JP2009219834A - Muscle power evaluation apparatus by evaluation of difference between two images of a-mode ultrasonic image - Google Patents

Muscle power evaluation apparatus by evaluation of difference between two images of a-mode ultrasonic image Download PDF

Info

Publication number
JP2009219834A
JP2009219834A JP2008101912A JP2008101912A JP2009219834A JP 2009219834 A JP2009219834 A JP 2009219834A JP 2008101912 A JP2008101912 A JP 2008101912A JP 2008101912 A JP2008101912 A JP 2008101912A JP 2009219834 A JP2009219834 A JP 2009219834A
Authority
JP
Japan
Prior art keywords
image
ultrasonic
mode
personal computer
human body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008101912A
Other languages
Japanese (ja)
Inventor
Shuichi Matsumura
秀一 松村
Toshitsugu Tanizawa
俊嗣 谷澤
Kensaku Miyamoto
賢作 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikosha KK
Original Assignee
Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikosha KK filed Critical Seikosha KK
Priority to JP2008101912A priority Critical patent/JP2009219834A/en
Publication of JP2009219834A publication Critical patent/JP2009219834A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a muscle power evaluation system by an A-mode system to solve an issue that display of only a line segment lacks reproducibility and weak visibility in a muscle power evaluation system by the A-mode system highly evaluated in possibility of cost reducing and lightening. <P>SOLUTION: When the inside of a human body is observed using an ultrasonic probe in an ultrasonic A-mode system, evaluation and observation of the situation produced inside a human body are enabled in pixel units by: leaving the variation details in lines of an ultrasonic image displayed in single lines onto a screen of a personal computer; after a predetermined time elapses, the displayed image is stored in a memory medium of the personal computer as original image data; then, a newly obtained image is stored in the memory medium of the personal computer as a variation image after a predetermined time by varying a state of the subject; and then, producing a difference image obtained by removing data matching the part left as the original image from the image data left as the variation image. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は超音波Aモード方式の機器を使用して筋力評価を行うためのシステムに関する。The present invention relates to a system for performing muscular strength evaluation using an ultrasonic A-mode apparatus.

人体の筋力の測定法には例えば力こぶをつくったり、握力計を思いっきり握ったり、背筋計を引っ張ったりするときの力をある一定の基準値と比較や評価を行うものや、懸垂をするときに鉄棒を顎の下まで持っていき、そのまま体を支え続けたり、懸垂を何回も続ける力を評価して持久力を評価するなどのように機器や器具を使用しないものと、電気抵抗や、機器に対する抵抗力を計測して評価したり、レントゲン撮影像、MRI撮影像、超音波画像で視覚的に筋力を測定するものなど色々な方法がある。For measuring muscle strength of the human body, for example, when making a bicep, grasping the grip strength meter, pulling the back strength meter, comparing or evaluating the force with a certain reference value, or when hanging Do not use equipment or instruments, such as taking a horizontal bar to the bottom of your chin and continuing to support the body as it is, or evaluating endurance by evaluating the power to keep hanging many times, electrical resistance, There are various methods such as measuring and evaluating the resistance force to the device, and measuring the muscle strength visually using an X-ray image, an MRI image, and an ultrasonic image.

超音波Bモード方式による皮下脂肪厚の評価または超音波Bモード方式によって得られた数枚の画像を合成しての筋肉の量を映像で評価するなどの方法があるが、Aモードを使用した筋力の測定システムは無かった。There are methods such as the evaluation of subcutaneous fat thickness by the ultrasonic B mode method or the evaluation of the amount of muscle by synthesizing several images obtained by the ultrasonic B mode method, but the A mode was used. There was no muscular strength measurement system.

Bモード方式の超音波プローブは複数の振動子で構成されていて得られる情報量も多く人体内部の観察には適しているが、多数の振動子が必要となるため高価なことと、筋力の評価には必要の無い情報も多数表示される結果、筋力評価のみに特化して観察しようとする時にはこの目的に適さない。The B-mode ultrasonic probe is composed of a plurality of transducers and can obtain a large amount of information and is suitable for observing the inside of the human body. As a result of displaying a lot of information that is not necessary for the evaluation, it is not suitable for this purpose when the observation is made only for the muscular strength evaluation.

