JP2009222097A - Refrigerant circuit check valve and refrigerating cycle device equipped therewith - Google Patents

Refrigerant circuit check valve and refrigerating cycle device equipped therewith Download PDF

Info

Publication number
JP2009222097A
JP2009222097A JP2008065522A JP2008065522A JP2009222097A JP 2009222097 A JP2009222097 A JP 2009222097A JP 2008065522 A JP2008065522 A JP 2008065522A JP 2008065522 A JP2008065522 A JP 2008065522A JP 2009222097 A JP2009222097 A JP 2009222097A
Authority
JP
Japan
Prior art keywords
outer member
refrigerant
hollow
valve body
check valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008065522A
Other languages
Japanese (ja)
Other versions
JP5042080B2 (en
Inventor
Hirobumi Takashita
博文 高下
Kazutaka Shinozaki
万誉 篠崎
Hiroyuki Okano
博幸 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008065522A priority Critical patent/JP5042080B2/en
Publication of JP2009222097A publication Critical patent/JP2009222097A/en
Application granted granted Critical
Publication of JP5042080B2 publication Critical patent/JP5042080B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Safety Valves (AREA)
  • Details Of Valves (AREA)
  • Check Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a check valve with a valve element having improved vibration control performance for operating to open/close a refrigerant flow path without the need for an exclusive vibration control component. <P>SOLUTION: A hollow part 43A of an outside member 43 has a first diameter portion 43B, a second diameter portion 43C having a larger diameter than the first diameter portion, and a connection portion 43D for connecting the first diameter portion 43B to the second diameter portion 43C. The valve element 42 has a blade part 44 to be moved in the hollow part 43A along the inner peripheral face of the outside member hollow part 43A, as a guide face, and a solid seat part 45 formed integrally with the blade part 44 and shaped to be fitted to the connection portion 43D of the outside member 43. The blade part 44 has a plurality of guide plates 46 existing around the inner peripheral face of the outside member hollow part 43A and extending in the axial direction of the outside member hollow part. It has a hollow portion encircled by the plurality of guide plates 46 and/or spaces 47 formed between the plurality of adjacent guide plates 46. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷媒回路に用いられる逆止弁、およびそれを備えた空調装置や冷凍装置などの冷凍サイクル装置に関する。   The present invention relates to a check valve used in a refrigerant circuit, and a refrigeration cycle apparatus such as an air conditioner or a refrigeration apparatus including the check valve.

冷媒回路に用いられる逆止弁は、通常、冷媒流路を開閉する作用を果たす弁体が、冷媒の圧力でその開閉位置から引き離されることで、冷媒流路を連通させるようにしているものである。したがって、冷媒の圧力変動によって弁体が振動するため、その振動を防止するための工夫が従来より行われている。そのような逆止弁として、冷媒の流れ方向と平行に設けられたコイルバネと、冷媒の流れ方向に対して垂直に設けられた防振バネとを具備し、球状の弁体を、冷媒の流れ方向に水平な方向および垂直な方向の防振を実施する逆止弁が知られている(例えば、特許文献1)。   A check valve used in a refrigerant circuit is usually configured such that a valve element that opens and closes a refrigerant flow path is separated from the open / closed position by the pressure of the refrigerant, thereby allowing the refrigerant flow path to communicate with each other. is there. Therefore, since the valve body vibrates due to the pressure fluctuation of the refrigerant, a device for preventing the vibration has been conventionally performed. As such a check valve, a coil spring provided parallel to the refrigerant flow direction and a vibration-proof spring provided perpendicular to the refrigerant flow direction are provided. A check valve that performs vibration isolation in a horizontal direction and a vertical direction is known (for example, Patent Document 1).

特開2006−200554号公報JP 2006-200554 A

しかし、コイルバネや防振バネなどの部品を別途備える構成は、逆止弁の構造および動作が複雑となり、コストや信頼性の点で不利となる。
本発明は上記課題に鑑みてなされたもので、冷媒回路に用いられる逆止弁において、特別な防振用部品を備えることなく、冷媒流路を開閉する作用を果たす弁体の防振性を向上させた逆止弁、およびそれを備えた冷凍空調装置を提案することを目的とする。
However, a configuration that separately includes components such as a coil spring and a vibration-proof spring complicates the structure and operation of the check valve, which is disadvantageous in terms of cost and reliability.
The present invention has been made in view of the above problems, and in a check valve used in a refrigerant circuit, without providing a special vibration isolation component, the vibration isolation of the valve element that opens and closes the refrigerant flow path is provided. An object is to propose an improved check valve and a refrigeration air conditioner equipped with the check valve.

