩慢な充放電を行う場合には電極内部でほぼ均一な反応が起こるが、急激な充放電を行った場合には電極内部で不均一な反応が起こり、局所的に温度の高い箇所が生じる。こうした温度の高い箇所では反応が進行しやすいため、ますます温度が高くなるという悪循環を起こし、電池の持つエネルギーを十分に利用できないことがあった。また、活物質に対してリチウムイオンが挿入・脱離することによって活物質の体積変化が発生し、その体積変化に起因して長期の充放電サイクル時に電極の構造劣化が起こり、電池寿命が短くなるという問題もあった。   However, when a non-uniform reaction occurs inside the electrode, there is a problem that unevenness of the battery reaction accumulates and the energy of the battery cannot be fully utilized. That is, when performing slow charging / discharging, a substantially uniform reaction occurs inside the electrode, but when performing rapid charging / discharging, a non-uniform reaction occurs inside the electrode, and there are locally high temperature spots. Arise. Since the reaction is likely to proceed at such a high temperature place, a vicious cycle in which the temperature becomes higher is caused, and the energy of the battery may not be fully utilized. In addition, lithium ions are inserted into and desorbed from the active material, resulting in a change in the volume of the active material. Due to the change in volume, the electrode structure deteriorates during a long charge / discharge cycle, resulting in a short battery life. There was also a problem of becoming.

本発明はこのような問題を解決するためになされたものであり、リチウム二次電池の利点を生かしながら、電池反応のムラが生じにくく電極の構造劣化も招かないスラリー利用型二次電池を提供することを主目的とする。   The present invention has been made to solve such problems, and provides a slurry-based secondary battery that takes advantage of a lithium secondary battery and does not cause unevenness of battery reaction and does not cause structural deterioration of an electrode. The main purpose is to do.

上述した目的を達成するために、本発明者らは、正極活物質であるニッケル酸リチウムと導電材であるカーボンブラックとを非水系電解液に分散させた正極スラリーと、負極活物質である人造黒鉛と導電材であるカーボンブラックとを非水系電解液に分散させた負極スラリーとを用いて二次電池を組み立てたところ、充放電が可能であることを見いだし、本発明を完成するに至った。   In order to achieve the above-described object, the present inventors have prepared a positive electrode slurry in which lithium nickelate as a positive electrode active material and carbon black as a conductive material are dispersed in a non-aqueous electrolyte, and an artificial material as a negative electrode active material. When a secondary battery was assembled using a negative electrode slurry in which graphite and carbon black as a conductive material were dispersed in a non-aqueous electrolyte, it was found that charge and discharge were possible, and the present invention was completed. .

即ち、本発明のスラリー利用型二次電池は、
ケースの内部を正極室と負極室とに分離するリチウムイオン伝導性固体電解質膜と、
前記正極室に収容され、リチウムイオンを吸蔵・放出可能な正極活物質がイオン伝導性を有する非水系電解液に分散された正極スラリーと、
前記正極室に配置され、前記正極活物質と電子の授受が可能な正極集電体と、
前記負極室に収容され、リチウムイオンを吸蔵・放出可能な負極活物質がイオン伝導性を有する非水系電解液に分散された負極スラリーと、
前記負極室に配置され、前記負極活物質と電子の授受が可能な負極集電体と、
を備えたものである。
That is, the slurry-based secondary battery of the present invention is
A lithium ion conductive solid electrolyte membrane that separates the inside of the case into a positive electrode chamber and a negative electrode chamber;
A positive electrode slurry in which a positive electrode active material accommodated in the positive electrode chamber and capable of occluding and releasing lithium ions is dispersed in a non-aqueous electrolyte having ion conductivity;
A positive electrode current collector disposed in the positive electrode chamber and capable of transferring electrons to and from the positive electrode active material;
A negative electrode slurry in which a negative electrode active material accommodated in the negative electrode chamber and capable of occluding and releasing lithium ions is dispersed in a non-aqueous electrolyte having ion conductivity;
A negative electrode current collector disposed in the negative electrode chamber and capable of transferring electrons to and from the negative electrode active material;
It is equipped with.

このスラリー利用型二次電池では、水の電気分解電圧を超える高い電池電圧が得られるうえ、エネルギー密度も高いというリチウム二次電池の利点が得られる。また、正負極ともスラリーを用いているため、仮にスラリー内で温度の高いところと低いところが発生したとしても、スラリーの流動によって局所的な温度上昇が緩和されることから、電池反応のムラが生じにくい。更に、リチウムイオンの吸蔵・放出に伴う体積変化が生じたとしても、正負極ともスラリーを用いているため、固体の場合に比べて割れるおそれがないことから、電極の構造劣化も招かない。以上のことから、本発明のスラリー利用型二次電池によれば、リチウム二次電池の利点を生かしながら、電池反応のムラが生じにくく電極の構造劣化も招かないという効果が得られる。   In this slurry-based secondary battery, a high battery voltage exceeding the electrolysis voltage of water is obtained, and the advantage of the lithium secondary battery that the energy density is high is obtained. In addition, since the slurry is used for both the positive and negative electrodes, even if high and low temperatures occur in the slurry, the local temperature rise is mitigated by the flow of the slurry, resulting in uneven battery reaction. Hateful. Furthermore, even if a volume change occurs due to insertion / extraction of lithium ions, since the slurry is used for both the positive and negative electrodes, there is no possibility of cracking compared to the case of a solid, so that the structure of the electrode is not deteriorated. From the above, according to the slurry-based secondary battery of the present invention, it is possible to obtain the effect that the unevenness of the battery reaction hardly occurs and the structure of the electrode does not deteriorate while taking advantage of the lithium secondary battery.

本発明のスラリー利用型二次電池は、前記正極室に設けられた正極側循環経路と、前記正極室に収容された前記正極スラリーを前記正極側循環経路を通して循環させる正極側循環ポンプと、前記負極室に設けられた負極側循環経路と、前記負極室に収容された前記負極スラリーを前記負極側循環経路を通して循環させる負極側循環ポンプと、を備えていてもよい。こうすれば、正負極のスラリーを循環させることにより、電池反応が促進されるため活物質あたりの放電容量が高くなるし、電池反応のムラが一層生じにくくなる。こうしたスラリー利用型二次電池は、更に、前記正極側循環経路の途中に設けられ、前記正極スラリーを貯蔵する正極スラリータンクと、前記負極側循環経路の途中に設けられ、前記負極スラリーを貯蔵する負極スラリータンクと、を備えていてもよい。こうすれば、正負極のスラリータンク内の活物質が電池反応に関与するため、放電容量を容易に大きくすることができる。また、ケースの設置場所が狭い場合には、ケースを小型化すると共にケースの設置場所から離れたところに容積の大きな正負極のスラリータンクを設置することで電池反応に関与する活物質の量を確保することができるため、大きな放電容量を得ることができる。   The slurry-based secondary battery of the present invention includes a positive electrode side circulation path provided in the positive electrode chamber, a positive electrode side circulation pump that circulates the positive electrode slurry accommodated in the positive electrode chamber through the positive electrode side circulation path, You may provide the negative electrode side circulation path provided in the negative electrode chamber, and the negative electrode side circulation pump which circulates the said negative electrode slurry accommodated in the said negative electrode chamber through the said negative electrode side circulation path. In this case, the battery reaction is promoted by circulating the positive and negative electrode slurry, so that the discharge capacity per active material is increased and the unevenness of the battery reaction is further less likely to occur. The slurry-based secondary battery is further provided in the middle of the positive electrode side circulation path, and is provided in the middle of the positive electrode slurry tank and the negative electrode side circulation path, and stores the negative electrode slurry. A negative electrode slurry tank. In this case, the active material in the positive and negative electrode slurry tanks is involved in the battery reaction, and thus the discharge capacity can be easily increased. In addition, when the installation location of the case is small, the amount of the active material involved in the battery reaction can be reduced by reducing the size of the case and installing a large positive / negative slurry tank away from the installation location of the case. Since it can be ensured, a large discharge capacity can be obtained.