重要な人体内部の観察を目的として作られたBモード方式を使ったシステムは筋力のみを計測したい時には価格も、生成される映像内容も実用性に乏しかった。
またBモード方式を使ったシステムは装置そのものもAモード方式を使ったシステムより大きくて重くならざるを得なかった。
The system using the B-mode method, which was created for the purpose of observing the inside of an important human body, was poor in practicality in terms of price and generated video content when it was desired to measure only muscle strength.
In addition, the system using the B mode method must be larger and heavier than the system using the A mode method.

このような理由からAモード方式を使うことで得られる軽量で安価なシステムの実現に対する社会の期待は強かった。
しかしAモード方式は3に示すような線分で表現されているが、時間経過と共に電圧の変化や人体と接触しているプローブ1にかかる圧力の変化に対応して高速で変化し続けるため人間の目で追認することは難しかった。
仮に、特定の時間で表示を静止したとしても計測しようとする人体の安静時の筋肉のAモード方式の画像1と、筋肉を収縮させた時のAモード方式の画像6を見比べてその違いを評価しようとしてもどの部分がノイズでどの部分が有効な画素なのかがわからないし、再度両画像を取得したとしても直前に取得した画像との再現性が高いのか低いのかも判断できない。
このように安価で軽量化できる可能性を持つ点では評価が高いAモード方式の筋力評価用システムは、線分だけの表示で再現性に乏しく視認性も弱いことから実用化されなかった。
For these reasons, society's expectations for realizing a lightweight and inexpensive system obtained by using the A mode method have been strong.
However, although the A-mode method is expressed by a line segment as shown in 3, since it continues to change at high speed in response to changes in voltage and pressure applied to the probe 1 that is in contact with the human body over time, humans It was difficult to confirm with my eyes.
Even if the display is stopped at a specific time, the difference between the A-mode image 1 of the human resting muscle to be measured and the A-mode image 6 of the contracted muscle is compared. When trying to evaluate, it is not clear which part is noise and which part is an effective pixel, and even if both images are acquired again, it cannot be determined whether the reproducibility with the image acquired immediately before is high or low.
Thus, the A-mode muscular strength evaluation system, which is highly evaluated in terms of the possibility of being cheap and light in weight, has not been put into practical use because it displays only a line segment and has poor reproducibility and low visibility.

本発明はこれらの実用化の障害となっていた要因を解決してAモード方式の筋力評価用システムを実現することにある。An object of the present invention is to realize an A-mode muscular strength evaluation system by solving the factors that have hindered practical use.

超音波検査装置は大きく分けて超音波を発生させ反射した超音波を受信する仕組みを持つプローブ1と、受信したデータを処理する部分2並びに5と、画像を表示するディスプレイ4からなる。The ultrasonic inspection apparatus is roughly divided into a probe 1 having a mechanism for generating ultrasonic waves and receiving reflected ultrasonic waves, portions 2 and 5 for processing received data, and a display 4 for displaying images.

プローブを検査の対象物50に当て超音波を発生させると、ごく短い時間のうちに、その音は対象物の中を進んでいき、固いものに当たると反射する。
プローブ1でその反射音波を測定し、反射音が返ってくるまでの時間から距離を2で計算して5で内部の様子を4に可視化する。
When an ultrasonic wave is generated by applying the probe to the inspection object 50, the sound travels through the object in a very short time, and is reflected when it hits a hard object.
The reflected sound wave is measured by the probe 1, the distance is calculated by 2 from the time until the reflected sound returns, and the internal state is visualized by 4 by 5.

Aモード検査では、音波を一方向のみに送受信するだけのものであり、他にも扇状に音波を発生するなどして対象物の断面画像がリアルタイムに見られるようになっているものも多数あるが、本発明はAモード式のみを対象とする。In the A mode inspection, sound waves are only transmitted and received in one direction, and there are many other cases in which a cross-sectional image of an object can be seen in real time by generating sound waves in a fan shape. However, the present invention targets only the A mode type.

エコー検査は体外からプローブを当てるだけで検査できる上、非常に安全でこれといった副作用もないことから、医療現場で最も頻繁に行われる検査のひとつであり、固い骨に囲まれている頭蓋のような部分を除けば、事実上体のほとんどの部分がエコー検査の適応となる。Echo inspection is one of the most frequently performed in the medical field because it can be examined simply by applying a probe from outside the body, and it is very safe and does not have such side effects, like a skull surrounded by hard bones. Except for these parts, virtually all parts of the body are eligible for echocardiography.