本発明は、冷媒回路の配管に接続される中空の外側部材と、前記外側部材の中空部にあって、前記中空部内を流れる冷媒の圧力に応じて、前記外側部材の冷媒回路閉弁位置から冷媒回路開弁位置の間を移動可能な弁体とを備え、前記冷媒を前記弁体の周囲を通して前記中空部を一方向にのみ通過させる逆止弁であって、
前記外側部材の中空部は、第1の径部分と、前記第1の径部分より大きな径の第2の径部分と、前記第1の径部分と前記第2の径部分とをつなぐ連結部分とを有し、
前記弁体は、前記外側部材中空部の内周面を案内面として該中空部をその軸方向に移動する羽根部と、前記羽根部と一体に形成され、前記外側部材の前記連結部分に嵌り合う形状を有した中実のシート部とを備え、
前記羽根部は、前記外側部材中空部の内周面の周りにあって前記外側部材中空部の軸方向に伸びる複数の案内板を有し、前記複数の案内板で囲まれた部分が中空となっているものである。
また、冷媒回路の配管に接続される中空の外側部材と、前記外側部材の中空部にあって、前記中空部内を流れる冷媒の圧力に応じて、前記外側部材の冷媒回路閉弁位置から冷媒回路開弁位置の間を移動可能な弁体とを備え、前記冷媒を前記弁体の周囲を通して前記中空部を一方向にのみ通過させる逆止弁であって、
前記外側部材の中空部は、第1の径部分と、前記第1の径部分より大きな径の第2の径部分と、前記第1の径部分と前記第2の径部分とをつなぐ連結部分とを有し、
前記弁体は、前記外側部材中空部の内周面を案内面として該中空部をその軸方向に移動する羽根部と、前記羽根部と一体に形成され、前記外側部材の前記連結部分に嵌り合う形状を有した中実のシート部とを備え、
前記羽根部は、前記外側部材中空部の内周面の周りにあって前記外側部材中空部の軸方向に伸びる複数の案内板を有し、隣り合う前記複数の案内板同士の間には空間が形成されているものである。
さらに、冷媒回路の配管に接続される中空の外側部材と、前記外側部材の中空部にあって、前記中空部内を流れる冷媒の圧力に応じて、前記外側部材の冷媒回路閉弁位置から冷媒回路開弁位置の間を移動可能な弁体とを備え、前記冷媒を前記弁体の周囲を通して前記中空部を一方向にのみ通過させる逆止弁であって、
前記外側部材の中空部は、第1の径部分と、前記第1の径部分より大きな径の第2の径部分と、前記第1の径部分と前記第2の径部分とをつなぐ連結部分とを有し、
前記弁体は、前記外側部材中空部の内周面を案内面として該中空部をその軸方向に移動する羽根部と、前記羽根部と一体に形成され、前記外側部材の前記連結部分に嵌り合う形状を有した中実のシート部とを備え、
前記羽根部はその軸方向の中心に対して点対称な位置に2つの翼を備え、前記弁体の外周面を冷媒が通過する際に前記弁体に浮揚力を生じさせるように、前記2つの翼が冷媒の流れ方向に対して同じ方向に傾斜しているものである。
According to the present invention, there is provided a hollow outer member connected to a refrigerant circuit pipe, and a hollow portion of the outer member, and the refrigerant circuit valve position of the outer member is determined according to the pressure of the refrigerant flowing in the hollow portion. A check valve that moves between the refrigerant circuit valve opening positions, and allows the refrigerant to pass through the hollow portion only in one direction through the periphery of the valve body,
The hollow portion of the outer member includes a first diameter portion, a second diameter portion having a larger diameter than the first diameter portion, and a connecting portion that connects the first diameter portion and the second diameter portion. And
The valve body is formed integrally with the blade portion, the blade portion moving in the axial direction of the hollow portion with the inner peripheral surface of the hollow portion of the outer member as a guide surface, and fitted into the connecting portion of the outer member. A solid sheet portion having a matching shape,
The blade portion has a plurality of guide plates around the inner peripheral surface of the outer member hollow portion and extending in the axial direction of the outer member hollow portion, and a portion surrounded by the plurality of guide plates is hollow. It is what has become.
A hollow outer member connected to a pipe of the refrigerant circuit; and a refrigerant circuit in a hollow portion of the outer member from a refrigerant circuit valve closing position of the outer member according to a pressure of the refrigerant flowing in the hollow portion. A check valve that moves between the valve open positions, and allows the refrigerant to pass through the hollow portion only in one direction through the periphery of the valve body,
The hollow portion of the outer member includes a first diameter portion, a second diameter portion having a larger diameter than the first diameter portion, and a connecting portion that connects the first diameter portion and the second diameter portion. And
The valve body is formed integrally with the blade portion, the blade portion moving in the axial direction of the hollow portion with the inner peripheral surface of the hollow portion of the outer member as a guide surface, and fitted into the connecting portion of the outer member. A solid sheet portion having a matching shape,
The blade portion has a plurality of guide plates that extend around the inner peripheral surface of the outer member hollow portion and extend in the axial direction of the outer member hollow portion, and a space is provided between the adjacent guide plates. Is formed.
Further, a hollow outer member connected to the piping of the refrigerant circuit, and a refrigerant circuit in the hollow portion of the outer member from the refrigerant circuit valve closing position of the outer member according to the pressure of the refrigerant flowing in the hollow portion A check valve that moves between the valve open positions, and allows the refrigerant to pass through the hollow portion only in one direction through the periphery of the valve body,
The hollow portion of the outer member includes a first diameter portion, a second diameter portion having a larger diameter than the first diameter portion, and a connecting portion that connects the first diameter portion and the second diameter portion. And
The valve body is formed integrally with the blade portion, the blade portion moving in the axial direction of the hollow portion with the inner peripheral surface of the hollow portion of the outer member as a guide surface, and fitted into the connecting portion of the outer member. A solid sheet portion having a matching shape,
The blade portion includes two wings at a point-symmetrical position with respect to the axial center thereof, and when the refrigerant passes through the outer peripheral surface of the valve body, the wing portion generates a levitation force on the valve body. Two blades are inclined in the same direction with respect to the flow direction of the refrigerant.

本発明の逆支弁の弁体は、ガイドとして作用する羽根部と、冷媒回路の開閉に直接寄与するシール部とを有する。羽根部は、外側部材中空部の内周面の周りにあって外側部材中空部の軸方向に伸びる複数の案内板を有し、複数の案内板で囲まれた部分が中空となっている、および/または、隣り合う複数の案内板同士の間に空間が形成されているため、弁体の質量が小さくなり、弁体の質量よりも弁体を押し上げる冷媒圧力を大きくできる。したがって、空調負荷が可変、つまり弁部を流れる冷媒流量が低下した場合や圧縮機の脈動による圧力変動を受けた場合でも、弁体の自重による影響が弱まり、弁動作が安定して振動音の発生を防止または低減できる。また、弁体の上下振動の衝撃による弁体自体の損傷も防止でき、逆止弁の信頼性が向上する。
さらに、本発明の逆支弁の弁体は、その軸方向の中心に対して点対称な位置に2つの翼を備え、弁体の外周面を冷媒が通過する際に弁体に浮揚力を生じさせるように、それらの2つの翼が冷媒の流れ方向に対して同じ方向に傾斜している。このため、冷媒の流れに対して垂直方向に揚力が発生し、その力で弁体上部を押しつけることでダンピング効果が得られ、弁体動作が不安定の場合でも振動音を抑制できる。
The valve body of the reversely supported valve according to the present invention includes a blade portion that acts as a guide and a seal portion that directly contributes to opening and closing of the refrigerant circuit. The blade portion has a plurality of guide plates that extend around the inner peripheral surface of the outer member hollow portion and extends in the axial direction of the outer member hollow portion, and a portion surrounded by the plurality of guide plates is hollow. In addition, since a space is formed between a plurality of adjacent guide plates, the mass of the valve body is reduced, and the refrigerant pressure that pushes up the valve body can be made larger than the mass of the valve body. Therefore, even when the air-conditioning load is variable, that is, when the flow rate of refrigerant flowing through the valve section decreases or when pressure fluctuations are caused by the pulsation of the compressor, the influence of the weight of the valve body is weakened, and the valve operation is stabilized and vibration noise Occurrence can be prevented or reduced. Further, the valve body itself can be prevented from being damaged by the impact of the vertical vibration of the valve body, and the reliability of the check valve is improved.
Further, the valve body of the reversely supported valve according to the present invention includes two blades at a point-symmetrical position with respect to the axial center thereof, and generates a levitation force on the valve body when the refrigerant passes through the outer peripheral surface of the valve body. These two blades are inclined in the same direction with respect to the flow direction of the refrigerant. For this reason, a lift is generated in a direction perpendicular to the flow of the refrigerant, and a damping effect is obtained by pressing the upper part of the valve body with the force, and vibration noise can be suppressed even when the valve body operation is unstable.