本発明のスラリー利用型二次電池において、前記正極スラリー及び前記負極スラリーは、電気伝導性を有していてもよい。こうすれば、正極集電体は正極スラリーを介して正極活物質と電子の授受が可能となり、負極集電体は負極スラリーを介して負極活物質と電子の授受が可能となる。正負極のスラリーが電気伝導性を持つようにするには、例えば各スラリーに導電材を含ませてもよい。   In the slurry-based secondary battery of the present invention, the positive electrode slurry and the negative electrode slurry may have electrical conductivity. In this way, the positive electrode current collector can exchange electrons with the positive electrode active material via the positive electrode slurry, and the negative electrode current collector can exchange electrons with the negative electrode active material via the negative electrode slurry. In order to make the positive and negative slurry have electrical conductivity, for example, a conductive material may be included in each slurry.

本発明のスラリー利用型二次電池において、前記正極集電体及び前記負極集電体は、それぞれ前記正極スラリー及び前記負極スラリーを透過可能な孔を有していてもよい。こうすれば、正極スラリーが正極集電体に設けられた孔を行き来するときに正極活物質と正極集電体との間で電子の授受が可能となり、負極スラリーが負極集電体に設けられた孔を行き来するときに負極活物質と負極集電体との間で電子の授受が可能となる。このとき、前記正極集電体及び前記負極集電体は、前記リチウムイオン伝導性固体電解質膜の近傍に配置されるか前記リチウムイオン伝導性固体電解質膜に密着されていることが好ましい。こうすれば、正極活物質と正極集電体との間や負極活物質と負極集電体との間での電子の授受と、正極室と負極室との間でのリチウムイオンの往来とが近接した場所で行われるため、電子とイオンの交換反応の抵抗が減少し、放電容量が高くなる。なお、正負極のスラリーが電気伝導性を有するようにすると共に正負極の集電体に孔を設けてもよいことはいうまでもない。   In the slurry-based secondary battery of the present invention, the positive electrode current collector and the negative electrode current collector may have holes through which the positive electrode slurry and the negative electrode slurry can pass, respectively. In this way, when the positive electrode slurry passes through the holes provided in the positive electrode current collector, electrons can be transferred between the positive electrode active material and the positive electrode current collector, and the negative electrode slurry is provided in the negative electrode current collector. Electrons can be exchanged between the negative electrode active material and the negative electrode current collector when moving between the holes. At this time, it is preferable that the positive electrode current collector and the negative electrode current collector are disposed in the vicinity of the lithium ion conductive solid electrolyte membrane or are in close contact with the lithium ion conductive solid electrolyte membrane. In this way, the exchange of electrons between the positive electrode active material and the positive electrode current collector or between the negative electrode active material and the negative electrode current collector and the transfer of lithium ions between the positive electrode chamber and the negative electrode chamber can be performed. Since the reaction is performed in the vicinity, the resistance of the exchange reaction between electrons and ions is reduced, and the discharge capacity is increased. It goes without saying that the positive and negative electrode slurry may have electrical conductivity and the positive and negative electrode current collectors may be provided with holes.

本発明のスラリー利用型二次電池において、リチウムイオン伝導性固体電解質膜としては、この二次電池の使用条件に耐えうる組成であれば特に限定されないが、例えば、リチウムイオン伝導性ガラス(酸化物系ガラスや硫化物系ガラスなど)が挙げられる。   In the slurry-based secondary battery of the present invention, the lithium ion conductive solid electrolyte membrane is not particularly limited as long as it is a composition that can withstand the use conditions of the secondary battery. For example, lithium ion conductive glass (oxide) Glass and sulfide glass).

本発明のスラリー利用型二次電池において、正極スラリーは、リチウムイオンを吸蔵・放出可能な正極活物質がイオン伝導性を有する非水系電解液に分散された分散液である。正極活物質としては、充電時にリチウムイオンを放出し放電時にリチウムイオンを吸蔵する材料であれば特に限定されないが、例えばコバルト酸リチウム(LiCoO2)やニッケル酸リチウム(LiNiO2)などの層状構造のリチウム複合酸化物、マンガン酸リチウム(LiMn24)などのスピネル構造のリチウム複合酸化物、鉄リン酸リチウム(LiFePO4)などのオリビン構造のリチウム複合酸化物が挙げられる。非水系電解液としては、イオン伝導性を有するものであれば特に限定されないが、例えばリチウム塩を溶解した有機溶媒が挙げられる。リチウム塩としては、例えば、LiPF6,LiClO4,LiBF4,Li(CF3SO22Nなどを用いることができる。有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、γ−ブチロラクトン(γ−BL)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)など従来の二次電池やキャパシタに使われる有機溶媒が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。 In the slurry-based secondary battery of the present invention, the positive electrode slurry is a dispersion liquid in which a positive electrode active material capable of occluding and releasing lithium ions is dispersed in a non-aqueous electrolyte having ion conductivity. The positive electrode active material is not particularly limited as long as it is a material that releases lithium ions during charge and occludes lithium ions during discharge, but has a layered structure such as lithium cobaltate (LiCoO 2 ) or lithium nickelate (LiNiO 2 ). Examples thereof include lithium composite oxides, spinel structure lithium composite oxides such as lithium manganate (LiMn 2 O 4 ), and olivine structure lithium composite oxides such as lithium iron phosphate (LiFePO 4 ). The non-aqueous electrolyte solution is not particularly limited as long as it has ion conductivity, and examples thereof include an organic solvent in which a lithium salt is dissolved. As the lithium salt, for example, LiPF 6 , LiClO 4 , LiBF 4 , Li (CF 3 SO 2 ) 2 N, or the like can be used. As an organic solvent, for example, ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone (γ-BL), diethyl carbonate (DEC), dimethyl carbonate (DMC) and the like are used for conventional secondary batteries and capacitors. An organic solvent is mentioned. These may be used alone or in combination.

本発明のスラリー利用型二次電池において、正極集電体としては、特に限定されるものではないが、使用する正極活物質が充放電するときの電位範囲において電気化学的に安定な材質を用いることが好ましい。このような正極集電体としては、例えば、ステンレス鋼やアルミニウム、銅などの金属板や金属メッシュが挙げられる。また、InSnO2,SnO2,ZnO,In22などの透明導電材、フッ素ドープ酸化錫(SnO2:F)、アンチモンドープ酸化錫(SnO2:Sb)、錫ドープ酸化インジウム(In23:Sn)、ZnO,Alドープ酸化亜鉛(ZnO:Al)、Gaドープ酸化亜鉛(ZnO:Ga)などの不純物がドープされたそれらの材料等の単層又は積層層を、ガラスや高分子状に形成させたものを用いてもよい。 In the slurry-based secondary battery of the present invention, the positive electrode current collector is not particularly limited, but an electrochemically stable material is used in the potential range when the positive electrode active material used is charged and discharged. It is preferable. Examples of such a positive electrode current collector include a metal plate such as stainless steel, aluminum, and copper, and a metal mesh. Also, transparent conductive materials such as InSnO 2 , SnO 2 , ZnO, In 2 O 2 , fluorine-doped tin oxide (SnO 2 : F), antimony-doped tin oxide (SnO 2 : Sb), tin-doped indium oxide (In 2 O 3 : Sn), ZnO, Al-doped zinc oxide (ZnO: Al), Ga-doped zinc oxide (ZnO: Ga) and other materials doped with a single layer or laminated layer such as glass or polymer You may use what was formed in.