Aモード方式は実像に近いイメージで画像が描出されるBモード方式とは違い線分で描出される。
このことがAモード式の筋力評価システムを作ろうとする時の阻害因子であったので、図1にある安静時を示す映像3と図2に示す筋肉の収縮時の映像6に関して次のように処理を加えていく。
Unlike the B mode method in which an image is drawn with an image close to a real image, the A mode method is drawn with line segments.
Since this was an inhibitory factor when trying to create an A-mode-type muscle strength evaluation system, the following is related to the image 3 showing the resting state in FIG. 1 and the image 6 when the muscle contracts as shown in FIG. Add processing.

図1の1から30、2、31を順次経由して送られて来た図1の50に示す安静時の人体の信号が図1の5のパソコン内で処理されリアルタイムに図1の4に線分3として表示されている。
この線分3は実際の画面上では電圧やノイズや1と50の接触面の圧力の影響を反映して常に変化していて肉眼では早い速度で揺れ動いて見える。
これをパソコン内に備えたソフトウエアーで図1の線分3を1秒から10秒以内の時系列に合成して画面上の映像を常に残像として加算するように残し画像が消去されないようにして図3に示すような映像を作る。
The signal of the human body at rest shown in 50 of FIG. 1 sent sequentially from 1 to 30, 2 and 31 of FIG. 1 is processed in the personal computer of 5 of FIG. Displayed as line 3.
This line segment 3 is constantly changing on the actual screen reflecting the influence of voltage, noise, and pressure on the contact surface of 1 and 50, and it appears to swing at a high speed with the naked eye.
1 is synthesized in time series within 1 to 10 seconds with the software provided in the personal computer, and the image on the screen is always added as an afterimage so that the remaining image is not erased. An image as shown in FIG. 3 is created.

所望の時間が経過した時点で図3の映像をパソコンの記憶媒体に保存する。
その後モニター4の内容を消去してから図2の51に示すように腕に力を入れて、その状態を図2の1から30、2、31を順次経由して送られて来た図2の51に示す力をこめた人体内の信号が図2の5のパソコン内で処理されリアルタイムに図2の4に線分6として表示する。
この線分6も実際の画面上では電圧やノイズや1と51の接触面の圧力の影響を反映して肉眼には早い速度で揺れ動いて見える。
これをパソコン内に備えたソフトウエアーで同様に図2の線分6を1秒から10秒以内の時系列に合成して画面に表示されている画像が更新されないようにして図4のような映像を作る。
所望の時間が経過した時点で図4の映像もパソコンの記憶媒体に保存する。
When a desired time elapses, the video in FIG. 3 is stored in the storage medium of the personal computer.
After that, the contents of the monitor 4 are erased, and the arm is put in force as shown by 51 in FIG. 2, and the state is sent sequentially from 1 to 30, 2 and 31 in FIG. 2 is processed in the personal computer 5 in FIG. 2 and displayed in real time as a line 6 in 4 in FIG.
This line segment 6 also appears to swing at a high speed to the naked eye, reflecting the influence of voltage, noise, and pressure on the contact surface 1 and 51 on the actual screen.
Similarly, the software provided in the personal computer synthesizes the line segment 6 of FIG. 2 into a time series within 1 to 10 seconds so that the image displayed on the screen is not updated as shown in FIG. Make a video.
When the desired time has elapsed, the video in FIG. 4 is also stored in the storage medium of the personal computer.

図5は図3を、図6は図4を説明のために模式図にあらわしたものである。
これらから、図8の13は人体上肢図7の60に示す位置における、所望の時間だけ時系列に塗りつぶされていった図1の3の線分の変化経緯を全て記録した集合体の模式図であることを示している。
図10の16は人体上肢図9の60に示す位置における、所望の時間だけ時系列に塗りつぶされていった図2の6の線分の変化経緯を全て記録した集合体の模式図であることを示している。
こうして用意された映像13と16を図11に示すように合成して17の画像を作る。
FIG. 5 shows FIG. 3 and FIG. 6 shows FIG. 4 for schematic illustration.
From these, reference numeral 13 in FIG. 8 is a schematic diagram of an aggregate in which all the changes of the line segments in FIG. 1 that have been painted in time series for a desired time are recorded at the position indicated by 60 in FIG. It is shown that.
16 in FIG. 10 is a schematic diagram of an aggregate in which all the changes of the line 6 in FIG. 2 that have been painted in time series for a desired time are recorded at the position indicated by 60 in FIG. Is shown.
The images 13 and 16 thus prepared are combined as shown in FIG. 11 to create 17 images.

