JP2009216721A - Optical fiber, fusion bonding method for it and connector for optical fiber - Google Patents

Optical fiber, fusion bonding method for it and connector for optical fiber Download PDF

Info

Publication number
JP2009216721A
JP2009216721A JP2006174176A JP2006174176A JP2009216721A JP 2009216721 A JP2009216721 A JP 2009216721A JP 2006174176 A JP2006174176 A JP 2006174176A JP 2006174176 A JP2006174176 A JP 2006174176A JP 2009216721 A JP2009216721 A JP 2009216721A
Authority
JP
Japan
Prior art keywords
optical fiber
hollow
optical
central axis
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006174176A
Other languages
Japanese (ja)
Inventor
Tatsuo Nagashima
達雄 長嶋
Tomoharu Hasegawa
智晴 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006174176A priority Critical patent/JP2009216721A/en
Priority to PCT/JP2007/061393 priority patent/WO2007148528A1/en
Publication of JP2009216721A publication Critical patent/JP2009216721A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02366Single ring of structures, e.g. "air clad"
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02028Small effective area or mode field radius, e.g. for allowing nonlinear effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02333Core having higher refractive index than cladding, e.g. solid core, effective index guiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02371Cross section of longitudinal structures is non-circular
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02376Longitudinal variation along fibre axis direction, e.g. tapered holes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber large in non-linearity, and small in connection loss when fusion bonded with a quartz-based glass fiber. <P>SOLUTION: The optical fiber is integrally composed of: a hollow glass fiber provided with a hollow portion; a light transmitting unit having a center axis portion on the center axis of the hollow portion and a peripheral portion concentric with it; and a platy support radially extending from a plurality of portions on the outer peripheral surface of the light transmitting unit to reach the inner peripheral surface of the hollow glass fiber. The optical fiber is also characterized in that the refractive index (n<SB>1</SB>) of the center axis portion at a wavelength of 1,550 nm of the light transmitting unit is larger than the refractive index (n<SB>2</SB>) at a wavelength of 1,550 nm of its peripheral portion. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は光ファイバ、並びに前記光ファイバと石英系光ファイバとの融着接続方法に関する。   The present invention relates to an optical fiber and a fusion splicing method between the optical fiber and a silica-based optical fiber.

非線形性が大きく、空孔を有する光ファイバとして、単一ガラスでBiを主成分とする光ファイバが提案されている(特許文献1参照)。 As an optical fiber having a large nonlinearity and having a hole, an optical fiber composed mainly of Bi 2 O 3 with a single glass has been proposed (see Patent Document 1).

特開2004−294464号公報JP 2004-294464 A

しかしながら、前記光ファイバと石英系光ファイバとを融着接続する際、融着強度を持たせようとすると、空孔が潰れて変形しやすい。前記光ファイバでは、空孔がクラッドとして作用するため、石英系光ファイバとの接続端面において導波構造が消失し、著しい損失の増大に繋がる。また、導波構造が消失しないような融着を行おうとすると、融着強度が低い、更には融着そのものができないという問題があった。   However, when fusion-bonding the optical fiber and the silica-based optical fiber, if the fusion strength is given, the holes are crushed and easily deformed. In the optical fiber, since the air holes act as cladding, the waveguide structure disappears at the connection end face with the quartz optical fiber, leading to a significant increase in loss. In addition, there is a problem that if the fusion is performed such that the waveguide structure does not disappear, the fusion strength is low, and further, the fusion itself cannot be performed.

本発明は、このような問題を解決できる光ファイバ及びその融着方法の提供を目的とする。   An object of this invention is to provide the optical fiber which can solve such a problem, and its fusion | fusion method.

上記目的のために、本発明は、中空部を備える中空ガラスファイバと、前記中空部の中心軸上に中心軸部分及びそれと同心状の周囲部分を有する光伝送部と、前記光伝送部の外周面の複数箇所から放射状に延びて前記中空ガラスファイバの内周面に達する板状の支持部とを一体に形成してなり、かつ、前記光伝送部の中心軸部分の波長1550nmにおける屈折率(n)が、その周囲部分の波長1550nmにおける屈折率(n)よりも大きいことを特徴とする光ファイバを提供する。 To achieve the above object, the present invention provides a hollow glass fiber having a hollow portion, an optical transmission portion having a central axis portion and a concentric peripheral portion on the central axis of the hollow portion, and an outer periphery of the optical transmission portion. A plate-like support portion extending radially from a plurality of locations on the surface and reaching the inner peripheral surface of the hollow glass fiber is integrally formed, and the refractive index at a wavelength of 1550 nm of the central axis portion of the optical transmission portion ( Provided is an optical fiber characterized in that n 1 ) is larger than the refractive index (n 2 ) at a wavelength of 1550 nm in the surrounding portion.

また、中空ガラスファイバ、光伝送部及び支持部がガラス転移点500℃以下のガラスで一体に形成されてなる前記光ファイバの端面と、石英系光ファイバの端面とを突き合わせ、前記石英系光ファイバの端面の近傍を加熱して両光ファイバ同士を融着させるとともに、前記光ファイバの中空部を、融着接続された端面に近づくにつれ次第に狭窄して当該端面において消失させることを特徴とする光ファイバの融着接続方法を提供する。   Further, the end face of the optical fiber in which the hollow glass fiber, the optical transmission part and the support part are integrally formed of glass having a glass transition point of 500 ° C. or less and the end face of the silica type optical fiber are brought into contact with each other, and the silica type optical fiber The vicinity of the end face of the optical fiber is heated to fuse the two optical fibers together, and the hollow portion of the optical fiber is gradually narrowed as it approaches the end face to which the fusion splicing is performed, and the light is lost at the end face. A method for splicing fibers is provided.

また、中空ガラスファイバ、光伝送部及び支持部がガラス転移点500℃以下のガラスで一体に形成されてなる前記光ファイバの一方または両方の端面と、石英系光ファイバの端面とが融着接続されている光ファイバの接続体であって、前記光ファイバの中空部が融着接続された端面に近づくにつれ次第に狭窄して当該端面において消失しており、かつ、両光ファイバの融着接続された端面での波長1550nmにおけるモードフィールド径の差が、絶対値で2.0μm以下であることを特徴とする光ファイバの接続体を提供する。   In addition, one or both end faces of the optical fiber in which the hollow glass fiber, the optical transmission part, and the support part are integrally formed of glass having a glass transition point of 500 ° C. or less and the end face of the silica-based optical fiber are fusion-bonded. An optical fiber connecting body, wherein the hollow portion of the optical fiber is gradually narrowed and disappears at the end face as it approaches the end face where the fusion splicing is performed, and the two optical fibers are fusion spliced. A difference in mode field diameter at a wavelength of 1550 nm on the end face is 2.0 μm or less in absolute value.

本発明によれば、非線形性が大きく、かつ、石英系ガラスファイバと融着接続した際の接続損失の小さな光ファイバが得られる。   According to the present invention, it is possible to obtain an optical fiber having a large non-linearity and a small connection loss when fusion-bonded to a silica glass fiber.