こうした正極集電体は、正極活物質と電子の授受が可能であることが必要となるが、そのためには、正極スラリーに導電材を分散させてもよい。導電材としては、例えば、ケッチェンブラックやアセチレンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類でもよいし、鱗片状黒鉛のような天然黒鉛や人造黒鉛、膨張黒鉛などのグラファイト類でもよいし、炭素繊維や金属繊維などの導電性繊維類でもよいし、銅や銀、ニッケル、アルミニウムなどの金属粉末類でもよいし、ポリフェニレン誘導体などの有機導電性材料でもよい。また、これらを単体で用いてもよいし、複数を混合して用いてもよい。あるいは、正極集電体に正極スラリーを透過可能な孔を設け、この孔を介して正極集電体と正極スラリーとの間で電子の授受が行われるようにしてもよい。   Such a positive electrode current collector needs to be able to exchange electrons with the positive electrode active material. For this purpose, a conductive material may be dispersed in the positive electrode slurry. Examples of the conductive material include carbon blacks such as ketjen black, acetylene black, channel black, furnace black, lamp black, and thermal black, natural graphite such as flake graphite, artificial graphite, expanded graphite, and the like. It may be graphites, conductive fibers such as carbon fibers and metal fibers, metal powders such as copper, silver, nickel, and aluminum, or organic conductive materials such as polyphenylene derivatives. These may be used alone or in combination. Alternatively, a hole through which the positive electrode slurry can pass is provided in the positive electrode current collector, and electrons may be exchanged between the positive electrode current collector and the positive electrode slurry through the hole.

本発明のスラリー利用型二次電池において、負極スラリーは、リチウムイオンを吸蔵・放出可能な負極活物質がイオン伝導性を有する非水系電解液に分散された分散液である。負極活物質としては、充電時にリチウムイオンを吸蔵し放電時にリチウムイオンを放出する材料であれば特に限定されないが、例えば金属リチウムやリチウム合金のほか、リチウムイオンを吸蔵放出する炭素質物質などが挙げられる。リチウム合金としては、例えばアルミニウムやスズ、マグネシウム、インジウム、カルシウムなどとリチウムとの合金が挙げられる。リチウムイオンを吸蔵放出する炭素質物質としては、例えば天然黒鉛、人造黒鉛、コークス、メソフェーズピッチ系炭素繊維、球状炭素、樹脂焼成炭素などが挙げられる。なお、非水系電解液を構成する電解質や溶媒は、正極スラリーと負極スラリーとで同じであってもよいし異なっていてもよい。   In the slurry-based secondary battery of the present invention, the negative electrode slurry is a dispersion liquid in which a negative electrode active material capable of occluding and releasing lithium ions is dispersed in a nonaqueous electrolytic solution having ion conductivity. The negative electrode active material is not particularly limited as long as it is a material that occludes lithium ions at the time of charging and releases lithium ions at the time of discharging. For example, in addition to metallic lithium and lithium alloy, a carbonaceous material that occludes and releases lithium ions can be mentioned. It is done. Examples of the lithium alloy include an alloy of lithium with aluminum, tin, magnesium, indium, calcium, and the like. Examples of the carbonaceous material that absorbs and releases lithium ions include natural graphite, artificial graphite, coke, mesophase pitch-based carbon fiber, spherical carbon, and resin-fired carbon. In addition, the electrolyte and solvent which comprise a non-aqueous electrolyte solution may be the same, and may differ in a positive electrode slurry and a negative electrode slurry.

本発明のスラリー利用型二次電池において、負極集電体としては、使用する負極活物質が充放電するときの電位範囲において電気化学的に安定な材質を用いることが好ましい。このような負極集電体としては、上述した正極集電体と同様のものを用いることができるため、ここではその説明を省略する。また、負極集電体は、負極活物質と電子の授受が可能であることが必要となるが、そのためには、負極スラリーに導電材を分散させてもよいし、負極集電体に負極スラリーを透過可能な孔を設け、この孔を介して負極スラリーとの間で電子の授受を行うようにしてもよい。なお、導電材については、上述したものと同様のものを用いることができるため、ここではその説明を省略する。また、負極集電体として炭素質物質を用いる場合には、その炭素質物質を導電材として兼用してもよい。   In the slurry-based secondary battery of the present invention, it is preferable to use a material that is electrochemically stable in the potential range when the negative electrode active material to be used is charged and discharged as the negative electrode current collector. As such a negative electrode current collector, the same material as the above-described positive electrode current collector can be used, and thus the description thereof is omitted here. In addition, the negative electrode current collector needs to be able to exchange electrons with the negative electrode active material. For this purpose, a conductive material may be dispersed in the negative electrode slurry, or the negative electrode current collector may have a negative electrode slurry. May be provided, and electrons may be exchanged with the negative electrode slurry through the hole. In addition, about the electrically conductive material, since the thing similar to what was mentioned above can be used, the description is abbreviate | omitted here. Further, when a carbonaceous material is used as the negative electrode current collector, the carbonaceous material may also be used as a conductive material.

[実施例1]
正極スラリーは、以下のようにして調製した。すなわち、正極活物質として市販のニッケル酸リチウム(LiNi0.8Co0.15Al0.052:平均粒径3μm)を、正極用導電材としてカーボンブラック(平均粒径20nm)を、正極用電解液として1M LiPF6 in 30%EC+70%DECを用いた。この正極活物質/導電材/電解液をArガスグローブボックス中で20/5/75wt%の割合で混合し、正極スラリーを得た。この正極スラリーの体積抵抗率は直流の場合、103Ωcmで、交流1kHzの場合102Ωcmであり、電気伝導性とイオン伝導性が確認できた。
[Example 1]
The positive electrode slurry was prepared as follows. That is, commercially available lithium nickelate (LiNi 0.8 Co 0.15 Al 0.05 O 2 : average particle size 3 μm) as the positive electrode active material, carbon black (average particle size 20 nm) as the positive electrode conductive material, and 1M LiPF as the positive electrode electrolyte. 6 in 30% EC + 70% DEC was used. This positive electrode active material / conductive material / electrolytic solution was mixed at a ratio of 20/5/75 wt% in an Ar gas glove box to obtain a positive electrode slurry. The positive electrode slurry had a volume resistivity of 10 3 Ωcm in the case of direct current and 10 2 Ωcm in the case of alternating current of 1 kHz, and electrical conductivity and ionic conductivity were confirmed.

負極スラリーは、以下のようにして調製した。すなわち、負極活物質として市販人造黒鉛(平均粒径1μm)を、負極用導電材としてカーボンブラック(平均粒径20nm)を、負極用電解液として1M LiPF6 in 30%EC+70%DECを用いた。この負極活物質/導電材/電解液をArガスグローブボックス中で20/5/75wt%に混合し、負極スラリーを得た。この負極スラリーの体積抵抗率も直流の場合、103Ωcmで、交流1kHzの場合102Ωcmであり、電気伝導性とイオン伝導性が確認できた。なお、ここで使用した市販人造黒鉛は粒径が大きく且つ添加量が少ないためスラリーの電気伝導性にはほとんど寄与しない。 The negative electrode slurry was prepared as follows. That is, commercially available artificial graphite (average particle size 1 μm) was used as the negative electrode active material, carbon black (average particle size 20 nm) was used as the negative electrode conductive material, and 1M LiPF 6 in 30% EC + 70% DEC was used as the negative electrode electrolyte. This negative electrode active material / conductive material / electrolytic solution was mixed to 20/5/75 wt% in an Ar gas glove box to obtain a negative electrode slurry. The volume resistivity of the negative electrode slurry was 10 3 Ωcm in the case of direct current and 10 2 Ωcm in the case of alternating current of 1 kHz, and electrical conductivity and ionic conductivity were confirmed. In addition, since the commercially available artificial graphite used here has a large particle size and a small amount of addition, it hardly contributes to the electrical conductivity of the slurry.