17の画像で、16の画像から13の画像と重複する部分を取り去り、図12の18に示す画像を作る。
パソコンの画面はピクセル単位で構成されているので拡大すると図13の19に示すようにピクセル単位の点状の集合体となる。
図14の20に示すように評価範囲を特定する矩形を定めてその内部に何個のピクセルが存在するかを数えることで差分の数が決まりこの値が13から16に変化した時のピクセルを単位とした差分の値となる。
In 17 images, a portion overlapping with 13 images is removed from 16 images, and an image 18 shown in FIG. 12 is created.
Since the screen of the personal computer is configured in units of pixels, when enlarged, it becomes a point-like aggregate in units of pixels as shown at 19 in FIG.
As shown at 20 in FIG. 14, a rectangle that specifies the evaluation range is defined and the number of pixels is determined by counting the number of pixels in the rectangle. The pixel when this value changes from 13 to 16 is determined. The difference value as a unit.

これによって線分3と6が諸条件の影響を受けて不安定に変化しても同一の条件下で時系列に所望の時間の映像を記録した2枚の画像からピクセル単位に差分の数を得ることにより正確で再現性のある筋力評価をピクセルの数としてあらわすことができる。As a result, even if the line segments 3 and 6 are unstablely changed under the influence of various conditions, the number of differences is calculated in units of pixels from two images in which images of a desired time are recorded in time series under the same conditions. By obtaining, accurate and reproducible muscle strength evaluation can be expressed as the number of pixels.

Aモード方式は図1の3に示すような線分で表現されるため時間経過と共に電圧の変化や人体と接触しているプローブ1にかかる圧力の変化に対応して高速で変化し続けてもその変化情報自体も保存しておき安静時と力を入れた時の画像の共通項とすることで、13と16の差分を求めればノイズや線分の位置変化が相殺されて有効な画素をピクセル数として表現することが可能となる。
これによって正確な筋力をピクセル数として計測することができるようになり、安価で軽量化できる可能性を持つ点で評価の高いAモード方式の筋力評価用システムの実用化ができるようになる。
Since the A mode method is represented by a line segment as shown in 3 of FIG. 1, even if it continues to change at a high speed in response to a change in voltage and a change in pressure applied to the probe 1 in contact with the human body as time passes. By storing the change information itself and making it the common term of the image when resting and putting effort, if the difference between 13 and 16 is obtained, the position change of noise and line segments is offset and effective pixels are It can be expressed as the number of pixels.
As a result, accurate muscle strength can be measured as the number of pixels, and an A-mode type muscle strength evaluation system, which is highly evaluated in terms of the possibility of being cheap and lightweight, can be put to practical use.

図15に示すように、対象とする人体の所望の部位51に1をあてて、5に備えたソフトウエアーで1を51から離すことなく安静時、力を入れた状態の二つの画像から差分をピクセル単位で算出して、その数を画面上で知らせるとともに、図15の100に示す差分の画像を4に描画する。As shown in FIG. 15, a difference is obtained from two images in a state where force is applied to a desired part 51 of the target human body, while resting without separating 1 from 51 with the software provided in 5. Is calculated in units of pixels, and the number thereof is notified on the screen, and a difference image indicated by 100 in FIG.

携帯型ノートパソコンと組み合わせれば汎用性は更に増すし、図17に示すような従来の線分での画像表現内容とは異質の評価基準の設定が可能となり、このシステムを使用して起立不能の寝たきり状態の老人の筋力低下予防のための計測や学童児の筋力傾向調査やスポーツ競技別筋力傾向などの分析が実施できる。When combined with a portable notebook computer, the versatility is further increased, and it is possible to set evaluation criteria different from the conventional image expression content in the line segment as shown in FIG. 17, and it is impossible to stand up using this system. Measurements to prevent muscle weakness in elderly people who are bedridden, surveys of muscle strength trends in schoolchildren, and analysis of strength trends by sports competition can be performed.