以下、図面を参照して本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の光ファイバの一例を示す図であり、中心軸と直交する断面を模式的に示す図である。図示される光ファイバ1は、その中心部に軸方向(紙面に垂直の方向)に延びる中空部2を有する中空ガラスファイバ3と、中空部2の内部で光ファイバ1の中心軸に沿って延びる線状の光伝送部4とが同心状に配置されている。また、光伝送部4と中空部2とは、光伝送部4の外周面の複数箇所(図の例は6箇所)から等間隔で放射状に延びて中空部2の内周面に達する支持部5(板状ガラス)により連結されている。支持部5は、軸方向に延びる板状部材であり、光伝送部4を光ファイバ1の中心に保持する。   FIG. 1 is a view showing an example of the optical fiber of the present invention, and is a view schematically showing a cross section orthogonal to the central axis. The illustrated optical fiber 1 has a hollow glass fiber 3 having a hollow portion 2 extending in the axial direction (a direction perpendicular to the paper surface) at the center thereof, and extends along the central axis of the optical fiber 1 inside the hollow portion 2. The linear optical transmission unit 4 is arranged concentrically. The optical transmission part 4 and the hollow part 2 are support parts that extend radially from a plurality of locations (six in the example in the figure) on the outer peripheral surface of the optical transmission unit 4 and reach the inner peripheral surface of the hollow portion 2. 5 (plate glass). The support portion 5 is a plate-like member extending in the axial direction, and holds the optical transmission portion 4 at the center of the optical fiber 1.

尚、支持部5の厚みは、好ましくは0.05〜1.5μmである。厚みが0.05μm未満では光ファイバ1を切断したときに支持部5が破損し、光伝送部4を保持できなくなるおそれがある。より好ましくは、0.1μm以上である。一方、厚みが1.5μm超では光伝送部4から支持部5への光の漏れが大きくなって光の閉じ込めが不十分になるおそれがある。より好ましくは、0.5μm以下である。   In addition, the thickness of the support part 5 becomes like this. Preferably it is 0.05-1.5 micrometers. If the thickness is less than 0.05 μm, the support 5 may be damaged when the optical fiber 1 is cut, and the optical transmission unit 4 may not be held. More preferably, it is 0.1 μm or more. On the other hand, if the thickness exceeds 1.5 μm, light leakage from the light transmission part 4 to the support part 5 becomes large, and the light confinement may be insufficient. More preferably, it is 0.5 μm or less.

また、中空部2は、支持部5により等分に区画されるが、その区画数は3個以上であることが好ましい。2個では、石英系光ファイバとの融着接続の際に中空部2の潰れを防ぐ効果に乏しく、また、光ファイバ1は所謂エアクラッド型構造であるため、光の閉じ込めが不十分になるおそれがある。尚、区画数の上限は、板状の支持部5からの光の漏れを小さくする、または加工性を良くするために、好ましくは12個以下、より好ましくは9個以下である。   Moreover, although the hollow part 2 is divided equally by the support part 5, it is preferable that the number of divisions is three or more. In the case of two, the effect of preventing the hollow portion 2 from being crushed at the time of fusion splicing with a silica-based optical fiber is poor, and since the optical fiber 1 has a so-called air clad structure, light confinement becomes insufficient. There is a fear. Note that the upper limit of the number of sections is preferably 12 or less, more preferably 9 or less, in order to reduce light leakage from the plate-like support portion 5 or improve workability.

上記の中空ガラスファイバ3、光伝送部4、支持部5は連続した一部材であり、好ましくは、酸化物基準のモル%表示で、Bi:40〜75%、B:12〜45%、Ga:1〜20%、In:1〜20%、ZnO:0〜20%、BaO:0〜15%、SiO+Al+GeO:0〜15%、MgO+CaO+SrO:0〜15%、SnO+TeO+TiO+ZrO+Ta+Y+WO:0〜10%、CeO:0〜5%、から本質的になり、Ga+In+ZnOが5%以上であるガラスで形成される。より好ましくは、Bi:49〜67%、B:13〜30%、Ga:5〜13%、In:0.5〜8%、ZnO:2〜8%、BaO:0〜6%、CeO:0.1〜1%である。 The above hollow glass fiber 3, the optical transmission unit 4, the support 5 is one member which is continuous, preferably as represented by mol% based on oxides, Bi 2 O 3: 40~75% , B 2 O 3: 12~45%, Ga 2 O 3: 1~20%, In 2 O 3: 1~20%, ZnO: 0~20%, BaO: 0~15%, SiO 2 + Al 2 O 3 + GeO 2: 0~ 15%, MgO + CaO + SrO: 0-15%, SnO 2 + TeO 2 + TiO 2 + ZrO 2 + Ta 2 O 5 + Y 2 O 3 + WO 3 : 0 to 10%, CeO 2 : 0 to 5%, essentially Ga 2 O 3 + In 2 O 3 + ZnO is formed of glass with 5% or more. More preferably, Bi 2 O 3: 49~67% , B 2 O 3: 13~30%, Ga 2 O 3: 5~13%, In 2 O 3: 0.5~8%, ZnO: 2~ 8%, BaO: 0~6%, CeO 2: 0.1 to 1%.

更に、光ファイバ1において、光伝送部4は、その中心に中心軸部分6を有する。中心軸部分6の直径(d)は通常0.2〜10μmであり、好ましくは0.5〜4μmである。中心軸部分6は、光伝送部4の他の部分(周囲部分)よりも波長1550nmにおける屈折率が高く、光が伝播する。好ましくは、中心軸部分6の波長1550nmにおける屈折率をnとし、周囲部分の波長1550nmにおける屈折率をnとするとき、次式の関係が成り立っていることが好ましい。
0.0005≦(n−n)/n≦0.2
Furthermore, in the optical fiber 1, the optical transmission unit 4 has a central axis portion 6 at the center thereof. The diameter (d c ) of the central shaft portion 6 is usually 0.2 to 10 μm, preferably 0.5 to 4 μm. The central axis portion 6 has a higher refractive index at a wavelength of 1550 nm than other portions (peripheral portions) of the light transmission section 4, and light propagates. Preferably, when the refractive index of the central axis portion 6 at a wavelength of 1550 nm is n 1 and the refractive index of the surrounding portion at a wavelength of 1550 nm is n 2 , the relationship of the following equation is preferably satisfied.
0.0005 ≦ (n 1 −n 2 ) / n 1 ≦ 0.2

中心軸部分6は、上記ガラス組成の範囲内にあり、かつ、Bi量が56%以上で周囲部分のBi量よりも1%以上多く、(B+Ga)量が周囲部分の(B+Ga)量よりも1%以上少なくする。 The central axis portion 6 is within the range of the glass composition, and the Bi 2 O 3 amount is 56% or more and 1% or more than the Bi 2 O 3 amount in the surrounding portion, and (B 2 O 3 + Ga 2 O 3 ) The amount is 1% or less less than the (B 2 O 3 + Ga 2 O 3 ) amount in the surrounding portion.

また、光伝送部4において、周囲部分を多層構造にすることもできる。その際、光の漏洩を防ぐために、1550nmにおける屈折率が中心軸部分6が最大になるようにすることが必要である。   Further, in the optical transmission unit 4, the peripheral part can be formed in a multilayer structure. At that time, in order to prevent light leakage, it is necessary that the refractive index at 1550 nm be maximized in the central axis portion 6.

