JP2009222548A - Surface potential measurement method and surface potentiometer - Google Patents

Surface potential measurement method and surface potentiometer Download PDF

Info

Publication number
JP2009222548A
JP2009222548A JP2008067163A JP2008067163A JP2009222548A JP 2009222548 A JP2009222548 A JP 2009222548A JP 2008067163 A JP2008067163 A JP 2008067163A JP 2008067163 A JP2008067163 A JP 2008067163A JP 2009222548 A JP2009222548 A JP 2009222548A
Authority
JP
Japan
Prior art keywords
electrode
potential
sample
measurement
displacement current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2008067163A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fuse
和彦 布施
Motohiro Kono
元宏 河野
Toshikazu Kitajima
敏和 北嶋
Yoshiyuki Nakazawa
喜之 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP2008067163A priority Critical patent/JP2009222548A/en
Publication of JP2009222548A publication Critical patent/JP2009222548A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform quick and high-accuracy mesurement of the potential, at a plurality of measuring points on the sample surface. <P>SOLUTION: In this surface potentiometer 1, on the first measuring point among the plurality of measuring points set on the sample 9 surface 91, a relation between an electrode potential and a displacement current is obtained, while changing the electrode potential of a vibration electrode 12; and a plurality of relations are obtained, while changing a distance between the vibration electrode 12 and the sample 9 surface 91. Successively, a reference current (is), which is a displacement current from a sample holding part 11 independent of the distance between the vibration electrode 12 and the sample 9 surface 91 is determined, from the plurality of relations between the electrode potential and the displacement current. On all the second and after measuring points, an electrode potential, when the displacement current from the sample holding part 11 becomes equal to the reference current (is), is obtained as surface potential of the sample 9. As a result, measurement of the surface potential at the plurality of measuring points set on the sample 9 surface 91 can be performed quickly and with high accuracy. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、試料の表面電位を測定する技術に関する。   The present invention relates to a technique for measuring the surface potential of a sample.

従来より、複写機の感光ドラムやICを実装した基板の表面電位を測定するために非接触式の表面電位計が使用されており、このような表面電位計の1つとして、交流法と呼ばれる方式のものがある。交流法では、振動する電極を試料に近接させ、振動電極と試料との間の静電容量の変化に起因する振動電極からの電流に基づいて表面電位が求られる。例えば、特許文献1では、振動電極の電位を変化させた際の振動電極からの電流の変化を検出することにより振動電極と試料との間の距離を推測し、振動電極からの電流が0となるときの振動電極の電位を、推測した距離に基づいて補正することにより試料の表面電位が求められる。   Conventionally, a non-contact type surface potential meter has been used to measure the surface potential of a substrate mounted with a photosensitive drum or IC of a copying machine, and one of such surface potential meters is called an alternating current method. There is a method. In the alternating current method, a vibrating electrode is brought close to a sample, and a surface potential is obtained based on a current from the vibrating electrode caused by a change in capacitance between the vibrating electrode and the sample. For example, in Patent Document 1, the distance between the vibrating electrode and the sample is estimated by detecting a change in the current from the vibrating electrode when the potential of the vibrating electrode is changed, and the current from the vibrating electrode is 0. Then, the surface potential of the sample is obtained by correcting the potential of the vibrating electrode based on the estimated distance.

また近年、交流法は、酸化膜等の絶縁膜が形成された半導体基板において、絶縁膜表面の電位測定にも応用されている。例えば、特許文献2の表面電位計では、試料載置部に設けられた導電面上に半導体基板である試料を載置した状態で振動電極を振動させ、振動電極の電位を変更しつつ振動電極の電位と試料載置部の導電面からの電流との関係が取得される。そして、振動電極と試料との間の距離を変更しつつ上記関係を複数取得し、これら複数の関係から、振動電極と試料との間の距離に依存しない振動電極の基準電位を求め、さらに、当該基準電位に基づいて試料の表面電位が求められる。   In recent years, the alternating current method has also been applied to the measurement of the potential of the insulating film surface in a semiconductor substrate on which an insulating film such as an oxide film is formed. For example, in the surface potential meter of Patent Document 2, the vibrating electrode is vibrated in a state where a sample which is a semiconductor substrate is placed on a conductive surface provided in the sample placing portion, and the potential of the vibrating electrode is changed while the vibrating electrode is changed. The relationship between the potential of the current and the current from the conductive surface of the sample mounting portion is acquired. Then, a plurality of the above relationships are acquired while changing the distance between the vibrating electrode and the sample, and the reference potential of the vibrating electrode that does not depend on the distance between the vibrating electrode and the sample is obtained from the plurality of relationships, A surface potential of the sample is obtained based on the reference potential.

特許文献2の表面電位計では、試料載置部からの電流を利用して表面電位を求めることにより、振動電極とその周囲の構造との間の浮遊容量の影響を除去して測定精度の向上が図られている。また、振動電極の電位と試料載置部からの電流との複数の関係に基づいて表面電位を求めることにより、振動電極と試料との間の距離による測定精度の変動が防止される。
特開平9−211046号公報 特開2007−240393号公報
In the surface potential meter of Patent Document 2, the surface potential is obtained by using the current from the sample mounting portion, thereby removing the influence of the stray capacitance between the vibrating electrode and the surrounding structure and improving the measurement accuracy. Is planned. Further, by obtaining the surface potential based on a plurality of relationships between the potential of the vibrating electrode and the current from the sample mounting portion, fluctuations in measurement accuracy due to the distance between the vibrating electrode and the sample can be prevented.
Japanese Patent Laid-Open No. 9-211046 JP 2007-240393 A

ところで、特許文献2の表面電位計では、試料上の一の測定点における表面電位の測定において、振動電極の電位を変更しつつ振動電極の電位と試料載置部からの電流との複数の組み合わせ(すなわち、電位と電流との関係)を取得し、さらに、振動電極と試料との間の距離を変更して上記複数の組み合わせの取得を繰り返す必要がある。このため、半導体基板上に多数の測定点が設定されている場合、全測定点における表面電位を取得するには比較的長い測定時間が必要となる。   By the way, in the surface potential meter of Patent Document 2, in the measurement of the surface potential at one measurement point on the sample, a plurality of combinations of the potential of the vibrating electrode and the current from the sample mounting portion are changed while changing the potential of the vibrating electrode. (That is, the relationship between the potential and the current) is acquired, and further, the acquisition of the plurality of combinations is repeated by changing the distance between the vibrating electrode and the sample. For this reason, when a large number of measurement points are set on the semiconductor substrate, a relatively long measurement time is required to obtain the surface potential at all the measurement points.

本発明は、上記課題に鑑みなされたものであり、試料の表面上の複数の測定点における電位測定を迅速かつ高精度に行うことを目的としている。   The present invention has been made in view of the above problems, and an object thereof is to perform potential measurement at a plurality of measurement points on the surface of a sample quickly and with high accuracy.

請求項1に記載の発明は、試料の表面電位を測定する表面電位測定方法であって、a)平板状の試料を試料保持部に保持する工程と、b)前記試料の表面上に設定された複数の測定点に含まれる一の測定点に電極を非接触にて対向させる工程と、c)前記電極および前記試料保持部の一方に接続された振動部の圧電素子により前記電極から前記試料保持部に向かう振動方向に前記電極を前記試料に対して相対的に振動させ、前記電極の電極電位を変更しつつ電極電位と前記電極または前記試料保持部からの変位電流との関係を取得する工程と、d)電極電位と変位電流との関係を変化させる測定条件を変更して前記c)工程を繰り返す工程と、e)前記c)工程および前記d)工程により取得された複数の測定条件に対応する電極電位と変位電流との複数の関係から、前記複数の測定条件に依存しない電極電位と変位電流との組み合わせを求め、前記組み合わせの変位電流を基準電流として記憶する工程と、f)前記組み合わせの電極電位に基づいて前記一の測定点における表面電位を取得する工程と、g)前記電極を前記試料の前記表面に平行に移動して前記複数の測定点に含まれる他の測定点に対向させる工程と、h)前記電極の電極電位を変更し、前記電極または前記試料保持部からの変位電流が前記基準電流に等しくなるときの電極電位に基づいて、前記他の測定点における表面電位を取得する工程とを備える。   The invention according to claim 1 is a surface potential measuring method for measuring a surface potential of a sample, wherein a) a step of holding a flat plate-like sample on a sample holder, and b) set on the surface of the sample. A step of causing the electrode to face one measurement point included in the plurality of measurement points in a non-contact manner; and c) the sample from the electrode by the piezoelectric element of the vibration unit connected to one of the electrode and the sample holding unit. The electrode is vibrated relative to the sample in the vibration direction toward the holding unit, and the relationship between the electrode potential and the displacement current from the electrode or the sample holding unit is acquired while changing the electrode potential of the electrode. And d) a step of repeating the step c) by changing the measurement condition for changing the relationship between the electrode potential and the displacement current, and e) a plurality of measurement conditions acquired by the step c) and the step d). Electrode potential and displacement corresponding to A step of obtaining a combination of an electrode potential and a displacement current that does not depend on the plurality of measurement conditions from a plurality of relationships with the flow, and storing the displacement current of the combination as a reference current; and f) based on the electrode potential of the combination Obtaining a surface potential at the one measurement point; and g) moving the electrode parallel to the surface of the sample so as to oppose other measurement points included in the plurality of measurement points; h ) Changing the electrode potential of the electrode, and obtaining a surface potential at the other measurement point based on the electrode potential when the displacement current from the electrode or the sample holder becomes equal to the reference current; Prepare.

請求項2に記載の発明は、請求項1に記載の表面電位測定方法であって、前記複数の測定点の全てに対する測定が終了するまで、前記g)工程および前記h)工程が繰り返される。   The invention according to claim 2 is the surface potential measuring method according to claim 1, wherein the step g) and the step h) are repeated until the measurement for all of the plurality of measurement points is completed.

請求項3に記載の発明は、試料の表面電位を測定する表面電位測定方法であって、a)平板状の試料を試料保持部に保持する工程と、b)前記試料の表面に電極を非接触にて対向させる工程と、c)前記電極および前記試料保持部の一方に接続された振動部の圧電素子により前記電極から前記試料保持部に向かう振動方向に前記電極を前記試料に対して相対的に振動させ、前記電極の電極電位を変更しつつ前記電極の電極電位と前記電極または前記試料保持部からの変位電流との関係を取得する工程と、d)電極電位と変位電流との関係を変化させる測定条件を変更して前記c)工程を繰り返す工程と、e)前記c)工程および前記d)工程により取得された複数の測定条件に対応する電極電位と変位電流との複数の関係から、前記複数の測定条件に依存しない電極電位と変位電流との組み合わせを求め、前記組み合わせの変位電流を基準電流として記憶する工程と、f)前記電極を前記試料の前記表面に平行に移動して前記電極を前記表面上の複数の測定点に含まれる一の測定点に対向させる工程と、g)前記電極の電極電位を変更し、前記電極または前記試料保持部からの変位電流が前記基準電流に等しくなるときの電極電位に基づいて、前記一の測定点における表面電位を取得する工程と、h)前記複数の測定点に含まれる他の測定点に対し、前記f)工程および前記g)工程を繰り返す工程とを備える。   The invention according to claim 3 is a surface potential measuring method for measuring the surface potential of a sample, wherein a) a step of holding a flat sample on a sample holder, and b) a non-electrode on the surface of the sample. And c) relative to the sample in a vibration direction from the electrode toward the sample holding portion by the piezoelectric element of the vibrating portion connected to one of the electrode and the sample holding portion. And obtaining the relationship between the electrode potential of the electrode and the displacement current from the electrode or the sample holder while changing the electrode potential of the electrode, and d) the relationship between the electrode potential and the displacement current A step of repeating the step c) by changing the measurement condition for changing the pressure, and e) a plurality of relationships between the electrode potential and the displacement current corresponding to the plurality of measurement conditions acquired by the step c) and the step d) From the plurality of measurements. Obtaining a combination of an electrode potential and a displacement current independent of conditions and storing the displacement current of the combination as a reference current; and f) moving the electrode parallel to the surface of the sample to move the electrode to the surface. A step of facing one measurement point included in the plurality of measurement points above, and g) when the electrode potential of the electrode is changed and the displacement current from the electrode or the sample holder becomes equal to the reference current Obtaining a surface potential at the one measurement point based on the electrode potential; h) repeating the step f) and the step g) for other measurement points included in the plurality of measurement points; Is provided.