実施形態の効果Effects of the embodiment

安価で携帯性に優れソフトウエアーでの制御のために再現性が高く、高い専門的知識を必要としないで簡便に利用できるようになる。
また差分画像を皮膚表面から骨までの距離を特定することで面積比を求めたり、皮膚表面から上腕骨までの距離の変化を筋厚変化とするなど、より共通性のある考え方を実現することが可能となる。
It is inexpensive, has excellent portability, has high reproducibility for software control, and can be easily used without requiring high technical knowledge.
In addition, to realize a more common concept, such as obtaining the area ratio by specifying the distance from the skin surface to the bone in the difference image, or changing the distance from the skin surface to the humerus as the muscle thickness change Is possible.

安価で携帯性と簡易性に優れたシステムであることから健康産業分野、医療、老人施設での老人の筋力測定、若者の筋力測定、宇宙空間での飛行士の筋力低下対策、スポーツセンターでのトレーニング成果の確認など社会で幅広く活用されることが期待できる。It is an inexpensive, portable and easy-to-use system, so it can be used in the health industry field, medical care, elderly strength measurement in elderly facilities, youth strength measurement, measures to reduce muscular strength of astronauts in outer space, sports center It can be expected to be widely used in society, such as checking training results.

本発明の説明で使用した語句の定義Definition of terms used in the description of the present invention

[ノイズ]
波長よりも小さな無数の散乱源からのエコーを観測したときに、各々が生じる散乱波が互いに干渉してエコー振幅に強弱を生じることにより、画像上に表れてしまう班点状の信号。
[筋持久力]
長時間運動を持続できる人体の筋肉のこと
超音波振動子]
電気エネルギーを超音波機械振動に変換する素子
[筋力]
人が体のある部位の筋肉を思いっきり収縮させたときに出せる力のこと。
[システム]
相互に影響を及ぼしあう要素から構成される、まとまりや仕組みの全体。
[超音波Aモード方式]
1本のビームを発生させたとき、距離と強度の関係を線上に表示して人間が理解しやすいようにしたもの。
[Aモード表示]
Aモード表示は横軸としてブラウン管の時間軸に生体深度または距離を、縦軸に反射強度または受信波形を示す表示方法のこと。
[Bモード]
超音波の振幅と位置のうち、振幅を点の明るさ(輝度)として表示し、複数の超音波ビームを発生させて二次元像を作成する方式のもの。
[超音波]
約2万ヘルツ以上の人間の耳では聞くことができない帯域の音。
[超音波機器]
圧電セラミックスが持つ電気エネルギーと機械エネルギーを変換する能力を利用して作られた人体内観察用の機器。
[超音波画像]
超音波を人体に発信し、その超音波が体内の臓器や骨などに当たって反射したものを、再び振動子によって受信した情報を元に作られる画像。
[超音波プローブ]
超音波を発生させ反射した超音波(エコー)を受信する仕組みを備えた機器のことをいう。
[Bモード]
モード表示(BrightnessのB)は反射信号の強度をブラウン管上で輝度変調を行う表示方法である。
このBモードが一般に超音波画像と呼ばれ、肝臓や乳房などの多くの臓器に用いられている。
画像表示はリアルタイムに表示される。
[ピクセル]パソコンの画面、および画像は最小単位の四角形の集合体でこの1つ1つの四角のことをピクセルという。
[noise]
A spot-like signal that appears on the image when the echoes from an infinite number of scatter sources smaller than the wavelength are observed and the scattered waves generated from each other interfere with each other and cause the amplitude of the echo to be strong or weak.
[Muscle endurance]
Human body muscle that can sustain exercise for a long time
Element that converts electrical energy into ultrasonic mechanical vibration [muscle strength]
This is the power that can be produced when a person contracts the muscles of a certain part of the body.
[system]
The whole unity and structure composed of elements that affect each other.
[Ultrasonic A mode]
When a single beam is generated, the relationship between distance and intensity is displayed on a line to make it easier for humans to understand.
[A mode display]
A mode display is a display method in which the horizontal axis indicates the depth or distance of the living body on the time axis of the CRT, and the vertical axis indicates the reflection intensity or the received waveform.
[B mode]
Of the amplitude and position of the ultrasonic wave, the amplitude is displayed as the brightness (luminance) of the point, and a two-dimensional image is created by generating a plurality of ultrasonic beams.
[Ultrasound]
Sound in a band that cannot be heard by human ears of about 20,000 hertz or higher.
[Ultrasonic equipment]
A device for observing the human body that uses the ability of piezoelectric ceramics to convert electrical energy and mechanical energy.
[Ultrasonic image]
An image that is created based on the information received by the vibrator again after the ultrasonic wave is transmitted to the human body and the ultrasonic wave is reflected by an internal organ or bone.
[Ultrasonic probe]
A device having a mechanism for generating ultrasonic waves and receiving reflected ultrasonic waves (echoes).
[B mode]
Mode display (Brightness B) is a display method in which the intensity of the reflected signal is modulated on a CRT.
This B mode is generally called an ultrasound image and is used for many organs such as the liver and breast.
The image display is displayed in real time.
[Pixel] The screen of a personal computer and an image are a set of rectangles of the smallest unit, and each square is called a pixel.