次に、図1に概略構成を示すスラリー利用型二次電池10を組み立てた。スラリー利用型二次電池10は、ケース12と、このケース12の内部を正極室14と負極室16とに分離するセパレータ18と、正極室14に配置された正極集電板20と、負極室16に配置された負極集電板22とを備えたものとした。各スラリー槽14,16は縦横4cm×4cmとし、セパレータ18は縦横4cm×4cm、厚さ0.5mmとし、各集電板20,22は縦横4cm×4cm、厚さ0.1mmとし、セパレータ18と各集電板20,22との間隔は2.5mmとし、各スラリー槽14,16の容積は4cm3とした。なお、セパレータ18として、オハラ製 リチウムイオン伝導性ガラスセラミックスLIC−GC薄板を用いた。これは、25℃におけるイオン伝導率が1.0×10-4Scm-1、曲げ強度が140N/mm2の特性を有する。なお、ケース12の材質としては、電気伝導性がなく耐有機溶媒性があれば特に限定されないが、例えばポリプロピレン(PP)、ポリエチレン(PE)、ポリテトラフルオロエチレン(PTFE)、セラミックスなどが挙げられる。 Next, a slurry-based secondary battery 10 having a schematic configuration shown in FIG. 1 was assembled. The slurry-based secondary battery 10 includes a case 12, a separator 18 that separates the inside of the case 12 into a positive electrode chamber 14 and a negative electrode chamber 16, a positive current collector 20 disposed in the positive electrode chamber 14, a negative electrode chamber 16 and a negative electrode current collector plate 22 disposed on the same. Each of the slurry tanks 14 and 16 has a length and width of 4 cm × 4 cm, the separator 18 has a length and width of 4 cm × 4 cm and a thickness of 0.5 mm, and each of the current collecting plates 20 and 22 has a length and width of 4 cm × 4 cm and a thickness of 0.1 mm. And the current collecting plates 20 and 22 were 2.5 mm, and the volumes of the slurry tanks 14 and 16 were 4 cm 3 . As the separator 18, a lithium ion conductive glass ceramic LIC-GC thin plate manufactured by OHARA was used. This has the characteristics of an ionic conductivity at 25 ° C. of 1.0 × 10 −4 Scm −1 and a bending strength of 140 N / mm 2 . The material of the case 12 is not particularly limited as long as it has no electrical conductivity and has resistance to organic solvents, and examples thereof include polypropylene (PP), polyethylene (PE), polytetrafluoroethylene (PTFE), and ceramics. .

また、正極室14と正極スラリーを貯蔵する正極スラリータンク24との間に正極側循環経路26を設け、この正極側循環経路26の途中に正極側循環ポンプ28を取り付けた。一方、負極室16と負極スラリーを貯蔵する負極スラリータンク30との間に負極側循環経路32を設け、この負極側循環経路32の途中に負極側循環ポンプ34を取り付けた。正極側の循環系内(つまり正極室14と正極スラリータンク24と正極側循環経路26)には正極スラリーを12.5cm3充填し、負極側の循環系内(つまり負極室16と負極スラリータンク30と負極側循環経路32)には負極スラリーを15cm3充填した。なお、循環系内の正極スラリー中の正極活物質は3.62g、循環系内の負極スラリー中の負極活物質は2.70g である。スラリー利用型二次電池10は、各スラリーの充填をArガスグローブボックス中で行ったあとに電池を密閉し、大気中に取り出して以下の充放電試験を行った。 Further, a positive electrode side circulation path 26 is provided between the positive electrode chamber 14 and the positive electrode slurry tank 24 for storing the positive electrode slurry, and a positive electrode side circulation pump 28 is attached in the middle of the positive electrode side circulation path 26. On the other hand, a negative electrode side circulation path 32 was provided between the negative electrode chamber 16 and the negative electrode slurry tank 30 for storing the negative electrode slurry, and a negative electrode side circulation pump 34 was attached in the middle of the negative electrode side circulation path 32. The positive electrode side circulation system (that is, the positive electrode chamber 14, the positive electrode slurry tank 24, and the positive electrode side circulation path 26) is filled with 12.5 cm 3 of the positive electrode slurry, and the negative electrode side circulation system (that is, the negative electrode chamber 16 and the negative electrode slurry tank). 30 and the negative electrode side circulation path 32) were filled with 15 cm 3 of negative electrode slurry. The positive electrode active material in the positive electrode slurry in the circulation system is 3.62 g, and the negative electrode active material in the negative electrode slurry in the circulation system is 2.70 g. In the slurry-based secondary battery 10, each slurry was filled in an Ar gas glove box, the battery was sealed, taken out into the atmosphere, and the following charge / discharge test was performed.

充放電試験は以下のようにして行った。すなわち、正極側循環ポンプ28の流量を6.25cm3/min、負極側循環ポンプ34の流量を7.5cm3/minに設定し、電流16mA(定電流)、温度25℃でCC4.1V充電/CC3.0V放電の充放電試験を行い、充放電容量の変化を測定した。その結果を表1に示す。 The charge / discharge test was conducted as follows. That is, the flow rate of the positive side circulation pump 28 is set to 6.25 cm 3 / min, the flow rate of the negative side circulation pump 34 is set to 7.5 cm 3 / min, CC 4.1V is charged at a current of 16 mA (constant current) and a temperature of 25 ° C. The charge / discharge test of /CC3.0V discharge was done and the change of the charge / discharge capacity was measured. The results are shown in Table 1.

[実施例2]
実施例1で正極側及び負極側循環ポンプ28,34を停止した以外は、実施例1と同様にして充放電試験を行った。その結果を表1に示す。
[Example 2]
A charge / discharge test was conducted in the same manner as in Example 1 except that the positive and negative circulation pumps 28 and 34 were stopped in Example 1. The results are shown in Table 1.

[実施例3]
実施例1で正極及び負極集電板20,22の代わりに図2に示す正極及び負極集電板60,62をセパレータ18に密着するように配置したスラリー利用型二次電池50を用いた以外は、実施例1と同様にして充放電試験を行った。その結果を表1に示す。なお、正極及び負極集電板60,62は、それぞれφ0.5mmの孔60a,62aが開口率60%となるように設けられたものである。正極スラリーは正極集電板60の孔60aを透過可能であり、負極スラリーは負極集電板62の孔62aを透過可能である。
[Example 3]
2 except that the slurry-based secondary battery 50 in which the positive and negative current collectors 60 and 62 shown in FIG. 2 are arranged in close contact with the separator 18 instead of the positive and negative current collectors 20 and 22 in Example 1. Were the same as in Example 1 were subjected to a charge and discharge test. The results are shown in Table 1. The positive electrode and negative electrode current collector plates 60 and 62 are provided so that the holes 60a and 62a each having a diameter of 0.5 mm have an opening ratio of 60%. The positive electrode slurry can pass through the holes 60 a of the positive electrode current collector plate 60, and the negative electrode slurry can pass through the holes 62 a of the negative electrode current collector plate 62.