請求項4に記載の発明は、請求項1ないし3のいずれかに記載の表面電位測定方法であって、前記e)工程が、e1)前記複数の測定条件に対応する電極電位と変位電流との前記複数の関係から、前記複数の測定条件に依存しない電極電位と変位電流との仮の組み合わせを求める工程と、e2)前記仮の組み合わせの電極電位が、前記c)工程および前記d)工程における電極電位の変更範囲に含まれる場合に、前記仮の組み合わせを前記複数の測定条件に依存しない電極電位と変位電流との前記組み合わせとし、前記仮の組み合わせの電極電位が、前記c)工程および前記d)工程における電極電位の変更範囲外である場合に、前記電極の電極電位を前記仮の組み合わせの電極電位を含む範囲内で変更しつつ前記c)工程および前記d)工程を行って複数の測定条件に対応する電極電位と変位電流との複数の関係を再度取得し、再度取得された電極電位と変位電流との前記複数の関係から前記複数の測定条件に依存しない電極電位と変位電流との前記組み合わせを求める工程とを備える。   The invention according to claim 4 is the surface potential measurement method according to any one of claims 1 to 3, wherein the step e) includes e1) an electrode potential and displacement current corresponding to the plurality of measurement conditions. A step of obtaining a temporary combination of an electrode potential and a displacement current that does not depend on the plurality of measurement conditions from the plurality of relationships, and e2) the electrode potential of the temporary combination is the step c) and the step d) And the provisional combination is the combination of the electrode potential and displacement current independent of the plurality of measurement conditions, and the electrode potential of the temporary combination is the step c) and The step c) and the step d) while changing the electrode potential of the electrode within a range including the electrode potential of the temporary combination when the electrode potential is outside the change range of the electrode potential in the step d). To obtain again a plurality of relationships between electrode potentials and displacement currents corresponding to a plurality of measurement conditions, and from the plurality of relationships between electrode potentials and displacement currents obtained again, electrodes that do not depend on the plurality of measurement conditions Determining the combination of potential and displacement current.

請求項5に記載の発明は、請求項1ないし4のいずれかに記載の表面電位測定方法であって、前記変位電流が前記試料保持部から取得される。   A fifth aspect of the present invention is the surface potential measurement method according to any one of the first to fourth aspects, wherein the displacement current is acquired from the sample holder.

請求項6に記載の発明は、請求項1ないし5のいずれかに記載の表面電位測定方法であって、前記d)工程において、前記測定条件として前記電極と前記試料の前記表面との間の距離が変更される。   The invention according to claim 6 is the surface potential measurement method according to any one of claims 1 to 5, wherein in the step d), the measurement condition is between the electrode and the surface of the sample. The distance is changed.

請求項7に記載の発明は、請求項1ないし6のいずれかに記載の表面電位測定方法であって、前記a)工程ないし前記h)工程が、複数の試料に対して順次行われる。   The invention according to claim 7 is the surface potential measuring method according to any one of claims 1 to 6, wherein the steps a) to h) are sequentially performed on a plurality of samples.

請求項8に記載の発明は、試料の表面電位を測定する表面電位計であって、平板状の試料を保持する試料保持部と、前記試料の表面に非接触にて対向する電極と、圧電素子により前記電極から前記試料保持部に向かう振動方向に前記電極を前記試料に対して相対的に振動させる振動部と、前記電極を相対的に振動させた際の前記電極の電極電位と前記電極または前記試料保持部からの変位電流とを取得する処理部と、前記電極電位および前記変位電流に基づいて前記試料の表面電位を求める表面電位演算部と、前記電極を前記試料の前記表面に平行に前記試料に対して相対的に移動する移動機構と、前記振動部、前記処理部、前記表面電位演算部および前記移動機構を制御することにより、前記試料の前記表面上に設定された複数の測定点における表面電位を測定する制御部とを備え、前記制御部が、b)前記試料の前記表面上に設定された前記複数の測定点に含まれる一の測定点に電極を非接触にて対向させる工程と、c)前記電極および前記試料保持部の一方に接続された前記振動部の前記圧電素子により前記電極を前記試料に対して前記振動方向に相対的に振動させ、前記電極の電極電位を変更しつつ電極電位と前記電極または前記試料保持部からの変位電流との関係を取得する工程と、d)電極電位と変位電流との関係を変化させる測定条件を変更して前記c)工程を繰り返す工程と、e)前記c)工程および前記d)工程により取得された、複数の測定条件に対応する電極電位と変位電流との複数の関係から、前記複数の測定条件に依存しない電極電位と変位電流との組み合わせを求め、前記組み合わせの変位電流を基準電流として記憶する工程と、f)前記組み合わせの電極電位に基づいて前記一の測定点における表面電位を取得する工程と、g)前記電極を前記試料の前記表面に平行に移動して前記複数の測定点に含まれる他の測定点に対向させる工程と、h)前記電極の電極電位を変更し、前記電極または前記試料保持部からの変位電流が前記基準電流に等しくなるときの電極電位に基づいて、前記他の測定点における表面電位を取得する工程とを実行する。   The invention according to claim 8 is a surface potentiometer for measuring the surface potential of a sample, a sample holding portion for holding a flat sample, an electrode facing the surface of the sample in a non-contact manner, and a piezoelectric A vibrating portion that vibrates the electrode relative to the sample in a vibrating direction from the electrode toward the sample holding portion by an element; an electrode potential of the electrode when the electrode is vibrated relatively; and the electrode Alternatively, a processing unit that obtains a displacement current from the sample holding unit, a surface potential calculation unit that obtains a surface potential of the sample based on the electrode potential and the displacement current, and the electrode parallel to the surface of the sample A plurality of movement mechanisms configured to move relative to the sample, and the vibration unit, the processing unit, the surface potential calculation unit, and the movement mechanism. At the measuring point A control unit that measures the surface potential of the sample; and b) the electrode is opposed to one measurement point included in the plurality of measurement points set on the surface of the sample in a non-contact manner. C) causing the electrode to vibrate relative to the sample in the vibration direction by the piezoelectric element of the vibration unit connected to one of the electrode and the sample holding unit, and Obtaining the relationship between the electrode potential and the displacement current from the electrode or the sample holder while changing, and d) changing the measurement condition for changing the relationship between the electrode potential and the displacement current, and the step c) An electrode potential independent of the plurality of measurement conditions from a plurality of relationships between the electrode potential corresponding to the plurality of measurement conditions and the displacement current obtained by the repeating step, e) the step c), and the step d) Pair with displacement current Obtaining a combination and storing the displacement current of the combination as a reference current; f) obtaining a surface potential at the one measurement point based on the electrode potential of the combination; and g) attaching the electrode to the sample. A step of moving parallel to the surface and facing another measurement point included in the plurality of measurement points; h) changing an electrode potential of the electrode, and a displacement current from the electrode or the sample holder is A step of acquiring a surface potential at the other measurement point based on the electrode potential when the current becomes equal to the reference current.

本発明では、試料の表面上の複数の測定点における電位測定を迅速かつ高精度に行うことができる。   In the present invention, potential measurement at a plurality of measurement points on the surface of a sample can be performed quickly and with high accuracy.

図1は、本発明の一の実施の形態に係る表面電位計1の構成を示す図である。図1に示すように、表面電位計1は、半導体基板である平板状の試料9の表面電位を交流法の1つである振動容量法にて測定する装置である。   FIG. 1 is a diagram showing a configuration of a surface electrometer 1 according to an embodiment of the present invention. As shown in FIG. 1, the surface potential meter 1 is a device that measures the surface potential of a flat sample 9 that is a semiconductor substrate by a vibration capacitance method that is one of AC methods.

表面電位計1は、試料9を吸着保持する試料保持部11、試料保持部11を水平に(すなわち、試料9の表面91に平行に)移動する移動機構16、試料保持部11の上方に位置するとともに非接触にて試料9の表面91に対向する振動電極12、圧電素子(すなわち、ピエゾアクチュエータ)を有するとともに振動電極12の試料保持部11とは反対側に取り付けられる振動部13、振動電極12を昇降する昇降機構14、様々な電気的信号を処理する回路やデバイスの集合である処理部2、試料9の表面電位を求める表面電位演算部であるコンピュータ3、並びに、振動部13、処理部2、コンピュータ3および移動機構16を制御する制御部4を備える。表面電位計1では、制御部4により振動部13、処理部2、コンピュータ3および移動機構16が制御されることにより、試料9の表面91上に設定された複数の測定点における表面電位が測定される。   The surface electrometer 1 is positioned above the sample holding unit 11, a sample holding unit 11 that holds the sample 9 by suction, a moving mechanism 16 that moves the sample holding unit 11 horizontally (that is, parallel to the surface 91 of the sample 9). In addition, the vibrating electrode 12 that faces the surface 91 of the sample 9 in a non-contact manner, and has a piezoelectric element (that is, a piezoelectric actuator) and is attached to the opposite side of the vibrating electrode 12 from the sample holding portion 11, Elevating mechanism 14 that moves up and down 12, processing unit 2 that is a set of circuits and devices that process various electrical signals, computer 3 that is a surface potential calculation unit that determines the surface potential of sample 9, vibration unit 13, and processing The control part 4 which controls the part 2, the computer 3, and the moving mechanism 16 is provided. In the surface potential meter 1, the control unit 4 controls the vibration unit 13, the processing unit 2, the computer 3, and the moving mechanism 16, thereby measuring the surface potential at a plurality of measurement points set on the surface 91 of the sample 9. Is done.

試料保持部11は、試料9の裏面が接触するようにして試料9が載置される導電面111を有し、振動電極12は、非接触にて試料9の表面91および導電面111に対向する。導電面111の面積は振動電極12の先端の面積よりも十分に大きい。   The sample holder 11 has a conductive surface 111 on which the sample 9 is placed so that the back surface of the sample 9 is in contact, and the vibrating electrode 12 faces the surface 91 and the conductive surface 111 of the sample 9 in a non-contact manner. To do. The area of the conductive surface 111 is sufficiently larger than the area of the tip of the vibrating electrode 12.

移動機構16は、試料保持部11を図1中の左右方向に移動する第1移動機構161、および、試料保持部11を図1中の奥行き方向に移動する第2移動機構162を有する。第1移動機構161では、モータ1611にボールねじ(図示省略)が接続され、モータ1611が回転することにより、第2移動機構162がガイドレール1612に沿って図1中の左右方向に移動する。第2移動機構162も第1移動機構161と同様の構成となっており、モータ1621が回転すると、ボールねじ(図示省略)により試料保持部11がガイドレール1622に沿って図1中の奥行き方向に移動する。表面電位計1では、移動機構16により試料9を試料保持部11と共に水平方向に移動することにより、試料9の表面91上の所望の部位を振動電極12に対向させる。換言すれば、移動機構16は、振動電極12を試料9の表面91に平行に試料9に対して相対的に移動する移動機構である。   The moving mechanism 16 includes a first moving mechanism 161 that moves the sample holder 11 in the left-right direction in FIG. 1 and a second moving mechanism 162 that moves the sample holder 11 in the depth direction in FIG. In the first moving mechanism 161, a ball screw (not shown) is connected to the motor 1611, and the motor 1611 rotates, whereby the second moving mechanism 162 moves along the guide rail 1612 in the left-right direction in FIG. The second moving mechanism 162 has the same configuration as that of the first moving mechanism 161. When the motor 1621 rotates, the sample holder 11 moves along the guide rail 1622 in the depth direction in FIG. Move to. In the surface electrometer 1, a desired portion on the surface 91 of the sample 9 is opposed to the vibrating electrode 12 by moving the sample 9 together with the sample holding unit 11 by the moving mechanism 16. In other words, the moving mechanism 16 is a moving mechanism that moves the vibrating electrode 12 relative to the sample 9 in parallel with the surface 91 of the sample 9.

振動電極12は絶縁部131を介して振動部13に接続され、振動部13のピエゾアクチュエータに交流の駆動電圧が付与されることにより、振動電極12から試料9および試料保持部11に向かう振動方向に振動電極12が振動する。振動部13は昇降機構14に接続され、昇降機構14が駆動されることにより振動部13が昇降して振動電極12と試料9の表面91との間の振動方向の距離が変更される。換言すれば、昇降機構14は、振動電極12を試料9に対して振動方向に相対的に移動することにより、振動電極12と試料9の表面91との間の距離を変更する距離変更機構である。振動電極12の周囲および試料保持部11の周囲はカバー151で覆われており、カバー151および試料保持部11は、防振部材152により支持される。   The vibrating electrode 12 is connected to the vibrating portion 13 via the insulating portion 131, and the vibration direction from the vibrating electrode 12 toward the sample 9 and the sample holding portion 11 is applied by applying an AC driving voltage to the piezoelectric actuator of the vibrating portion 13. The vibrating electrode 12 vibrates. The vibrating unit 13 is connected to the lifting mechanism 14, and the lifting unit 14 is driven to move the vibrating unit 13 up and down to change the vibration direction distance between the vibrating electrode 12 and the surface 91 of the sample 9. In other words, the elevating mechanism 14 is a distance changing mechanism that changes the distance between the vibrating electrode 12 and the surface 91 of the sample 9 by moving the vibrating electrode 12 relative to the sample 9 in the vibrating direction. is there. The periphery of the vibrating electrode 12 and the periphery of the sample holding unit 11 are covered with a cover 151, and the cover 151 and the sample holding unit 11 are supported by a vibration isolation member 152.