実施の形態1.
図1は、本発明の実施の形態1に係る空気調和装置の冷媒回路の構成図である。図1に示す空気調和装置は、熱源機100Aと、並列接続された複数(ここでは3台)の室内機100C,100D,100Eと、熱源機100Aと各室内機100C〜100Eとの間に設けられた中継機100Bとを備えている。
熱源機100Aは、圧縮機1と、四方弁2と、熱源機側熱交換器3と、アキュムレータ4を有する。
室内機100C〜100Eは、それぞれ第1の絞り装置9c,9d,9eと、利用側熱交換器5c,5d,5eとを有する。
中継機100Bは、第1の分岐部10と、第2の分岐部11と、気液分離器12と、第2の絞り装置13と、第3の絞り装置15と、第1の熱交換器16と、第2の熱交換器17とを有する。
Embodiment 1 FIG.
1 is a configuration diagram of a refrigerant circuit of an air-conditioning apparatus according to Embodiment 1 of the present invention. The air conditioner shown in FIG. 1 is provided between a heat source unit 100A, a plurality of (in this case, three) indoor units 100C, 100D, and 100E connected in parallel, and the heat source unit 100A and each of the indoor units 100C to 100E. The repeater 100B is provided.
The heat source apparatus 100 </ b> A includes a compressor 1, a four-way valve 2, a heat source apparatus side heat exchanger 3, and an accumulator 4.
Each of the indoor units 100C to 100E includes first expansion devices 9c, 9d, and 9e, and usage-side heat exchangers 5c, 5d, and 5e, respectively.
The repeater 100B includes a first branch unit 10, a second branch unit 11, a gas-liquid separator 12, a second throttle device 13, a third throttle device 15, and a first heat exchanger. 16 and a second heat exchanger 17.

室内機100C〜100E内の利用側熱交換器5c,5d,5eの一端と中継機100B内の第1の分岐部10とは、配管6c,6d,6eにより接続され、室内機100C〜100E内の利用側熱交換器5c,5d,5eの他端と中継機100B内の第2の分岐部11とは、第1の絞り装置9c,9d,9eを介して、配管7c,7d,7eにより接続されている。更に、8a,8b,8c,8d,8e,8fは第1の分岐部10に設けられた切換弁であり、切換弁8b,8d,8fは気液分離器12において分離されたガス冷媒が流出する側と配管6c,6d,6eとを接続する回路に設けられ、切換弁8a,8c,8eは配管6c,6d,6eと配管6とを接続する回路に設けられている。   One end of the use side heat exchangers 5c, 5d and 5e in the indoor units 100C to 100E and the first branch portion 10 in the relay unit 100B are connected by pipes 6c, 6d and 6e, and the interior units 100C to 100E The other end of the use side heat exchangers 5c, 5d, and 5e and the second branching portion 11 in the relay 100B are connected by pipes 7c, 7d, and 7e via first expansion devices 9c, 9d, and 9e. It is connected. Furthermore, 8a, 8b, 8c, 8d, 8e, and 8f are switching valves provided in the first branch portion 10, and the switching valves 8b, 8d, and 8f flow out of the gas refrigerant separated in the gas-liquid separator 12. The switching valves 8a, 8c, and 8e are provided in a circuit that connects the pipes 6c, 6d, and 6e and the pipe 6 to each other.

第2の分岐部11は、気液分離器12からの液冷媒を第2の絞り装置13を介して流出する配管と配管7c,7d,7eとを接続する。また、第2の絞り装置13と第2の分岐部11との間から第1のバイパス回路14が分岐し、第3の絞り装置15を介して配管6に接続されている。そして、第1の熱交換器16が第2の絞り装置13と第1のバイパス回路14が分岐する部分との間に設けられ、第2の絞り装置13から流出した液冷媒と第1のバイパス回路14を流れる冷媒との間で熱交換を行う。また、第2の熱交換器17が気液分離器12と第2の絞り装置13との間に設けられ、気液分離器12から流出した冷媒と第1のバイパス回路14を流れる冷媒との間で熱交換を行う。   The second branching section 11 connects the pipes 7c, 7d, and 7e to which the liquid refrigerant from the gas-liquid separator 12 flows out via the second throttling device 13. A first bypass circuit 14 branches from between the second expansion device 13 and the second branching unit 11 and is connected to the pipe 6 via the third expansion device 15. The first heat exchanger 16 is provided between the second expansion device 13 and the portion where the first bypass circuit 14 branches, and the liquid refrigerant flowing out from the second expansion device 13 and the first bypass Heat exchange is performed with the refrigerant flowing through the circuit 14. A second heat exchanger 17 is provided between the gas-liquid separator 12 and the second expansion device 13, and the refrigerant flowing out of the gas-liquid separator 12 and the refrigerant flowing through the first bypass circuit 14 are Heat exchange between them.

一方、熱源機100A内の冷媒回路には4個の逆止弁18,19,20,21が設けられている。逆止弁18は配管7に設けられ、熱源機側熱交換器3から気液分離器12へのみ冷媒の流通を可能とする。逆止弁19は配管6に設けられ、中継機100Bから四方弁2へのみ冷媒の流通を可能とする。逆止弁20は配管6と配管7とを接続する第2のバイパス回路32に設けら、配管6から配管7へのみ冷媒の流通を可能とする。逆止弁21は配管6と配管7とを接続する第3のバイパス回路33に設けられ、配管6から配管7へのみ冷媒の流通を可能とする。   On the other hand, four check valves 18, 19, 20, and 21 are provided in the refrigerant circuit in the heat source apparatus 100A. The check valve 18 is provided in the pipe 7 and allows the refrigerant to flow only from the heat source apparatus side heat exchanger 3 to the gas-liquid separator 12. The check valve 19 is provided in the pipe 6 and allows the refrigerant to flow only from the relay 100B to the four-way valve 2. The check valve 20 is provided in the second bypass circuit 32 that connects the pipe 6 and the pipe 7, and allows the refrigerant to flow only from the pipe 6 to the pipe 7. The check valve 21 is provided in the third bypass circuit 33 that connects the pipe 6 and the pipe 7, and allows the refrigerant to flow only from the pipe 6 to the pipe 7.