[実施例4]
実施例3で正極スラリー、負極スラリーに導電材を添加しなかった以外は、実施例3と同様にして充放電試験を行った。その結果を表1に示す。なお、各スラリーの体積抵抗率は直流の場合、∞Ωcmで、交流1kHzの場合、3×102Ωcmであり、イオン伝導性はあるが電気伝導性はほとんどないことを確認した。
[Example 4]
A charge / discharge test was conducted in the same manner as in Example 3 except that the conductive material was not added to the positive electrode slurry and the negative electrode slurry in Example 3. The results are shown in Table 1. The volume resistivity of each slurry was ∞Ωcm in the case of direct current and 3 × 10 2 Ωcm in the case of alternating current of 1 kHz, and it was confirmed that there was almost no electrical conductivity although there was ionic conductivity.

[比較例1]
実施例1で正極スラリー、負極スラリーに導電材を添加しなかった以外は、実施例1と同様にして充放電試験を行った。その結果を表1に示す。

Figure 2009224141
[Comparative Example 1]
A charge / discharge test was conducted in the same manner as in Example 1 except that the conductive material was not added to the positive electrode slurry and the negative electrode slurry in Example 1. The results are shown in Table 1.
Figure 2009224141

[充放電試験の評価]
表1から明らかなように、比較例1ではほとんど充放電しなかったが、実施例1〜4では充放電が可能であった。比較例1で充放電できなかった理由は、各スラリーはイオン伝導性を有するものの、電気伝導性を有しないため、各集電板と各活物質との間の電子の授受ができなかったことに起因すると考えられる。
[Evaluation of charge / discharge test]
As is clear from Table 1, in Comparative Example 1, almost no charge / discharge was performed, but in Examples 1 to 4, charge / discharge was possible. The reason why charging / discharging was not possible in Comparative Example 1 was that each slurry had ionic conductivity, but no electrical conductivity, so that electrons could not be transferred between each current collector and each active material. It is thought to be caused by.

実施例1では、循環系内の正極活物質あたり141mAh/gの放電容量が得られた。したがって、ケース12内でしか充放電反応(電池反応)は起こらないが、各スラリーを循環させることによって各循環経路26,32及び各スラリー槽24,30の活物質が充放電反応に関与することが分かる。   In Example 1, a discharge capacity of 141 mAh / g was obtained per positive electrode active material in the circulation system. Therefore, although the charge / discharge reaction (battery reaction) occurs only in the case 12, the active materials in the circulation paths 26 and 32 and the slurry tanks 24 and 30 are involved in the charge / discharge reaction by circulating each slurry. I understand.

実施例2では、循環系内の正極活物質あたり39mAh/gの放電容量が得られた。これは循環をしない状態であるので、ケース12内の正極活物質あたりに換算すると121mAh/gの放電容量となる。このように、循環を止めるとケース12内の活物質しか充放電に関与しないことが分かる。また、循環しない場合、充放電反応に関与する正極活物質あたりの放電容量が減少することから、循環によって充放電反応が促進されるといえる。   In Example 2, a discharge capacity of 39 mAh / g per positive electrode active material in the circulation system was obtained. Since this is a state in which no circulation occurs, a discharge capacity of 121 mAh / g is obtained when converted to the positive electrode active material in the case 12. Thus, it can be seen that when the circulation is stopped, only the active material in the case 12 is involved in charging and discharging. Moreover, when not circulating, since the discharge capacity per positive electrode active material involved in the charge / discharge reaction is reduced, it can be said that the charge / discharge reaction is promoted by circulation.

実施例3では、循環系内の正極活物質あたり158mAh/gの放電容量が得られた。これは、孔60a,62aを開けた各集電板60,62をセパレータ18に密着させたことにより充放電反応時に起こる電子とイオンの交換反応抵抗が減少したことに起因すると考えられる。この放電容量によると、電位窓、負極活物質、正極活物質の不可逆容量を考えると、ほぼ100%の充放電反応がなされたといえる。   In Example 3, a discharge capacity of 158 mAh / g per positive electrode active material in the circulation system was obtained. This is presumably because the resistance of the exchange reaction between electrons and ions that occurs during the charge / discharge reaction is reduced by bringing the current collector plates 60 and 62 with holes 60a and 62a into close contact with the separator 18. According to this discharge capacity, considering the irreversible capacity of the potential window, the negative electrode active material, and the positive electrode active material, it can be said that almost 100% of the charge / discharge reaction was performed.

実施例4では、循環系内の正極活物質あたり102mAh/gの放電容量が得られた。各スラリー内に電気伝導性がほとんどないにもかかわらず、充放電した理由は以下のように考えられる。すなわち、各集電板60,62に孔60a,62aを開け、セパレータ18に密着させたことにより、充放電反応時に起こる電子とイオンの交換反応抵抗が減少した、すなわち、セパレータ18及び正極集電板60の両方に接触した正極活物質と、セパレータ18及び負極集電板62の両方に接触した負極活物質とが効率よく充放電反応を起こしたと考えられる。また、循環によって、多くの正極活物質がセパレータ18及び正極集電板60の両方に接触しつつ流動すると共に、多くの負極活物質がセパレータ18及び負極集電板62の両方に接触しつつ流動することも一因と考えられる。   In Example 4, a discharge capacity of 102 mAh / g per positive electrode active material in the circulation system was obtained. The reason for charging / discharging is considered as follows although there is almost no electric conductivity in each slurry. That is, the holes 60a and 62a are formed in the current collector plates 60 and 62 and brought into close contact with the separator 18, thereby reducing the resistance of the exchange reaction between electrons and ions that occurs during the charge / discharge reaction. It is considered that the positive electrode active material in contact with both of the plates 60 and the negative electrode active material in contact with both of the separators 18 and the negative electrode current collector plate 62 efficiently caused a charge / discharge reaction. Also, by circulation, many positive electrode active materials flow while contacting both the separator 18 and the positive electrode current collector plate 60, and many negative electrode active materials flow while contacting both the separator 18 and the negative electrode current collector plate 62. Doing this is also considered to be a factor.

これらの結果から、実施例1〜4のスラリー利用型二次電池10,50で充放電が可能なことがわかった。また、充放電を可能にするには、正極集電板20と正極スラリーとの間や負極集電板22と負極スラリーとの間で電子の授受ができるようにすることが必要であるといえる。こうした電子の授受は、各スラリーに導電材を加えて電気伝導性を付与することで実現してもよいし(実施例1,2)、孔60a,62aが設けられた両集電板60,62をセパレータ18と密着することで実現してもよいし(実施例4)、その両方によって実現してもよい(実施例3)。更に、各スラリーを循環させることによって、循環系内のすべての活物質を充放電反応に関与させることができると共に充放電反応を促進することができることもわかった。   From these results, it was found that charging and discharging were possible with the slurry-based secondary batteries 10 and 50 of Examples 1 to 4. In order to enable charging and discharging, it can be said that it is necessary to be able to exchange electrons between the positive electrode current collector plate 20 and the positive electrode slurry or between the negative electrode current collector plate 22 and the negative electrode slurry. . Such transfer of electrons may be realized by adding a conductive material to each slurry to impart electrical conductivity (Examples 1 and 2), or both current collecting plates 60 provided with holes 60a and 62a. 62 may be realized by closely contacting the separator 18 (Example 4), or may be realized by both of them (Example 3). Furthermore, it was also found that by circulating each slurry, all the active materials in the circulation system can be involved in the charge / discharge reaction and the charge / discharge reaction can be promoted.