処理部2は、試料保持部11の導電面111からの微少な電流を電圧に変換するとともに増幅するプリアンプ21、プリアンプ21からの信号をさらに増幅するアンプ22、振動部13に振動用の信号を与える発振器23、発振器23およびアンプ22からの信号が入力される同期検波回路24、並びに、オペアンプ251を含む制御回路25を備える。試料保持部11の導電面111から取得される電流は主に、振動電極12の振動により、振動電極12と試料9との間の静電容量が変化することに起因して発生する交流電流であり、以下の説明では、「変位電流」と呼ぶ。   The processing unit 2 converts a minute current from the conductive surface 111 of the sample holding unit 11 into a voltage and amplifies the preamplifier 21, an amplifier 22 that further amplifies a signal from the preamplifier 21, and a vibration signal to the vibration unit 13. An oscillator 23 to be applied, a synchronous detection circuit 24 to which signals from the oscillator 23 and the amplifier 22 are input, and a control circuit 25 including an operational amplifier 251 are provided. The current acquired from the conductive surface 111 of the sample holder 11 is mainly an alternating current generated due to a change in capacitance between the vibrating electrode 12 and the sample 9 due to vibration of the vibrating electrode 12. In the following description, this is referred to as “displacement current”.

プリアンプ21では電流値を変換した電圧が約10の10乗倍に増幅され、アンプ22にてさらに約10の2乗倍に増幅される。これにより、例えば、10fA(フェムトアンペア)の電流が約1mVの電圧としてオペアンプ251に導かれる。制御回路25からの電位は振動電極12に付与される。同期検波回路24にはアンプ22からの変位電流を示す電圧および発振器23からの信号が入力され、変位電流の振幅が変位電流の大きさとして同期検波回路24から出力され、制御回路25のオペアンプ251の反転入力端子(−)に入力される。   In the preamplifier 21, the voltage converted from the current value is amplified to about 10 to the power of 10 and further amplified to about 10 to the power of 10 in the amplifier 22. Thereby, for example, a current of 10 fA (femtoampere) is led to the operational amplifier 251 as a voltage of about 1 mV. The potential from the control circuit 25 is applied to the vibrating electrode 12. A voltage indicating the displacement current from the amplifier 22 and a signal from the oscillator 23 are input to the synchronous detection circuit 24, and the amplitude of the displacement current is output from the synchronous detection circuit 24 as the magnitude of the displacement current, and the operational amplifier 251 of the control circuit 25. Is input to the inverting input terminal (−).

オペアンプ251の非反転入力端子(+)には、コンピュータ3から変位電流の大きさを指定する電流指定電圧が入力され、これにより、同期検波回路24からの入力電圧が電流指定電圧に等しくなるようにオペアンプ251が振動電極12に電位を与える。すなわち、処理部2によりオペアンプ251を利用したフィードバック制御が行われ、導電面111からの変位電流の値を指定電流値とする振動電極12の電位(以下、「電極電位」という。)が取得される。制御回路25により決定された電位はコンピュータ3により直接的に取得される。   The non-inverting input terminal (+) of the operational amplifier 251 receives a current designation voltage that designates the magnitude of the displacement current from the computer 3, so that the input voltage from the synchronous detection circuit 24 becomes equal to the current designation voltage. The operational amplifier 251 applies a potential to the vibrating electrode 12. That is, feedback control using the operational amplifier 251 is performed by the processing unit 2, and the potential of the vibrating electrode 12 (hereinafter referred to as “electrode potential”) having the displacement current value from the conductive surface 111 as a specified current value is acquired. The The potential determined by the control circuit 25 is directly acquired by the computer 3.

表面電位計1では、複数種類の測定方法により試料9の表面電位を測定することが可能とされており、以下では、まず、当該複数種類の測定方法のうち、第1の測定方法について説明する。図2.Aおよび図2.Bは、表面電位計1による試料9の表面電位の測定の流れを示す図である。試料9の表面電位が測定される際には、まず、試料9が、裏面を試料保持部11に接触させつつ試料保持部11により保持される(ステップS11)。続いて、制御部4により移動機構16が制御されることにより試料9が試料保持部11と共に水平方向に移動し、振動電極12が、試料9の表面91上に設定された複数の測定点に含まれる一の測定点(以下、「最初の測定点」という。)に非接触にて対向する(ステップS12)。そして、昇降機構14により、振動電極12と試料9の表面91との間の距離が所定値に設定される(ステップS13)。   In the surface potential meter 1, the surface potential of the sample 9 can be measured by a plurality of types of measurement methods. In the following, first, among the plurality of types of measurement methods, the first measurement method will be described. . FIG. A and FIG. B is a diagram showing a flow of measurement of the surface potential of the sample 9 by the surface potential meter 1. FIG. When the surface potential of the sample 9 is measured, first, the sample 9 is held by the sample holding unit 11 with the back surface in contact with the sample holding unit 11 (step S11). Subsequently, when the moving mechanism 16 is controlled by the control unit 4, the sample 9 moves in the horizontal direction together with the sample holding unit 11, and the vibrating electrode 12 is placed at a plurality of measurement points set on the surface 91 of the sample 9. It is opposed to one included measurement point (hereinafter referred to as “first measurement point”) in a non-contact manner (step S12). Then, the distance between the vibrating electrode 12 and the surface 91 of the sample 9 is set to a predetermined value by the elevating mechanism 14 (step S13).

次に、制御部4の制御により振動部13のピエゾアクチュエータに駆動電圧が付与されて振動電極12の振動方向(すなわち、振動電極12から試料9へと向かう方向)への振動が開始され(ステップS14)、振動電極12の振動が所定の振幅にて静定した後、予め設定されている電流指定電圧がコンピュータ3から制御回路25に入力される(ステップS15)。これにより、試料保持部11からの変位電流の値(すなわち、電流の絶対値の最大値)が電流指定電圧が示す値となるように振動電極12の電極電位がフィードバック制御により変更され、最終的に取得された電極電位がコンピュータ3に入力される。換言すれば、振動電極12を試料9に対して相対的に振動させた際の振動電極12の電極電位と試料保持部11の導電面111からの変位電流との組み合わせが1つ取得される(ステップS16)。   Next, under the control of the control unit 4, a drive voltage is applied to the piezo actuator of the vibration unit 13, and the vibration electrode 12 starts to vibrate in the vibration direction (that is, the direction from the vibration electrode 12 to the sample 9) (step). S14) After the vibration of the vibrating electrode 12 is stabilized at a predetermined amplitude, a preset current designation voltage is input from the computer 3 to the control circuit 25 (step S15). As a result, the electrode potential of the vibrating electrode 12 is changed by feedback control so that the value of the displacement current from the sample holding unit 11 (that is, the maximum value of the absolute value of the current) becomes the value indicated by the current designation voltage. The electrode potential obtained in (1) is input to the computer 3. In other words, one combination of the electrode potential of the vibrating electrode 12 when the vibrating electrode 12 is vibrated relative to the sample 9 and the displacement current from the conductive surface 111 of the sample holding unit 11 is acquired ( Step S16).

電極電位と変位電流の組み合わせが取得されると、ステップS15へと戻り(ステップS17)、電流指定電圧が変更されて再度電極電位の取得が行われる(ステップS15,S16)。表面電位計1では、電流指定電圧の変更および電極電位の取得が複数回(本実施の形態では、9回)行われ、これにより、電極電位と試料保持部11からの変位電流との関係(すなわち、電極電位と変位電流との複数の組み合わせ)が取得される(ステップS15〜S17)。換言すれば、振動電極12の電極電位を変更しつつ電極電位と変位電流との関係が取得される。   When the combination of the electrode potential and the displacement current is acquired, the process returns to step S15 (step S17), the current designation voltage is changed, and the electrode potential is acquired again (steps S15 and S16). In the surface electrometer 1, the current designation voltage is changed and the electrode potential is acquired a plurality of times (in this embodiment, 9 times), whereby the relationship between the electrode potential and the displacement current from the sample holder 11 ( That is, a plurality of combinations of electrode potential and displacement current are acquired (steps S15 to S17). In other words, the relationship between the electrode potential and the displacement current is acquired while changing the electrode potential of the vibrating electrode 12.

振動電極12と試料9との間の距離が一定に維持された状態で処理部2の動作により電極電位と変位電流との関係が取得されると、制御部4により昇降機構14が制御されることにより振動電極12と試料9の表面91との間の距離が所定の大きさだけ変更された後(ステップS18,S181)、ステップS15へと戻り、電流指定電圧の変更および電極電位の取得が複数回繰り返されて電極電位と変位電流との関係が再度取得される(ステップS15〜S17)。そして、振動電極12と試料9の表面91との間の距離の変更、および、電極電位と変位電流との関係の取得が所定回数繰り返されることにより、電極電位と変位電流との複数の関係が取得される(ステップS15〜S18,S181)。   When the relationship between the electrode potential and the displacement current is acquired by the operation of the processing unit 2 while the distance between the vibrating electrode 12 and the sample 9 is kept constant, the lifting mechanism 14 is controlled by the control unit 4. As a result, after the distance between the vibrating electrode 12 and the surface 91 of the sample 9 is changed by a predetermined magnitude (steps S18 and S181), the process returns to step S15 to change the current designation voltage and acquire the electrode potential. The relationship between the electrode potential and the displacement current is acquired again by repeating a plurality of times (steps S15 to S17). Then, by changing the distance between the vibrating electrode 12 and the surface 91 of the sample 9 and acquiring the relationship between the electrode potential and the displacement current a predetermined number of times, a plurality of relationships between the electrode potential and the displacement current are obtained. Obtained (steps S15 to S18, S181).

図3は電極電位と電流指定電圧との関係(すなわち、電極電位と変位電流との関係)を例示する図である。四角のドットは、振動電極12と試料9の表面91との間の距離を一定に保って取得された電流指定電圧と電極電位との組み合わせ(離散的な関係)を示し、実線の線811は四角のドットから最小二乗法にて求められる直線であり、電極電位と変位電流との連続的な線形の関係を示す。また、三角のドットは、四角のドットの場合よりも振動電極12と試料9の表面との間の距離を小さくした場合の電流指定電圧と電極電位との組み合わせを示し、丸のドットは振動電極12と試料9の表面91との間の距離をさらに小さくした場合の電流指定電圧と電極電位との組み合わせを示す。破線812は三角のドットから導かれる直線であり、一点鎖線813は丸のドットから導かれる直線である。すなわち、直線811〜813は、振動電極12と試料9の表面91との間の距離の3つの値に対応する電極電位と変位電流との3つの関係を示す。   FIG. 3 is a diagram illustrating the relationship between the electrode potential and the current designation voltage (that is, the relationship between the electrode potential and the displacement current). A square dot indicates a combination (discrete relationship) of a current designation voltage and an electrode potential obtained by keeping the distance between the vibrating electrode 12 and the surface 91 of the sample 9 constant, and a solid line 811 is It is a straight line obtained from a square dot by the least square method, and shows a continuous linear relationship between the electrode potential and the displacement current. Triangular dots indicate combinations of the current designation voltage and electrode potential when the distance between the vibrating electrode 12 and the surface of the sample 9 is smaller than in the case of square dots, and the round dots indicate vibrating electrodes. 12 shows a combination of the specified current voltage and the electrode potential when the distance between the surface 12 of the sample 9 and the surface 91 of the sample 9 is further reduced. A broken line 812 is a straight line derived from a triangular dot, and an alternate long and short dash line 813 is a straight line derived from a round dot. That is, the straight lines 811 to 813 indicate three relationships between the electrode potential and the displacement current corresponding to the three values of the distance between the vibrating electrode 12 and the surface 91 of the sample 9.

図3の各直線811〜813が示すように、電極電位と変位電流との関係は線形であり、振動電極12と試料9の表面91との間の距離が大きいほど傾きが大きくなる。このように、表面電位計1では、振動電極12と試料9の表面91との間の距離は、電極電位と変位電流との関係を変化させる測定条件となっており、昇降機構14(すなわち、測定条件変更機構)により当該測定条件を変更して電極電位と変位電流との関係の取得が繰り返される。   As shown by the straight lines 811 to 813 in FIG. 3, the relationship between the electrode potential and the displacement current is linear, and the inclination increases as the distance between the vibrating electrode 12 and the surface 91 of the sample 9 increases. As described above, in the surface potential meter 1, the distance between the vibrating electrode 12 and the surface 91 of the sample 9 is a measurement condition for changing the relationship between the electrode potential and the displacement current, and the lifting mechanism 14 (that is, The measurement condition is changed by the measurement condition changing mechanism), and the acquisition of the relationship between the electrode potential and the displacement current is repeated.

図3に示す直線811〜813は1つの点814で交わり、振動電極12と試料9の表面91との間の距離をさらに変化させた場合の他の直線も点814を通る。このように、点814は振動電極12と試料9の表面91との間の距離に依存しないことから、点814では振動電極12と試料9との間の静電容量の変化による変位電流が実際には生じていないと考えられる。すなわち、点814では、振動電極12の形状、回路にて生じるノイズ、試料9と試料保持部11の導電面111との接触状態による回路の変化等の様々な要因により、導電面111からの変位電流は0とはならないが、当該変位電流には、振動電極12と試料9との間の静電容量の変化に起因して発生する交流電流は含まれていないと考えられる。   The straight lines 811 to 813 shown in FIG. 3 intersect at one point 814, and another straight line when the distance between the vibrating electrode 12 and the surface 91 of the sample 9 is further changed also passes through the point 814. As described above, since the point 814 does not depend on the distance between the vibrating electrode 12 and the surface 91 of the sample 9, the displacement current due to the change in capacitance between the vibrating electrode 12 and the sample 9 is actually detected at the point 814. It is thought that this did not occur. That is, at the point 814, the displacement from the conductive surface 111 is caused by various factors such as the shape of the vibrating electrode 12, noise generated in the circuit, and a change in the circuit due to the contact state between the sample 9 and the conductive surface 111 of the sample holder 11. Although the current does not become 0, it is considered that the displacement current does not include an alternating current generated due to a change in capacitance between the vibrating electrode 12 and the sample 9.

表面電位計1では、上述のステップS15〜S18,S181に示す工程により取得された電極電位と変位電流との複数の離散的な関係に基づいて、振動電極12と試料9の表面91との間の複数の距離(すなわち、複数の測定条件)に対応する電極電位と変位電流との複数の連続的な関係を示す直線811〜813が求められ、さらに、複数の直線811〜813の交点814が示す振動電極12と試料9の表面91との間の距離に依存しない電極電位と変位電流(を示す電流指定電圧)との組み合わせが求められる。そして、当該組み合わせの電極電位と変位電流とが、基準電位Vsおよび基準電流isとしてコンピュータ3に記憶される(ステップS19)。   In the surface potential meter 1, based on a plurality of discrete relationships between the electrode potential and the displacement current acquired by the steps shown in steps S <b> 15 to S <b> 18 and S <b> 181 described above, Straight lines 811 to 813 indicating a plurality of continuous relationships between electrode potentials and displacement currents corresponding to a plurality of distances (that is, a plurality of measurement conditions) are obtained, and further, intersection points 814 of the plurality of straight lines 811 to 813 are obtained. A combination of an electrode potential and a displacement current (indicating current designation voltage) independent of the distance between the vibrating electrode 12 shown and the surface 91 of the sample 9 is required. Then, the electrode potential and displacement current of the combination are stored in the computer 3 as the reference potential Vs and the reference current is (step S19).

表面電位計1では、上述のように、図3中の点814では振動電極12と試料9との間の静電容量の変化による変位電流が実際には生じていないと考えられるため、基準電位Vsとされた振動電極12と振動電極12に対向する試料9の最初の測定点との間には電位差は生じていないと推定することができる。したがって、振動電極12に対向する最初の測定点における試料9の表面電位は基準電位Vsに等しいと推定することができるため、コンピュータ3において、基準電位Vsが最初の測定点における試料9の表面電位として出力される(ステップS20)。表面電位計1では処理部2にて正確な電極電位が直接的に取得されてコンピュータ3へと送られるため、求められる基準電位Vsおよび基準電流isの精度、および、試料9の表面電位の測定精度を向上することができる。   In the surface electrometer 1, as described above, since it is considered that a displacement current due to a change in capacitance between the vibrating electrode 12 and the sample 9 does not actually occur at the point 814 in FIG. It can be estimated that there is no potential difference between the vibrating electrode 12 having Vs and the first measurement point of the sample 9 facing the vibrating electrode 12. Accordingly, since it can be estimated that the surface potential of the sample 9 at the first measurement point facing the vibrating electrode 12 is equal to the reference potential Vs, in the computer 3, the reference potential Vs is the surface potential of the sample 9 at the first measurement point. (Step S20). In the surface potential meter 1, since the accurate electrode potential is directly acquired by the processing unit 2 and sent to the computer 3, the accuracy of the required reference potential Vs and reference current is and the measurement of the surface potential of the sample 9 are measured. Accuracy can be improved.

図4は、表面電位計1において基準電位Vsおよび基準電流isを求める処理の他の例を示す図であり、図2.A中のステップS15〜S17における電極電位の変更範囲(すなわち、電流指定電圧が指定する変位電流の変更範囲に対応する電極電位の変更範囲)に基準電位Vsが含まれない場合の例を示している。図4中の直線821,822,823は、図3の場合と同様に、振動電極12と試料9との間の距離を変更して求められた電極電位と変位電流との複数の連続的な関係を示すものであり、これらの直線は点824にて交差する。このように、基準電位Vsの絶対値が比較的大きい場合であっても、図4に示すように、電極電位と変位電流との複数の連続的な関係を示す複数の直線821〜823の交点824を求めることにより、基準電位Vsおよび基準電流isを交点824における電極電位および変位電流として求めることが実現され、また、表面電位の測定も可能とされる。   4 is a diagram showing another example of processing for obtaining the reference potential Vs and the reference current is in the surface electrometer 1. FIG. An example in which the reference potential Vs is not included in the change range of the electrode potential in steps S15 to S17 in A (that is, the change range of the electrode potential corresponding to the change range of the displacement current specified by the current designation voltage) is shown. Yes. Similar to the case of FIG. 3, straight lines 821, 822 and 823 in FIG. 4 indicate a plurality of continuous potentials of the electrode potential and the displacement current obtained by changing the distance between the vibrating electrode 12 and the sample 9. These lines show a relationship, and these straight lines intersect at a point 824. As described above, even when the absolute value of the reference potential Vs is relatively large, as shown in FIG. 4, the intersections of a plurality of straight lines 821 to 823 indicating a plurality of continuous relationships between the electrode potential and the displacement current. By obtaining 824, the reference potential Vs and the reference current is can be obtained as the electrode potential and displacement current at the intersection 824, and the surface potential can also be measured.

最初の測定点における表面電位が取得されると、制御部4により移動機構16が制御されることにより、試料9が試料保持部11と共に水平に(すなわち、試料9の表面91に平行に)移動し、振動電極12が、2番目の測定点(すなわち、試料9の表面91上に設定された複数の測定点に含まれる他の測定点)に非接触にて対向する(ステップS21)。表面電位計1では、2番目以降の測定点における表面電位の測定は、最初の測定点において求められた基準電流isを利用して行われる。   When the surface potential at the first measurement point is acquired, the moving mechanism 16 is controlled by the control unit 4 so that the sample 9 moves horizontally with the sample holding unit 11 (that is, parallel to the surface 91 of the sample 9). Then, the vibrating electrode 12 faces the second measurement point (that is, other measurement points included in the plurality of measurement points set on the surface 91 of the sample 9) in a non-contact manner (step S21). In the surface potential meter 1, the measurement of the surface potential at the second and subsequent measurement points is performed using the reference current is obtained at the first measurement point.

図5は、試料の表面上に設定された複数(593点)の測定点のそれぞれにおいて、上述のステップS15〜S18,S181,S19と同様の工程により求められた振動電極と試料の表面との間の距離に依存しない変位電流(すなわち、ステップS19にて求められる基準電流isに対応する電流であり、以下、単に「基準電流」という。)を参考のために示す図である。図5の横軸は測定点に付された番号を示し、縦軸は各測定点における基準電流を示す。図5に示すように、試料の表面上の複数の測定点における基準電流はほぼ等しくなっているため、各測定点における基準電流として、一の測定点において求められた基準電流を利用することができる。   FIG. 5 shows the relationship between the vibrating electrode and the surface of the sample obtained by the same steps as in steps S15 to S18, S181, and S19 described above at each of a plurality (593 points) of measurement points set on the surface of the sample. It is a figure which shows the displacement current (namely, it is a current corresponding to the reference current is calculated | required in step S19, and only hereafter is referred to as a "reference current") for reference, without depending on the distance between them. The horizontal axis in FIG. 5 indicates the number assigned to the measurement point, and the vertical axis indicates the reference current at each measurement point. As shown in FIG. 5, since the reference currents at a plurality of measurement points on the surface of the sample are almost equal, the reference current obtained at one measurement point can be used as the reference current at each measurement point. it can.

図1に示す振動電極12が2番目の測定点と対向すると、基準電流isに対応する電流指定電圧がコンピュータ3から制御回路25に入力される(ステップS22)。これにより、試料保持部11からの変位電流が基準電流isに等しくなるように振動電極12の電極電位がフィードバック制御により変更される。上述のように、試料保持部11からの変位電流が基準電流isに等しい場合、振動電極12と試料9との間の静電容量の変化による変位電流が実際には生じておらず、振動電極12と振動電極12に対向する試料9の測定点との間には電位差は生じていないと推定することができる。このため、上記フィードバック制御により最終的に取得された振動電極12の電極電位(すなわち、変位電流が基準電流isに等しくなるときの電極電位)が、コンピュータ3により2番目の測定点における試料9の表面電位として取得されて出力される(ステップS23)。   When the vibrating electrode 12 shown in FIG. 1 faces the second measurement point, a current designation voltage corresponding to the reference current is is input from the computer 3 to the control circuit 25 (step S22). Thereby, the electrode potential of the vibrating electrode 12 is changed by feedback control so that the displacement current from the sample holder 11 becomes equal to the reference current is. As described above, when the displacement current from the sample holder 11 is equal to the reference current is, the displacement current due to the change in capacitance between the vibrating electrode 12 and the sample 9 does not actually occur, and the vibrating electrode It can be estimated that there is no potential difference between 12 and the measurement point of the sample 9 facing the vibration electrode 12. Therefore, the electrode potential of the vibrating electrode 12 finally obtained by the feedback control (that is, the electrode potential when the displacement current becomes equal to the reference current is) is calculated by the computer 3 on the sample 9 at the second measurement point. It is acquired and output as a surface potential (step S23).

2番目の測定点における表面電位が取得されると、次の測定点が有るか否かが確認され(ステップS24)、次の測定点が有る場合には試料9が移動して振動電極12が次の測定点と非接触にて対向する(ステップS25)。そして、試料保持部11からの変位電流が基準電流is(すなわち、ステップS22において制御回路25に入力されている電流指定電圧が示す値)に等しくなるように振動電極12の電極電位がフィードバック制御により変更され、変位電流が基準電流isに等しくなるときの電極電位が試料9の表面電位として取得されて出力される(ステップS26)。   When the surface potential at the second measurement point is acquired, it is confirmed whether or not there is a next measurement point (step S24). If there is a next measurement point, the sample 9 moves and the vibrating electrode 12 moves. Opposes the next measurement point in a non-contact manner (step S25). Then, the electrode potential of the vibrating electrode 12 is controlled by feedback control so that the displacement current from the sample holding unit 11 becomes equal to the reference current is (that is, the value indicated by the current designation voltage input to the control circuit 25 in step S22). The electrode potential when the displacement current is changed and becomes equal to the reference current is is acquired and output as the surface potential of the sample 9 (step S26).

続いて、ステップS24に戻って次の測定点が有るか否かが確認され(ステップS24)、次の測定点が有る場合には、上述のように、試料9の移動および表面電位の取得(ステップS25,S26)が行われた後、再度ステップS24に戻る。表面電位計1では、試料9の表面91上に設定された複数の測定点の全てに対する表面電位の測定が終了するまで、ステップS24〜S26が繰り返される(すなわち、未測定の測定点に対してステップS24〜S26が順次行われる)。   Subsequently, returning to step S24, it is confirmed whether or not there is a next measurement point (step S24). If there is a next measurement point, the movement of the sample 9 and the acquisition of the surface potential (as described above) After steps S25 and S26) are performed, the process returns to step S24 again. In the surface potential meter 1, steps S <b> 24 to S <b> 26 are repeated until the measurement of the surface potential for all of the plurality of measurement points set on the surface 91 of the sample 9 is completed (that is, for the measurement points not yet measured). Steps S24 to S26 are sequentially performed).

以上に説明したように、表面電位計1では、試料9の表面91上に設定された複数の測定点のうち最初の測定点において、振動電極12と試料9の表面91との間の距離に依存しない試料保持部11からの変位電流である基準電流isが求められる。そして、2番目の測定点における表面電位が、ステップS21〜S23に示すように、当該基準電流isを利用して、制御回路25に入力された電流指定電圧や振動電極12と試料9の表面91との間の距離を変更することなく迅速に測定されるとともに、振動電極12と試料9の表面91との間の距離に依存することなく高精度に求められる。その結果、試料9の表面91上に設定された複数の測定点における表面電位の測定を、電極電位および変位電流に基づいて迅速かつ高精度に行うことができる。   As described above, in the surface electrometer 1, the distance between the vibrating electrode 12 and the surface 91 of the sample 9 is set at the first measurement point among the plurality of measurement points set on the surface 91 of the sample 9. A reference current is, which is a displacement current from the sample holder 11 that does not depend, is obtained. Then, as shown in steps S21 to S23, the surface potential at the second measurement point uses the reference current is to input the current designation voltage input to the control circuit 25 and the surface 91 of the vibrating electrode 12 and the sample 9. Is quickly measured without changing the distance between the first electrode and the second electrode, and is obtained with high accuracy without depending on the distance between the vibrating electrode 12 and the surface 91 of the sample 9. As a result, measurement of the surface potential at a plurality of measurement points set on the surface 91 of the sample 9 can be performed quickly and with high accuracy based on the electrode potential and the displacement current.

また、表面電位計1では、試料9の表面91上における3番目以降の全ての測定点における表面電位が、ステップS24〜S26に示すように、基準電流isを利用して迅速かつ高精度に求められる。これにより、試料9の表面91上に設定された複数の測定点における表面電位の測定をより迅速に行うことができる。   In the surface potential meter 1, the surface potentials at all the third and subsequent measurement points on the surface 91 of the sample 9 are obtained quickly and with high accuracy using the reference current is as shown in steps S24 to S26. It is done. Thereby, the surface potential at a plurality of measurement points set on the surface 91 of the sample 9 can be measured more quickly.

上述のように、表面電位計1では、試料9の表面91に対向する振動電極12を振動させ、試料9を保持する試料保持部11の導電面111からの変位電流および振動電極12の電極電位に基づいて表面電位が求められる。その結果、振動電極12とその周囲のカバー151等の構造との間の浮遊容量の影響(すなわち、浮遊容量によるノイズ成分)を抑制して高精度な表面電位の測定を行うことができる。   As described above, in the surface potential meter 1, the vibration electrode 12 facing the surface 91 of the sample 9 is vibrated, and the displacement current from the conductive surface 111 of the sample holder 11 that holds the sample 9 and the electrode potential of the vibration electrode 12 are detected. The surface potential is determined based on As a result, it is possible to measure the surface potential with high accuracy while suppressing the influence of stray capacitance between the vibrating electrode 12 and the surrounding cover 151 and the like (that is, noise components due to stray capacitance).

また、ステップS15〜S18,S181,S19における基準電位Vsおよび基準電流isの取得において、振動電極12と試料9の表面91との間の距離が、電極電位と変位電流との関係を変化させる測定条件とされる。これにより、測定条件を機械的に容易に変更することができ、その結果、基準電位Vsおよび基準電流isの取得を容易とすることができる。   Further, in the acquisition of the reference potential Vs and the reference current is in steps S15 to S18, S181, and S19, the distance between the vibrating electrode 12 and the surface 91 of the sample 9 changes the relationship between the electrode potential and the displacement current. It is a condition. Thereby, the measurement conditions can be easily changed mechanically, and as a result, acquisition of the reference potential Vs and the reference current is can be facilitated.

表面電位計1では、通常、複数の試料9の表面電位測定が順次行われ、図2.Aおよび図2.Bに示すステップS11〜S18,S181,S19〜S26が、複数の試料9に対して順次行われる。上述のように、基準電流isは1枚の試料の表面上においてほぼ一定であるが、試料と試料保持部11の導電面111との接触状態による回路の変化や試料の表面状態の変化等の要因により、複数の試料では互いに異なる可能性がある。そこで、複数の試料のそれぞれにおいて、最初の測定点における基準電流isの取得(ステップS19)が行われることにより、複数の試料の表面電位の測定を迅速かつ高精度に行うことができる。   In the surface potential meter 1, the surface potential of a plurality of samples 9 is usually measured sequentially, and FIG. A and FIG. Steps S11 to S18, S181, and S19 to S26 shown in B are sequentially performed on the plurality of samples 9. As described above, the reference current is is almost constant on the surface of one sample, but the circuit changes due to the contact state between the sample and the conductive surface 111 of the sample holder 11, the change in the surface state of the sample, etc. Due to factors, multiple samples may differ from each other. Therefore, by acquiring the reference current is at the first measurement point (step S19) in each of the plurality of samples, the surface potential of the plurality of samples can be measured quickly and with high accuracy.

また、表面電位計1では、表面電位の測定後に表面電位計1から搬出された試料9について、もう1度表面電位測定を行う場合は、同一の試料9であっても、表面電位計1に再度搬入された試料9についてステップS11〜S18,S181,S19により基準電流isを再度取得し、新たな基準電流isを利用して表面電位の再測定が行われることが好ましい。これにより、試料9と試料保持部11の導電面111との接触状態による回路の変化等の影響を排除し、2回目の試料9の表面電位の測定を高精度に行うことができる。   Further, in the surface potential meter 1, when the surface potential measurement is performed again for the sample 9 carried out from the surface potential meter 1 after the surface potential measurement, even if it is the same sample 9, It is preferable that the reference current is is acquired again in steps S11 to S18, S181, and S19 with respect to the sample 9 that has been carried in again, and the surface potential is remeasured using the new reference current is. Thereby, the influence of the change of the circuit, etc. due to the contact state between the sample 9 and the conductive surface 111 of the sample holder 11 can be eliminated, and the surface potential of the sample 9 can be measured with high accuracy for the second time.

次に、表面電位計1による表面電位の第2の測定方法について説明する。図6.Aおよび図6.Bは、第2の測定方法による表面電位測定の流れの一部を示す図である。第2の測定方法では、図2.Aに示すステップS11〜S18,S181と同様の工程が行われた後、図6.Aおよび図6.Bに示すステップS31〜S37,S371,S38が行われ、その後、図2.Bに示すステップS20〜S26が行われる。なお、図6.Aでは、図の理解を容易にするために、図2.A中に示すステップS18,S181を併せて描いている。   Next, a second method for measuring the surface potential with the surface potential meter 1 will be described. FIG. A and FIG. B is a diagram showing a part of the flow of surface potential measurement by the second measurement method. In the second measurement method, FIG. After the same steps as steps S11 to S18 and S181 shown in A are performed, FIG. A and FIG. Steps S31 to S37, S371, and S38 shown in FIG. Steps S20 to S26 shown in B are performed. In addition, FIG. In FIG. 2A, in order to facilitate understanding of the figure, FIG. Steps S18 and S181 shown in FIG.

第2の測定方法では、まず、試料保持部11に保持された試料9が水平方向に移動することにより振動電極12が最初の測定点に非接触にて対向した後、振動電極12と試料9の表面91との間の距離が所定値に設定され、振動電極12の振動方向への振動が開始時される(ステップS11〜S14)。続いて、制御回路25に電流指定電圧が入力されて電極電位がフィードバック制御により変更され、電極電位と変位電流との組み合わせが1つ取得される(ステップS15,S16)。そして、ステップS15へと戻り(ステップS17)、電流指定電圧の変更および電極電位の取得が複数回行われ、これにより、電極電位と変位電流との関係が取得される(ステップS15〜S17)。   In the second measurement method, first, the sample 9 held by the sample holder 11 moves in the horizontal direction so that the vibrating electrode 12 faces the first measurement point in a non-contact manner, and then the vibrating electrode 12 and the sample 9 are moved. The distance from the surface 91 is set to a predetermined value, and the vibration electrode 12 starts to vibrate in the vibration direction (steps S11 to S14). Subsequently, the current designation voltage is input to the control circuit 25, the electrode potential is changed by feedback control, and one combination of the electrode potential and the displacement current is acquired (steps S15 and S16). Then, the process returns to step S15 (step S17), and the current designation voltage is changed and the electrode potential is acquired a plurality of times, thereby acquiring the relationship between the electrode potential and the displacement current (steps S15 to S17).

電極電位と変位電流との関係が取得されると、振動電極12と試料9の表面91との間の距離が所定の大きさだけ変更された後(ステップS18,S181)、ステップS15へと戻り、電流指定電圧の変更および電極電位の取得が複数回繰り返されて電極電位と変位電流との関係が再度取得される(ステップS15〜S17)。そして、振動電極12と試料9の表面91との間の距離の変更、および、電極電位と変位電流との関係の取得が所定回数繰り返されることにより、電極電位と変位電流との複数の離散的な関係が取得される(ステップS15〜S18,S181)。   When the relationship between the electrode potential and the displacement current is acquired, the distance between the vibrating electrode 12 and the surface 91 of the sample 9 is changed by a predetermined size (steps S18 and S181), and then the process returns to step S15. Then, the change of the current designation voltage and the acquisition of the electrode potential are repeated a plurality of times, and the relationship between the electrode potential and the displacement current is acquired again (steps S15 to S17). Then, the change of the distance between the vibrating electrode 12 and the surface 91 of the sample 9 and the acquisition of the relationship between the electrode potential and the displacement current are repeated a predetermined number of times, whereby a plurality of discrete values of the electrode potential and the displacement current are obtained. Are acquired (steps S15 to S18, S181).

第2の測定方法では、電極電位と変位電流との複数の離散的な関係が求められると、当該関係に基づいて、振動電極12と試料9の表面91との間の複数の距離(すなわち、複数の測定条件)に対応する電極電位と変位電流との複数の連続的な関係を示す直線(図3および図4参照)が求められ、さらに、複数の直線の交点(図3および図4参照)が示す振動電極12と試料9の表面91との間の距離に依存しない電極電位と変位電流との仮の組み合わせが求められる(ステップS31)。以下、当該仮の組み合わせの電極電位および変位電流をそれぞれ、「仮基準電位」および「仮基準電流」という。   In the second measurement method, when a plurality of discrete relationships between the electrode potential and the displacement current are obtained, a plurality of distances between the vibrating electrode 12 and the surface 91 of the sample 9 (that is, based on the relationship) A straight line (see FIGS. 3 and 4) indicating a plurality of continuous relationships between the electrode potential and the displacement current corresponding to a plurality of measurement conditions) is obtained, and further, an intersection of the plurality of straight lines (see FIGS. 3 and 4). A temporary combination of the electrode potential and the displacement current that does not depend on the distance between the vibrating electrode 12 and the surface 91 of the sample 9 is obtained (step S31). Hereinafter, the electrode potential and displacement current of the temporary combination are referred to as “temporary reference potential” and “temporary reference current”, respectively.

次に、仮基準電位が、図2.A中のステップS15〜S17における電極電位の変更範囲(すなわち、電流指定電圧が指定する変位電流の変更範囲に対応する電極電位の変更範囲)に含まれるか否かが判断される(ステップS32)。そして、仮基準電位が電極電位の変更範囲に含まれる場合(すなわち、図3に示すように、複数の直線811〜813の交点814の電極電位が、各直線に係る電流指定電圧と電極電位との組み合わせを示すドットの電極電位の最小値以上かつ最大値以下である場合)、仮基準電位および仮基準電流がそれぞれ、基準電位Vsおよび基準電流isとしてコンピュータ3に記憶された後(ステップS33)、第1の測定方法と同様に、ステップS20〜S26が行われる。   Next, the temporary reference potential is shown in FIG. It is determined whether or not it is included in the change range of the electrode potential in steps S15 to S17 in A (that is, the change range of the electrode potential corresponding to the change range of the displacement current specified by the current designation voltage) (step S32). . When the temporary reference potential is included in the change range of the electrode potential (that is, as shown in FIG. 3, the electrode potential at the intersection 814 of the plurality of straight lines 811 to 813 is the current specified voltage and the electrode potential related to each straight line. And the temporary reference potential and the temporary reference current are stored in the computer 3 as the reference potential Vs and the reference current is, respectively (step S33). Similarly to the first measurement method, steps S20 to S26 are performed.

一方、仮基準電位がステップS15〜S17における電極電位の変更範囲外である場合(すなわち、図4に示すように、複数の直線821〜823の交点824の電極電位が、各直線に係る電流指定電圧と電極電位との組み合わせを示すドットの電極電位の最小値よりも小さい、または、最大値よりも大きい場合)、コンピュータ3から制御回路25に、仮基準電流または仮基準電流近傍の値を指定する電流指定電圧が入力される(ステップS34)。そして、ステップS16と同様に、電極電位がフィードバック制御により変更され、仮基準電位および仮基準電流近傍の電極電位と変位電流との組み合わせが1つ取得される(ステップS35)。続いてステップS34へと戻り(ステップS36)、ステップS15〜S17と同様に、電流指定電圧に対応する電極電位が仮基準電位を含む範囲内で変更されるように電流指定電圧を変更しつつ電極電位を取得する工程が所定回数だけ行われ、これにより、電極電位と変位電流との関係が取得される(ステップS34〜S36)。   On the other hand, when the temporary reference potential is outside the change range of the electrode potential in steps S15 to S17 (that is, as shown in FIG. 4, the electrode potential at the intersection 824 of the plurality of straight lines 821 to 823 is the current designation related to each straight line. When the dot electrode potential is smaller than the minimum value or larger than the maximum value, the computer 3 designates a temporary reference current or a value near the temporary reference current to the control circuit 25. A current designation voltage to be input is input (step S34). Then, similarly to step S16, the electrode potential is changed by feedback control, and one combination of the temporary reference potential and the electrode potential near the temporary reference current and the displacement current is acquired (step S35). Subsequently, the process returns to step S34 (step S36). Similar to steps S15 to S17, the electrode potential is changed while changing the current designation voltage so that the electrode potential corresponding to the current designation voltage is changed within the range including the temporary reference potential. The step of acquiring the potential is performed a predetermined number of times, thereby acquiring the relationship between the electrode potential and the displacement current (steps S34 to S36).

電極電位と変位電流との関係が取得されると、ステップS18,S181と同様に、振動電極12と試料9の表面91との間の距離(すなわち、測定条件)が所定の大きさだけ変更された後(ステップS37,S371)、ステップS34へと戻り、電流指定電圧に対応する電極電位が仮基準電位を含む範囲内で変更されるように電流指定電圧を変更しつつ電極電位を取得する工程が複数回繰り返されて電極電位と変位電流との関係が再度取得される(ステップS34〜S36)。第2の測定方法では、振動電極12と試料9の表面91との間の距離の変更、および、電極電位と変位電流との関係の取得が所定回数だけ繰り返されることにより、ステップS15〜S18,S181と同様に、電極電位と変位電流との複数の離散的な関係が取得される(ステップS34〜S37,S371)。   When the relationship between the electrode potential and the displacement current is acquired, the distance between the vibrating electrode 12 and the surface 91 of the sample 9 (that is, the measurement condition) is changed by a predetermined magnitude as in steps S18 and S181. After that (steps S37 and S371), the process returns to step S34 to acquire the electrode potential while changing the current designation voltage so that the electrode potential corresponding to the current designation voltage is changed within a range including the temporary reference potential. Is repeated a plurality of times, and the relationship between the electrode potential and the displacement current is acquired again (steps S34 to S36). In the second measurement method, the change of the distance between the vibrating electrode 12 and the surface 91 of the sample 9 and the acquisition of the relationship between the electrode potential and the displacement current are repeated a predetermined number of times, so that steps S15 to S18, Similar to S181, a plurality of discrete relationships between the electrode potential and the displacement current are acquired (steps S34 to S37, S371).

表面電位計1では、上述のステップS34〜S37,S371に示す工程により取得された電極電位と変位電流との複数の離散的な関係に基づいて、図7に示すように、振動電極12と試料9の表面91との間の複数の距離に対応する電極電位と変位電流との複数の連続的な関係を示す直線831〜833が求められる。そして、各直線に係る電流指定電圧と電極電位との組み合わせを示すドットの分布の範囲内(すなわち、ステップS34〜S36における電極電位の変更範囲内)において、複数の直線831〜833の交点834が求められ、交点834が示す電極電位と変位電流との組み合わせが、振動電極12と試料9の表面91との間の距離に依存しない基準電位Vsおよび基準電流isとしてコンピュータ3に記憶される(ステップS38)。   In the surface potential meter 1, as shown in FIG. 7, the vibrating electrode 12 and the sample are based on the plurality of discrete relationships between the electrode potential and the displacement current acquired by the steps shown in steps S 34 to S 37 and S 371 described above. The straight lines 831 to 833 indicating a plurality of continuous relationships between the electrode potential and the displacement current corresponding to the plurality of distances between the nine surfaces 91 are obtained. An intersection 834 of a plurality of straight lines 831 to 833 is within the dot distribution range indicating the combination of the current designation voltage and the electrode potential related to each straight line (that is, within the change range of the electrode potential in steps S34 to S36). The combination of the obtained electrode potential and displacement current indicated by the intersection 834 is stored in the computer 3 as the reference potential Vs and the reference current is independent of the distance between the vibrating electrode 12 and the surface 91 of the sample 9 (step S38).

基準電位Vsおよび基準電流isが求められると、基準電位Vsが最初の測定点における試料9の表面電位として出力され、試料9が移動して振動電極12が2番目の測定点と非接触にて対向し、試料保持部11からの変位電流が基準電流isに等しくなるときの電極電位が、2番目の測定点における試料9の表面電位として取得されて出力される(ステップS20〜S23)。その後、試料9の表面91上に設定された複数の測定点の全てに対する表面電位の測定が終了するまで、試料9を移動して振動電極12を次の測定点に対向させ、変位電流が基準電流isに等しくなるときの電極電位を表面電位として取得する工程が繰り返される(ステップS24〜S26)。   When the reference potential Vs and the reference current is are obtained, the reference potential Vs is output as the surface potential of the sample 9 at the first measurement point, and the sample 9 moves so that the vibrating electrode 12 is not in contact with the second measurement point. The electrode potential when the displacement current from the sample holding unit 11 is equal to the reference current is is acquired and output as the surface potential of the sample 9 at the second measurement point (steps S20 to S23). Thereafter, until the measurement of the surface potential for all of the plurality of measurement points set on the surface 91 of the sample 9 is completed, the sample 9 is moved so that the vibrating electrode 12 faces the next measurement point, and the displacement current becomes the reference The process of acquiring the electrode potential when it becomes equal to the current is as the surface potential is repeated (steps S24 to S26).

以上に説明したように、第2の測定方法では、第1の測定方法と同様に、試料9の表面91上に設定された複数の測定点のうち最初の測定点において基準電流isが求められ、2番目の測定点における表面電位の測定が、基準電流isを利用して迅速かつ高精度に行われる。その結果、試料9の表面91上に設定された複数の測定点における表面電位の測定を迅速かつ高精度に行うことができる。また、最初の測定点を除く全ての測定点における表面電位の測定が、基準電流isを利用して迅速かつ高精度に行われることにより、試料9の表面91上に設定された複数の測定点における表面電位の測定をより迅速に行うことができる。   As described above, in the second measurement method, the reference current is is obtained at the first measurement point among the plurality of measurement points set on the surface 91 of the sample 9, as in the first measurement method. The measurement of the surface potential at the second measurement point is performed quickly and with high accuracy using the reference current is. As a result, the surface potential at a plurality of measurement points set on the surface 91 of the sample 9 can be measured quickly and with high accuracy. In addition, the measurement of the surface potential at all the measurement points except the first measurement point is performed quickly and with high accuracy using the reference current is, so that a plurality of measurement points set on the surface 91 of the sample 9 is obtained. The surface potential can be measured more quickly.

第2の測定方法では、特に、基準電位Vsおよび基準電流isが、電極電位と変位電流との関係の取得時(ステップS15〜S17、または、ステップS34〜S36)における電極電位の変更範囲内において求められる。このため、基準電位Vsが電極電位の変更範囲外において求められる場合に比べて、電極電位と変位電流と離散的な関係から連続的な関係を求める際に(すなわち、電極電位と変位電流との関係を示すグラフにおいて、離散的な関係を示すドットから連続的な関係を示す直線を求める際に)僅かな誤差が存在している場合であっても、基準電位Vsおよび基準電流isの算出時に当該誤差が拡大されて含まれてしまうことを防止し、基準電位Vsおよび基準電流isを高精度に求めることができる。その結果、試料9の表面91上に設定された複数の測定点における表面電位の測定をより高精度に行うことができる。   In the second measurement method, in particular, the reference potential Vs and the reference current is are within the change range of the electrode potential when the relationship between the electrode potential and the displacement current is acquired (steps S15 to S17 or steps S34 to S36). Desired. Therefore, compared to the case where the reference potential Vs is obtained outside the change range of the electrode potential, when obtaining a continuous relationship from the discrete relationship between the electrode potential and the displacement current (that is, between the electrode potential and the displacement current). In the graph indicating the relationship, when calculating a reference potential Vs and a reference current is, even when a slight error exists (when a straight line indicating a continuous relationship is obtained from dots indicating a discrete relationship) It is possible to prevent the error from being enlarged and included, and to obtain the reference potential Vs and the reference current is with high accuracy. As a result, the surface potential at a plurality of measurement points set on the surface 91 of the sample 9 can be measured with higher accuracy.

第2の測定方法により複数の試料9の表面電位測定が順次行われる際には、複数の試料のそれぞれにおいて、最初の測定点における基準電流isの取得(ステップS33またはステップS38)が行われることにより、複数の試料の表面電位の測定を迅速かつ高精度に行うことができる。   When the surface potential measurement of the plurality of samples 9 is sequentially performed by the second measurement method, the acquisition of the reference current is at the first measurement point (step S33 or step S38) is performed for each of the plurality of samples. Thus, the surface potentials of a plurality of samples can be measured quickly and with high accuracy.

次に、表面電位計1による表面電位の第3の測定方法について説明する。図8.Aおよび図8.Bは、第3の測定方法による表面電位測定の流れを示す図である。第3の測定方法は、上述の第1の測定方法とほぼ同様であり、図2.Aに示すステップS12に代えてステップS41が行われ、図2.Bに示すステップS20,S21に代えてステップS42が行われる点のみが異なる。   Next, a third method for measuring the surface potential with the surface potential meter 1 will be described. FIG. A and FIG. B is a diagram showing a flow of surface potential measurement by the third measurement method. The third measurement method is substantially the same as the first measurement method described above, and FIG. Step S41 is performed instead of Step S12 shown in FIG. The only difference is that step S42 is performed instead of steps S20 and S21 shown in B.

第3の測定方法では、試料保持部11に保持された試料9が水平方向に移動することにより、振動電極12が試料9の表面91上に設定された一の基準点(すなわち、複数の測定点のいずれでもない点であり、例えば、試料9の表面91の中心)に非接触にて対向する(ステップS11,S41)。そして、図2.Aおよび図2.Bに示すステップS13〜S18,S181,S19が行われ、基準点において基準電位Vsおよび基準電流isが求められる。   In the third measurement method, the sample 9 held by the sample holder 11 moves in the horizontal direction, so that the vibrating electrode 12 is set to one reference point set on the surface 91 of the sample 9 (that is, a plurality of measurement points). It is a point that is not one of the points, for example, it faces the center of the surface 91 of the sample 9 without contact (steps S11 and S41). And FIG. A and FIG. Steps S13 to S18, S181, and S19 shown in B are performed, and the reference potential Vs and the reference current is are obtained at the reference point.

続いて、振動電極12が、試料9の表面91上に設定された複数の測定点のうち最初の測定点に非接触にて対向し(ステップS42)、ステップS22,S23が行われて最初の測定点における試料9の表面電位が求められる。その後、ステップS24〜S26が繰り返されて試料9の複数の測定点における表面電位の測定が順次行われる。   Subsequently, the vibrating electrode 12 faces the first measurement point among the plurality of measurement points set on the surface 91 of the sample 9 in a non-contact manner (Step S42), and Steps S22 and S23 are performed and the first measurement point is performed. The surface potential of the sample 9 at the measurement point is obtained. Thereafter, steps S24 to S26 are repeated, and the surface potentials at a plurality of measurement points of the sample 9 are sequentially measured.

第3の測定方法では、試料9の表面91上において測定点とは異なる1点(基準点)において基準電流isが求められ、試料9の表面91上に設定された複数の測定点における表面電位の測定が、第1の測定方法と同様に、基準電流isを利用して行われる。その結果、試料9の表面91上に設定された複数の測定点における表面電位の測定を迅速かつ高精度に行うことができる。また、全ての測定点における表面電位の測定が、基準電流isを利用して迅速かつ高精度に行われることにより、試料9の表面91上に設定された複数の測定点における表面電位の測定をより迅速に行うことができる。   In the third measurement method, the reference current is is obtained at one point (reference point) different from the measurement point on the surface 91 of the sample 9, and the surface potential at a plurality of measurement points set on the surface 91 of the sample 9 is obtained. Is measured using the reference current is, as in the first measurement method. As a result, the surface potential at a plurality of measurement points set on the surface 91 of the sample 9 can be measured quickly and with high accuracy. In addition, the surface potential is measured at all the measurement points at a plurality of measurement points set on the surface 91 of the sample 9 by measuring the surface potential quickly and with high accuracy using the reference current is. It can be done more quickly.

第3の測定方法により複数の試料9の表面電位測定が順次行われる際には、複数の試料のそれぞれにおいて、基準点における基準電流isの取得が行われることにより、複数の試料の表面電位の測定を迅速かつ高精度に行うことができる。   When the surface potential measurement of the plurality of samples 9 is sequentially performed by the third measurement method, the reference current is is acquired at the reference point in each of the plurality of samples, thereby obtaining the surface potential of the plurality of samples. Measurement can be performed quickly and with high accuracy.

表面電位計1では、上述の第2の測定方法に第3の測定方法を組み合わせて表面電位の測定が行われてもよい。すなわち、第2の測定方法において、測定点とは異なる基準点において仮基準電位および仮基準電流が求められた後、基準電位および基準電流が求められてもよい。   In the surface potential meter 1, the surface potential may be measured by combining the above-described second measurement method with the third measurement method. That is, in the second measurement method, after the temporary reference potential and the temporary reference current are obtained at a reference point different from the measurement point, the reference potential and the reference current may be obtained.

以上、本発明の実施の形態について説明してきたが、本発明は上記実施の形態に限定されるものではなく、様々な変更が可能である。   As mentioned above, although embodiment of this invention has been described, this invention is not limited to the said embodiment, A various change is possible.

表面電位計1では、例えば、コンピュータ3により取得される電極電位の値に既知の誤差が含まれている場合、第1および第2の測定方法のステップS20おいて、最初の測定点の表面電位は基準電位Vsから当該既知の誤差を除去して(すなわち、基準電位Vsに基づいて)取得される。また、ステップS23およびS26においても同様に、変位電流が基準電流isに等しくなるときの電極電位に基づいて、測定点における試料9の表面電位が取得される。   In the surface potential meter 1, for example, when a known error is included in the value of the electrode potential acquired by the computer 3, the surface potential at the first measurement point in step S <b> 20 of the first and second measurement methods. Is obtained by removing the known error from the reference potential Vs (that is, based on the reference potential Vs). Similarly, in steps S23 and S26, the surface potential of the sample 9 at the measurement point is acquired based on the electrode potential when the displacement current becomes equal to the reference current is.

振動電極12は、試料9および試料保持部11に対して相対的に振動すればよく、例えば、ピエゾアクチュエータを有する振動部13が試料保持部11の下側に接続され、振動電極12が固定された状態で試料保持部11が振動してもよい。すなわち、振動部13は振動電極12および試料保持部11の一方に接続されていればよい。また、処理部2では、プリアンプ21およびアンプ22が振動電極12に接続されることにより、振動電極12の振動により生じる振動電極12からの変位電流が取得されてもよい。この場合、振動電極12からの変位電流、および、振動電極12の電極電位に基づいて基準電位Vsおよび基準電流isが求められ、試料9の表面電位が求められる。   The vibrating electrode 12 only needs to vibrate relative to the sample 9 and the sample holding unit 11. For example, the vibrating unit 13 having a piezoelectric actuator is connected to the lower side of the sample holding unit 11, and the vibrating electrode 12 is fixed. The sample holder 11 may vibrate in a state where it is in contact. That is, the vibration unit 13 may be connected to one of the vibration electrode 12 and the sample holding unit 11. In the processing unit 2, the displacement current from the vibration electrode 12 generated by the vibration of the vibration electrode 12 may be acquired by connecting the preamplifier 21 and the amplifier 22 to the vibration electrode 12. In this case, the reference potential Vs and the reference current is are obtained based on the displacement current from the vibrating electrode 12 and the electrode potential of the vibrating electrode 12, and the surface potential of the sample 9 is obtained.

表面電位計1による表面電位の測定では、図2.AのステップS18,S181における振動電極12と試料9の表面91との間の距離の変更に代えて、振動電極12の振幅が、電極電位と変位電流との関係を変化させる測定条件として変更されてもよい。また、振動電極12の振動周波数が上記測定条件として変更されてもよい。これらの場合、測定条件を電気的に容易に変更することができる。   In the measurement of the surface potential with the surface potential meter 1, FIG. Instead of changing the distance between the vibrating electrode 12 and the surface 91 of the sample 9 in steps S18 and S181 of A, the amplitude of the vibrating electrode 12 is changed as a measurement condition for changing the relationship between the electrode potential and the displacement current. May be. Further, the vibration frequency of the vibrating electrode 12 may be changed as the measurement condition. In these cases, the measurement conditions can be easily changed electrically.

表面電位計1では、電流指定電圧により変位電流(の大きさ)が指定され、フィードバック制御により指定された変位電流となるように電極電位が制御されるが、電極電位が指定されてそのときの変位電流が取得されてもよい。基準電位Vsおよび基準電流isの算出に利用される変位電流と電極電位との関係を示す複数の直線の数は多い方が好ましいが、測定原理上、2つの測定条件下の2つの直線を求めるのみで試料9の表面電位を求めることができる。また、各測定条件下の直線は、2つの電極電位と変位電流との組み合わせから求めることができる。さらには、表面電位計により測定される試料9の表面電位の測定範囲は、図3や図4に示す範囲には限定されず、例えば、数kVの表面電位の測定に表面電位計が利用されてもよい。   In the surface electrometer 1, the displacement current is specified by the current designation voltage, and the electrode potential is controlled to be the displacement current designated by the feedback control. A displacement current may be acquired. Although it is preferable that the number of the plurality of straight lines indicating the relationship between the displacement current and the electrode potential used for calculating the reference potential Vs and the reference current is is large, two straight lines under two measurement conditions are obtained on the measurement principle. Only by this, the surface potential of the sample 9 can be obtained. In addition, a straight line under each measurement condition can be obtained from a combination of two electrode potentials and a displacement current. Further, the measurement range of the surface potential of the sample 9 measured by the surface potential meter is not limited to the range shown in FIG. 3 and FIG. 4. For example, the surface potential meter is used for measuring the surface potential of several kV. May be.

上記実施の形態に係る表面電位計は測定精度が高いため、微小な表面電位の測定が求められる半導体基板の測定に適しているが、測定対象である試料9は半導体基板には限定されず、絶縁物や表面に絶縁膜が形成された導電体であってもよい。   Since the surface electrometer according to the above embodiment has high measurement accuracy, it is suitable for measurement of a semiconductor substrate that requires measurement of a minute surface potential, but the sample 9 to be measured is not limited to a semiconductor substrate, It may be an insulator or a conductor having an insulating film formed on the surface.

一の実施の形態に係る表面電位計の構成を示す図である。It is a figure which shows the structure of the surface electrometer which concerns on one embodiment. 試料の表面電位の測定の流れを示す図である。It is a figure which shows the flow of a measurement of the surface potential of a sample. 試料の表面電位の測定の流れを示す図である。It is a figure which shows the flow of a measurement of the surface potential of a sample. 電極電位と電流指定電圧との関係を示す図である。It is a figure which shows the relationship between an electrode potential and an electric current designation | designated voltage. 電極電位と電流指定電圧との関係を示す図である。It is a figure which shows the relationship between an electrode potential and an electric current designation | designated voltage. 複数の測定点における基準電流を示す図である。It is a figure which shows the reference current in a some measurement point. 第2の測定方法による表面電位測定の流れの一部を示す図である。It is a figure which shows a part of flow of the surface potential measurement by a 2nd measuring method. 第2の測定方法による表面電位測定の流れの一部を示す図である。It is a figure which shows a part of flow of the surface potential measurement by a 2nd measuring method. 電極電位と電流指定電圧との関係を示す図である。It is a figure which shows the relationship between an electrode potential and an electric current designation | designated voltage. 第3の測定方法による表面電位測定の流れの一部を示す図である。It is a figure which shows a part of flow of the surface potential measurement by a 3rd measuring method. 第3の測定方法による表面電位測定の流れの一部を示す図である。It is a figure which shows a part of flow of the surface potential measurement by a 3rd measuring method.

符号の説明Explanation of symbols

1 表面電位計
2 処理部
3 コンピュータ
4 制御部
9 試料
11 試料保持部
12 振動電極
13 振動部
16 移動機構
91 表面
S11〜S26,S31〜S38,S41,S42,S181,S371 ステップ
DESCRIPTION OF SYMBOLS 1 Surface electrometer 2 Processing part 3 Computer 4 Control part 9 Sample 11 Sample holding part 12 Vibrating electrode 13 Vibrating part 16 Movement mechanism 91 Surface S11-S26, S31-S38, S41, S42, S181, S371 Step

Claims (8)

試料の表面電位を測定する表面電位測定方法であって、
a)平板状の試料を試料保持部に保持する工程と、
b)前記試料の表面上に設定された複数の測定点に含まれる一の測定点に電極を非接触にて対向させる工程と、
c)前記電極および前記試料保持部の一方に接続された振動部の圧電素子により前記電極から前記試料保持部に向かう振動方向に前記電極を前記試料に対して相対的に振動させ、前記電極の電極電位を変更しつつ電極電位と前記電極または前記試料保持部からの変位電流との関係を取得する工程と、
d)電極電位と変位電流との関係を変化させる測定条件を変更して前記c)工程を繰り返す工程と、
e)前記c)工程および前記d)工程により取得された複数の測定条件に対応する電極電位と変位電流との複数の関係から、前記複数の測定条件に依存しない電極電位と変位電流との組み合わせを求め、前記組み合わせの変位電流を基準電流として記憶する工程と、
f)前記組み合わせの電極電位に基づいて前記一の測定点における表面電位を取得する工程と、
g)前記電極を前記試料の前記表面に平行に移動して前記複数の測定点に含まれる他の測定点に対向させる工程と、
h)前記電極の電極電位を変更し、前記電極または前記試料保持部からの変位電流が前記基準電流に等しくなるときの電極電位に基づいて、前記他の測定点における表面電位を取得する工程と、
を備えることを特徴とする表面電位測定方法。
A surface potential measurement method for measuring a surface potential of a sample,
a) a step of holding a flat sample in the sample holder;
b) a step of contacting the electrode in a non-contact manner to one measurement point included in a plurality of measurement points set on the surface of the sample;
c) causing the electrode to vibrate relative to the sample in a vibration direction from the electrode toward the sample holding unit by a piezoelectric element of a vibrating unit connected to one of the electrode and the sample holding unit; Obtaining the relationship between the electrode potential and the displacement current from the electrode or the sample holder while changing the electrode potential;
d) changing the measurement conditions for changing the relationship between the electrode potential and the displacement current and repeating the step c);
e) Combination of electrode potential and displacement current independent of the plurality of measurement conditions from a plurality of relations between electrode potentials and displacement currents corresponding to the plurality of measurement conditions acquired in the steps c) and d) And storing the displacement current of the combination as a reference current;
f) obtaining a surface potential at the one measurement point based on the combined electrode potential;
g) moving the electrode parallel to the surface of the sample to oppose other measurement points included in the plurality of measurement points;
h) changing the electrode potential of the electrode, and obtaining the surface potential at the other measurement point based on the electrode potential when the displacement current from the electrode or the sample holder becomes equal to the reference current; ,
A surface potential measuring method comprising:
請求項1に記載の表面電位測定方法であって、
前記複数の測定点の全てに対する測定が終了するまで、前記g)工程および前記h)工程が繰り返されることを特徴とする表面電位測定方法。
The surface potential measurement method according to claim 1,
The method of measuring surface potential, wherein the step g) and the step h) are repeated until the measurement for all of the plurality of measurement points is completed.
試料の表面電位を測定する表面電位測定方法であって、
a)平板状の試料を試料保持部に保持する工程と、
b)前記試料の表面に電極を非接触にて対向させる工程と、
c)前記電極および前記試料保持部の一方に接続された振動部の圧電素子により前記電極から前記試料保持部に向かう振動方向に前記電極を前記試料に対して相対的に振動させ、前記電極の電極電位を変更しつつ前記電極の電極電位と前記電極または前記試料保持部からの変位電流との関係を取得する工程と、
d)電極電位と変位電流との関係を変化させる測定条件を変更して前記c)工程を繰り返す工程と、
e)前記c)工程および前記d)工程により取得された複数の測定条件に対応する電極電位と変位電流との複数の関係から、前記複数の測定条件に依存しない電極電位と変位電流との組み合わせを求め、前記組み合わせの変位電流を基準電流として記憶する工程と、
f)前記電極を前記試料の前記表面に平行に移動して前記電極を前記表面上の複数の測定点に含まれる一の測定点に対向させる工程と、
g)前記電極の電極電位を変更し、前記電極または前記試料保持部からの変位電流が前記基準電流に等しくなるときの電極電位に基づいて、前記一の測定点における表面電位を取得する工程と、
h)前記複数の測定点に含まれる他の測定点に対し、前記f)工程および前記g)工程を繰り返す工程と、
を備えることを特徴とする表面電位測定方法。
A surface potential measurement method for measuring a surface potential of a sample,
a) a step of holding a flat sample in the sample holder;
b) making the electrode face the surface of the sample in a non-contact manner;
c) causing the electrode to vibrate relative to the sample in a vibration direction from the electrode toward the sample holding unit by a piezoelectric element of a vibrating unit connected to one of the electrode and the sample holding unit; Obtaining the relationship between the electrode potential of the electrode and the displacement current from the electrode or the sample holder while changing the electrode potential;
d) changing the measurement conditions for changing the relationship between the electrode potential and the displacement current and repeating the step c);
e) Combination of electrode potential and displacement current independent of the plurality of measurement conditions from a plurality of relations between electrode potential and displacement current corresponding to the plurality of measurement conditions obtained in the steps c) and d) And storing the displacement current of the combination as a reference current;
f) moving the electrode in parallel to the surface of the sample to oppose the electrode to one measurement point included in a plurality of measurement points on the surface;
g) changing the electrode potential of the electrode, and obtaining the surface potential at the one measurement point based on the electrode potential when the displacement current from the electrode or the sample holder becomes equal to the reference current; ,
h) repeating the step f) and the step g) for other measurement points included in the plurality of measurement points;
A surface potential measuring method comprising:
請求項1ないし3のいずれかに記載の表面電位測定方法であって、
前記e)工程が、
e1)前記複数の測定条件に対応する電極電位と変位電流との前記複数の関係から、前記複数の測定条件に依存しない電極電位と変位電流との仮の組み合わせを求める工程と、
e2)前記仮の組み合わせの電極電位が、前記c)工程および前記d)工程における電極電位の変更範囲に含まれる場合に、前記仮の組み合わせを前記複数の測定条件に依存しない電極電位と変位電流との前記組み合わせとし、前記仮の組み合わせの電極電位が、前記c)工程および前記d)工程における電極電位の変更範囲外である場合に、前記電極の電極電位を前記仮の組み合わせの電極電位を含む範囲内で変更しつつ前記c)工程および前記d)工程を行って複数の測定条件に対応する電極電位と変位電流との複数の関係を再度取得し、再度取得された電極電位と変位電流との前記複数の関係から前記複数の測定条件に依存しない電極電位と変位電流との前記組み合わせを求める工程と、
を備えることを特徴とする表面電位測定方法。
A surface potential measuring method according to any one of claims 1 to 3,
Step e)
e1) obtaining a temporary combination of electrode potential and displacement current independent of the plurality of measurement conditions from the plurality of relationships between the electrode potential and displacement current corresponding to the plurality of measurement conditions;
e2) When the electrode potential of the temporary combination is included in the change range of the electrode potential in the step c) and the step d), the temporary potential does not depend on the plurality of measurement conditions and the displacement current When the electrode potential of the temporary combination is outside the range of change in the electrode potential in the step c) and the step d), the electrode potential of the electrode is changed to the electrode potential of the temporary combination. The relationship between the electrode potential and the displacement current corresponding to a plurality of measurement conditions is obtained again by performing the step c) and the step d) while changing within the range to include, and the electrode potential and the displacement current obtained again. Obtaining the combination of electrode potential and displacement current that does not depend on the plurality of measurement conditions from the plurality of relationships;
A surface potential measuring method comprising:
請求項1ないし4のいずれかに記載の表面電位測定方法であって、
前記変位電流が前記試料保持部から取得されることを特徴とする表面電位測定方法。
The surface potential measurement method according to any one of claims 1 to 4,
The surface potential measurement method, wherein the displacement current is acquired from the sample holder.
請求項1ないし5のいずれかに記載の表面電位測定方法であって、
前記d)工程において、前記測定条件として前記電極と前記試料の前記表面との間の距離が変更されることを特徴とする表面電位測定方法。
The surface potential measuring method according to any one of claims 1 to 5,
In the step d), the surface potential measuring method is characterized in that the distance between the electrode and the surface of the sample is changed as the measurement condition.
請求項1ないし6のいずれかに記載の表面電位測定方法であって、
前記a)工程ないし前記h)工程が、複数の試料に対して順次行われることを特徴とする表面電位測定方法。
The surface potential measuring method according to any one of claims 1 to 6,
The method of measuring a surface potential, wherein the steps a) to h) are sequentially performed on a plurality of samples.
試料の表面電位を測定する表面電位計であって、
平板状の試料を保持する試料保持部と、
前記試料の表面に非接触にて対向する電極と、
圧電素子により前記電極から前記試料保持部に向かう振動方向に前記電極を前記試料に対して相対的に振動させる振動部と、
前記電極を相対的に振動させた際の前記電極の電極電位と前記電極または前記試料保持部からの変位電流とを取得する処理部と、
前記電極電位および前記変位電流に基づいて前記試料の表面電位を求める表面電位演算部と、
前記電極を前記試料の前記表面に平行に前記試料に対して相対的に移動する移動機構と、
前記振動部、前記処理部、前記表面電位演算部および前記移動機構を制御することにより、前記試料の前記表面上に設定された複数の測定点における表面電位を測定する制御部と、
を備え、
前記制御部が、
b)前記試料の前記表面上に設定された前記複数の測定点に含まれる一の測定点に電極を非接触にて対向させる工程と、
c)前記電極および前記試料保持部の一方に接続された前記振動部の前記圧電素子により前記電極を前記試料に対して前記振動方向に相対的に振動させ、前記電極の電極電位を変更しつつ電極電位と前記電極または前記試料保持部からの変位電流との関係を取得する工程と、
d)電極電位と変位電流との関係を変化させる測定条件を変更して前記c)工程を繰り返す工程と、
e)前記c)工程および前記d)工程により取得された、複数の測定条件に対応する電極電位と変位電流との複数の関係から、前記複数の測定条件に依存しない電極電位と変位電流との組み合わせを求め、前記組み合わせの変位電流を基準電流として記憶する工程と、
f)前記組み合わせの電極電位に基づいて前記一の測定点における表面電位を取得する工程と、
g)前記電極を前記試料の前記表面に平行に移動して前記複数の測定点に含まれる他の測定点に対向させる工程と、
h)前記電極の電極電位を変更し、前記電極または前記試料保持部からの変位電流が前記基準電流に等しくなるときの電極電位に基づいて、前記他の測定点における表面電位を取得する工程と、
を実行することを特徴とする表面電位計。
A surface potentiometer for measuring the surface potential of a sample,
A sample holder for holding a flat sample;
An electrode facing the surface of the sample without contact;
A vibrating unit that vibrates the electrode relative to the sample in a vibrating direction from the electrode toward the sample holding unit by a piezoelectric element;
A processing unit for obtaining an electrode potential of the electrode when the electrode is relatively vibrated and a displacement current from the electrode or the sample holding unit;
A surface potential calculator for determining the surface potential of the sample based on the electrode potential and the displacement current;
A moving mechanism for moving the electrode relative to the sample parallel to the surface of the sample;
A control unit that measures surface potentials at a plurality of measurement points set on the surface of the sample by controlling the vibration unit, the processing unit, the surface potential calculation unit, and the moving mechanism;
With
The control unit is
b) a step of causing an electrode to contact non-contact with one measurement point included in the plurality of measurement points set on the surface of the sample;
c) The piezoelectric element of the vibration unit connected to one of the electrode and the sample holding unit is vibrated relatively in the vibration direction with respect to the sample while changing the electrode potential of the electrode. Obtaining a relationship between an electrode potential and a displacement current from the electrode or the sample holder;
d) changing the measurement conditions for changing the relationship between the electrode potential and the displacement current and repeating the step c);
e) From the plurality of relationships between the electrode potential and the displacement current corresponding to the plurality of measurement conditions acquired in the step c) and the step d), the relationship between the electrode potential and the displacement current independent of the plurality of measurement conditions. Obtaining a combination and storing the displacement current of the combination as a reference current;
f) obtaining a surface potential at the one measurement point based on the combined electrode potential;
g) moving the electrode parallel to the surface of the sample to oppose other measurement points included in the plurality of measurement points;
h) changing the electrode potential of the electrode, and obtaining the surface potential at the other measurement point based on the electrode potential when the displacement current from the electrode or the sample holder becomes equal to the reference current; ,
A surface electrometer characterized by performing the following.
JP2008067163A 2008-03-17 2008-03-17 Surface potential measurement method and surface potentiometer Abandoned JP2009222548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067163A JP2009222548A (en) 2008-03-17 2008-03-17 Surface potential measurement method and surface potentiometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067163A JP2009222548A (en) 2008-03-17 2008-03-17 Surface potential measurement method and surface potentiometer

Publications (1)

Publication Number Publication Date
JP2009222548A true JP2009222548A (en) 2009-10-01

Family

ID=41239496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067163A Abandoned JP2009222548A (en) 2008-03-17 2008-03-17 Surface potential measurement method and surface potentiometer

Country Status (1)

Country Link
JP (1) JP2009222548A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014052524A (en) * 2012-09-07 2014-03-20 Ricoh Co Ltd Characteristic evaluation method and characteristic evaluation device for electrophotographic photoreceptor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240393A (en) * 2006-03-10 2007-09-20 Dainippon Screen Mfg Co Ltd Surface electrometer and surface potential measuring method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240393A (en) * 2006-03-10 2007-09-20 Dainippon Screen Mfg Co Ltd Surface electrometer and surface potential measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014052524A (en) * 2012-09-07 2014-03-20 Ricoh Co Ltd Characteristic evaluation method and characteristic evaluation device for electrophotographic photoreceptor

Similar Documents

Publication Publication Date Title
US6422069B1 (en) Self-exciting and self-detecting probe and scanning probe apparatus
JP5095084B2 (en) Method and apparatus for measuring surface shape of sample
JP2003121136A (en) Touch sensor
JP5254509B2 (en) Electrostatic force detector with cantilever and shield
JPH07318568A (en) Scanning probe microscope
JP4873689B2 (en) Surface potential meter and surface potential measurement method
JP5124249B2 (en) Level difference measuring method and apparatus using stylus type level difference meter for surface shape measurement
JP2009192497A (en) Surface potential measuring method and surface electrometer
US8111079B2 (en) Conductivity measuring apparatus and conductivity measuring method
JP2010054310A (en) Cantilever, cantilever system, probe microscope and adsorption mass sensor
JP2016090451A (en) Electronic component irregular portion detection device and electronic component irregular portion detection method
JPH09211046A (en) Method and apparatus for non-contact detection of potential
JP2009222548A (en) Surface potential measurement method and surface potentiometer
JP2007189113A (en) Probe needle contact detecting method and device thereof
JP2004085321A (en) Probe device
JP4024451B2 (en) Scanning Kelvin probe microscope
US9354248B2 (en) Method for measuring vibration characteristic of cantilever
JP2007155423A (en) Method of evaluating piezoelectric film
JP2008116328A (en) Surface electrometer and method of measuring surface potential
JP2016023952A (en) Scanning probe microscope
JP2014190923A (en) Device, method and program for calculating position of actuator
JP4676658B2 (en) probe
KR100849466B1 (en) Micro piezoelectric sensor and the oscillating circuit therefor
JP3069931B2 (en) Surface shape measuring method and device
JP3149228B2 (en) Surface electrometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101216

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

A977 Report on retrieval

Effective date: 20120717

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120730

Free format text: JAPANESE INTERMEDIATE CODE: A131

A762 Written abandonment of application

Effective date: 20120907

Free format text: JAPANESE INTERMEDIATE CODE: A762