JP2009217975A - Fuel electrode catalyst, membrane electrode assembly, and fuel cell - Google Patents
Fuel electrode catalyst, membrane electrode assembly, and fuel cell Download PDFInfo
- Publication number
- JP2009217975A JP2009217975A JP2008057815A JP2008057815A JP2009217975A JP 2009217975 A JP2009217975 A JP 2009217975A JP 2008057815 A JP2008057815 A JP 2008057815A JP 2008057815 A JP2008057815 A JP 2008057815A JP 2009217975 A JP2009217975 A JP 2009217975A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- catalyst
- electrode catalyst
- fuel cell
- catalyst layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 138
- 239000000446 fuel Substances 0.000 title claims abstract description 113
- 239000012528 membrane Substances 0.000 title claims description 27
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims abstract description 54
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 42
- 239000001301 oxygen Substances 0.000 claims abstract description 40
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 39
- 235000019253 formic acid Nutrition 0.000 claims abstract description 28
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims abstract description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 24
- 150000007524 organic acids Chemical class 0.000 claims abstract description 9
- 229910052737 gold Inorganic materials 0.000 claims description 20
- 229910052759 nickel Inorganic materials 0.000 claims description 20
- 239000010419 fine particle Substances 0.000 claims description 18
- 229910052763 palladium Inorganic materials 0.000 claims description 13
- 229910052698 phosphorus Inorganic materials 0.000 claims description 9
- 239000005518 polymer electrolyte Substances 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- 229910052697 platinum Inorganic materials 0.000 claims description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 7
- 230000000694 effects Effects 0.000 abstract description 10
- 238000007254 oxidation reaction Methods 0.000 abstract description 10
- 230000003647 oxidation Effects 0.000 abstract description 7
- 230000010718 Oxidation Activity Effects 0.000 abstract description 5
- 230000007797 corrosion Effects 0.000 abstract description 5
- 238000005260 corrosion Methods 0.000 abstract description 5
- 229910017398 Au—Ni Inorganic materials 0.000 abstract description 2
- ORTFAQDWJHRMNX-UHFFFAOYSA-M oxidooxomethyl Chemical compound [O-][C]=O ORTFAQDWJHRMNX-UHFFFAOYSA-M 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 39
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 37
- 239000010931 gold Substances 0.000 description 34
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 28
- 238000006243 chemical reaction Methods 0.000 description 26
- 230000004913 activation Effects 0.000 description 19
- 238000001179 sorption measurement Methods 0.000 description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 17
- 238000003379 elimination reaction Methods 0.000 description 16
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- 238000000354 decomposition reaction Methods 0.000 description 12
- 238000003795 desorption Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 229910002091 carbon monoxide Inorganic materials 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 9
- 229910002669 PdNi Inorganic materials 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000006722 reduction reaction Methods 0.000 description 6
- 229920000557 Nafion® Polymers 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 206010003549 asthenia Diseases 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 239000002048 multi walled nanotube Substances 0.000 description 4
- CFQCIHVMOFOCGH-UHFFFAOYSA-N platinum ruthenium Chemical compound [Ru].[Pt] CFQCIHVMOFOCGH-UHFFFAOYSA-N 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- -1 sulfonate anion Chemical class 0.000 description 4
- 238000003775 Density Functional Theory Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 231100000572 poisoning Toxicity 0.000 description 3
- 230000000607 poisoning effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010537 deprotonation reaction Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000004776 molecular orbital Methods 0.000 description 2
- AOPCKOPZYFFEDA-UHFFFAOYSA-N nickel(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O AOPCKOPZYFFEDA-UHFFFAOYSA-N 0.000 description 2
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- VEJOYRPGKZZTJW-FDGPNNRMSA-N (z)-4-hydroxypent-3-en-2-one;platinum Chemical compound [Pt].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O VEJOYRPGKZZTJW-FDGPNNRMSA-N 0.000 description 1
- 238000004965 Hartree-Fock calculation Methods 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- JDRJCBXXDRYVJC-UHFFFAOYSA-N OP(O)O.N.N.N Chemical compound OP(O)O.N.N.N JDRJCBXXDRYVJC-UHFFFAOYSA-N 0.000 description 1
- 230000010757 Reduction Activity Effects 0.000 description 1
- ITFCTBFBEKRKDC-UHFFFAOYSA-N [O].OC Chemical compound [O].OC ITFCTBFBEKRKDC-UHFFFAOYSA-N 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 150000008043 acidic salts Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- GJYJYFHBOBUTBY-UHFFFAOYSA-N alpha-camphorene Chemical compound CC(C)=CCCC(=C)C1CCC(CCC=C(C)C)=CC1 GJYJYFHBOBUTBY-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- DNCQWNWCEBTKGC-UHFFFAOYSA-N azane;phosphorous acid Chemical compound N.N.OP(O)O DNCQWNWCEBTKGC-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- ZRRLFMPOAYZELW-UHFFFAOYSA-N disodium;hydrogen phosphite Chemical compound [Na+].[Na+].OP([O-])[O-] ZRRLFMPOAYZELW-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000010411 electrocatalyst Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical class [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- DOLZKNFSRCEOFV-UHFFFAOYSA-L nickel(2+);oxalate Chemical compound [Ni+2].[O-]C(=O)C([O-])=O DOLZKNFSRCEOFV-UHFFFAOYSA-L 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 150000002941 palladium compounds Chemical class 0.000 description 1
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical compound [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 description 1
- RFLFDJSIZCCYIP-UHFFFAOYSA-L palladium(2+);sulfate Chemical compound [Pd+2].[O-]S([O-])(=O)=O RFLFDJSIZCCYIP-UHFFFAOYSA-L 0.000 description 1
- LXNAVEXFUKBNMK-UHFFFAOYSA-N palladium(II) acetate Substances [Pd].CC(O)=O.CC(O)=O LXNAVEXFUKBNMK-UHFFFAOYSA-N 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 229910000364 palladium(II) sulfate Inorganic materials 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- NCPXQVVMIXIKTN-UHFFFAOYSA-N trisodium;phosphite Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])[O-] NCPXQVVMIXIKTN-UHFFFAOYSA-N 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
Description
本発明は、燃料極触媒、これを備えた膜電極接合体及び燃料電池に関する。 The present invention relates to a fuel electrode catalyst, a membrane electrode assembly including the same, and a fuel cell.
近年、水素エネルギーから電気エネルギーを取り出すことができる発電装置、例えば、水素燃料電池などの開発研究が活発になってきた。水素は水を分解することで得られ、地球上に無尽蔵に存在するばかりか、物質量当たりに含まれる化学エネルギー量が大きく、しかも、エネルギー源として利用するときに有害物質や地球温暖化ガスを発生しないという利点を有する。 In recent years, research and development on power generation devices that can extract electrical energy from hydrogen energy, such as hydrogen fuel cells, has become active. Hydrogen is obtained by decomposing water and is not only inexhaustible on the earth, but also contains a large amount of chemical energy per substance, and when used as an energy source, harmful substances and global warming gases are used. It has the advantage that it does not occur.