以上詳述したように、スラリー利用型二次電池10,50によれば、水の電気分解電圧を超える高い電池電圧が得られるうえ、エネルギー密度も高いというリチウム二次電池の利点が得られる。また、正負極ともスラリーを用いているため、仮にスラリー内で温度の高いところと低いところが発生したとしても、固体の場合に比べて熱が拡散しやすいことから、電池反応のムラが生じにくい。更に、リチウムイオンの吸蔵・放出に伴う体積変化が生じたとしても、正負極ともスラリーを用いているため、固体の場合に比べて割れるおそれがないことから、電極の構造劣化も招かない。   As described above in detail, according to the slurry-based secondary batteries 10 and 50, a high battery voltage exceeding the electrolysis voltage of water can be obtained, and the advantage of the lithium secondary battery that the energy density is also high can be obtained. In addition, since both the positive and negative electrodes use slurry, even if high temperature and low temperature are generated in the slurry, heat is more easily diffused than in the case of a solid, so that unevenness in battery reaction is less likely to occur. Furthermore, even if a volume change occurs due to insertion / extraction of lithium ions, since the slurry is used for both the positive and negative electrodes, there is no possibility of cracking compared to the case of a solid, so that the structure of the electrode is not deteriorated.

上述したスラリー利用型二次電池10,50では、正極スラリーが劣化したときには正極スラリーを新しいものに交換したり、負極スラリーが劣化したときには負極スラリーを新しいものに交換したりすることができる。このように、劣化時に劣化部位のみを交換することができるため、リサイクルも容易になる。   In the slurry-based secondary batteries 10 and 50 described above, the positive electrode slurry can be replaced with a new one when the positive electrode slurry is deteriorated, or the negative electrode slurry can be replaced with a new one when the negative electrode slurry is deteriorated. In this way, since only the deteriorated part can be exchanged at the time of deterioration, recycling becomes easy.

上述したスラリー利用型二次電池10,50では、正極スラリータンク24や負極スラリータンク30の形状は任意でよいため、設置場所の制約がある場合であってもその設置場所に応じた形状とすれば適用することができる。例えば、ハイブリッド自動車や電気自動車などの移動体では、限られたスペースに二次電池を設置する必要があり設置場所の制約が大きいが、こうした移動体の電源としてスラリー利用型二次電池10,50を採用することもできる。   In the slurry-based secondary batteries 10 and 50 described above, the shape of the positive electrode slurry tank 24 and the negative electrode slurry tank 30 may be arbitrary, so that even if there is a restriction on the installation location, the shape is determined according to the installation location. Can be applied. For example, in a mobile body such as a hybrid vehicle or an electric vehicle, it is necessary to install a secondary battery in a limited space, and there are great restrictions on the installation location. However, slurry-based secondary batteries 10 and 50 are used as power sources for such a mobile body. Can also be adopted.

上述したスラリー利用型二次電池10,50では、正極側循環ポンプ28や負極側循環ポンプ34を駆動する必要があるが、車両に搭載する場合には駆動源としてクランクシャフトやプロペラシャフトなどの回転軸の回転を利用してもよい。   In the slurry-based secondary batteries 10 and 50 described above, it is necessary to drive the positive electrode side circulation pump 28 and the negative electrode side circulation pump 34, but when mounted on a vehicle, rotation of a crankshaft, a propeller shaft, or the like as a drive source. Shaft rotation may be used.

上述したスラリー利用型二次電池10,50において、正極側循環経路26及び負極側循環経路32の少なくとも一方に放熱部を設けてもよい。こうすれば、電池反応によって二次電池内が高温化するのを有効に防ぐことができる。このとき、放熱部として、暖機や加温を要するデバイス(例えば始動直後のエンジンや給湯器など)を用いてもよい。こうすれば、排熱の有効利用が可能となる。あるいは、正極側循環経路26及び負極側循環経路32の少なくとも一方に受熱部を設けてもよい。この場合、二次電池の使用に支障のない範囲で熱を受けるものとする。こうすれば、冷却を要するデバイス(例えば高負荷運転中のエンジンやモータ、電気回路、ハーネスなど)の熱を受熱部で受けるようにすることで、そのデバイスを適温に維持することができる。   In the slurry-based secondary batteries 10 and 50 described above, a heat radiating portion may be provided in at least one of the positive electrode side circulation path 26 and the negative electrode side circulation path 32. In this way, it is possible to effectively prevent the temperature of the secondary battery from becoming high due to the battery reaction. At this time, a device that requires warm-up or warming (for example, an engine or a water heater immediately after startup) may be used as the heat radiating unit. In this way, effective use of exhaust heat becomes possible. Alternatively, a heat receiving part may be provided in at least one of the positive electrode side circulation path 26 and the negative electrode side circulation path 32. In this case, heat is received within a range that does not hinder the use of the secondary battery. In this way, by receiving the heat of a device that requires cooling (for example, an engine, a motor, an electric circuit, a harness, etc. during high-load operation) at the heat receiving portion, the device can be maintained at an appropriate temperature.

上述したスラリー利用型二次電池10,50において、ケース12は弾力性又は可撓性を有するものとしてもよい。こうすれば、リチウムイオンの吸蔵・放出に伴い正負極のスラリーが体積膨張したとしても、ケースの弾力性又は可撓性でその膨張分を吸収することができる。なお、ケース12に代えて又は加えて、各タンク24,30を弾力性又は可撓性を有するものとしたり、各循環経路26,32を弾力性又は可撓性のあるチューブで構成してもよい。   In the slurry-based secondary batteries 10 and 50 described above, the case 12 may have elasticity or flexibility. In this way, even if the positive and negative electrode slurry expands in volume due to insertion and extraction of lithium ions, the expansion can be absorbed by the elasticity or flexibility of the case. Instead of or in addition to the case 12, the tanks 24 and 30 may be elastic or flexible, and the circulation paths 26 and 32 may be formed of elastic or flexible tubes. Good.

上述したスラリー利用型二次電池10,50において、タンク24,30を省略しポンプ28,34を駆動して循環経路26,32をスラリーが循環するようにしてもよい。あるいは、タンク24,30やポンプ28,34、循環経路26,32を省略してスラリーを循環させないようにしてもよい。   In the slurry-based secondary batteries 10 and 50 described above, the tanks 24 and 30 may be omitted and the pumps 28 and 34 may be driven so that the slurry circulates in the circulation paths 26 and 32. Alternatively, the tanks 24 and 30, the pumps 28 and 34, and the circulation paths 26 and 32 may be omitted so that the slurry is not circulated.

実施例1のスラリー利用型二次電池10の概略構成を示す説明図である。2 is an explanatory diagram showing a schematic configuration of a slurry-based secondary battery 10 of Example 1. FIG. 実施例3のスラリー利用型二次電池50の概略構成を示す説明図である。6 is an explanatory diagram showing a schematic configuration of a slurry-based secondary battery 50 of Example 3. FIG.

符号の説明Explanation of symbols

10,50 スラリー利用型二次電池、12 ケース、14 正極室、16 負極室、18 セパレータ、20,60 正極集電板、22、62 負極集電板、24 正極スラリータンク、26 正極側循環経路、28 正極側循環ポンプ、30 負極スラリータンク、32 負極側循環経路、34 負極側循環ポンプ、60a,62a 孔。 10, 50 Slurry type secondary battery, 12 case, 14 positive electrode chamber, 16 negative electrode chamber, 18 separator, 20, 60 positive electrode current collector plate, 22, 62 negative electrode current collector plate, 24 positive electrode slurry tank, 26 positive electrode side circulation path , 28 Positive electrode side circulation pump, 30 Negative electrode slurry tank, 32 Negative electrode side circulation path, 34 Negative electrode side circulation pump, 60a, 62a hole.