尚、図2に拡大して示すように、実際には中空部2の断面は、光伝送部4の外周面と支持部5との接続部には曲面が形成されており、中空部3の外周面も隣接する支持部5,5の中間点を頂点に外方に広がっている。そして、本発明では、中空部2に内接する円(C1)の直径(d)を0.2〜10μmとすることが好ましく、より好ましくは0.5〜4μmとする。また、中空部2に外接する円(C2)の直径(d’)は、(1+21/2)d以上であることが好ましい。(1+21/2)d未満では光の閉じ込めが不十分になり伝播損失が大きくなるおそれがある。より好ましくは3d以上、特に好ましくは4d以上である。 In addition, as shown in an enlarged view in FIG. 2, the cross section of the hollow portion 2 is actually formed with a curved surface at the connection portion between the outer peripheral surface of the optical transmission portion 4 and the support portion 5. The outer peripheral surface also spreads outward with the middle point of the adjacent support portions 5 and 5 as the apex. In the present invention, the diameter (d) of the circle (C1) inscribed in the hollow portion 2 is preferably 0.2 to 10 μm, and more preferably 0.5 to 4 μm. The diameter (d ′) of the circle (C2) circumscribing the hollow portion 2 is preferably (1 + 2 1/2 ) d or more. If it is less than (1 + 2 1/2 ) d, the light is not sufficiently confined and the propagation loss may increase. More preferably, it is 3d or more, Most preferably, it is 4d or more.

光ファイバ1の外径(D)は、16d以下であることが好ましい。16d超では、光ファイバ1の強度が低下する、中空部2に異物が混入し易くなる、光ファイバ1を切断しようとしたときに支持部5を破壊するおそれがある、後述する融着の際に空孔漸減部12において支持部5が光伝送部4を支持できず、軸ずれを起こすために接続損失の増大に繋がる、等の問題の発生が懸念される。より好ましくは、12d以下である。   The outer diameter (D) of the optical fiber 1 is preferably 16d or less. If it exceeds 16d, the strength of the optical fiber 1 is reduced, foreign matter is likely to be mixed into the hollow portion 2, and the support portion 5 may be destroyed when attempting to cut the optical fiber 1. In addition, there is a concern that the support portion 5 cannot support the optical transmission portion 4 in the hole gradually decreasing portion 12 and the problem such as an increase in connection loss due to an axis shift occurs. More preferably, it is 12d or less.

次に、本発明の光ファイバの接続方法について説明する。   Next, the optical fiber connection method of the present invention will be described.

図3は接続状態の一例を中心軸に沿って模式的に示す図であるが、上記の光ファイバ1と、ITU−T勧告G.652で標準化された石英光ファイバ(SMF)8とを接続した状態を示している。   FIG. 3 is a diagram schematically showing an example of the connection state along the central axis. The optical fiber 1 and the ITU-T Recommendation G. A state where a quartz optical fiber (SMF) 8 standardized by 652 is connected is shown.

接続に際し、先ず、光ファイバ1及び石英系ガラスファイバ8の融着されるべき端面同士を所定間隔で対向配置し、光ファイバ1の中心軸部分6と石英系光ファイバ8のコア10との軸合わせを行い、調芯する。ここで、前記端面は平らであることが好ましく、それにより光ファイバ1と石英系ガラスファイバ8とが端面全面にわたって互いに接触するようにできる。また、前記端面と各ファイバ1,8の軸のなす角度(θ)は90°であってもよいが、90°未満であることが好ましい場合がある。例えば、θが90°では、両端面が融着された面(接続面)で反射して帰還する光がレーザーの発振を不安定にする、スプリアスを増大する、等の不具合が生じるおそれがある。このような場合、θは65〜87°であることが好ましい。   When connecting, first, end faces to be fused of the optical fiber 1 and the silica-based glass fiber 8 are arranged to face each other at a predetermined interval, and an axis between the central axis portion 6 of the optical fiber 1 and the core 10 of the silica-based optical fiber 8 is arranged. Align and align. Here, the end face is preferably flat, so that the optical fiber 1 and the silica-based glass fiber 8 can contact each other over the entire end face. Further, the angle (θ) between the end face and the axis of each of the fibers 1 and 8 may be 90 °, but may be preferably less than 90 °. For example, when [theta] is 90 [deg.], The light reflected and returned by the fused surfaces (connection surfaces) may cause problems such as unstable laser oscillation and increased spurs. . In such a case, θ is preferably 65 to 87 °.

調芯後、両端面を突き合わせ、石英系ガラスファイバ8を加熱する。加熱は、石英系ガラスファイバ8の端面から典型的には100μm以上離れた部分に対して行うことが好ましい。このような加熱により、石英ガラスファイバ8からの熱が光ファイバ1に徐々に伝わり、両端面同士が融着する。その際、光ファイバ1においては、中空部2が表面張力により徐々に潰れ、図示のように融着端面に近づくにつれ次第に狭窄し、更に融着端面もしくはその極く近傍で消失する。尚、以降の説明では、中空部2がこのように狭窄、消失する領域を空孔漸減部12と呼ぶ。この空孔漸減部12のファイバ軸方向における長さは、50μm以上であることが好ましい。50μm以下では、急激なモードフィールド径の変化により、空孔漸減部12で光が漏れ、接続損失が増大するおそれがある。さらに好ましくは、100μm以上である。   After alignment, both end faces are butted together and the silica glass fiber 8 is heated. Heating is preferably performed on a portion typically 100 μm or more away from the end face of the silica glass fiber 8. By such heating, heat from the quartz glass fiber 8 is gradually transmitted to the optical fiber 1 and both end faces are fused. At that time, in the optical fiber 1, the hollow portion 2 is gradually crushed by the surface tension, and gradually narrows as it approaches the fusion end face as shown, and further disappears at or near the fusion end face. In the following description, a region where the hollow portion 2 is narrowed and disappears in this way is referred to as a pore gradually decreasing portion 12. The length of the hole gradually decreasing portion 12 in the fiber axis direction is preferably 50 μm or more. If it is 50 μm or less, there is a possibility that light leaks at the hole gradually decreasing portion 12 due to a sudden change in the mode field diameter, and the connection loss increases. More preferably, it is 100 μm or more.

上記加熱を100μm以下の端面のより近い位置で行うと、空孔漸減部12が形成されない、または空孔漸減部12の長さが十分にとれない、光ファイバ1の端面において顕著な軟化流動または揮散が起り突き合わされた端面同士を融着できなくなる、等のおそれがある。より好ましくは、200μm以上離れた位置で加熱する。但し、1000μm以上離れた位置で加熱すると、融着強度が低下するおそれがあり、好ましくは800μm以下の位置で加熱する。   When the heating is performed at a position closer to the end face of 100 μm or less, the pore gradually decreasing portion 12 is not formed, or the length of the pore gradually decreasing portion 12 is not sufficiently long, or a noticeable softening flow at the end surface of the optical fiber 1 or There is a risk that volatilization will occur and the end faces that are brought into contact with each other cannot be fused. More preferably, heating is performed at a position separated by 200 μm or more. However, if heating is performed at a position distant from 1000 μm or more, the fusion strength may be lowered, and heating is preferably performed at a position of 800 μm or less.