人体上肢安静時のデータ取得状況を示す図。The figure which shows the data acquisition condition at the time of a human body upper limb resting. 人体上肢に力をいれた時のデータ取得状況を示す図。The figure which shows the data acquisition condition when force is applied to a human body upper limb. 図1の3のみを取り出して示した図。The figure which extracted and showed only 3 of FIG. 図2の6のみを取り出して示した図。The figure which extracted and showed only 6 of FIG. 図3を模式図としてあらわしたもの。FIG. 3 is a schematic diagram. 図4を模式図としてあらわしたもの。FIG. 4 is a schematic diagram. 人体上肢安静時の計測位置を示す図The figure which shows the measurement position at the time of a human upper limb resting 図7の計測位置で得られた線分3の集積画像を示す模式図。FIG. 8 is a schematic diagram showing an integrated image of a line segment 3 obtained at the measurement position in FIG. 7. 人体上肢に力をこめた時の計測位置を示す図Diagram showing the measurement position when force is applied to the upper limbs of the human body 図7の計測位置で得られた線分6の集積画像を示す模式図。FIG. 8 is a schematic diagram showing an integrated image of a line segment 6 obtained at the measurement position in FIG. 7. 図8の13と図10の16の模式図を重ね併せた図。FIG. 11 is a diagram in which the schematic diagrams of 13 in FIG. 8 and 16 in FIG. 10 are overlapped. 16画像から13と合致するデータを除去した様子をあらわす模式図。The schematic diagram showing a mode that the data which correspond to 13 were removed from 16 images. 図12の18を更に模式化してピクセルで構成されていることを示す模式図。FIG. 13 is a schematic diagram showing that 18 in FIG. 12 is further modeled and configured by pixels. 20に示す枠線内がピクセルの個数を数えるための範囲であることを示す例としての模式図。The schematic diagram as an example which shows that the inside of the frame shown in 20 is the range for counting the number of pixels. 本発明の実施形態を示す模式図。The schematic diagram which shows embodiment of this invention. 図17の線状にあらわされている線分の発生する根拠を1から出た超音波が障害物に当たる様子と対比させている参考の模式図17 is a reference schematic diagram comparing the basis for generating the line segment shown in FIG. 17 with the state where the ultrasonic wave emitted from 1 hits an obstacle. Aモード式で反射信号の強度と深度を示す図。The figure which shows the intensity | strength and depth of a reflected signal by A mode type | formula.