第2のバイパス回路32は四方弁2と逆止弁19の間で配管6から分岐し、逆止弁18の冷房主体運転時下流側で配管7に合流する。また、第3のバイパス回路33は逆止弁19の冷房主体運転時上流側で配管6から分岐し、逆止弁18と熱源機側熱交換器3との間で配管7に合流する。逆止弁18〜21は、冷媒の流通を切換える目的で設けられており、配管6を低圧にし、配管7を高圧にしている。   The second bypass circuit 32 branches from the pipe 6 between the four-way valve 2 and the check valve 19, and joins the pipe 7 on the downstream side of the check valve 18 during the cooling main operation. The third bypass circuit 33 branches off from the pipe 6 on the upstream side of the check valve 19 during the cooling main operation, and joins the pipe 7 between the check valve 18 and the heat source apparatus side heat exchanger 3. The check valves 18 to 21 are provided for the purpose of switching the refrigerant flow, and the piping 6 is set to a low pressure and the piping 7 is set to a high pressure.

上記の空気調和装置において、室内機100C〜100Eは、それらのうちの1台のみを使用する場合、または同時に2台若しくは3台全てを使用する場合がある。室内機を1台だけの使用の場合、室内機を3台同時使用の場合に比べて、圧縮機1の回転が可変されて、冷媒回路を流れる冷媒量が少なくなる。
なお、上記空気調和装置では各種の冷媒、例えば、R22、R407C、R410A等が利用できる。
In the above air conditioner, the indoor units 100C to 100E may use only one of them, or may use two or all three at the same time. When only one indoor unit is used, the rotation of the compressor 1 is varied and the amount of refrigerant flowing through the refrigerant circuit is smaller than when three indoor units are used simultaneously.
In the air conditioner, various refrigerants such as R22, R407C, and R410A can be used.

次に上記逆止弁18〜21の構成について説明する。図2、図3は、逆止弁18〜21に関する構成の一例を示す説明図である。なお、図2は逆止弁が冷媒配管に取り付けられて閉弁状態にある例を示し、図3は図2の逆止弁を構成している弁体の軽量化を図った構成を示している。
図2に示すように、この逆止弁は、弁体42と外側部材43とを有している。すなわち、冷媒回路の配管40,41に接続される中空の外側部材43と、外側部材43の中空部43A内にあって、中空部43A内を流れる冷媒の圧力に応じて、外側部材43の冷媒回路閉弁位置から冷媒回路開弁位置の間を移動する弁体42とを備える。
Next, the configuration of the check valves 18 to 21 will be described. 2 and 3 are explanatory diagrams illustrating an example of a configuration related to the check valves 18 to 21. 2 shows an example in which the check valve is attached to the refrigerant pipe and is in a closed state, and FIG. 3 shows a configuration for reducing the weight of the valve body constituting the check valve in FIG. Yes.
As shown in FIG. 2, this check valve has a valve body 42 and an outer member 43. In other words, the outer member 43 connected to the pipes 40 and 41 of the refrigerant circuit and the refrigerant of the outer member 43 in the hollow portion 43A of the outer member 43 depending on the pressure of the refrigerant flowing in the hollow portion 43A. And a valve body 42 that moves between the circuit valve closing position and the refrigerant circuit valve opening position.

外側部材43の中空部43Aは、第1の径部分43Bと、前記第1の径より大きな第2の径部分43Cと、前記第1の径部分と前記第2の径部分とをつなぐ連結部分43Dを有する。連結部分43Dは、例えば傾斜面のテーパ形状とすることができる。
弁体42は、外側部材43の中空部43Aの内周面を案内面として該中空部43Aをその軸方向に移動する筒状の羽根部44と、羽根部44と一体に形成され、外側部材43の連結部分43Dに嵌り合う形状(例えば斜面形状)を有した中実のシート部45とを有する。羽根部44は、外側部材43の中空部43Aの軸方向に伸びる複数の(例えば4つの)案内板46を有する。複数の案内板46は、外側部材中空部43Aの内周面の周りに配置されており、隣り合う案内板46同士の間には空間(又は切欠)47が形成され、かつ複数の案内板46で囲まれた部分が中空となっている。
The hollow portion 43A of the outer member 43 includes a first diameter portion 43B, a second diameter portion 43C larger than the first diameter, and a connecting portion that connects the first diameter portion and the second diameter portion. 43D. The connecting portion 43D can have, for example, a tapered shape with an inclined surface.
The valve body 42 is formed integrally with the blade portion 44 and a cylindrical blade portion 44 that moves the hollow portion 43A in the axial direction using the inner peripheral surface of the hollow portion 43A of the outer member 43 as a guide surface. And a solid sheet portion 45 having a shape (for example, a slope shape) that fits into the connecting portion 43D of 43. The blade portion 44 has a plurality of (for example, four) guide plates 46 extending in the axial direction of the hollow portion 43 </ b> A of the outer member 43. The plurality of guide plates 46 are arranged around the inner peripheral surface of the outer member hollow portion 43 </ b> A, a space (or notch) 47 is formed between the adjacent guide plates 46, and the plurality of guide plates 46. The part surrounded by is hollow.

上記構造の逆止弁において、冷媒は配管40から流入し、その圧力で弁体42を押し上げる。これにより、外側部材43の連結部分43Dに嵌り合って当接していた弁体42のシート部45を引き離して、冷媒を弁体42の外周面および外側部材43の中空部43Aを通して下流へ流し、案内板46に沿って接続配管41へ流通させる。
なお、先述した「外側部材43の冷媒回路閉弁位置」とは、外側部材43の連結部分43Dであって、弁体42のシート部45との接触位置に対応し、「外側部材43の冷媒回路開弁位置」とは、その接触が外れ冷媒の通過が可能となる位置に対応する。
In the check valve having the above structure, the refrigerant flows in from the pipe 40 and pushes up the valve body 42 by the pressure. Thereby, the seat portion 45 of the valve body 42 fitted and abutted against the connecting portion 43D of the outer member 43 is pulled away, and the refrigerant flows downstream through the outer peripheral surface of the valve body 42 and the hollow portion 43A of the outer member 43, It is made to distribute | circulate to the connection piping 41 along the guide plate 46. FIG.
The “refrigerant circuit valve closing position of the outer member 43” described above corresponds to the connecting portion 43D of the outer member 43 and corresponds to the contact position with the seat portion 45 of the valve body 42, and “the refrigerant of the outer member 43”. The “circuit opening position” corresponds to a position where the contact is released and the refrigerant can pass.