加熱方法は、特に規定は無く、石英系光ファイバ8を挟んで対向配置した電極間に発生させた放電による加熱を用いてもよいし、レーザーによる加熱、水素バーナによる加熱、ヒータの抵抗による加熱等を用いてもよい。また、空孔漸減部12の形状や長さを制御したい場合には、加熱部を移動させてもよい。   The heating method is not particularly specified, and heating by discharge generated between electrodes arranged opposite to each other with the quartz optical fiber 8 interposed therebetween may be used, heating by laser, heating by a hydrogen burner, heating by heater resistance. Etc. may be used. Further, when it is desired to control the shape and length of the hole gradually decreasing portion 12, the heating portion may be moved.

同図に、融着状態における光ファイバ1及び石英系光ファイバ8の各位置でのモードフィールド径を示すが、光ファイバ1のモードフィールド径が、空孔漸減部12において石英系光ファイバ8との融着端面に向かうにつれて徐々に拡大している。また、融着面において、空孔が消失し、融着損失を小さくするために、光ファイバ1の接続端面での波長1550nmにおけるモードフィールド径(MFDout)と、石英系光ファイバ8の波長1550nmにおけるモードフィールド径(MFDSMF)との間に、
|MFDout−MFDSMF|≦2.0μm
の関係が成り立つことが好ましい。この両モードフィールド径の差は、さらに好ましくは1.0μm以下である。
The figure shows the mode field diameter at each position of the optical fiber 1 and the silica-based optical fiber 8 in the fused state. The mode field diameter of the optical fiber 1 is different from that of the silica-based optical fiber 8 in the hole gradually decreasing portion 12. It gradually expands toward the fusion end face. Further, in order to reduce the fusion loss by eliminating voids on the fusion surface, the mode field diameter (MFD out ) at the wavelength 1550 nm at the connection end surface of the optical fiber 1 and the wavelength 1550 nm of the silica-based optical fiber 8 are used. Between the mode field diameter (MFD SMF ) at
| MFD out −MFD SMF | ≦ 2.0μm
It is preferable that this relationship is established. The difference between the two mode field diameters is more preferably 1.0 μm or less.

また、|MFDout−MFDSMF|≦2.0μmとすることが困難な場合、図4に示すように、光ファイバ1と石英系光ファイバ8との間に、MFDSMFよりもMFDoutに近い波長1550nmにおけるモードフィール径(MDFSi)を有する第2の石英系ファイバ13を選択し、光ファイバ1と石英系光ファイバ8との間に介在させ、光ファイバ1と第2の石英系光ファイバ13とを上記と同様にして融着接続し、更に、第2の石英系光ファイバ13と石英系光ファイバ8とを、いわゆるTEC(Termal Expansion Core)融着により接続する。尚、図中の符号14は、第2の石英系光ファイバ13のコアである。この場合も、接続損失を小さくするためには、
|MFDout−MFDSi|≦2.0μm
となることが好ましい。この両モードフィールド径の差は、さらに好ましくは1.0μm以下である。
If it is difficult to set | MFD out −MFD SMF | ≦ 2.0 μm, the distance between the optical fiber 1 and the silica-based optical fiber 8 is closer to MFD out than MFD SMF , as shown in FIG. A second silica-based fiber 13 having a mode feel diameter (MDF Si ) at a wavelength of 1550 nm is selected and interposed between the optical fiber 1 and the silica-based optical fiber 8, and the optical fiber 1 and the second silica-based optical fiber. 13 is fused and connected in the same manner as described above, and the second silica-based optical fiber 13 and the silica-based optical fiber 8 are further connected by so-called TEC (Terminal Expansion Core) fusion. Note that reference numeral 14 in the figure denotes a core of the second silica-based optical fiber 13. In this case as well, in order to reduce the connection loss,
| MFD out −MFD Si | ≦ 2.0 μm
It is preferable that The difference between the two mode field diameters is more preferably 1.0 μm or less.

MFDoutは空孔漸減部12が十分に長ければ、nとnとの屈折率差と、光ファイバ1の中心軸部分6の直径(d)により決定される。従って、光ファイバ1の中心軸部分の直径(d)は、上記で規定した範囲内で、かつ、空孔漸減部12により拡大されたMFDoutが前記条件を満たすように、適切に設計されることが好ましい。また、nも空孔漸減部12により拡大されたMFDoutが前記条件を満たすように、適切に設計されることが好ましい。 MFD out is determined by the difference in refractive index between n 1 and n 2 and the diameter (d c ) of the central axis portion 6 of the optical fiber 1 if the hole gradually decreasing portion 12 is sufficiently long. Accordingly, the diameter of the central axis portion of the optical fiber 1 (d c) is within the range defined above, and, as MFD out which is magnified by the holes tapering portion 12 meets the condition is suitably designed It is preferable. Moreover, it is preferable that n 1 is also appropriately designed so that the MFD out expanded by the hole gradually decreasing portion 12 satisfies the above-described conditions.

本発明はまた、このように融着接続された光ファイバ1と石英系光ファイバ8との接続体、もしくは更に第2の石英系光ファイバ13を介在させた接続体をも包含する。   The present invention also includes a connection body of the optical fiber 1 and the silica-based optical fiber 8 that are fusion-spliced in this way, or a connection body that further has a second silica-based optical fiber 13 interposed therebetween.

(原料調製)
表1のBiからCeOまでの欄にモル%表示で示す組成となるように原料を調合、混合して250gの調合原料1〜4を作製した。この調合原料を白金ルツボに入れ大気雰囲気中で1000℃に2時間保持して溶解し、得られた溶融ガラスを板状に流し出し、引続き370℃に4時間保持後常温まで冷却する徐冷を行った。そして、得られたガラスから厚み1mm、大きさ20mm×20mmのガラス板を作製し、その両面を鏡面研磨して得られたサンプル板について、波長1550nmの光に対する屈折率nをメトリコン社製モデル2010プリズムカプラを用いて測定した。測定結果を表1に示す。
(Raw material preparation)
The raw materials were prepared and mixed so as to have a composition represented by mol% in the columns from Bi 2 O 3 to CeO 2 in Table 1 to prepare 250 g of prepared raw materials 1 to 4. This prepared raw material is put into a platinum crucible and melted by holding at 1000 ° C. for 2 hours in an air atmosphere. The obtained molten glass is poured into a plate shape, and then kept at 370 ° C. for 4 hours and then cooled to room temperature. went. Then, a glass plate having a thickness of 1 mm and a size of 20 mm × 20 mm is prepared from the obtained glass, and a refractive index n with respect to light having a wavelength of 1550 nm is set to a model 2010 manufactured by Metricon Co., Ltd. Measurement was performed using a prism coupler. The measurement results are shown in Table 1.

(実施例1)
調合原料2を用い、先に述べたと同様にして得られた溶融ガラスを、内径が10mm、高さが180mmであるSUS310S製の茶筒状モールド(底面を有する円筒状モールド)に流し出し、徐冷してガラス棒Aを得た。このガラス棒Aを418℃でリドロー、すなわち加熱延伸し、直径4.5mmのガラスロッドAを得た。
Example 1
Using the mixed raw material 2, the molten glass obtained in the same manner as described above is poured into a SUS310S tea tube mold (cylindrical mold having a bottom surface) having an inner diameter of 10 mm and a height of 180 mm, followed by slow cooling. Thus, a glass rod A was obtained. This glass rod A was redrawn at 418 ° C., that is, heated and stretched to obtain a glass rod A having a diameter of 4.5 mm.

また、調合原料1を用い、同様にして得られた溶融ガラスを、内径が28mm、高さが120mmであるSUS310S製の茶筒状モールド(底面を有する円筒状モールド)に流し出し、徐冷してガラス棒Bを得た。このガラス棒Bの中心に、プロソニック社製超音波加工機USM−3CNCを用いて内径8mmの貫通孔を形成してガラス管Aを得た。   Also, using the blended raw material 1, the molten glass obtained in the same manner was poured into a SUS310S tea cylinder mold (cylindrical mold having a bottom surface) having an inner diameter of 28 mm and a height of 120 mm, and slowly cooled. A glass rod B was obtained. A glass tube A was obtained by forming a through-hole having an inner diameter of 8 mm at the center of the glass rod B using an ultrasonic machine USM-3CNC manufactured by Prosonic Corporation.

次に、ガラス管Aの一端を封じ、その封止部を下にして、ガラスロッドAを入れ、ガラスロッドAとガラス管Aとの間の空間を−60kPaで減圧しながら444℃に加熱してガラスロッドAとガラス管Aとを同時にリドローし、直径14.5mmの2層ガラスロッドAを得た。この時、ガラスロッドAの直径は2.5mmであった。   Next, one end of the glass tube A is sealed, the sealing part is turned down, the glass rod A is inserted, and the space between the glass rod A and the glass tube A is heated to 444 ° C. while reducing the pressure at −60 kPa. The glass rod A and the glass tube A were simultaneously redrawn to obtain a two-layer glass rod A having a diameter of 14.5 mm. At this time, the diameter of the glass rod A was 2.5 mm.

次いで、2層ガラスロッドAに前記超音波加工機を用いて内径2.5mmの貫通孔6個を形成した。なお、これら6個の貫通孔の中心軸は2層ガラスロッドAの中心軸から3.5mm離れ、また隣り合う孔同士の間隔が1mmとなるようにした。そして、貫通孔が形成された2層ガラスロッドAを425℃でリドローし、直径3.5mmの2層ガラスロッドBを得た。   Next, six through holes having an inner diameter of 2.5 mm were formed in the double-layer glass rod A using the ultrasonic machine. The center axis of these six through holes was 3.5 mm away from the center axis of the double-layer glass rod A, and the distance between adjacent holes was 1 mm. And the double-layer glass rod A in which the through-hole was formed was redrawn at 425 degreeC, and the double-layer glass rod B with a diameter of 3.5 mm was obtained.

また、調合原料1を用い、外径が15mm、高さが130mmであるガラス棒Bを2本作製し、ガラス棒Bの中心に前記超音波加工機を用いて直径が4mmの貫通孔をあけたガラス管B、直径6mmの貫通孔をあけたガラス管Cを作製した。   In addition, two glass rods B having an outer diameter of 15 mm and a height of 130 mm are prepared using the blended raw material 1, and a through-hole having a diameter of 4 mm is formed in the center of the glass rod B using the ultrasonic processing machine. Glass tube B and glass tube C with a through hole having a diameter of 6 mm were produced.

次に、2層ガラスロッドBの一端を封じ、その封止部を下にしてガラス管Bの中に入れ、その後でガラス管Bの下端を封じた。そして、2層ガラスロッドBとガラス管Bとの間の空間を−60kPaで減圧し、2層ガラスロッドBの貫通孔を30〜40kPaで加圧して膨張させるようにしながら425℃に加熱して2層ガラスロッドBとガラス管Bとを同時にリドローし、直径4.7mmの1次プリフォームを得た。   Next, one end of the two-layer glass rod B was sealed, put in the glass tube B with the sealing portion down, and then the lower end of the glass tube B was sealed. Then, the space between the two-layer glass rod B and the glass tube B is depressurized at −60 kPa, and the through hole of the two-layer glass rod B is heated to 425 ° C. while being pressurized and expanded at 30 to 40 kPa. The two-layer glass rod B and the glass tube B were simultaneously redrawn to obtain a primary preform having a diameter of 4.7 mm.

ここで、貫通孔を加圧して膨張させるとは、以下のようなことを意味している。即ち、一次プリフォームの断面には加熱延伸された2層ガラスロッドBの外周の痕跡が認められるが、その外周痕跡の直径と加熱延伸される前の2層ガラスロッドBの直径の比を二乗した値、すなわち面積縮尺率αは1未満であるのに対し、一次プリフォームの貫通孔の中心軸と直交する断面面積の縮尺率をαで除して得られる値βが1よりも大きいことをいう。上記の一次プリフォームでは、βは3.9であった。   Here, pressurizing and expanding the through-holes means the following. That is, although the trace of the outer periphery of the heat-stretched double-layer glass rod B is observed in the cross section of the primary preform, the ratio of the diameter of the peripheral trace and the diameter of the double-layer glass rod B before being heat-stretched is squared. The value β obtained by dividing the scale ratio of the cross-sectional area perpendicular to the central axis of the through hole of the primary preform by α is larger than 1, whereas the area scale ratio α is less than 1. Say. In the above primary preform, β was 3.9.

この1次プリフォームの一端を封じ、その封止部を下にしてガラス管Cの中に入れ、その後ガラス管Cの下端を封じた。そして、1次プリフォームとガラス管Cとの間の空間を−60kPaで減圧し、1次プリフォームの貫通孔を30〜40kPaで加圧して膨張させるようにしながら425℃に加熱して一次プリフォームとガラス管Cとを同時にリドローし、直径5mmのプリフォームを得た。なお、このときのβは11.7であった。   One end of this primary preform was sealed, put into the glass tube C with the sealing portion down, and then the lower end of the glass tube C was sealed. Then, the space between the primary preform and the glass tube C is depressurized at −60 kPa, and the primary preform is heated to 425 ° C. while being expanded by pressurizing the through holes of the primary preform at 30 to 40 kPa. The reforming and the glass tube C were simultaneously redrawn to obtain a preform having a diameter of 5 mm. In this case, β was 11.7.

そして、プリフォームを、貫通孔を5kPaで加圧しながら線引き温度425℃、線引き速度6mm/minの条件で線引きし、中心軸部分の直径dが1.6μm、内接円C1の直径dが2.8μm、外接円の直径d’が17.3μm、MFDが1.9μm、ファイバ径が125μm、支持部の厚みが0.25μmである光ファイバを得た。 Then, the preform was drawn under the conditions of a drawing temperature of 425 ° C. and a drawing speed of 6 mm / min while pressurizing the through hole at 5 kPa, and the diameter d c of the central axis portion was 1.6 μm and the diameter d of the inscribed circle C 1 was An optical fiber having a diameter of 2.8 μm, a circumscribed circle diameter d ′ of 17.3 μm, an MFD of 1.9 μm, a fiber diameter of 125 μm, and a support portion thickness of 0.25 μm was obtained.

本光ファイバの波長1550nmの光に対する群速度分散GVDを、Agilent社製81910Aを用いてホモダイン干渉法により測定したところ−10±20ps/nm/kmであった。また、4光波混合により次のようにしてγを測定した。すなわち、長さが1mである光ファイバを用意し、波長が1550nmである光をポンプ光とし、1549.5nm、1549nm、1548.5nmと0.5nm刻みでポンプ光波長から離れた波長を有する信号光をカプラを通して同時に光ファイバ2に入射し、その出力を光スペクトラムアナライザで観察し、この時のアイドラー光と信号光の比rを計測した。このようにして得られたrと(1)式とからγを算出したところ、700±90W−1km−1であった。なお、(1)式におけるPは光ファイバ中を通る平均のポンプパワー、zは光ファイバの長さである。
r=(γ×P×z) (1)
The group velocity dispersion GVD of the present optical fiber with respect to light having a wavelength of 1550 nm was measured by homodyne interferometry using an Agilent 81910A and found to be −10 ± 20 ps / nm / km. Further, γ was measured by four-wave mixing as follows. That is, an optical fiber having a length of 1 m is prepared, light having a wavelength of 1550 nm is used as pump light, and signals having wavelengths away from the pump light wavelength in increments of 0.5 nm such as 1549.5 nm, 1549 nm, and 1548.5 nm. The light was simultaneously incident on the optical fiber 2 through the coupler, the output was observed with an optical spectrum analyzer, and the ratio r between the idler light and the signal light at this time was measured. Γ was calculated from r thus obtained and the formula (1), which was 700 ± 90 W −1 km −1 . In the equation (1), P is an average pump power passing through the optical fiber, and z is the length of the optical fiber.
r = (γ × P × z) 2 (1)

上記の光ファイバを長さ1000mmに切断し、端面のθが90°である光ファイバを用意した。また、MFDが10.5μmで、θが90°、長さが1000mmの石英系ガラスファイバを用意した。そして、光ファイバと石英系光ファイバとをいったん間隔1μmを空けてパワー調芯をし、調芯後、両端の間隔を15μm離してから、放電電流=12mA、放電時間=0.01秒、放電回数=220回、放電休止時間=0.05秒の条件で放電を行い、両者を融着接続した。放電電極としては先端円錐部分の底面部分直径が1mm、高さが1.2mmであるタングステン電極を用い、相対する電極先端間の距離を0.6mmとし、放電電極先端を結ぶ直線が石英系ガラスファイバの軸と直交しその交点から融合すべき端面までの距離を285μmとした。   The above optical fiber was cut into a length of 1000 mm, and an optical fiber having an end face θ of 90 ° was prepared. A quartz glass fiber having an MFD of 10.5 μm, a θ of 90 °, and a length of 1000 mm was prepared. Then, the optical fiber and the silica-based optical fiber are once subjected to power alignment with an interval of 1 μm, and after alignment, the distance between both ends is separated by 15 μm, and then the discharge current = 12 mA, the discharge time = 0.01 seconds, The discharge was performed under the conditions of the number of times = 220 times and the discharge pause time = 0.05 seconds, and both were fusion-spliced. As the discharge electrode, a tungsten electrode having a bottom cone diameter of 1 mm and a height of 1.2 mm is used as the discharge electrode, the distance between the opposite electrode tips is 0.6 mm, and the straight line connecting the discharge electrode tips is quartz glass. The distance from the intersecting point perpendicular to the fiber axis to the end face to be fused was 285 μm.

接続された面を目視観察したところ、顕著な軟化流動及び揮散のいずれも認められず、突き合わされた端面が良好に融合されていた。また、接続強度も十分大きく、手で引っ張ったぐらいでは両ファイバが離れることはなかった。また、この接続状態における接続ロスを見積もったところ、4.6dBであった。   When the connected surfaces were visually observed, neither noticeable softening flow nor volatilization was observed, and the end surfaces that were abutted were well fused. In addition, the connection strength was sufficiently high, and the two fibers could not be separated by pulling them by hand. The connection loss in this connection state was estimated to be 4.6 dB.

次に、接続された光ファイバと石英系光ファイバとを剥がし、光ファイバの端面を観察したところ、中空部がきれいに消失していることが確認された。図5にこのときの光ファイバの中心軸に沿った断面の顕微鏡写真を示す。また、空孔漸減部のMFDOUTを測定したところ、8.9μmであった。 Next, when the connected optical fiber and the silica-based optical fiber were peeled off and the end face of the optical fiber was observed, it was confirmed that the hollow portion had disappeared cleanly. FIG. 5 shows a micrograph of a cross section along the central axis of the optical fiber at this time. Further, the MFD OUT of the pore gradually decreasing portion was measured and found to be 8.9 μm.

また、上記の光ファイバ及び石英系光ファイバをθ=90°になるように切断し直し、間隔1μmを空けてパワー調芯した後、間隔を限りなく0μmに近付け、いわゆるバットジョイント接続により接続ロスを見積もったところ、10.2dBであった。   In addition, the above optical fiber and silica optical fiber are cut again so that θ = 90 °, and after power alignment with an interval of 1 μm, the interval is as close as possible to 0 μm, and connection loss is caused by so-called butt joint connection. Was estimated to be 10.2 dB.

よって、本発明の融着接続により、接続損失が5.6dB下がったことになる。   Therefore, the splice loss of the present invention has decreased the connection loss by 5.6 dB.

(実施例2)
実施例1における調合原料2に代えて、表1に示す調合原料3を用いて同様に光ファイバを作製する。尚、中心軸部分の直径dが1.0μm、内接円C1の直径dが1.9μmであること以外は実施例1の光ファイバと同様にする。
(Example 2)
An optical fiber is produced in the same manner using the blended raw material 3 shown in Table 1 instead of the blended raw material 2 in Example 1. The diameter d c of the center axis portion 1.0 .mu.m, the diameter d of the inscribed circle C1 is the same as the optical fiber of Example 1 except that a 1.9 .mu.m.

次いで、石英系光ファイバとしてCorning社製「H1980」(MFD6.0μm)を用い、実施例1と同様にして光ファイバと融着接続する。尚、光ファイバのMFDOUTは6.7μmである。そして、実施例1と同様にして接続ロスを見積もると、接続損失の低下は7.1dBとなる。 Next, “H1980” (MFD 6.0 μm) manufactured by Corning is used as the silica-based optical fiber, and the optical fiber is fused and connected in the same manner as in Example 1. The MFD OUT of the optical fiber is 6.7 μm. Then, when the connection loss is estimated in the same manner as in the first embodiment, the decrease in connection loss is 7.1 dB.

(実施例3)
実施例1の調合原料2に代えて表1に示す調合原料4、調合原料1に代えて調合原料3をそれぞれ用い、同様に光ファイバを作製する。尚、中心軸部分の直径dが0.7μm、内接円C1の直径dが1.3μmであること以外は実施例1の光ファイバと同様にする。
(Example 3)
An optical fiber is prepared in the same manner using the preparation raw material 4 shown in Table 1 instead of the preparation raw material 2 of Example 1 and the preparation raw material 3 instead of the preparation raw material 1. The diameter d c of the center axis portion 0.7 [mu] m, the diameter d of the inscribed circle C1 is is the same as the optical fiber of Example 1 except that the 1.3 .mu.m.

次いで、石英系光ファイバとしてNufern社製「UHNA4」(MFD4.0μm)を用い、実施例1と同様にして光ファイバと融着接続する。尚、光ファイバのMFDOUTは4.1μmである。そして、実施例1と同様にして接続ロスを見積もると、接続損失の低下は5.8dBとなる。 Next, “UHNA4” (MFD 4.0 μm) manufactured by Nufern is used as the silica-based optical fiber, and the optical fiber is fusion-spliced in the same manner as in Example 1. The MFD OUT of the optical fiber is 4.1 μm. Then, when the connection loss is estimated in the same manner as in the first embodiment, the reduction in the connection loss is 5.8 dB.

Figure 2009216721
Figure 2009216721

γが大きくDの小さな光ファイバを、石英系光ファイバと接続された形で提供することにより、本発明の光ファイバはたとえば超高速光処理における2R、3Rに利用できる可能性がある。   By providing an optical fiber having a large γ and a small D in a form connected to a silica-based optical fiber, the optical fiber of the present invention may be used for 2R and 3R in ultrahigh-speed optical processing, for example.

本発明の光ファイバの一例を示す図であり、中心軸と直交する断面を模式的に示す図である。It is a figure which shows an example of the optical fiber of this invention, and is a figure which shows typically the cross section orthogonal to a central axis. 図1の光ファイバ1の中空部内部の拡大図である。It is an enlarged view inside the hollow part of the optical fiber 1 of FIG. 本発明の光ファイバの接続体の一例を示す図であり、中心軸に沿った断面を示す模式図である。It is a figure which shows an example of the connection body of the optical fiber of this invention, and is a schematic diagram which shows the cross section along a central axis. 本発明の光ファイバの接続体の他の例を示す図であり、中心軸に沿った断面を示す模式図である。It is a figure which shows the other example of the connection body of the optical fiber of this invention, and is a schematic diagram which shows the cross section along a central axis. 実施例で作製した光ファイバ接続体の中心軸に沿った側面を撮影した顕微鏡写真である。It is the microscope picture which image | photographed the side surface along the central axis of the optical fiber connection body produced in the Example.

符号の説明Explanation of symbols

1 光ファイバ
2 中空部
3 中空ガラスファイバ
4 光伝送部
5 支持部
6 中心軸部分
8 石英系光ファイバ
12 空孔漸減部
13 第2の石英系光ファイバ
DESCRIPTION OF SYMBOLS 1 Optical fiber 2 Hollow part 3 Hollow glass fiber 4 Optical transmission part 5 Support part 6 Center axis part 8 Silica-type optical fiber 12 Hole decreasing part 13 2nd silica-type optical fiber

Claims (11)

中空部を備える中空ガラスファイバと、前記中空部の中心軸上に中心軸部分及びそれと同心状の周囲部分を有する光伝送部と、前記光伝送部の外周面の複数箇所から放射状に延びて前記中空ガラスファイバの内周面に達する板状の支持部とを一体に形成してなり、かつ、前記光伝送部の中心軸部分の波長1550nmにおける屈折率(n)が、その周囲部分の波長1550nmにおける屈折率(n)よりも大きいことを特徴とする光ファイバ。 A hollow glass fiber having a hollow part, a light transmission part having a central axis part and a concentric peripheral part on a central axis of the hollow part, and extending radially from a plurality of locations on the outer peripheral surface of the light transmission part A plate-like support part reaching the inner peripheral surface of the hollow glass fiber is integrally formed, and the refractive index (n 1 ) at a wavelength of 1550 nm of the central axis part of the optical transmission part is the wavelength of the surrounding part. An optical fiber having a refractive index (n 2 ) greater than 1550 nm. 光伝送部における(n)と(n)とが、〔(n−n)/n〕値で0.0005以上0.2以下であることを特徴とする請求項1記載の光ファイバ。 The (n 1 ) and (n 2 ) in the optical transmission unit are 0.0005 or more and 0.2 or less in [(n 1 −n 2 ) / n 1 ] value. Optical fiber. 光伝送部の周囲部分が同心状の複数層からなり、かつ、1550nmにおける屈折率が、中心軸部分が最大であることを特徴とする請求項1または2記載の光ファイバ。   3. The optical fiber according to claim 1, wherein a peripheral portion of the optical transmission portion is formed of a plurality of concentric layers, and a refractive index at 1550 nm is maximum at a central axis portion. 中心軸と直交する断面において、中空部に内接する円の直径(d)が0.2〜10μmであることを特徴とする請求項1〜3の何れか1項に記載の光ファイバ。   The optical fiber according to any one of claims 1 to 3, wherein a diameter (d) of a circle inscribed in the hollow portion is 0.2 to 10 µm in a cross section perpendicular to the central axis. 中心軸と直交する断面において、中空部に外接する円の直径が前記直径(d)の(1+21/2)倍以上であることを特徴とする請求項1〜4の何れか1項に記載の光ファイバ。 5. The diameter according to claim 1, wherein a diameter of a circle circumscribing the hollow portion is not less than (1 + 2 1/2 ) times the diameter (d) in a cross section orthogonal to the central axis. Optical fiber. 中心軸と直交する断面において、支持部の厚みが1.5μm以下であることを特徴とする請求項1〜5の何れか1項に記載の光ファイバ。   The optical fiber according to any one of claims 1 to 5, wherein a thickness of the support portion is 1.5 µm or less in a cross section orthogonal to the central axis. 中空ガラスファイバ、光伝送部及び支持部を形成するガラス材料が、酸化物基準のモル%表示で、Bi:40〜75%、B:12〜45%、Ga:1〜20%、In:1〜20%、ZnO:0〜20%、BaO:0〜15%、SiO+Al+GeO:0〜15%、MgO+CaO+SrO:0〜15%、SnO+TeO+TiO+ZrO+Ta+Y+WO:0〜10%、CeO:0〜5%、から本質的になり、Ga+In+ZnOが5%以上であることを特徴とする請求項1〜6の何れか1項に記載の光ファイバ。 The glass material forming the hollow glass fiber, the optical transmission part and the support part is expressed in terms of mol% based on oxide, Bi 2 O 3 : 40 to 75%, B 2 O 3 : 12 to 45%, Ga 2 O 3 : 1~20%, In 2 O 3 : 1~20%, ZnO: 0~20%, BaO: 0~15%, SiO 2 + Al 2 O 3 + GeO 2: 0~15%, MgO + CaO + SrO: 0~15% SnO 2 + TeO 2 + TiO 2 + ZrO 2 + Ta 2 O 5 + Y 2 O 3 + WO 3 : 0 to 10%, CeO 2 : 0 to 5%, and Ga 2 O 3 + In 2 O 3 + ZnO is 5 % Or more, The optical fiber according to any one of claims 1 to 6. 中空ガラスファイバ、光伝送部及び支持部を形成するガラス材料が、酸化物基準のモル%表示で、Bi:49〜67%、B:13〜30%、Ga:5〜13%、In:0.5〜8%、ZnO:2〜8%、BaO:0〜6%、CeO:0.1〜1%であることを特徴とする請求項7記載の光ファイバ。 The glass material forming the hollow glass fiber, the optical transmission part and the support part is expressed in terms of mol% based on oxide, Bi 2 O 3 : 49 to 67%, B 2 O 3 : 13 to 30%, Ga 2 O 3 5 to 13%, In 2 O 3 : 0.5 to 8%, ZnO: 2 to 8%, BaO: 0 to 6%, CeO 2 : 0.1 to 1%. 7. The optical fiber according to 7. 酸化物基準のモル%表示で、光伝送部の中心軸部分のBi量が56%以上で、かつ、周囲部分のBi量よりも1%以上多く、中心軸部分の(B+Ga)量が周囲部分の(B+Ga)量よりも1%以上少ないことを特徴とする請求項8記載の光ファイバ。 The amount of Bi 2 O 3 in the central axis portion of the optical transmission portion is 56% or more and 1% or more higher than the amount of Bi 2 O 3 in the surrounding portion in terms of oxide-based mol%. B 2 O 3 + Ga 2 O 3) amount of the peripheral portion (B 2 O 3 + Ga 2 O 3) amount the optical fiber according to claim 8, wherein the less than 1% than. 中空ガラスファイバ、光伝送部及び支持部がガラス転移点500℃以下のガラスで一体に形成されてなる請求項1〜9の何れか1項に記載の光ファイバの端面と、石英系光ファイバの端面とを突き合わせ、前記石英系光ファイバの端面の近傍を加熱して両光ファイバ同士を融着させるとともに、前記光ファイバの中空部を、融着接続された端面に近づくにつれ次第に狭窄して当該端面において消失させることを特徴とする光ファイバの融着接続方法。   The end face of the optical fiber according to any one of claims 1 to 9, wherein the hollow glass fiber, the optical transmission part, and the support part are integrally formed of glass having a glass transition point of 500 ° C or lower, and the silica-based optical fiber. The end face of the optical fiber is brought into contact with each other, the vicinity of the end face of the silica-based optical fiber is heated to fuse the two optical fibers together, and the hollow portion of the optical fiber is gradually narrowed as it approaches the end face to which the fusion is connected. An optical fiber fusion splicing method characterized in that it is eliminated at the end face. 中空ガラスファイバ、光伝送部及び支持部がガラス転移点500℃以下のガラスで一体に形成されてなる請求項1〜9の何れか1項に記載の光ファイバの一方または両方の端面と、石英系光ファイバの端面とが融着接続されている光ファイバの接続体であって、前記光ファイバの中空部が融着接続された端面に近づくにつれ次第に狭窄して当該端面において消失しており、かつ、両光ファイバの融着接続された端面での波長1550nmにおけるモードフィールド径の差が、絶対値で2.0μm以下であることを特徴とする光ファイバの接続体。   A hollow glass fiber, an optical transmission part, and a support part are integrally formed with glass having a glass transition point of 500 ° C or lower, and one or both end faces of the optical fiber according to any one of claims 1 to 9, and quartz An optical fiber connector in which the end surface of the system optical fiber is fusion-connected, and gradually disappears at the end surface as the hollow portion of the optical fiber approaches the end surface that has been fusion-connected, The optical fiber connector is characterized in that the difference in mode field diameter at a wavelength of 1550 nm at the end face where both optical fibers are fusion-spliced is 2.0 μm or less in absolute value.
JP2006174176A 2006-06-23 2006-06-23 Optical fiber, fusion bonding method for it and connector for optical fiber Pending JP2009216721A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006174176A JP2009216721A (en) 2006-06-23 2006-06-23 Optical fiber, fusion bonding method for it and connector for optical fiber
PCT/JP2007/061393 WO2007148528A1 (en) 2006-06-23 2007-06-05 Optical fiber, fusion bonding method for it and connector for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006174176A JP2009216721A (en) 2006-06-23 2006-06-23 Optical fiber, fusion bonding method for it and connector for optical fiber

Publications (1)

Publication Number Publication Date
JP2009216721A true JP2009216721A (en) 2009-09-24

Family

ID=38833270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006174176A Pending JP2009216721A (en) 2006-06-23 2006-06-23 Optical fiber, fusion bonding method for it and connector for optical fiber

Country Status (2)

Country Link
JP (1) JP2009216721A (en)
WO (1) WO2007148528A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294464A (en) * 2003-03-25 2004-10-21 Asahi Glass Co Ltd Optical fiber
JP2005062477A (en) * 2003-08-12 2005-03-10 Sumitomo Electric Ind Ltd Optical fiber, optical component, method for manufacturing optical fiber, and method for manufacturing optical component
CA2774228C (en) * 2003-08-13 2014-12-02 Nippon Telegraph And Telephone Corporation Structured tellurite glass optical fiber exhibiting controlled zero dispersion within a wavelength band centred at 1.55 .mu.m
JP4271613B2 (en) * 2004-04-14 2009-06-03 株式会社フジクラ Photonic crystal fiber connection method and connection structure

Also Published As

Publication number Publication date
WO2007148528A1 (en) 2007-12-27

Similar Documents

Publication Publication Date Title
US6866429B2 (en) Method of angle fusion splicing silica fiber with low-temperature non-silica fiber
JP3964454B2 (en) Photonic crystal fiber connection method
US6705771B2 (en) Method of fusion splicing silica fiber with low-temperature multi-component glass fiber
TWI436113B (en) Fiber fuse terminator, fiber laser, and optical transmission line
JP5117131B2 (en) Holey fiber and method for manufacturing holey fiber
JP2008277582A (en) Multicore fiber for optical pumping device, manufacturing method therefor, optical pumping device, fiber laser, and fiber amplifier
JP5379689B2 (en) Holey fiber
JP4929833B2 (en) Optical fiber manufacturing method
JP4571060B2 (en) Method for manufacturing holey fiber connection structure
CN109642983B (en) Optical fiber
JP4252238B2 (en) Optical fiber connection method
JP4417286B2 (en) Holey fiber and fiber optic modules
JP2005062477A (en) Optical fiber, optical component, method for manufacturing optical fiber, and method for manufacturing optical component
JP4271613B2 (en) Photonic crystal fiber connection method and connection structure
JP4805181B2 (en) Method for manufacturing optical coupling device and method for manufacturing optical amplification device
JP2019095783A (en) Optical fiber core diameter converter and different optical fibers connector
JPH1195049A (en) Multicore optical fiber
JP2009216721A (en) Optical fiber, fusion bonding method for it and connector for optical fiber
JP4234069B2 (en) Optical fiber connection structure, optical fiber type optical component, and dispersion compensating fiber module
JP2007226120A (en) Mode field converter and manufacturing method therefor
JPWO2018097256A1 (en) Optical fiber line and optical fiber line manufacturing method
JP2010169965A (en) Photonic crystal fiber and manufacturing method of the same
JP5858838B2 (en) Optical device manufacturing method
CN112513700B (en) Optical fiber circuit, module, and optical fiber circuit manufacturing method
JP5952854B2 (en) Multi-core fiber connection method and multi-core fiber connector using the same