符号の説明Explanation of symbols

1 超音波Aモードプローブ。
2 超音波Aモードプローブからの振動信号を増幅してパソコンに転送する装置。
3 肘の関節を伸ばし力の入っていない状態での、2から送られて来た振動信号をパソコンで処理してモニターに線形信号として映し出されている様子を示している。
4 パソコンの信号を表示するためのモニター。
5 パソコン。
6 肘の関節を曲げて力の入った状態での、2から送られて来た振動信号をパソコンで処理してモニターに線形信号として映し出されている様子を示している。
13 3の線形信号が時間の経過とともに画面上を塗りつぶした様子を示す図。
16 6の線形信号が時間の経過とともに画面上を塗りつぶした様子を示す図。
17 16の映像に13の映像を重ね併せた様子を示す図。
18 16の映像に対して13の映像が重複する部分を取り除いた様子を示す図。
19 18の映像をピクセル単位で表現した図。
20 13と16の差分としてのピクセルの数を数えるための範囲を示す枠。
30 1と2を結ぶケーブル。
31 2と5を結ぶケーブル。
50 人体上肢で肘を伸ばし、力を入れていない状態を示す図。
51 人体上肢で肘を曲げて、力を強く入れた状態を示す図。
60 Aモードプローブ1を計測のために置く位置を示す点線。
61 安静時の上肢を側面から見たときの上端位置を示す点線。
62 安静時の上肢を側面から見たときの下端位置を示す点線。
63 力を入れた状態の上肢を側面から見たときの上端位置を示す点線。
64 力を入れた状態の上肢を側面から見たときの下端位置を示す点線。
70 超音波が人体内を進む方向を示す矢印。
71 人体の骨を除いた柔らかい部分。
72 Aモード式で反射信号の強度と深度を示す波形。
73 人体内の骨や、骨に近い固さを持つ軟骨を示す模式図。
100 16の画像から13の画像成分を除去した映像が映っている様子を示す模式図。
1 Ultrasonic A-mode probe.
2 A device that amplifies the vibration signal from the ultrasonic A-mode probe and transfers it to a personal computer.
3 This figure shows how the vibration signal sent from 2 is processed by a personal computer and displayed as a linear signal on the monitor when the elbow joint is not stretched.
4 Monitor for displaying PC signals.
5 PC.
6 This figure shows how the vibration signal sent from 2 in the state where the elbow joint is bent and the force is applied is processed by a personal computer and displayed as a linear signal on the monitor.
The figure which shows a mode that the linear signal of 133 is filled on the screen with progress of time.
The figure which shows a mode that the linear signal of 166 was filled on the screen with progress of time.
17 is a diagram showing a state in which 13 images are superimposed on 16 16 images.
The figure which shows a mode that the part which 13 images | videos overlap with the 1816 image | video was removed.
19 is a diagram in which 18 images are expressed in units of pixels.
A frame indicating a range for counting the number of pixels as the difference between 2013 and 16.
30 Cable connecting 1 and 2.
31 A cable connecting 2 and 5.
50 is a diagram showing a state where the elbow is stretched with the upper limbs of the human body and no force is applied.
51 is a diagram showing a state where the elbow is bent with the upper limbs of the human body and the force is applied strongly.
60 A dotted line indicating a position where the A-mode probe 1 is placed for measurement.
61 A dotted line showing the upper end position when the arm is viewed from the side at rest.
62 Dotted line indicating the position of the lower end when the upper limb at rest is viewed from the side.
63 Dotted line indicating the upper end position when the upper limb is viewed from the side with force applied.
64 A dotted line showing the lower end position when the upper limb with force applied is viewed from the side.
70 Arrow indicating the direction in which ultrasound travels through the human body.
71 Soft part excluding human bones.
72 A waveform indicating the intensity and depth of the reflected signal in the A mode type.
73 A schematic diagram showing bones in a human body and cartilage having hardness close to bones.
The schematic diagram which shows a mode that the image | video which removed 13 image components from 10016 image is reflected.

Claims (1)

超音波Aモード方式の超音波プローブを使用して人体内部を観察した時に単線で表示されている超音波映像の線の変化経緯を全て映像としてパソコン画面上に残し一定の時間を経過した後に表示されている映像を元画像データとしてパソコンの記憶媒体に保存した後、被検体の状態を変化させることによって新たに得られる映像を一定時間後に変化画像としてパソコンの記憶媒体に保存しておき変化画像として残した画像データより元画像として残したデータの合致部分を除去することによって得られる差分画像を作成することで人体内部の変化を起こした様子の評価並びに観察をピクセル単位で可能とするシステム。When the inside of the human body is observed using the ultrasonic probe of the ultrasonic A mode method, all changes in the line of the ultrasonic image displayed as a single line are left on the computer screen and displayed after a certain period of time. After the recorded video is saved as original image data in a personal computer storage medium, a new image obtained by changing the state of the subject is saved as a changed image in a personal computer storage medium after a certain period of time. A system that enables evaluation and observation of changes in the human body in units of pixels by creating a difference image obtained by removing a matching portion of data left as an original image from image data left as.
JP2008101912A 2008-03-13 2008-03-13 Muscle power evaluation apparatus by evaluation of difference between two images of a-mode ultrasonic image Pending JP2009219834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008101912A JP2009219834A (en) 2008-03-13 2008-03-13 Muscle power evaluation apparatus by evaluation of difference between two images of a-mode ultrasonic image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008101912A JP2009219834A (en) 2008-03-13 2008-03-13 Muscle power evaluation apparatus by evaluation of difference between two images of a-mode ultrasonic image

Publications (1)

Publication Number Publication Date
JP2009219834A true JP2009219834A (en) 2009-10-01

Family

ID=41237265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008101912A Pending JP2009219834A (en) 2008-03-13 2008-03-13 Muscle power evaluation apparatus by evaluation of difference between two images of a-mode ultrasonic image

Country Status (1)

Country Link
JP (1) JP2009219834A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101251296B1 (en) 2011-07-08 2013-04-10 (주)토탈소프트뱅크 Apparatus for processing an ultrasound muscle image
CN107961038A (en) * 2017-12-12 2018-04-27 深圳先进技术研究院 A kind of method and device that biomechanical parameter is obtained according to Ultrasonic elasticity myograph
CN109875609A (en) * 2019-03-01 2019-06-14 清华大学 The measuring device and method of mechanics of muscle parameter, elastograph imaging method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101251296B1 (en) 2011-07-08 2013-04-10 (주)토탈소프트뱅크 Apparatus for processing an ultrasound muscle image
CN107961038A (en) * 2017-12-12 2018-04-27 深圳先进技术研究院 A kind of method and device that biomechanical parameter is obtained according to Ultrasonic elasticity myograph
US11452502B2 (en) 2017-12-12 2022-09-27 Shenzhen Institutes Of Advanced Technology Method and device for acquiring biomechanical parameters based on ultrasonic elastomyogram
CN109875609A (en) * 2019-03-01 2019-06-14 清华大学 The measuring device and method of mechanics of muscle parameter, elastograph imaging method
CN109875609B (en) * 2019-03-01 2020-12-22 清华大学 Measuring device and method for muscle mechanics parameters and elastography method

Similar Documents

Publication Publication Date Title
US20200371232A1 (en) Imaging methods and apparatuses for performing shear wave elastography imaging
JP5752121B2 (en) Method and apparatus for measuring physical parameters in mammalian soft tissue by propagating shear waves
Maaß et al. Noninvasive measurement of elastic properties of living tissue
CN112089442B (en) Muscle training method and system for providing visual feedback by utilizing ultrasonic imaging
Wakefield et al. Essential Applications of Musculoskeletal Ultrasound in Rheumatology E-Book: Expert Consult Premium Edition
KR20160073168A (en) Untrasound dianognosis apparatus and operating method thereof
JPS61290942A (en) Ultrasonic tissue diagnostic apparatus
WO2022166091A1 (en) Method and apparatus for evaluating contact state of ultrasound probe on basis of soft tissue morphology
JP2009219834A (en) Muscle power evaluation apparatus by evaluation of difference between two images of a-mode ultrasonic image
JP6996035B2 (en) Ultrasonic diagnostic device and method for evaluating physical properties of living tissue
JP2016042960A (en) Ultrasonic diagnostic equipment
JP2005137581A (en) Dynamic image capturing apparatus for transverse section of somatic tissue using plurality of ultrasonic probe
JP2023512404A (en) Ultrasound method for quantifying nonlinear shear wave elasticity in media and apparatus for implementing this method
US11839508B2 (en) Apparatus and method for detecting cavitations using through-transmission alveolar ultrasonography (TAU)
US20100312110A1 (en) Ultrasonograph
JP2009034262A5 (en)
Vlaanderen et al. Low back pain, the stiffness of the sacroiliac joint: a new method using ultrasound
Mauritzson et al. Two-dimensional airborne ultrasound real-time linear array scanner—Applied to screening for scoliosis
Kawchuk et al. The accuracy of ultrasonic indentation in detecting simulated bone displacement: a comparison of three techniques
JP2012050551A (en) Ultrasonic diagnosis apparatus, ultrasonic image processing apparatus, and ultrasonic image processing program
Beach et al. Medical acoustics
US20240041426A1 (en) Apparatus and method for detecting cavitations using through-transmision alveolar ultrasonography (tau)
Nicolas et al. Generating shear waves in the human brain for ultrasound elastography: a new approach
Stegman et al. Doppler ultrasound-based measurement of tendon velocity and displacement for application toward detecting user-intended motion
Stiles Ultrasound imaging as an undergraduate physics laboratory exercise