水素ガスの代わりに、メタノールを使用する燃料電池の研究も活発に行われている。液体燃料であるメタノールを使用する直接メタノール型燃料電池(DMFC:Direct Methanol Fuel Cell)は、燃料の取り扱い易さに加え、安価な燃料ということで家庭用や産業用の比較的小出力規模の電源として適している。 Research on fuel cells using methanol instead of hydrogen gas is also actively conducted. Direct methanol fuel cells (DMFCs) that use methanol, which is a liquid fuel, have a relatively small output power source for household and industrial use because they are inexpensive fuels in addition to the ease of handling of fuels. Suitable as
メタノール−酸素燃料電池の理論出力電圧は、水素−酸素燃料電池とほぼ同じであり、25℃において約1.2Vである。DMFCは理論的体積エネルギー密度がリチウムイオン電池の約10倍と高く、次世代の電池として期待されている。 The theoretical output voltage of the methanol-oxygen fuel cell is almost the same as that of the hydrogen-oxygen fuel cell, and is about 1.2 V at 25 ° C. DMFC has a theoretical volume energy density about 10 times higher than that of a lithium ion battery, and is expected as a next-generation battery.
DMFCの中央にはプロトン導電膜があり、その両側に陽極及び陰極の触媒層が配置される。陰極にはメタノールと水、陽極には酸素が供給される。陰極触媒には白金ルテニウム(PtRu)、陽極触媒には白金(Pt)触媒が使用される。 In the center of the DMFC, there is a proton conductive film, and anode and cathode catalyst layers are arranged on both sides thereof. Methanol and water are supplied to the cathode, and oxygen is supplied to the anode. Platinum ruthenium (PtRu) is used for the cathode catalyst, and platinum (Pt) catalyst is used for the anode catalyst.
陰極における反応機構を以下に説明する。 The reaction mechanism at the cathode will be described below.
まず、式(1)に従い、メタノールの酸化過程でCOが生成してPt触媒上に化学吸着する。これはCOによるPt触媒被毒である。 First, according to the formula (1), CO is generated during the methanol oxidation process and chemisorbed on the Pt catalyst. This is Pt catalyst poisoning by CO.
一方、Ru上には水が吸着し、式(2)に従い水酸基を生成する。このRuに結合した水酸基が式(3)に従ってPtに化学吸着したCOをアタックし、CO2に酸化する。 On the other hand, water is adsorbed on Ru, and a hydroxyl group is generated according to the formula (2). The hydroxyl group bonded to Ru attacks CO chemisorbed on Pt according to the formula (3) and oxidizes it to CO 2 .
CH3OH+Pt=Pt−CO+4H++4e− …式(1)
Ru+H2O=Ru−OH+H++e− …式(2)
Pt−CO+Ru−OH=Pt+Ru+CO2+H++e− …式(3)
Ruにはメタノールを酸化する触媒作用は無く、RuはPtの被毒を軽減する助触媒である。上記の反応機構から、Pt原子とRu原子は互いに近接して存在することが理想的であり、Pt50Ru50の組成が最も高活性であることが知られている。
CH 3 OH + Pt = Pt- CO + 4H ++ 4e- ... formula (1)
Ru + H 2 O = Ru- OH + H ++ e- ... formula (2)
Pt-CO + Ru-OH = Pt + Ru + CO 2 + H ++ e- ... Equation (3)
Ru has no catalytic action to oxidize methanol, and Ru is a promoter that reduces Pt poisoning. From the above reaction mechanism, it is ideal that Pt atoms and Ru atoms exist close to each other, and it is known that the composition of Pt50Ru50 is the most active.
DMFCの熱力学的発生電池電圧は、上述の通り、約1.2Vであるが、実際の電池では、この電圧は得られない。この主な原因は以下の2点である。 As described above, the DMFC thermodynamically generated battery voltage is about 1.2 V, but this voltage cannot be obtained in an actual battery. The main causes are the following two points.
第1に、メタノール酸化反応の活性化エネルギーがPtRu触媒を使用してもまだ大きく、アノード分極が大きいことである。 First, the activation energy of the methanol oxidation reaction is still large even when the PtRu catalyst is used, and the anodic polarization is large.
第2に、メタノールがプロトン導電膜を透過してカソードに達し、カソードで直接酸化されることである。メタノールの透過はメタノールクロスオーバーと呼ばれ、大きな問題である。 Second, methanol passes through the proton conductive film and reaches the cathode, where it is directly oxidized at the cathode. The permeation of methanol is called methanol crossover and is a big problem.
また、燃料電池に使用されるPtは極めて高価な貴金属である。触媒に使用するPtは酸化状態にある化合物を最終的に還元して合成される。Ptの供給源として最も安価な化合物は六塩化白金酸であり、試薬レベルでの価格は2006年7月現在、約2750円/gである。この試薬から1gの金属Pt触媒を合成するために必要な試薬コストは約7320円である。DMFCの電極触媒の使用量は両極とも50g/m2前後であり、電池電圧0.4Vでの一般的出力密度は200W/m2である。このことから、携帯電話に必要な電力1Wを供給するために必要な触媒量は金属Pt換算で0.5gであり、その試薬コストは約3660円にのぼる。この様な高額コストではDMFCを搭載した携帯機器を普及させるのは困難である。 Further, Pt used for fuel cells is a very expensive noble metal. Pt used as a catalyst is synthesized by finally reducing a compound in an oxidized state. The cheapest compound as a source of Pt is hexachloroplatinic acid, and the price at the reagent level is about 2750 yen / g as of July 2006. The reagent cost required to synthesize 1 g of metal Pt catalyst from this reagent is about 7320 yen. The amount of electrode catalyst used in DMFC is around 50 g / m 2 for both electrodes, and the general power density at a battery voltage of 0.4 V is 200 W / m 2 . From this, the amount of catalyst necessary for supplying 1 W of electric power necessary for the mobile phone is 0.5 g in terms of metal Pt, and the reagent cost is about 3660 yen. With such a high cost, it is difficult to spread portable devices equipped with DMFC.
この様な状況下、2004年、米国イリノイ大学から新しいタイプの燃料電池が報告された(非特許文献1)。それは直接ギ酸型燃料電池(DFAFC:Direct Formic Acid Fuel Cell)で、陰極燃料にギ酸、陽極燃料に酸素を使用するタイプのものである。この燃料電池のメリットは触媒としてPdを選択すれば、ギ酸が酸化されて二酸化炭素に変化する際、メタノール酸化の場合と異なり、反応過程で一酸化炭素を生じないこと、及び、ギ酸がプロトン導電膜中を殆ど透過しない点である。ギ酸の酸化反応を式(4)に示す。 Under such circumstances, a new type of fuel cell was reported in 2004 by the University of Illinois (Non-Patent Document 1). It is a direct formic acid fuel cell (DFAFC) that uses formic acid as the cathode fuel and oxygen as the anode fuel. The merit of this fuel cell is that if Pd is selected as a catalyst, when formic acid is oxidized to carbon dioxide, carbon monoxide is not generated in the reaction process unlike methanol oxidation, and formic acid is proton conductive. The point is that it hardly penetrates the membrane. The formic acid oxidation reaction is shown in Formula (4).