Claims (6)

ケースの内部を正極室と負極室とに分離するリチウムイオン伝導性固体電解質膜と、
前記正極室に収容され、リチウムイオンを吸蔵・放出可能な正極活物質がイオン伝導性を有する非水系電解液に分散された正極スラリーと、
前記正極室に配置され、前記正極活物質と電子の授受が可能な正極集電体と、
前記負極室に収容され、リチウムイオンを吸蔵・放出可能な負極活物質がイオン伝導性を有する非水系電解液に分散された負極スラリーと、
前記負極室に配置され、前記負極活物質と電子の授受が可能な負極集電体と、
を備えたスラリー利用型二次電池。
A lithium ion conductive solid electrolyte membrane that separates the inside of the case into a positive electrode chamber and a negative electrode chamber;
A positive electrode slurry in which a positive electrode active material accommodated in the positive electrode chamber and capable of occluding and releasing lithium ions is dispersed in a non-aqueous electrolyte having ion conductivity;
A positive electrode current collector disposed in the positive electrode chamber and capable of transferring electrons to and from the positive electrode active material;
A negative electrode slurry in which a negative electrode active material accommodated in the negative electrode chamber and capable of occluding and releasing lithium ions is dispersed in a non-aqueous electrolyte having ion conductivity;
A negative electrode current collector disposed in the negative electrode chamber and capable of transferring electrons to and from the negative electrode active material;
A slurry-based secondary battery comprising:
請求項1に記載のスラリー利用型二次電池であって、
前記正極室に設けられた正極側循環経路と、
前記正極室に収容された前記正極スラリーを前記正極側循環経路を通して循環させる正極側循環ポンプと、
前記負極室に設けられた負極側循環経路と、
前記負極室に収容された前記負極スラリーを前記負極側循環経路を通して循環させる負極側循環ポンプと、
を備えたスラリー利用型二次電池。
The slurry-based secondary battery according to claim 1,
A positive electrode side circulation path provided in the positive electrode chamber;
A positive electrode side circulation pump for circulating the positive electrode slurry accommodated in the positive electrode chamber through the positive electrode side circulation path;
A negative electrode side circulation path provided in the negative electrode chamber;
A negative electrode side circulation pump for circulating the negative electrode slurry accommodated in the negative electrode chamber through the negative electrode side circulation path;
A slurry-based secondary battery comprising:
請求項2に記載のスラリー利用型二次電池であって、
前記正極側循環経路の途中に設けられ、前記正極スラリーを貯蔵する正極スラリータンクと、
前記負極側循環経路の途中に設けられ、前記負極スラリーを貯蔵する負極スラリータンクと、
を備えたスラリー利用型二次電池。
The slurry-based secondary battery according to claim 2,
A positive electrode slurry tank provided in the middle of the positive electrode side circulation path for storing the positive electrode slurry;
A negative electrode slurry tank that is provided in the middle of the negative electrode side circulation path and stores the negative electrode slurry;
A slurry-based secondary battery comprising:
前記正極スラリー及び前記負極スラリーは、電気伝導性を有している、
請求項1〜3のいずれか1項に記載のスラリー利用型二次電池。
The positive electrode slurry and the negative electrode slurry have electrical conductivity.
The slurry utilization secondary battery of any one of Claims 1-3.
前記正極集電体及び前記負極集電体は、それぞれ前記正極スラリー及び前記負極スラリーを透過可能な孔を有している、
請求項1〜4のいずれか1項に記載のスラリー利用型二次電池。
The positive electrode current collector and the negative electrode current collector have holes through which the positive electrode slurry and the negative electrode slurry can pass, respectively.
The slurry utilization secondary battery of any one of Claims 1-4.
前記正極集電体及び前記負極集電体は、前記リチウムイオン伝導性固体電解質膜の近傍に配置されるか前記リチウムイオン伝導性固体電解質膜に密着されている、
請求項5に記載のスラリー利用型二次電池。
The positive electrode current collector and the negative electrode current collector are disposed in the vicinity of the lithium ion conductive solid electrolyte membrane or are in close contact with the lithium ion conductive solid electrolyte membrane,
The slurry-based secondary battery according to claim 5.
JP2008066369A 2008-03-14 2008-03-14 Slurry secondary battery Active JP5211775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008066369A JP5211775B2 (en) 2008-03-14 2008-03-14 Slurry secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008066369A JP5211775B2 (en) 2008-03-14 2008-03-14 Slurry secondary battery

Publications (2)

Publication Number Publication Date
JP2009224141A true JP2009224141A (en) 2009-10-01
JP5211775B2 JP5211775B2 (en) 2013-06-12

Family

ID=41240710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008066369A Active JP5211775B2 (en) 2008-03-14 2008-03-14 Slurry secondary battery

Country Status (1)

Country Link
JP (1) JP5211775B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143634A1 (en) * 2009-06-09 2010-12-16 シャープ株式会社 Redox flow battery
JP2012523103A (en) * 2009-04-06 2012-09-27 24エム・テクノロジーズ・インコーポレイテッド Fuel system using redox flow battery
WO2013151588A1 (en) * 2012-04-04 2013-10-10 Battelle Memorial Institute Hybrid energy storage systems utilizing redox active organic compounds
JP2014500599A (en) * 2010-12-16 2014-01-09 24エム・テクノロジーズ・インコーポレイテッド High energy density redox flow equipment
JP2014116318A (en) * 2008-06-12 2014-06-26 Massachusetts Institute Of Technology High energy density redox flow device
KR101520394B1 (en) * 2013-12-19 2015-05-14 한국에너지기술연구원 Stacked flow energy storage system and use thereof
JP5890561B1 (en) * 2015-05-01 2016-03-22 株式会社ギャラキシー Electrolyzer and battery
JP2017004801A (en) * 2015-06-11 2017-01-05 三洋化成工業株式会社 Lithium ion battery and mounted type electronic apparatus
JP2017004799A (en) * 2015-06-11 2017-01-05 三洋化成工業株式会社 Lithium ion battery and structure system
JP2017004946A (en) * 2015-06-11 2017-01-05 三洋化成工業株式会社 Lithium ion battery and manufacturing method of the same
JP2017004802A (en) * 2015-06-11 2017-01-05 三洋化成工業株式会社 Lithium ion battery and flying body
JP2017004800A (en) * 2015-06-11 2017-01-05 三洋化成工業株式会社 Lithium ion battery and mounted type optical instrument
JP2017010937A (en) * 2015-06-18 2017-01-12 三洋化成工業株式会社 Lithium ion battery and manufacturing method of the same
WO2017043174A1 (en) * 2015-09-10 2017-03-16 日産自動車株式会社 Lithium-ion cell
US9786944B2 (en) 2008-06-12 2017-10-10 Massachusetts Institute Of Technology High energy density redox flow device
US9831518B2 (en) 2012-12-13 2017-11-28 24M Technologies, Inc. Semi-solid electrodes having high rate capability
US9831519B2 (en) 2012-12-13 2017-11-28 24M Technologies, Inc. Semi-solid electrodes having high rate capability
JP2019012688A (en) * 2012-06-13 2019-01-24 24エム・テクノロジーズ・インコーポレイテッド24M Technologies, Inc. Electrochemical slurry composition and preparation method thereof
WO2020246501A1 (en) * 2019-06-05 2020-12-10 株式会社ダイセル Battery electrolytic solution and lithium ion battery
WO2021009968A1 (en) * 2019-07-12 2021-01-21 パナソニックIpマネジメント株式会社 Redox flow battery, and method for manufacturing metal ion conductive film provided to redox flow battery
US11909077B2 (en) 2008-06-12 2024-02-20 Massachusetts Institute Of Technology High energy density redox flow device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133788A (en) * 1982-02-01 1983-08-09 Semiconductor Energy Lab Co Ltd Electrolyte solution
JP2003036849A (en) * 2001-07-24 2003-02-07 Nec Corp Secondary battery
WO2006129635A1 (en) * 2005-05-31 2006-12-07 Matsushita Electric Industrial Co., Ltd. Secondary battery, power supply system using same and usage of power supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133788A (en) * 1982-02-01 1983-08-09 Semiconductor Energy Lab Co Ltd Electrolyte solution
JP2003036849A (en) * 2001-07-24 2003-02-07 Nec Corp Secondary battery
WO2006129635A1 (en) * 2005-05-31 2006-12-07 Matsushita Electric Industrial Co., Ltd. Secondary battery, power supply system using same and usage of power supply system