隣り合う案内板46同士の間の部分は、図2に示したように、塞がれた形状としてもよいが、図3に示すように、それらの部分を切欠いて空間47を形成し、弁体42内部の中空部分の高さを低くすることで、弁体42をさらに軽量化することが好ましい。その理由を以下に示す。   The portion between the adjacent guide plates 46 may have a closed shape as shown in FIG. 2, but as shown in FIG. It is preferable to further reduce the weight of the valve body 42 by reducing the height of the hollow portion inside the body 42. The reason is as follows.

図4は、弁体42の質量と、冷媒流量による弁体42の押し上げ量(リフト量)との関係を示している。そして図4では、図3に示す弁体42の作動中に振動音を発生させない高さ”X”(図3に示す弁体42のシール部45の高さに対応)をリフトさせるのに、冷媒流量が60(kg/h)の場合は弁体42の質量が約2.0g以下、冷媒流量が80(kg/h)の場合は弁体42の質量が3.0g以下、冷媒流量が100(kg/h)の場合は弁体42の質量が約4.6g以下、冷媒流量が120(kg/h)の場合は弁体42の質量が7.0g以下とする必要があることを示している。すなわち、弁体42をその質量がなるべく小さくなるように設計にすれば、弁体42の自重よりも弁体42を押し上げる力(静圧)が大きくなり、弁体42が安定するため振動音が発生しにくくなる。しかし、弁体42の質量が上記の値を超えると、冷媒流量が所定の量より小さい場合、弁体42にかかる静圧が急激に変化することで、静圧よりも弁体42の自重の方が勝るようになり、閉弁方向に力が掛かるようになり、振動音が発生し易くなる。
なお、液冷媒状態での流量により弁体42が押し上げられる時は、弁体42に浮力が生じるため、弁体42に対する静圧はガス冷媒状態による場合より大きくなる。したがって、ガス冷媒状態での流量を基準にして、弁体42の質量を定めればよい。
FIG. 4 shows the relationship between the mass of the valve body 42 and the amount by which the valve body 42 is pushed up (lift amount) due to the refrigerant flow rate. In FIG. 4, the height “X” (corresponding to the height of the seal portion 45 of the valve body 42 shown in FIG. 3) that does not generate vibration noise during the operation of the valve body 42 shown in FIG. When the refrigerant flow rate is 60 (kg / h), the mass of the valve element 42 is about 2.0 g or less, and when the refrigerant flow rate is 80 (kg / h), the mass of the valve element 42 is 3.0 g or less, and the refrigerant flow rate is In the case of 100 (kg / h), the mass of the valve body 42 needs to be about 4.6 g or less, and in the case where the refrigerant flow rate is 120 (kg / h), the mass of the valve body 42 needs to be 7.0 g or less. Show. That is, if the valve body 42 is designed so that its mass is as small as possible, the force (static pressure) that pushes up the valve body 42 becomes larger than the dead weight of the valve body 42, and the valve body 42 is stabilized, so that vibration noise is generated. Less likely to occur. However, when the mass of the valve body 42 exceeds the above value, the static pressure applied to the valve body 42 changes abruptly when the refrigerant flow rate is smaller than a predetermined amount, so that the self-weight of the valve body 42 exceeds the static pressure. As a result, a force is applied in the valve closing direction, and vibration noise is easily generated.
When the valve body 42 is pushed up by the flow rate in the liquid refrigerant state, buoyancy is generated in the valve body 42, so that the static pressure on the valve body 42 becomes larger than in the case of the gas refrigerant state. Therefore, the mass of the valve body 42 may be determined based on the flow rate in the gas refrigerant state.

室内機100Cを1台だけ運転する場合、圧縮機1は運転容量を可変するため、逆止弁18〜21の各弁体42に係る押上力(静圧)が低下するが、弁体42の質量を上記のように軽量化した構成にすることで、弁体42の動作が安定し、振動音が発生するのを防止できる。また、たとえ振動音が発生しても従来より少ないため、配管を伝播し室内への不快な音を低減することができる。しかも、上記逆止弁は従来のものと比較して部品点数が増えることもなく、容易な構造であるため、コストの低減にも寄与できる。   When operating only one indoor unit 100C, since the compressor 1 varies the operating capacity, the push-up force (static pressure) applied to each valve body 42 of the check valves 18 to 21 is reduced. By adopting a configuration in which the mass is reduced as described above, the operation of the valve body 42 is stabilized, and generation of vibration noise can be prevented. Further, even if vibration noise is generated, it is less than in the prior art, so that it is possible to reduce unpleasant sound that propagates through the piping and enters the room. Moreover, the check valve does not increase the number of parts as compared with the conventional one and has an easy structure, which can contribute to cost reduction.

実施の形態2.
図5は、本発明の実施の形態2に係る逆止弁の弁体の構成を示す(a)上面図、(b)正面図、(c)側面図である。図1で示した逆止弁とは、弁体のみが相違している。実施の形態2の弁体42は、その羽根部44に、羽根部軸方向の中心に対して点対称な位置に2つの翼49を設け、弁体42の外周面を冷媒が通過する際に弁体42に浮揚力を生じさせるように、2つの翼49を冷媒の流れ方向に対して同じ方向に傾斜させたものである。なお、翼49は独立して専用のものを設けてもよいが、実施の形態1の案内板46を利用して形成してもよい。
Embodiment 2. FIG.
FIG. 5: is (a) top view, (b) front view, (c) side view which shows the structure of the valve body of the non-return valve which concerns on Embodiment 2 of this invention. Only the valve body is different from the check valve shown in FIG. In the valve body 42 of the second embodiment, the blade portion 44 is provided with two blades 49 at a point-symmetrical position with respect to the center in the blade portion axial direction, and when the refrigerant passes through the outer peripheral surface of the valve body 42. The two blades 49 are inclined in the same direction with respect to the flow direction of the refrigerant so that a levitation force is generated in the valve body 42. In addition, although the blade 49 may be provided independently, it may be formed using the guide plate 46 of the first embodiment.

図6は、単独翼における揚力係数CLと迎え角αの関係を示す図である。翼の前縁の形状や板厚により異なるが、揚力係数CLは、迎え角αとともに増加するが、迎え角αがおおよそ12°で揚力係数CLは急激に減少する。これは、翼の前縁で剥離を起こし、安定した揚力が得られなくなるためである。したがって、翼49の傾斜角度は12°以下とするのが好ましい。
実施の形態2の逆止弁によれば、弁体42の振動を抑制でき、実施の形態1と同様の効果を奏する。
FIG. 6 is a diagram showing the relationship between the lift coefficient CL and the angle of attack α in a single wing. Although the lift coefficient CL increases with the angle of attack α, the lift coefficient CL decreases rapidly when the angle of attack α is approximately 12 °, although it varies depending on the shape of the leading edge of the wing and the plate thickness. This is because peeling occurs at the leading edge of the wing and stable lift cannot be obtained. Therefore, the inclination angle of the blades 49 is preferably 12 ° or less.
According to the check valve of the second embodiment, the vibration of the valve body 42 can be suppressed, and the same effect as the first embodiment can be obtained.