HCOOH=CO2+2H++2e− …式(4)
この反応はギ酸からの直接脱プロトン反応である。したがって、素反応過程で一酸化炭素(CO)を生成することがなく、触媒を被毒する問題が無い。また、ギ酸はアルコールと異なり有機酸であるため、水溶液中で電離してギ酸イオン(HCOO−)を生成する。ギ酸イオンは陰イオンであり、代表的プロトン導電膜であるデュポン(DuPont)社のナフィオン(Nafion、登録商標)膜中のスルフォン酸陰イオンとの間に静電的斥力が生じる。
HCOOH = CO2 + 2H ++ 2e− Formula (4)
This reaction is a direct deprotonation reaction from formic acid. Therefore, carbon monoxide (CO) is not generated in the elementary reaction process, and there is no problem of poisoning the catalyst. Further, since formic acid is an organic acid unlike alcohol, it is ionized in an aqueous solution to produce formate ion (HCOO-). The formate ion is an anion, and an electrostatic repulsive force is generated between the sulfonate anion in the Nafion (registered trademark) film of DuPont, which is a typical proton conductive film.
この斥力により、ギ酸イオンがプロトン導電膜中を透過し難く、クロスオーバー量がDMFCのメタノールに比較して極めて少ない。この特長から、DFAFCではパッシブ状態(燃料供給のためにポンプ等を一切使用しないタイプ)でDMFCの2倍以上の出力密度を達成している。 This repulsive force makes it difficult for formate ions to permeate through the proton conductive film, and the amount of crossover is extremely small compared to DMFC methanol. Because of this feature, DFAFC achieves a power density more than twice that of DMFC in a passive state (a type that does not use any pump for supplying fuel).
また、DFAFCの陰極触媒にはPdが使用される。2006年7月現在、Pd地金の価格はPt地金の価格の約1/4であり、触媒材料コストも大幅に低減できる。 Pd is used as the cathode catalyst for DFAFC. As of July 2006, the price of Pd ingot is about 1/4 of the price of Pt ingot, and the cost of catalyst material can be greatly reduced.
また、水素ガスや、メタノールを使用する燃料電池では、陽極触媒の耐久性向上が重要である。陽極触媒は、H+が多数存在する液体にさらされるため、触媒を構成する原子の溶出が起きやすくなるためである。これに関連して耐久性向上に関する研究結果が報告された(非特許文献2)。より貴であるAuを微量加えることで、大幅な耐久性向上が報告されている。 Further, in a fuel cell using hydrogen gas or methanol, it is important to improve the durability of the anode catalyst. This is because the anode catalyst is exposed to a liquid in which a large number of H + is present, so that elution of atoms constituting the catalyst easily occurs. In relation to this, research results on durability improvement have been reported (Non-Patent Document 2). A significant improvement in durability has been reported by adding a trace amount of Au, which is noble.
DFAFCの陽極でも課題は同様であるが、陰極においてもPtより卑なPdを用いるために、耐久性向上が重要である。ただし、Auには触媒活性がないため、Au添加時の耐久性向上効果とともに、陰極触媒の活性を向上する工夫が必要となる。 Although the problem is the same for the anode of DFAFC, the use of Pd, which is lower than Pt, is also important for the cathode, so that it is important to improve durability. However, since Au has no catalytic activity, it is necessary to devise a technique for improving the activity of the cathode catalyst as well as the durability improving effect when Au is added.
上述のように、DFAFCはDMFCに比べ、高出力密度であり、かつ、触媒材料コストも低いものの、燃料電池として普及させるためには、さらなる出力密度の向上及び低コスト化及び耐久性の向上が望まれる。 As described above, DFAFC has a higher output density and lower catalyst material cost than DMFC, but in order to spread as a fuel cell, further improvement in output density, lower cost and improved durability are required. desired.
本発明は、上記に鑑みなされたものであり、PtRuを燃料極触媒に用いたものに比べて、より高出力密度かつ低コストかつ長寿命の燃料電池を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a fuel cell having a higher output density, a lower cost, and a longer life than those using PtRu as a fuel electrode catalyst.
本発明は、燃料極と酸素極とを備えた燃料電池に供する燃料極触媒であって、PdとAuとNiの三元系微粒子からなる。PdとAuとNiの三元系微粒子は、Pd、Au、Niの三種の金属を主要な成分として含有する粒子である。三元系微粒子は、1〜80at.%のNiを含有し、Pdに対して0.1〜10at.%のAuを含有し、残部がPdからなることを特徴とする。 The present invention is a fuel electrode catalyst for use in a fuel cell having a fuel electrode and an oxygen electrode, and is composed of ternary fine particles of Pd, Au, and Ni. The ternary fine particles of Pd, Au, and Ni are particles containing three kinds of metals of Pd, Au, and Ni as main components. Ternary fine particles are 1 to 80 at. % Ni, 0.1 to 10 at. % Au, and the balance is Pd.
また本発明は、燃料極触媒層と酸素極触媒層およびそれらの間に間挿された固体高分子電解質膜とからなる膜電極接合体であって、前記燃料極触媒層がPdとAuとNiの三元系微粒子からなり、1〜80at.%のNiを含有し、Pdに対して0.1〜10at.%のAuを含有し、残部がPdからなることを特徴とする。 The present invention also provides a membrane electrode assembly comprising a fuel electrode catalyst layer, an oxygen electrode catalyst layer, and a solid polymer electrolyte membrane interposed therebetween, wherein the fuel electrode catalyst layer comprises Pd, Au, and Ni. 1 to 80 at. % Ni, 0.1 to 10 at. % Au, and the balance is Pd.
さらに本発明は、燃料極触媒層と酸素極触媒層との間に固体高分子電解質膜を有する膜電極接合体を備えた燃料電池であって、前記燃料極触媒層がPdとAuとNiの三元系微粒子からなり、1〜80at.%のNiを含有し、Pdに対して0.1〜10at.%のAuを含有し、残部がPdからなることを特徴とする。 Furthermore, the present invention provides a fuel cell comprising a membrane electrode assembly having a solid polymer electrolyte membrane between a fuel electrode catalyst layer and an oxygen electrode catalyst layer, wherein the fuel electrode catalyst layer is made of Pd, Au and Ni. It consists of ternary fine particles, 1-80 at. % Ni, 0.1 to 10 at. % Au, and the balance is Pd.
燃料極触媒を上記の構成としたことにより、純Pd触媒よりも燃料の酸化活性が向上し、出力密度が向上するとともにAuの効果で耐食性が向上する。 Since the fuel electrode catalyst has the above structure, the oxidation activity of the fuel is improved as compared with the pure Pd catalyst, the power density is improved, and the corrosion resistance is improved by the effect of Au.
Pd−Au−Ni三元系微粒子は導電性カーボンに担持させることが望ましく、これにより、触媒を超微粒子化でき、その結果、出力密度が向上するとともにAuの効果で耐食性が向上する。 The Pd—Au—Ni ternary fine particles are desirably supported on conductive carbon, whereby the catalyst can be made into ultra fine particles. As a result, the output density is improved and the corrosion resistance is improved by the effect of Au.