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9786944B2 (en) 2008-06-12 2017-10-10 Massachusetts Institute Of Technology High energy density redox flow device
US11342567B2 (en) 2008-06-12 2022-05-24 Massachusetts Institute Of Technology High energy density redox flow device
US9614231B2 (en) 2008-06-12 2017-04-04 24M Technologies, Inc. High energy density redox flow device
JP2014116318A (en) * 2008-06-12 2014-06-26 Massachusetts Institute Of Technology High energy density redox flow device
US10236518B2 (en) 2008-06-12 2019-03-19 24M Technologies, Inc. High energy density redox flow device
US11909077B2 (en) 2008-06-12 2024-02-20 Massachusetts Institute Of Technology High energy density redox flow device
JP2016146345A (en) * 2009-04-06 2016-08-12 24エム・テクノロジーズ・インコーポレイテッド24M Technologies, Inc. Fuel system using redox flow battery
JP2012523103A (en) * 2009-04-06 2012-09-27 24エム・テクノロジーズ・インコーポレイテッド Fuel system using redox flow battery
JP5417441B2 (en) * 2009-06-09 2014-02-12 シャープ株式会社 Redox flow battery
WO2010143634A1 (en) * 2009-06-09 2010-12-16 シャープ株式会社 Redox flow battery
JP2014500599A (en) * 2010-12-16 2014-01-09 24エム・テクノロジーズ・インコーポレイテッド High energy density redox flow equipment
JP2017010926A (en) * 2010-12-16 2017-01-12 24エム・テクノロジーズ・インコーポレイテッド24M Technologies, Inc. High energy density redox flow device
US9130218B2 (en) 2012-04-04 2015-09-08 Battelle Memorial Institute Hybrid energy storage systems utilizing redox active organic compounds
CN104321924A (en) * 2012-04-04 2015-01-28 巴特尔纪念研究院 Hybrid energy storage systems utilizing redox active organic compounds
WO2013151588A1 (en) * 2012-04-04 2013-10-10 Battelle Memorial Institute Hybrid energy storage systems utilizing redox active organic compounds
JP2019012688A (en) * 2012-06-13 2019-01-24 24エム・テクノロジーズ・インコーポレイテッド24M Technologies, Inc. Electrochemical slurry composition and preparation method thereof
JP7148578B2 (en) 2012-06-13 2022-10-05 24エム・テクノロジーズ・インコーポレイテッド Electrochemical slurry composition and method for its preparation
JP2020198312A (en) * 2012-06-13 2020-12-10 24エム・テクノロジーズ・インコーポレイテッド24M Technologies, Inc. Electrochemical slurry composition and preparation method thereof
US11811119B2 (en) 2012-12-13 2023-11-07 24M Technologies, Inc. Semi-solid electrodes having high rate capability
US10483582B2 (en) 2012-12-13 2019-11-19 24M Technologies, Inc. Semi-solid electrodes having high rate capability
US11018365B2 (en) 2012-12-13 2021-05-25 24M Technologies, Inc. Semi-solid electrodes having high rate capability
US9831518B2 (en) 2012-12-13 2017-11-28 24M Technologies, Inc. Semi-solid electrodes having high rate capability
US9831519B2 (en) 2012-12-13 2017-11-28 24M Technologies, Inc. Semi-solid electrodes having high rate capability
US9761379B2 (en) 2013-12-19 2017-09-12 Korea Institute Of Energy Research Stack-type flow energy storage system and method of charging and discharging energy using the same
KR101520394B1 (en) * 2013-12-19 2015-05-14 한국에너지기술연구원 Stacked flow energy storage system and use thereof
JP5890561B1 (en) * 2015-05-01 2016-03-22 株式会社ギャラキシー Electrolyzer and battery
JP2017004800A (en) * 2015-06-11 2017-01-05 三洋化成工業株式会社 Lithium ion battery and mounted type optical instrument
JP2017004802A (en) * 2015-06-11 2017-01-05 三洋化成工業株式会社 Lithium ion battery and flying body
JP2017004946A (en) * 2015-06-11 2017-01-05 三洋化成工業株式会社 Lithium ion battery and manufacturing method of the same
JP2017004799A (en) * 2015-06-11 2017-01-05 三洋化成工業株式会社 Lithium ion battery and structure system
JP2017004801A (en) * 2015-06-11 2017-01-05 三洋化成工業株式会社 Lithium ion battery and mounted type electronic apparatus
JP2017010937A (en) * 2015-06-18 2017-01-12 三洋化成工業株式会社 Lithium ion battery and manufacturing method of the same
WO2017043174A1 (en) * 2015-09-10 2017-03-16 日産自動車株式会社 Lithium-ion cell
WO2020246501A1 (en) * 2019-06-05 2020-12-10 株式会社ダイセル Battery electrolytic solution and lithium ion battery
CN113924678A (en) * 2019-06-05 2022-01-11 株式会社大赛璐 Electrolyte for battery and lithium ion battery
WO2021009968A1 (en) * 2019-07-12 2021-01-21 パナソニックIpマネジメント株式会社 Redox flow battery, and method for manufacturing metal ion conductive film provided to redox flow battery

Also Published As

Publication number Publication date
JP5211775B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5211775B2 (en) Slurry secondary battery
US11799070B2 (en) Negative electrode active material for lithium secondary battery, method of preparing the same, and negative electrode for lithium secondary battery and lithium secondary battery including the same
JP2014002834A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and production method therefor
KR20190106772A (en) Method for preparing negative electrode
JP2011210450A (en) Cell electrode plate and cell
JP2011159596A (en) Secondary battery and method of manufacturing the same
CN112670563B (en) Solid electrolyte material, preparation method thereof and solid battery
CN102160215A (en) Nonaqueous electrolyte secondary battery
CN105122507A (en) Non-aqueous electrolyte secondary battery
KR20180066694A (en) Cathode composite with high power performance and all solid lithium secondary battery comprising the same
CN113994512A (en) Lithium secondary battery and method for manufacturing the same
CN107925128B (en) Electrolyte solution for lithium secondary battery and lithium secondary battery including the same
CN109786751A (en) A kind of negative current collector and preparation method thereof and solid state battery
JP2019050156A (en) Nonaqueous electrolyte secondary battery
JP6164189B2 (en) Hybrid ion battery system
JP5487598B2 (en) Lithium secondary battery and method of using the same
JP2008305688A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the negative electrode
JP2008198499A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery using it
CN112447941B (en) Nonaqueous electrolyte secondary battery
JP2015162304A (en) Nonaqueous electrolyte battery
CN114665150A (en) Lithium metal solid-state battery capable of running at room temperature and preparation method thereof
EP3033798B1 (en) Elevated temperature li/metal battery system
KR102478477B1 (en) Use of lithium nitrate as sole lithium salt in gelled lithium batteries
JP2000215910A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using it
KR20120012584A (en) Electrolyte having improved cycle life characteristics and low temperature property and electrochemical device comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R151 Written notification of patent or utility model registration

Ref document number: 5211775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3