実施の形態3.
本発明の実施の形態3に係る逆止弁は、その弁体42に関して実施の形態1と実施の形態2の特徴を両方取り入れたものである。図7は本発明の実施の形態3にかかる弁体42の構造を示す図であり、(a)が上面図、(b)(d)が側面図、(c)が正面図、(e)が底面図を表している。そして、図1で示した逆止弁とは、弁体のみが相違している。すなわち、実施の形態3の弁体42も、外側部材43の中空部43Aの内周面を案内面として該中空部をその軸方向に移動する羽根部44と、羽根部44と一体に形成され、外側部材43の連結部分43Dに嵌り合う斜面形状を有した中実のシート部45とを備えている。また、羽根部44は、外側部材中空部43Aの軸方向に伸びる複数の案内板46を有し、案内板46が外側部材中空部43Aの内周面の周りに配置されており、複数の案内板46同士の間には空間47が形成され、かつ複数の案内板46で囲まれた部分が中空となっている。
ここではさらに、羽根部44が、その軸方向の中心に対して点対称な位置に2つの翼49を備え、弁体42の外周面を冷媒が通過する際に弁体42に浮揚力を生じさせるように、それら2つの翼49が冷媒の流れ方向に対して同じ方向に傾斜している。
なお、翼49の理解を容易にするために、図7に示した弁体42の2方向からの斜視図を図8に示しておく。
Embodiment 3 FIG.
The check valve according to Embodiment 3 of the present invention incorporates both the features of Embodiment 1 and Embodiment 2 with respect to its valve body 42. FIG. 7 is a view showing the structure of the valve element 42 according to the third embodiment of the present invention, in which (a) is a top view, (b) and (d) are side views, (c) is a front view, and (e). Represents a bottom view. And only the valve body is different from the check valve shown in FIG. That is, the valve body 42 of the third embodiment is also formed integrally with the blade portion 44 and the blade portion 44 that moves the hollow portion in the axial direction using the inner peripheral surface of the hollow portion 43A of the outer member 43 as a guide surface. And a solid sheet portion 45 having a sloped shape that fits into the connecting portion 43D of the outer member 43. The blade portion 44 has a plurality of guide plates 46 extending in the axial direction of the outer member hollow portion 43A, and the guide plates 46 are arranged around the inner peripheral surface of the outer member hollow portion 43A. A space 47 is formed between the plates 46, and a portion surrounded by the plurality of guide plates 46 is hollow.
Here, the blade portion 44 further includes two blades 49 at a point-symmetrical position with respect to the center in the axial direction, and a levitation force is generated in the valve body 42 when the refrigerant passes through the outer peripheral surface of the valve body 42. The two blades 49 are inclined in the same direction with respect to the refrigerant flow direction.
In order to facilitate understanding of the blade 49, a perspective view of the valve body 42 shown in FIG. 7 from two directions is shown in FIG.

実施の形態3の逆止弁は、その弁体42が、実施の形態1の軽量化の構造と、実施の形態2の揚力発生用翼とを組み合わせ持つ構造となっているため、弁体42の動作に起因する振動音防止に関して、実施の形態1、2と同等以上の効果を奏することができる。   The check valve of the third embodiment has a structure in which the valve body 42 has a combination of the weight reduction structure of the first embodiment and the lift generating blades of the second embodiment. With respect to the prevention of vibration noise caused by the above operation, it is possible to achieve an effect equal to or greater than that of the first and second embodiments.

実施の形態4.
これまでは、本発明の実施の形態に係る逆止弁を空気調和装置に適用した例をみてきたが、本発明の逆止弁は、冷凍サイクルを構成する他の装置、たとえば冷凍装置の冷媒回路にも利用することができる。
また、図1のような例に限らず、冷凍サイクルを構成する冷媒回路で逆止弁を使用する際には、本発明の逆止弁が利用できる。
Embodiment 4 FIG.
Until now, the example which applied the check valve which concerns on embodiment of this invention to the air conditioning apparatus was seen, However, The check valve of this invention is the refrigerant | coolant of other apparatuses which comprise a refrigerating cycle, for example, a refrigerating apparatus It can also be used for circuits.
Moreover, when using a check valve in the refrigerant circuit which comprises a refrigerating cycle, not only the example like FIG. 1, the check valve of this invention can be utilized.

本発明の実施の形態に係る空気調和装置の冷媒回路構成図。The refrigerant circuit block diagram of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態1による逆止弁の全体構成の一例を示す図。The figure which shows an example of the whole structure of the non-return valve by Embodiment 1 of this invention. 本発明の実施の形態1による逆止弁の弁体の構成を一例を示す図。The figure which shows an example of the structure of the valve body of the non-return valve by Embodiment 1 of this invention. 弁体の質量と冷媒流量による弁体のリフト量との関係を示す図。The figure which shows the relationship between the mass of a valve body, and the lift amount of the valve body by a refrigerant | coolant flow rate. 本発明の実施の形態2による逆止弁の弁体の構成を一例を示す図。The figure which shows an example of the structure of the valve body of the non-return valve by Embodiment 2 of this invention. 単独翼における揚力係数CLと迎え角αの関係を示す図。The figure which shows the relationship between the lift coefficient CL and the attack angle (alpha) in a single wing | blade. 本発明の実施の形態3による逆止弁の弁体の構成を一例を示す図。The figure which shows an example of the structure of the valve body of the non-return valve by Embodiment 3 of this invention. 図7に示した弁体の2方向からの斜視図。The perspective view from two directions of the valve body shown in FIG.