本発明の燃料電池もしくは膜電極接合体において、酸素極触媒はPtとPの二元系微粒子からなり、1〜50at.%のPを含有し、残部がPtからなるものとすることが好ましい。また、PtとPの二元系微粒子は導電性カーボンに担持させることが望ましい。これらにより、燃料電池全体としての出力密度をさらに向上させることができる。 In the fuel cell or membrane electrode assembly of the present invention, the oxygen electrode catalyst is composed of binary fine particles of Pt and P, and has a concentration of 1 to 50 at. % P is preferably contained, with the balance being Pt. Further, it is desirable that the Pt and P binary fine particles are supported on conductive carbon. As a result, the output density of the fuel cell as a whole can be further improved.
本発明の燃料電池において、燃料極の燃料はカルボキシル基を有する有機酸であることが好ましく、特にカルボキシル基を有する有機酸がギ酸であるものが好ましい。 In the fuel cell of the present invention, the fuel at the fuel electrode is preferably an organic acid having a carboxyl group, and particularly preferably the organic acid having a carboxyl group is formic acid.
本発明によれば、より高出力密度かつ低コストかつ長寿命の燃料電池を提供することができる。 According to the present invention, a fuel cell with higher power density, lower cost, and longer life can be provided.
発明者らは、密度汎関数理論を用いた第一原理的分子軌道計算法により、燃料極触媒として、純Pdに代わり、PdにNiとAuを添加したPdAuNi触媒を用いることで、カルボキシル基を有するギ酸の酸化活性が高まることを見出した。Auの効果で耐食性も向上する。 The inventors of the present invention have used a first-principles molecular orbital calculation method using density functional theory to replace a PdAuNi catalyst in which Ni and Au are added to Pd, instead of pure Pd, as a fuel electrode catalyst. It has been found that the oxidation activity of formic acid is increased. Corrosion resistance is also improved by the effect of Au.
Pdと同じく水素吸蔵能力の高いNiをPdに添加すると、その相乗効果によりギ酸からの脱プロトン反応が促進され、ギ酸の酸化活性が向上するものと推察される。この点について、以下に詳細に説明する。 When Ni, which has a high hydrogen storage capacity like Pd, is added to Pd, it is presumed that the deprotonation reaction from formic acid is promoted by its synergistic effect, and the oxidation activity of formic acid is improved. This point will be described in detail below.
触媒表面での燃料の酸化分解反応については、密度汎関数理論を用いた第一原理的分子軌道計算法によって、各素反応を調べることができる。本発明で用いた手法及び解析例は、非特許文献3及び4に示されている。
Regarding the oxidative decomposition reaction of the fuel on the catalyst surface, each elementary reaction can be examined by the first principle molecular orbital calculation method using density functional theory.
Pd(111)面上のギ酸の分解反応を調べると、次の一連の素反応経路が主たるものと判明した。 When the decomposition reaction of formic acid on the Pd (111) surface was examined, it was found that the following series of elementary reaction pathways were the main ones.
HCOOH→HCOO+e−+H+ …式(5)
HCOO →OCO+e−+H+ …式(6)
OCO →CO2↑ …式(7)
分解したHは電解質膜へと拡散し、CO2が気化することになる。HCOOの吸着構造は、2つのO原子がPd(111)面の2つのPd原子の直上に吸着する形をとり、ギ酸からH1原子が脱離した分解物の中で最も安定な吸着構造であることが判った。また、このために、反応式は式(5)−式(7)が主たる反応経路になることが判った。これらの一連の素反応における律速反応は式(6)であり、1.0eVの活性化エネルギーが必要と判明した。Hは、CやOに比べて高速振動しており、零点振動エネルギーが大きいので、脱離反応を起こしやすい。これが直接ギ酸型燃料電池の出力が高い理由であると理解できる。
HCOOH → HCOO + e− + H + (5)
HCOO-> OCO + e- + H + ... Formula (6)
OCO → CO2 ↑ ... Formula (7)
The decomposed H diffuses into the electrolyte membrane, and CO 2 is vaporized. The adsorption structure of HCOO is the most stable adsorption structure among the decomposition products in which two O atoms are adsorbed immediately above two Pd atoms on the Pd (111) plane, and H1 atoms are desorbed from formic acid. I found out. For this reason, it has been found that the reaction formulas are mainly the reaction pathways of the formulas (5) to (7). The rate-limiting reaction in these series of elementary reactions is the formula (6), and it was found that an activation energy of 1.0 eV is necessary. H vibrates at a higher speed than C and O, and has a large zero-point vibration energy, and thus easily causes a desorption reaction. This can be understood as the reason why the output of the direct formic acid fuel cell is high.
本解析には、PdAuNi触媒の表面の一部を原子集団モデルとして取り出して用い、式(6)の反応について解析して活性化エネルギーを調べた。 In this analysis, a part of the surface of the PdAuNi catalyst was taken out and used as an atomic group model, and the reaction of Formula (6) was analyzed to examine the activation energy.
PdAuNi上の活性化エネルギーがPd(111)面より小さければ、触媒活性が高いことを示す。同一の反応において活性化エネルギーが0.1eV低い場合、アーレニウスの式から300K(27℃)での反応速度の増加はexp[0.1eV/kT]≒48倍と見積もられる。従って、活性化エネルギー0.1eVの差は十分大きいと考えることができる。 If the activation energy on PdAuNi is smaller than the Pd (111) plane, it indicates that the catalytic activity is high. When the activation energy is 0.1 eV lower in the same reaction, the increase in the reaction rate at 300 K (27 ° C.) is estimated as exp [0.1 eV / kT] ≈48 times from the Arrhenius equation. Therefore, it can be considered that the difference in activation energy of 0.1 eV is sufficiently large.
HCOOの吸着位置の直近にAuが存在する場合を考えて、図1(a)にHCOOの吸着構造、図1(b)に脱離反応の中間構造、図1(c)にH脱離後の構造を解析した結果を示す。 Considering the case where Au is present in the immediate vicinity of the HCOO adsorption position, FIG. 1A shows the HCOO adsorption structure, FIG. 1B shows the intermediate structure of the desorption reaction, and FIG. The result of analyzing the structure of is shown.
脱離反応の中間構造は、H脱離反応方向にはエネルギー極大で、他の方向の原子変位にはエネルギー極小となる構造である。HCOOの吸着構造から脱離反応の中間構造に変形するのに必要なエネルギーが活性化エネルギーΔEであり、PdAuNi触媒では0.9eVと算出された。また、中間構造からH脱離後の構造に至るとエネルギーが1.1eV低下した。 The intermediate structure of the elimination reaction is a structure having an energy maximum in the H elimination reaction direction and an energy minimum in the atomic displacement in the other direction. The energy required to transform from the HCOO adsorption structure to the intermediate structure of the elimination reaction was the activation energy ΔE, and 0.9 eV was calculated for the PdAuNi catalyst. Further, the energy decreased by 1.1 eV from the intermediate structure to the structure after H desorption.
HCOOの吸着位置に対して、Auの存在位置を変えた解析の結果を、図2(a)、図2(b)、図2(c)に中間構造図と活性化エネルギーΔEで示す。いずれも活性化エネルギーが0.9eVと算出された。これらの解析では、OとAuの吸着が弱いので、Auの直上にOが吸着しない構造を考慮した。この解析では、Pd39Au1Ni18を扱ったので、Auは、全体に対して1/58すなわち1.7at%、Pdに対しては1/38すなわち2.6at%含まれている。 The analysis results obtained by changing the position where Au is present relative to the position where HCOO is adsorbed are shown in FIG. 2 (a), FIG. 2 (b) and FIG. 2 (c) as intermediate structure diagrams and activation energy ΔE. In all cases, the activation energy was calculated to be 0.9 eV. In these analyses, since the adsorption of O and Au is weak, a structure in which O is not adsorbed immediately above Au is considered. In this analysis, since Pd39Au1Ni18 was handled, Au is contained in 1/58, that is, 1.7 at%, and Pd is contained in 1/38, that is, 2.6 at%.
比較として、Pd触媒の表面の一部を原子集団モデルとして取り出して用い、式(6)の反応について解析して活性化エネルギーを調べた。図3(a)にHCOOの吸着構造、図3(b)に脱離反応の中間構造、図3(c)にH脱離後の構造を解析した結果を示す。 As a comparison, a part of the surface of the Pd catalyst was taken out and used as an atomic group model, and the reaction of the formula (6) was analyzed and the activation energy was examined. FIG. 3 (a) shows the HCOO adsorption structure, FIG. 3 (b) shows the intermediate structure of the desorption reaction, and FIG. 3 (c) shows the result of analyzing the structure after H desorption.
脱離反応の中間構造は、H脱離反応方向にはエネルギー極大で、他の方向の原子変位にはエネルギー極小となる構造である。HCOOの吸着構造から脱離反応の中間構造に変形するのに必要なエネルギーが活性化エネルギーΔEであり、Pd触媒では1.0eVであった。また、中間構造からH脱離後の構造に至るとエネルギーが1.1eV低下した。 The intermediate structure of the elimination reaction is a structure having an energy maximum in the H elimination reaction direction and an energy minimum in the atomic displacement in the other direction. The energy required to transform from the HCOO adsorption structure to the intermediate structure of the elimination reaction was the activation energy ΔE, and 1.0 eV for the Pd catalyst. Further, the energy decreased by 1.1 eV from the intermediate structure to the structure after H desorption.
第2の比較として、PdNi触媒の表面の一部を原子集団モデルとして取り出して用い、式(6)の反応について解析して活性化エネルギーを調べた。図4(a)にHCOOの吸着構造、図4(b)に脱離反応の中間構造、図4(c)にH脱離後の構造を解析した結果を示す。 As a second comparison, a part of the surface of the PdNi catalyst was extracted and used as an atomic group model, and the activation energy was examined by analyzing the reaction of the formula (6). FIG. 4 (a) shows the HCOO adsorption structure, FIG. 4 (b) shows the intermediate structure of the desorption reaction, and FIG. 4 (c) shows the result of analyzing the structure after H desorption.
脱離反応の中間構造は、H脱離反応方向にはエネルギー極大で、他の方向の原子変位にはエネルギー極小となる構造である。HCOOの吸着構造から脱離反応の中間構造に変形するのに必要なエネルギーが活性化エネルギーΔEであり、PdNi触媒では0.9eVであった。また、中間構造からH脱離後の構造に至るとエネルギーが1.1eV低下した。 The intermediate structure of the elimination reaction is a structure having an energy maximum in the H elimination reaction direction and an energy minimum in the atomic displacement in the other direction. The energy required to transform from the adsorption structure of HCOO to the intermediate structure of the elimination reaction was the activation energy ΔE, and 0.9 eV for the PdNi catalyst. Further, the energy decreased by 1.1 eV from the intermediate structure to the structure after H desorption.
上記の3つの比較結果から、HCOOの吸着構造から脱離反応の中間構造に変形するのに必要な活性化エネルギーΔEは、PdAuNi触媒で0.9eV、Pd触媒で1.0eV、PdNi触媒で0.9eVであり、PdAuNi触媒はPd触媒より0.1eV活性化エネルギーが低く、PdNi触媒とは同等であることが示された。これは、PdにNiとAuを添加したPdAuNi触媒が、Pd触媒に比べてギ酸の酸化活性が高いこと示すものである。 From the above three comparison results, the activation energy ΔE required to transform from the adsorption structure of HCOO to the intermediate structure of the elimination reaction is 0.9 eV for the PdAuNi catalyst, 1.0 eV for the Pd catalyst, and 0 for the PdNi catalyst. The PdAuNi catalyst has a lower activation energy of 0.1 eV than the Pd catalyst, indicating that it is equivalent to the PdNi catalyst. This indicates that the PdAuNi catalyst in which Ni and Au are added to Pd has higher formic acid oxidation activity than the Pd catalyst.
第3の比較として、PdAuNi触媒の表面の一部を原子集団モデルとして取り出して用い、反応(6)について解析して活性化エネルギーを調べた。図5(a)にHCOOの吸着構造を示す。OがAuの直上に吸着しない構造であるが、HがAuに吸着する形の脱離反応の活性化エネルギーを調べた。図5(b)に脱離反応の中間構造、図5(c)にH脱離後の構造を解析した結果を示す。脱離反応の中間構造は、H脱離反応方向にはエネルギー極大で、他の方向の原子変位にはエネルギー極小となる構造である。HCOOの吸着構造から脱離反応の中間構造に変形するのに必要なエネルギーが活性化エネルギーΔEであり、PdNi触媒では1.3eVであった。また、中間構造からH脱離後の構造に至るとエネルギーが1.4eV低下した。 As a third comparison, a part of the surface of the PdAuNi catalyst was taken out and used as an atomic group model, and the reaction (6) was analyzed and the activation energy was examined. FIG. 5A shows the adsorption structure of HCOO. The activation energy of the elimination reaction in which O is not adsorbed directly on Au but H is adsorbed on Au was examined. FIG. 5B shows the result of analyzing the intermediate structure of the elimination reaction, and FIG. 5C shows the result of analyzing the structure after H elimination. The intermediate structure of the elimination reaction is a structure having an energy maximum in the H elimination reaction direction and an energy minimum in the atomic displacement in the other direction. The energy required to transform from the adsorption structure of HCOO to the intermediate structure of the elimination reaction was the activation energy ΔE, and 1.3 eV for the PdNi catalyst. Further, the energy decreased by 1.4 eV from the intermediate structure to the structure after H desorption.
第3の比較で示したように、HがAuに吸着する形の脱離反応では、活性化エネルギーが、Pd触媒より0.3eV増加した。よって、HがAuに吸着する形の脱離反応は、極めて起こりにくくなる。この理由は、AuのH吸着エネルギーがPdより劣るためであると考えられる。したがって、上記の解析に用いた原子集団モデルの最表面に、Auが2個分散すると、活性が大幅に低下することが予想される。このため、Auの比率は、Pdに対して10at.%以下と考えられる。 As shown in the third comparison, in the desorption reaction in which H is adsorbed to Au, the activation energy is increased by 0.3 eV from the Pd catalyst. Therefore, a desorption reaction in which H is adsorbed to Au is extremely difficult to occur. The reason for this is considered that the H adsorption energy of Au is inferior to Pd. Therefore, it is expected that when two Aus are dispersed on the outermost surface of the atomic group model used in the above analysis, the activity is greatly reduced. Therefore, the Au ratio is 10 at. % Or less.
以下に、本発明の実施の形態について説明する。ただし、本発明は以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、省略及び簡略化されている。 Embodiments of the present invention will be described below. However, the present invention is not limited to the following embodiments. Further, in order to clarify the explanation, the following description and drawings are appropriately omitted and simplified.
図6に本発明に係る燃料電池の代表的な構成例を示す。本実施例の燃料電池40は固体高分子電解質膜41、空気導入孔42、酸素極側拡散層43、酸素極側集電体44、酸素極触媒層45、燃料極触媒層46、燃料極側集電体47、燃料極側拡散層48、燃料導入孔49を備える。ここで、固体高分子電解質膜41、酸素極触媒層45および燃料極触媒層46が、膜電極接合体を構成する。
FIG. 6 shows a typical configuration example of the fuel cell according to the present invention. The
固体高分子電解質膜41は、燃料極で発生したプロトンを酸素極側に輸送する機能と、燃料極と酸素極の短絡を防止するセパレータとしての機能とを備えるものである。具体的には、デュポン社製のナフィオン112を用いることができる。
The solid
酸素極側集電体44は、空気導入孔42を介して空気(酸素)を取り込む構造体としての機能と集電機能とを有している。陽極燃料としては、大気中の酸素を用いることができる。酸素極側集電体44から取り込まれた酸素は、酸素極側拡散層43を介して酸素極触媒層45に導かれる。この酸素極触媒層45において、燃料極で生成された電子により還元され、同時に、燃料極で生成されたプロトンと反応して水を生成する。
The oxygen electrode side
酸素極触媒層45に用いる酸素極触媒としては、Pt又はPtP触媒が好ましい。PtにPを添加すると、Pt触媒粒子がカーボン担体上に析出する際、Pが粒子の内部及び外部から作用し、析出するPt触媒粒子を微細化して触媒の比表面積を増大させ、酸素還元活性が向上する。PtP酸素極触媒を併用すれば燃料電池特性を一層高めることができる。この場合、Pの含有量は1〜50at.%であることが好ましい。P含有量が1at.%未満ではPt触媒の粒径を十分に微細化させることができず、触媒活性を十分に高めることができない。一方、P含有量が50at.%超の場合、Ptの含有量が低くなり触媒活性が低下する。
The oxygen electrode catalyst used for the oxygen
燃料極側集電体47は、燃料導入孔49を介して燃料を取り込む構造体としての機能と集電機能とを有している。陰極燃料としては、カルボキシル基を有する有機酸を用いることができ、特にギ酸が好ましい。具体的には、濃度10mol/l程度のギ酸が好ましい。燃料極側集電体47から供給される燃料は燃料極側拡散層48を介して燃料極触媒層46に導かれる。この燃料極触媒層46において、燃料が酸化され、電子とプロトンを放出する。この電子とプロトンは固体高分子電解質膜41を介して酸素極側に移動する。上記の燃料の酸化反応及び酸素の還元反応により発電が起こる。
The fuel electrode side
燃料極触媒層46に用いる本発明に係る燃料電池用燃料極触媒は、カーボン担体上に担持された一般式PdAuNiで示される三元系微粒子からなる。Niの含有量は1〜80at.%であることが好ましい。Ni含有量が1at.%未満ではPd触媒の活性が十分高まらない。一方、Ni含有量が80at.%超の場合、Pdの含有量が低くなり触媒活性が低下する。Auの含有量はPdに対して0.1〜10at%であることが好ましい。Pdに対してAuの含有量が0.1at.%未満ではPd触媒の耐酸耐食性が十分高まらない。一方、Pdに対してAuの含有量が10at.%超の場合、Auの低活性の影響が強くなり触媒活性が低下する。
The fuel electrode fuel electrode catalyst according to the present invention used for the fuel
また、PdAuNi触媒の粒径は20nm以下が好ましい。触媒粒径が20nmより大きい場合には、触媒の比表面積が減少し、十分な触媒活性を得ることができない。粒径の下限は特に限定されないが、1nm未満では、触媒の電気化学的溶解が顕著となり、触媒の長期間耐久性に問題が生じる。同様の理由により、PtP触媒の粒径も20nm以下が好ましい。 The particle size of the PdAuNi catalyst is preferably 20 nm or less. When the catalyst particle size is larger than 20 nm, the specific surface area of the catalyst is reduced, and sufficient catalyst activity cannot be obtained. The lower limit of the particle size is not particularly limited, but if it is less than 1 nm, the electrochemical dissolution of the catalyst becomes significant, causing a problem in the long-term durability of the catalyst. For the same reason, the particle size of the PtP catalyst is preferably 20 nm or less.
本発明において、触媒担体としては、比表面積が20〜800m2/gの導電性カーボンを用いることが好ましく、20〜300m2/gの導電性カーボンを用いることがさらに好ましい。この比表面積の範囲ではカーボン担体の多孔性が低く、カーボン担体中に存在する微細孔が少ない。 In the present invention, as the catalyst carrier, the specific surface area is preferable to use a conductive carbon 20~800m 2 / g, it is more preferable to use a conductive carbon 20 to 300 m 2 / g. In this specific surface area range, the porosity of the carbon support is low, and there are few micropores present in the carbon support.
また、アセチレンブラック(AB)やマルチウォールカーボンナノチューブ(MWCNT)等は全く微細孔を有さない非多孔質カーボン担体である。低多孔質或いは非多孔質カーボン担体を使用すれば、担体に存在する微細孔中に埋没する触媒粒子が減少し、より多くの触媒粒子をカーボン担体表面に析出させることができる。触媒粒子がカーボン担体表面に存在すれば、燃料とプロトン導電性高分子とが接触する確率が高まり、触媒利用率を向上させることができ、好ましい。 Acetylene black (AB), multi-wall carbon nanotubes (MWCNT), etc. are non-porous carbon carriers having no micropores. If a low porous or non-porous carbon support is used, the catalyst particles buried in the micropores existing in the support are reduced, and more catalyst particles can be deposited on the carbon support surface. If the catalyst particles are present on the surface of the carbon support, the probability that the fuel and the proton conductive polymer come into contact with each other increases, and the catalyst utilization rate can be improved.
特に、MWCNTは従来使用されてきたカーボンブラックに比べて低密度である。このため、触媒をナフィオン樹脂でペースト化し、プレス機により電極触媒膜にした場合、従来のカーボンブラック担体に比較して電極触媒膜中に物理的な空隙が多く存在する。よって、触媒上への燃料の拡散が十分確保される。また、酸素極触媒上で生成した水の拡散性が向上し、生成水が迅速に電極触媒膜表面に移動でき、電池特性が向上する。さらに、MWCNTは従来使用されてきたカーボンブラックに比較して比抵抗が低い。このためIR損失を抑え、電池電圧の低下を抑制でき、好ましい。 In particular, MWCNT has a lower density than the conventionally used carbon black. For this reason, when the catalyst is pasted with Nafion resin and is made into an electrode catalyst film by a press machine, there are more physical voids in the electrode catalyst film than in the conventional carbon black support. Thus, sufficient fuel diffusion on the catalyst is ensured. Moreover, the diffusibility of the water produced | generated on the oxygen electrode catalyst improves, and produced water can move to the electrode catalyst membrane surface rapidly, and a battery characteristic improves. Furthermore, MWCNT has a lower specific resistance than carbon black that has been conventionally used. For this reason, IR loss can be suppressed and a decrease in battery voltage can be suppressed, which is preferable.
次に、本発明に係る触媒の製造方法について説明する。 Next, the method for producing the catalyst according to the present invention will be described.
燃料極触媒であるPdAuNi触媒を合成する手法としては、例えば、アルコール還元法、超音波還元法、電子線照射還元法、放射線照射還元法、含浸法等が使用できるが、これらの手法に限定されるものではない。 As a method for synthesizing a PdAuNi catalyst that is a fuel electrode catalyst, for example, an alcohol reduction method, an ultrasonic reduction method, an electron beam irradiation reduction method, a radiation irradiation reduction method, an impregnation method, and the like can be used. It is not something.
Pd供給源としては、例えば、酢酸パラジウム(II)、アセチルアセトナトパラジウム(II)、塩化パラジウム(II)ナトリウム、硝酸パラジウム(II)、硫酸パラジウム(II)などが使用できる。これらのパラジウム化合物を単独で使用しても、或いは2種類以上を併用してもよい。 As the Pd supply source, for example, palladium (II) acetate, acetylacetonato palladium (II), sodium palladium (II) chloride, palladium (II) nitrate, palladium (II) sulfate and the like can be used. These palladium compounds may be used alone or in combination of two or more.
また、燃料電池に使用される代表的プロトン導電膜であるデュポン社のナフィオン膜はパーフルオロアルキルスルフォン酸であり、極めて強い酸性を示す。したがって、Fe、CoおよびNi等の遷移金属はイオン化して溶解する。溶解した遷移金属イオンはナフィオン膜中のプロトンとイオン交換してプロトン導電性が低下し、電池特性を劣化させる原因となる。本発明のPdAuNi触媒においても、この溶解現象が問題となる。 Further, a DuPont Nafion membrane, which is a typical proton conductive membrane used in a fuel cell, is perfluoroalkylsulfonic acid and exhibits extremely strong acidity. Therefore, transition metals such as Fe, Co, and Ni are ionized and dissolved. The dissolved transition metal ions are ion-exchanged with protons in the Nafion membrane, resulting in a decrease in proton conductivity, which causes deterioration of battery characteristics. This dissolution phenomenon also becomes a problem in the PdAuNi catalyst of the present invention.
この問題を解決する手段として、触媒合成後、硫酸、硝酸および塩酸等の酸中で触媒を浸漬処理し、PdAuNi触媒表面に存在するNiを除去することが有効である。 As a means for solving this problem, it is effective to remove Ni present on the surface of the PdAuNi catalyst by immersing the catalyst in an acid such as sulfuric acid, nitric acid and hydrochloric acid after the synthesis of the catalyst.
具体的には、例えば、以下の方法により、本発明に係るカーボン担持PdAuNi触媒を得ることができる。 Specifically, for example, the carbon-supported PdAuNi catalyst according to the present invention can be obtained by the following method.
アセチルアセトナトパラジウム(II)2.82mmolとアセチルアセトナト金(I)0.05mmolと硝酸ニッケル・六水和物2.82mmolをそれぞれ100mlのエチレングリコールに溶解させ、導電性カーボン(キャボット(Cabot)社製Vulcan XC−72R、比表面積254m2/g)0.5gを分散させた200mlのエチレングリコール溶液に加える。窒素ガス雰囲気下、200℃で、この溶液を攪拌しながら4時間還流し、PdAuNi触媒を導電性カーボン上に析出担持させる。反応終了後、触媒を50℃、1mol/lの硫酸水溶液中で72時間浸漬攪拌し、触媒表面に存在するNiを溶解除去する。その後、触媒を濾別し、純水で洗浄後乾燥させて、本発明に係るカーボン担持PdAuNi触媒を得ることができる。また、硝酸ニッケル・六水和物に代え、同量のシュウ酸ニッケルを用いても良い。 2.82 mmol of acetylacetonatopalladium (II), 0.05 mmol of acetylacetonatogold (I) and 2.82 mmol of nickel nitrate hexahydrate were dissolved in 100 ml of ethylene glycol, respectively, to form conductive carbon (Cabot). (Vulcan XC-72R, specific surface area 254 m 2 / g) manufactured by the company is added to 200 ml ethylene glycol solution in which 0.5 g is dispersed. The solution is refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere to deposit and support the PdAuNi catalyst on the conductive carbon. After completion of the reaction, the catalyst is immersed and stirred in a 1 mol / l sulfuric acid aqueous solution at 50 ° C. for 72 hours to dissolve and remove Ni present on the catalyst surface. Thereafter, the catalyst is filtered off, washed with pure water and then dried to obtain the carbon-supported PdAuNi catalyst according to the present invention. In place of nickel nitrate hexahydrate, the same amount of nickel oxalate may be used.
酸素極用に用いるPtP触媒の製造方法について説明する。 A method for producing a PtP catalyst used for the oxygen electrode will be described.
使用するP含有化合物としては、亜燐酸、亜燐酸塩(正塩及び酸性塩の両方を含む)、次亜燐酸、次亜燐酸塩が好ましい。塩としてはアルカリ金属塩(例えば、亜燐酸ナトリウム、亜燐酸水素ナトリウム、次亜燐酸ナトリウム等)又はアンモニウム塩(亜燐酸アンモニウム、亜燐酸水素アンモニウム、次亜燐酸アンモニウム等)が好ましい。燐酸や燐酸塩中のPの酸化数は+5価である。+5価の酸化数はPの最高酸化数であり、その電子配置はNeと同じ希ガス電子配置である。このため、燐酸や燐酸塩中のP原子は化学的に安定化してP供給源とならないため、適さない。PtP触媒の合成には、酸化数+5未満のPを含有する化合物を使用しなければならない。 P-containing compounds to be used are preferably phosphorous acid, phosphites (including both normal salts and acidic salts), hypophosphorous acid, and hypophosphites. The salt is preferably an alkali metal salt (for example, sodium phosphite, sodium hydrogen phosphite, sodium hypophosphite, etc.) or an ammonium salt (ammonium phosphite, ammonium hydrogen phosphite, ammonium hypophosphite, etc.). The oxidation number of P in phosphoric acid or phosphate is +5. The + 5-valent oxidation number is the highest oxidation number of P, and the electron arrangement is the same noble gas electron arrangement as Ne. For this reason, P atoms in phosphoric acid and phosphates are not suitable because they are chemically stabilized and do not serve as a P supply source. For the synthesis of PtP catalysts, compounds containing P with an oxidation number of less than +5 must be used.
具体的には、例えば、ビス(アセチルアセトナト)白金(II)2.56mmolと次亜燐酸ナトリウム1.28mmolをそれぞれ100mlのエチレングリコールに溶解させ、導電性カーボン(キャボット社製Vulcan XC−72R、比表面積254m2/g)0.5gを分散させた200mlのエチレングリコール溶液に加える。窒素ガス雰囲気下、200℃で、この溶液を攪拌しながら4時間還流し、PtP触媒を導電性カーボン上に析出担持させる。反応終了後、濾過、洗浄、乾燥させ、カーボン担持PtP触媒を得ることができる。 Specifically, for example, 2.56 mmol of bis (acetylacetonato) platinum (II) and 1.28 mmol of sodium hypophosphite are dissolved in 100 ml of ethylene glycol, respectively, and conductive carbon (Vulcan XC-72R manufactured by Cabot Corporation, Specific surface area 254 m 2 / g) is added to 200 ml ethylene glycol solution in which 0.5 g is dispersed. The solution is refluxed for 4 hours with stirring at 200 ° C. in a nitrogen gas atmosphere to deposit and support the PtP catalyst on the conductive carbon. After completion of the reaction, the carbon-supported PtP catalyst can be obtained by filtration, washing and drying.
40…燃料電池、41…固体高分子電解質膜、42…空気導入孔、43…酸素極側拡散層、44…酸素極側集電体、45…酸素極触媒層、46…燃料極触媒層、47…燃料極側集電体、48…燃料極側拡散層、49…燃料導入孔。
DESCRIPTION OF
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008057815A JP2009217975A (en) | 2008-03-07 | 2008-03-07 | Fuel electrode catalyst, membrane electrode assembly, and fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008057815A JP2009217975A (en) | 2008-03-07 | 2008-03-07 | Fuel electrode catalyst, membrane electrode assembly, and fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009217975A true JP2009217975A (en) | 2009-09-24 |
Family
ID=41189645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008057815A Pending JP2009217975A (en) | 2008-03-07 | 2008-03-07 | Fuel electrode catalyst, membrane electrode assembly, and fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009217975A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011253627A (en) * | 2010-05-31 | 2011-12-15 | National Institute For Materials Science | Electrode catalyst for fuel cell and manufacturing method thereof |
JP2011253626A (en) * | 2010-05-31 | 2011-12-15 | National Institute For Materials Science | Electrode catalyst for fuel cell and manufacturing method thereof |
CN103007964A (en) * | 2013-01-10 | 2013-04-03 | 太原理工大学 | Preparation method of carbon loaded hollow nanogold nickel alloy catalyst for direct methanol fuel cell |
WO2013172050A1 (en) * | 2012-05-15 | 2013-11-21 | トヨタ自動車株式会社 | Method for producing catalyst for fuel cells, and fuel cell which comprises catalyst for fuel cells produced by said production method |
DE112020005381T5 (en) | 2019-10-31 | 2022-08-11 | Jtekt Corporation | FUEL CELL SYSTEM |
-
2008
- 2008-03-07 JP JP2008057815A patent/JP2009217975A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011253627A (en) * | 2010-05-31 | 2011-12-15 | National Institute For Materials Science | Electrode catalyst for fuel cell and manufacturing method thereof |
JP2011253626A (en) * | 2010-05-31 | 2011-12-15 | National Institute For Materials Science | Electrode catalyst for fuel cell and manufacturing method thereof |
WO2013172050A1 (en) * | 2012-05-15 | 2013-11-21 | トヨタ自動車株式会社 | Method for producing catalyst for fuel cells, and fuel cell which comprises catalyst for fuel cells produced by said production method |
CN103007964A (en) * | 2013-01-10 | 2013-04-03 | 太原理工大学 | Preparation method of carbon loaded hollow nanogold nickel alloy catalyst for direct methanol fuel cell |
DE112020005381T5 (en) | 2019-10-31 | 2022-08-11 | Jtekt Corporation | FUEL CELL SYSTEM |
US11804610B2 (en) | 2019-10-31 | 2023-10-31 | Jtekt Corporation | Fuel cell system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Stabilizing single-atom iron electrocatalysts for oxygen reduction via ceria confining and trapping | |
Wan et al. | Exploring durable single-atom catalysts for proton exchange membrane fuel cells | |
Sebastián et al. | Performance, methanol tolerance and stability of Fe-aminobenzimidazole derived catalyst for direct methanol fuel cells | |
US6670301B2 (en) | Carbon monoxide tolerant electrocatalyst with low platinum loading and a process for its preparation | |
JP4083721B2 (en) | High concentration carbon supported catalyst, method for producing the same, catalyst electrode using the catalyst, and fuel cell using the same | |
JP4993867B2 (en) | Fuel cell | |
Yoon et al. | Activity-stability benefits of Pt/C fuel cell electrocatalysts prepared via remote CeO2 interfacial doping | |
KR101679809B1 (en) | Preparation method of N-doped carbon-supported Pt catalyst and N-doped carbon-supported Pt catalyst using the same | |
US20170098843A1 (en) | Membraneless direct liquid fuel cells | |
US9083037B2 (en) | Fuel cell including cathode electrode using iron redox couple | |
JP4745942B2 (en) | Cathode catalyst for fuel cell, membrane electrode assembly for fuel cell, and fuel cell system | |
Hu et al. | Synthesis of anti-poisoning spinel Mn–Co–C as cathode catalysts for low-temperature anion exchange membrane direct ammonia fuel cells | |
JP5110557B2 (en) | Performance evaluation method and search method for electrode catalyst for fuel cell | |
JP2009217975A (en) | Fuel electrode catalyst, membrane electrode assembly, and fuel cell | |
JP4802586B2 (en) | Manufacturing method of fuel cell | |
JP2009238442A (en) | Method of manufacturing ptru catalyst, catalyst manufactured by the manufacturing method, and fuel cell and membrane electrode assembly using the catalyst | |
JP2008288104A (en) | Electrode catalyst for alkaline fuel cell, the alkaline fuel cell, manufacturing method of the electrode catalyst for the alkaline fuel cell, and manufacturing method of the alkaline fuel cell | |
Cheng et al. | Electrocatalysts for formic acid-powered PEM fuel cells: challenges and prospects | |
JP4311070B2 (en) | Cathode for fuel cell and polymer electrolyte fuel cell having the same | |
JP2006209999A (en) | Electrode for polymer electrolyte fuel cell and its manufacturing method | |
JP2008041291A (en) | Fuel electrode catalyst, membrane electrode assembly, and fuel cell | |
JP2006278217A (en) | Fuel cell and membrane electrode assembly | |
Begum et al. | Development of Pt/Au‐Co composite electrode as a highly durable and efficient electrocatalyst for methanol electro‐oxidation in alkaline media | |
Gojković et al. | Mixtures of methanol and 2-propanol as a potential fuel for direct alcohol fuel cells | |
JP2009199930A (en) | METHOD OF MANUFACTURING PtRuP CATALYST, CATALYST MANUFACTURED BY THE MANUFACTURING METHOD, AND FUEL CELL AND MEMBRANE ELECTRODE ASSEMBLY USING THE CATALYST |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100319 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20110519 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110524 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120706 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120717 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121113 |