符号の説明Explanation of symbols

100A 熱源機、100B 中継機、 100C〜100E 室内機、1 圧縮機、 2 四方弁、 3 熱源機側熱交換器、4 アキュムレータ、5c〜5e 利用側(室内)熱交換器、 6,6c〜6e 配管、7,7c〜7e 配管、8a〜8f 切換弁、9c〜9e 第1の絞り装置、10 第1の分岐部、11 第2の分岐部、12 気液分離器、13 第2の絞り装置、14 第1のバイパス回路、15 第3の絞り装置、16 第1の熱交換器、17 第2の熱交換器、18〜21 逆止弁、32 第2のバイパス回路、33 第3のバイパス回路、40,41 配管、42 弁体、43 外側本体、43A 外側本体の中空部、43B 第1の径部分、43C 第2の径部分、43D 連結部分、44 羽根部、45 シート部、46 案内板、47:空間または切欠、49 翼。   100A heat source machine, 100B relay machine, 100C-100E indoor unit, 1 compressor, 2 four-way valve, 3 heat source machine side heat exchanger, 4 accumulator, 5c-5e use side (indoor) heat exchanger, 6, 6c-6e Piping, 7, 7c to 7e Piping, 8a to 8f Switching valve, 9c to 9e First throttling device, 10 First branching portion, 11 Second branching portion, 12 Gas-liquid separator, 13 Second throttling device , 14 1st bypass circuit, 15 3rd expansion device, 16 1st heat exchanger, 17 2nd heat exchanger, 18-21 check valve, 32 2nd bypass circuit, 33 3rd bypass Circuit, 40, 41 Piping, 42 Valve body, 43 Outer body, 43A Hollow part of outer body, 43B First diameter part, 43C Second diameter part, 43D Connection part, 44 Blade part, 45 Seat part, 46 Guide Board, 47: Space or notch, 49 wings.

Claims (7)

冷媒回路の配管に接続される中空の外側部材と、前記外側部材の中空部にあって、前記中空部内を流れる冷媒の圧力に応じて、前記外側部材の冷媒回路閉弁位置から冷媒回路開弁位置の間を移動可能な弁体とを備え、前記冷媒を前記弁体の周囲を通して前記中空部を一方向にのみ通過させる逆止弁であって、
前記外側部材の中空部は、第1の径部分と、前記第1の径部分より大きな径の第2の径部分と、前記第1の径部分と前記第2の径部分とをつなぐ連結部分とを有し、
前記弁体は、前記外側部材中空部の内周面を案内面として該中空部をその軸方向に移動する羽根部と、前記羽根部と一体に形成され、前記外側部材の前記連結部分に嵌り合う形状を有した中実のシート部とを備え、
前記羽根部は、前記外側部材中空部の内周面の周りにあって前記外側部材中空部の軸方向に伸びる複数の案内板を有し、前記複数の案内板で囲まれた部分が中空となっていることを特徴とする逆止弁。
A hollow outer member connected to a refrigerant circuit pipe, and a refrigerant circuit valve opening from a refrigerant circuit valve closing position of the outer member in a hollow portion of the outer member, according to a pressure of a refrigerant flowing in the hollow portion A check valve that allows the refrigerant to pass only in one direction through the periphery of the valve body,
The hollow portion of the outer member includes a first diameter portion, a second diameter portion having a larger diameter than the first diameter portion, and a connecting portion that connects the first diameter portion and the second diameter portion. And
The valve body is formed integrally with the blade portion, the blade portion moving in the axial direction of the hollow portion with the inner peripheral surface of the hollow portion of the outer member as a guide surface, and fitted into the connecting portion of the outer member. A solid sheet portion having a matching shape,
The blade portion has a plurality of guide plates around the inner peripheral surface of the outer member hollow portion and extending in the axial direction of the outer member hollow portion, and a portion surrounded by the plurality of guide plates is hollow. A check valve characterized by
冷媒回路の配管に接続される中空の外側部材と、前記外側部材の中空部にあって、前記中空部内を流れる冷媒の圧力に応じて、前記外側部材の冷媒回路閉弁位置から冷媒回路開弁位置の間を移動可能な弁体とを備え、前記冷媒を前記弁体の周囲を通して前記中空部を一方向にのみ通過させる逆止弁であって、
前記外側部材の中空部は、第1の径部分と、前記第1の径部分より大きな径の第2の径部分と、前記第1の径部分と前記第2の径部分とをつなぐ連結部分とを有し、
前記弁体は、前記外側部材中空部の内周面を案内面として該中空部をその軸方向に移動する羽根部と、前記羽根部と一体に形成され、前記外側部材の前記連結部分に嵌り合う形状を有した中実のシート部とを備え、
前記羽根部は、前記外側部材中空部の内周面の周りにあって前記外側部材中空部の軸方向に伸びる複数の案内板を有し、隣り合う前記複数の案内板同士の間には空間が形成されていることを特徴とする逆止弁。
A hollow outer member connected to a refrigerant circuit pipe, and a refrigerant circuit valve opening from a refrigerant circuit valve closing position of the outer member in a hollow portion of the outer member, according to a pressure of a refrigerant flowing in the hollow portion A check valve that allows the refrigerant to pass only in one direction through the periphery of the valve body,
The hollow portion of the outer member includes a first diameter portion, a second diameter portion having a larger diameter than the first diameter portion, and a connecting portion that connects the first diameter portion and the second diameter portion. And
The valve body is formed integrally with the blade portion, the blade portion moving in the axial direction of the hollow portion with the inner peripheral surface of the hollow portion of the outer member as a guide surface, and fitted into the connecting portion of the outer member. A solid sheet portion having a matching shape,
The blade portion has a plurality of guide plates that extend around the inner peripheral surface of the outer member hollow portion and extend in the axial direction of the outer member hollow portion, and a space is provided between the adjacent guide plates. Is a check valve.
隣り合う前記複数の案内板同士の間には空間が形成されていることを特徴とする請求項1記載の逆止弁。   The check valve according to claim 1, wherein a space is formed between the plurality of adjacent guide plates. 前記羽根部は等間隔に配置された4つの前記案内板により構成されていることを特徴とする請求項1〜3のいずれかに記載の逆止弁。   The check valve according to any one of claims 1 to 3, wherein the blade portion includes four guide plates arranged at equal intervals. 前記羽根部はその軸方向の中心に対して点対称な位置に2つの翼を備え、前記弁体の外周面を冷媒が通過する際に前記弁体に浮揚力を生じさせるように、前記2つの翼が冷媒の流れ方向に対して同じ方向に傾斜していることを特徴とする請求項1〜4のいずれかに記載の逆止弁。   The blade portion includes two wings at a point-symmetrical position with respect to the axial center thereof, and when the refrigerant passes through the outer peripheral surface of the valve body, the wing portion generates a levitation force on the valve body. The check valve according to claim 1, wherein the two blades are inclined in the same direction with respect to the flow direction of the refrigerant. 冷媒回路の配管に接続される中空の外側部材と、前記外側部材の中空部にあって、前記中空部内を流れる冷媒の圧力に応じて、前記外側部材の冷媒回路閉弁位置から冷媒回路開弁位置の間を移動可能な弁体とを備え、前記冷媒を前記弁体の周囲を通して前記中空部を一方向にのみ通過させる逆止弁であって、
前記外側部材の中空部は、第1の径部分と、前記第1の径部分より大きな径の第2の径部分と、前記第1の径部分と前記第2の径部分とをつなぐ連結部分とを有し、
前記弁体は、前記外側部材中空部の内周面を案内面として該中空部をその軸方向に移動する羽根部と、前記羽根部と一体に形成され、前記外側部材の前記連結部分に嵌り合う形状を有した中実のシート部とを備え、
前記羽根部はその軸方向の中心に対して点対称な位置に2つの翼を備え、前記弁体の外周面を冷媒が通過する際に前記弁体に浮揚力を生じさせるように、前記2つの翼が冷媒の流れ方向に対して同じ方向に傾斜していることを特徴とする逆止弁。
A hollow outer member connected to a refrigerant circuit pipe, and a refrigerant circuit valve opening from a refrigerant circuit valve closing position of the outer member in a hollow portion of the outer member, according to a pressure of a refrigerant flowing in the hollow portion A check valve that allows the refrigerant to pass only in one direction through the periphery of the valve body,
The hollow portion of the outer member includes a first diameter portion, a second diameter portion having a larger diameter than the first diameter portion, and a connecting portion that connects the first diameter portion and the second diameter portion. And
The valve body is formed integrally with the blade portion, the blade portion moving in the axial direction of the hollow portion with the inner peripheral surface of the hollow portion of the outer member as a guide surface, and fitted into the connecting portion of the outer member. A solid sheet portion having a matching shape,
The blade portion includes two wings at a point-symmetrical position with respect to the axial center thereof, and when the refrigerant passes through the outer peripheral surface of the valve body, the wing portion generates a levitation force on the valve body. A check valve characterized in that two blades are inclined in the same direction with respect to the flow direction of the refrigerant.
請求項1〜6のいずれかに記載の逆止弁を冷凍サイクルの冷媒回路に備えたことを特徴とする冷凍サイクル装置。   A refrigeration cycle apparatus comprising the check valve according to any one of claims 1 to 6 in a refrigerant circuit of a refrigeration cycle.
JP2008065522A 2008-03-14 2008-03-14 Check valve for refrigerant circuit and refrigeration cycle apparatus including the same Expired - Fee Related JP5042080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008065522A JP5042080B2 (en) 2008-03-14 2008-03-14 Check valve for refrigerant circuit and refrigeration cycle apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008065522A JP5042080B2 (en) 2008-03-14 2008-03-14 Check valve for refrigerant circuit and refrigeration cycle apparatus including the same

Publications (2)

Publication Number Publication Date
JP2009222097A true JP2009222097A (en) 2009-10-01
JP5042080B2 JP5042080B2 (en) 2012-10-03

Family

ID=41239095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008065522A Expired - Fee Related JP5042080B2 (en) 2008-03-14 2008-03-14 Check valve for refrigerant circuit and refrigeration cycle apparatus including the same

Country Status (1)

Country Link
JP (1) JP5042080B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164211A (en) * 2012-02-10 2013-08-22 Saginomiya Seisakusho Inc Expansion valve

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339328U (en) * 1976-09-09 1978-04-06
JPS54150722A (en) * 1978-05-19 1979-11-27 Hitachi Ltd Lift type check valve
JPS6099470U (en) * 1983-12-12 1985-07-06 三菱電機株式会社 Refrigeration equipment
JPS6224175U (en) * 1985-07-26 1987-02-14
JPS6337873U (en) * 1986-08-28 1988-03-11
JPS64773U (en) * 1987-06-19 1989-01-05
JPH0821547A (en) * 1994-07-06 1996-01-23 Yamakawa Ind Co Ltd Structure of opening/closing valve for fluid
JP2000161808A (en) * 1998-11-24 2000-06-16 Mitsubishi Electric Corp Refrigeration cycle device and check valve unit
JP2001182852A (en) * 1999-12-27 2001-07-06 Nippon Pillar Packing Co Ltd Check valve
JP2005273881A (en) * 2004-03-26 2005-10-06 National Maritime Research Institute Valve body rotation control valve

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339328U (en) * 1976-09-09 1978-04-06
JPS54150722A (en) * 1978-05-19 1979-11-27 Hitachi Ltd Lift type check valve
JPS6099470U (en) * 1983-12-12 1985-07-06 三菱電機株式会社 Refrigeration equipment
JPS6224175U (en) * 1985-07-26 1987-02-14
JPS6337873U (en) * 1986-08-28 1988-03-11
JPS64773U (en) * 1987-06-19 1989-01-05
JPH0821547A (en) * 1994-07-06 1996-01-23 Yamakawa Ind Co Ltd Structure of opening/closing valve for fluid
JP2000161808A (en) * 1998-11-24 2000-06-16 Mitsubishi Electric Corp Refrigeration cycle device and check valve unit
JP2001182852A (en) * 1999-12-27 2001-07-06 Nippon Pillar Packing Co Ltd Check valve
JP2005273881A (en) * 2004-03-26 2005-10-06 National Maritime Research Institute Valve body rotation control valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164211A (en) * 2012-02-10 2013-08-22 Saginomiya Seisakusho Inc Expansion valve

Also Published As

Publication number Publication date
JP5042080B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP4254863B2 (en) Air conditioner
JP4404148B2 (en) Economizer
WO2010092933A1 (en) Injection pipe
JP2020041797A (en) Compressor unit, heat source unit and air conditioning device
JP6138263B2 (en) Laminated header, heat exchanger, and air conditioner
JP2008121985A (en) Heat exchange system
JP4831808B2 (en) Expansion valve and air conditioner
US20150300666A1 (en) Air conditioner and air conditioner construction method
JP2008039276A (en) Refrigerant flow passage switching unit and air conditioner using this unit
WO2016002022A1 (en) Expansion valve and refrigeration cycle device
WO2019215916A1 (en) Refrigeration cycle system
JP2008008604A (en) Refrigerant piping structure and air conditioner
WO2011099323A1 (en) Reversible receiver, and air conditioner
JP2007271181A (en) Air conditioner
WO2013093966A1 (en) Air conditioner
JP5042080B2 (en) Check valve for refrigerant circuit and refrigeration cycle apparatus including the same
JP2007032857A (en) Refrigerating device
JP2008145030A (en) Multi-chamber type air conditioner
WO2012056887A1 (en) Refrigeration cycle apparatus
JP2010078248A (en) Gas-liquid separator and refrigerating cycle device including the same
JP3921870B2 (en) Refrigeration cycle equipment
JP2012017951A (en) Refrigeration cycle device
JP4916342B2 (en) Refrigeration equipment
JP2007093167A (en) Liquid gas heat exchanger for air-conditioner
JP2008180435A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5042080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees