JP2009216716A - Nuclear medicine diagnostic apparatus - Google Patents

Nuclear medicine diagnostic apparatus Download PDF

Info

Publication number
JP2009216716A
JP2009216716A JP2009153936A JP2009153936A JP2009216716A JP 2009216716 A JP2009216716 A JP 2009216716A JP 2009153936 A JP2009153936 A JP 2009153936A JP 2009153936 A JP2009153936 A JP 2009153936A JP 2009216716 A JP2009216716 A JP 2009216716A
Authority
JP
Japan
Prior art keywords
dimensional semiconductor
semiconductor detector
subject
rotation axis
nuclear medicine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009153936A
Other languages
Japanese (ja)
Other versions
JP4497557B2 (en
Inventor
Nobuyuki Nakamura
信之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009153936A priority Critical patent/JP4497557B2/en
Publication of JP2009216716A publication Critical patent/JP2009216716A/en
Application granted granted Critical
Publication of JP4497557B2 publication Critical patent/JP4497557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Nuclear Medicine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nuclear medicine diagnostic apparatus including a two-dimensional semiconductor detector, improving spatial resolving power more than the center to center spacing of a semiconductor element and eliminating deficit in data due to gap between the elements. <P>SOLUTION: This nuclear medicine diagnostic apparatus includes the two-dimensional semiconductor detectors 1, 2; a moving mechanism 4 for moving the two-dimensional semiconductor detector in a predetermined direction substantially parallel to the body axis of a body to be examined; an inclining mechanism 16 for inclining the two-dimensional semiconductor detector to a predetermined direction; a reconfiguration means 13 for reconfiguring the concentration distribution of radioactive isotope related to the section of the body to be examined based on the output of the two-dimensional semiconductor detector; and a control part 7 for controlling the moving mechanism and the inclining mechanism, wherein the two-dimensional semiconductor detector is rotated around the body to be examined in the state of inclining to the predetermined direction under the control of the control part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、生体に放射性同位元素(ラジオアイソトープ;以下、RIと略称する)を注入し、生体内のRIの濃度分布を検出器で捕らえ、病変部や血流量、さらに脂肪酸代謝量等の有益な診断情報を提供し得る核医学診断装置に関する。   The present invention injects a radioisotope (radioisotope; hereinafter abbreviated as RI) into a living body, captures the concentration distribution of RI in the living body with a detector, and is useful for lesions, blood flow, and fatty acid metabolism. The present invention relates to a nuclear medicine diagnostic apparatus that can provide diagnostic information.

核医学診断装置においては、検出器は、被検体に注入された放射線同位元素RI)からのガンマ線を検出する最前線の最も重要な構成要素のーつであり、この性能が装置全体の空間分解能やエネルギー分解能、さらには計数特性等の性能を左右するといっても過言ではない。   In a nuclear medicine diagnostic device, the detector is one of the most important components on the front line for detecting gamma rays from the radioisotope (RI) injected into the subject, and this performance is the spatial resolution of the entire device. It is no exaggeration to say that it affects the performance such as energy resolution and counting characteristics.

現在、主流を占めているのは、シンチレーション型検出器であり、これは周知の通り、ガンマ線の入射によりシンチレータ(蛍光体)で発生した光を、その背面に稠密に配列された複数の光電子増倍管(PMT)又はホトダイオードアレイで検出する構造になっており、非常に大型で重いばかりでなく、エネルギー分解能も低いものであった。   Currently, the scintillation type detectors occupy the mainstream, and as is well known, this is a method of increasing the number of photoelectrons that are densely arranged on the back of the light generated by the scintillator (phosphor) by the incidence of gamma rays. The detection is performed by a double tube (PMT) or a photodiode array, which is not only very large and heavy, but also has low energy resolution.

これに対して、近年脚光を浴びているのが、半導体検出器であり、これはガンマ線を直接的に検出するので、ガンマ線一光一電気という2段階の変換過程を経る従来のシンチレーション型検出器よりも電気信号への変換効率が高く、しかも半導体セルでガンマ線を個別に検出できるので、エネルギー分解能や計数能力が著しく向上するものと期待されている。   On the other hand, semiconductor detectors have been in the spotlight in recent years, because they directly detect gamma rays, which is more than a conventional scintillation type detector that undergoes a two-step conversion process of gamma rays, light and electricity. However, it is expected that the energy resolution and the counting capability are remarkably improved since the conversion efficiency into the electric signal is high and the gamma rays can be individually detected by the semiconductor cell.

この半導体検出器の構造及び検出の仕組みとしては、周知の通り、例えば、CdTe(テルル化カドミウム)といった化合物半導体に電極が形成され、その両面電極にバイアス電極と信号電極とを貼り合わせてなり、このような構造に対して、バイアス電圧を印加した状態で、ガンマ線が入射すると、電子と正孔の対が多数発生し、それぞれが正電極と負電極に移動する際に誘導される誘導電荷が正電極側に設置されるチャージアンプに蓄積され、これがエネルギーに比例した信号として出力される。   As is well known, the structure of this semiconductor detector and the detection mechanism include, for example, an electrode formed on a compound semiconductor such as CdTe (cadmium telluride), and a bias electrode and a signal electrode are bonded to both surface electrodes. For such a structure, when a gamma ray is incident with a bias voltage applied, a large number of electron-hole pairs are generated, and the induced charge induced when each moves to the positive electrode and the negative electrode. It is accumulated in a charge amplifier installed on the positive electrode side, and this is output as a signal proportional to energy.

このような半導体検出器では、(1)空間分解能が半導体素子の大きさにより限定されてしまう、具体的には空間分解能が、隣り合う半導体素子の中心点間距離に決まってしまう、(2)隣り合う半導体素子の間には絶縁体を挟み込んでいるが、このギャップ部分ではデータが採れない、つまりデータが欠損するという改善すべき課題がある。   In such a semiconductor detector, (1) the spatial resolution is limited by the size of the semiconductor element. Specifically, the spatial resolution is determined by the distance between the center points of adjacent semiconductor elements. (2) An insulator is sandwiched between adjacent semiconductor elements, but there is a problem to be improved that data cannot be obtained in this gap portion, that is, data is lost.

上記(2)の課題を解決する手法としては、現在のところウォーブリングという検出器を微小に動かす又は振動させる技術が知られている。しかし、アンガー型に比べて非常の軽量化しているとはいえ、20kgに達しようかという半導体検出器を安定的に微小に動かすことは容易なことではなく、不安定な動きにより誤差が発生したり増大する事態が起こりかねないし、しかもこれを実現するための耐荷重の大きな機構やスタンドは高コストでしかも大型になってしまう。   As a technique for solving the problem (2), there is currently known a technique of minutely moving or vibrating a detector called wobbling. However, although it is much lighter than the Anger type, it is not easy to stably move the semiconductor detector to reach 20 kg, and an error occurs due to unstable movement. In addition, a mechanism and a stand having a large load resistance for realizing this may be expensive and large in size.

本発明の目的は、2次元半導体検出器を装備した核医学診断装置において、半導体素子の中心点間距離よりも空間分解能を向上すること及び素子間のギャップによるデータ欠損を解消することにある。   An object of the present invention is to improve the spatial resolution rather than the distance between the central points of semiconductor elements and to eliminate data loss due to gaps between elements in a nuclear medicine diagnostic apparatus equipped with a two-dimensional semiconductor detector.

本発明のある局面は、被検体に放射性同位元素を投与し、この放射性同位元素から放出されるガンマ線を直接的に検出する半導体素子を2次元状に配列してなる少なくとも1台の2次元半導体検出器と、前記2次元半導体検出器を前記被検体の体軸に略平行な回転軸回りに回転させる回転機構と、前記2次元半導体検出器を前記回転軸に対して傾斜させる傾斜機構と、前記2次元半導体検出器の出力に基づいて、前記被検体の断面に関する前記放射性同位元素の濃度分布を再構成する再構成手段と、前記回転機構と前記傾斜機構とを制御する制御手段とを具備する核医学診断装置において、前記制御手段による制御によって、前記2次元半導体検出器は前記回転軸に対して傾斜されることを特徴とする核医学診断装置を提供する。   One aspect of the present invention is that at least one two-dimensional semiconductor formed by two-dimensionally arranging semiconductor elements that administer a radioisotope to a subject and directly detect gamma rays emitted from the radioisotope. A detector, a rotation mechanism for rotating the two-dimensional semiconductor detector around a rotation axis substantially parallel to the body axis of the subject, and an inclination mechanism for tilting the two-dimensional semiconductor detector with respect to the rotation axis; Reconstructing means for reconstructing the concentration distribution of the radioisotope with respect to the cross section of the subject based on the output of the two-dimensional semiconductor detector; and control means for controlling the rotation mechanism and the tilt mechanism. In the nuclear medicine diagnosis apparatus, the nuclear medicine diagnosis apparatus is characterized in that the two-dimensional semiconductor detector is tilted with respect to the rotation axis under the control of the control means.

本発明によれば、2次元半導体検出器を装備した核医学診断装置において、半導体素子の中心点間距離よりも空間分解能を向上すること及び素子間のギャップによるデータ欠損を解消することができる。   According to the present invention, in a nuclear medicine diagnostic apparatus equipped with a two-dimensional semiconductor detector, it is possible to improve the spatial resolution rather than the distance between the center points of the semiconductor elements and to eliminate data loss due to gaps between the elements.

本発明の好ましい実施形態に係る核医学診断装置の構成を示す図。The figure which shows the structure of the nuclear medicine diagnostic apparatus which concerns on preferable embodiment of this invention. 図1の半導体検出器の平面図。The top view of the semiconductor detector of FIG. 本実施形態のホールボディ撮影時の動作手順を示すフローチャート。The flowchart which shows the operation | movement procedure at the time of the whole body imaging | photography of this embodiment. ホールボディ撮影時のある半導体素子の中心点の軌道を示す図。The figure which shows the track | orbit of the center point of a certain semiconductor element at the time of whole body imaging | photography. 本実施形態による空間分解能を示す図。The figure which shows the spatial resolution by this embodiment. 2次元半導体検出器の傾斜角を示す図。The figure which shows the inclination | tilt angle of a two-dimensional semiconductor detector. ホールボディ撮影時の図6の隣り合う半導体素子A,Bの中心点軌道を示す図。The figure which shows the center point track | orbit of the adjacent semiconductor elements A and B of FIG. 6 at the time of whole body imaging | photography. 本実施形態のSPECT撮影時の動作手順を示すフローチャート。6 is a flowchart showing an operation procedure during SPECT imaging according to the present embodiment. SPECT撮影時のある半導本素子の中心点の軌道を示す図。The figure which shows the track | orbit of the center point of a certain semiconductor element at the time of SPECT imaging | photography. SPECT撮影時の図6の隣り合う半導体素子A,Bの中心点軌道を示す図。The figure which shows the center point track | orbit of the adjacent semiconductor elements A and B of FIG. 6 at the time of SPECT imaging | photography.

以下、図面を参照して、本発明による核医学診断装置を好ましい実施形態により説明する。図1は本実施形態に係る核医学診断装置の構成を示している。2次元半導体検出器1,2は、図2に示すように、例えば、CdTe(テルル化カドミウム)といった化合物半導体片にバイアス電極と信号電極とを貼り合わせてなる半導体素子が2次元的に配列されてなる。なお、2次元半導体検出器1,2は、必ずしも2器必要ではなく、1器だけでも良いし、3期でも、それ以上でも良い。   Hereinafter, a nuclear medicine diagnostic apparatus according to the present invention will be described with reference to the drawings according to a preferred embodiment. FIG. 1 shows the configuration of a nuclear medicine diagnostic apparatus according to this embodiment. In the two-dimensional semiconductor detectors 1 and 2, as shown in FIG. 2, for example, a semiconductor element formed by bonding a bias electrode and a signal electrode to a compound semiconductor piece such as CdTe (cadmium telluride) is two-dimensionally arranged. It becomes. Note that two two-dimensional semiconductor detectors 1 and 2 are not necessarily required, but only one, or three or more.

2次元半導体検出器1,2は、移動・傾斜・シフト機構16に支持されている。さらに、移動・傾斜・シフト機構16は、回転フレーム4に支持されている。回転フレーム4は、2次元半導体検出器1,2を、被検体Pの体軸に略平行な回転軸回りに回転させるために必要な構造及び駆動源を有していて、全体回転制御部6により制御される。   The two-dimensional semiconductor detectors 1 and 2 are supported by a moving / tilting / shifting mechanism 16. Further, the moving / tilting / shifting mechanism 16 is supported by the rotating frame 4. The rotating frame 4 has a structure and a driving source necessary for rotating the two-dimensional semiconductor detectors 1 and 2 around a rotation axis substantially parallel to the body axis of the subject P. Controlled by

移動・傾斜・シフト機構16は、2次元半導体検出器1,2を回転軸に沿って移動及びシフトさせるために必要な構造及び駆動源と、2次元半導体検出器1,2を回転軸に対して略直交する直交軸に沿ってシフトさせるために必要な構造及び駆動源と、2次元半導体検出器1,2を回転軸に対して傾斜させるために必要な構造及び駆動源とを有していて、検出器移動・傾斜・シフト制御部7により制御される。   The moving / tilting / shifting mechanism 16 includes a structure and a driving source necessary for moving and shifting the two-dimensional semiconductor detectors 1 and 2 along the rotation axis, and the two-dimensional semiconductor detectors 1 and 2 with respect to the rotation axis. And a structure and drive source necessary for shifting along an orthogonal axis substantially orthogonal to each other, and a structure and drive source necessary for tilting the two-dimensional semiconductor detectors 1 and 2 with respect to the rotation axis. The detector movement / tilt / shift control unit 7 controls the detector.

寝台3は、被検体Pを載置した状態で回転軸に沿って移動及びシフトするために必要な構造及び駆動源と、被検体Pを載置した状態で回転軸に対して略直交する直交軸に沿ってシフトするために必要な構造及び駆動源とを有していて、寝台検出器移動・傾斜・シフト制御部7により制御される。   The bed 3 has a structure and a driving source necessary for moving and shifting along the rotation axis in a state where the subject P is placed, and an orthogonality which is substantially orthogonal to the rotation axis in a state where the subject P is placed. It has a structure and a driving source necessary for shifting along the axis, and is controlled by the bed detector movement / tilt / shift control unit 7.

検出器素子毎の時間制御回路8,9は、2次元半導体検出器1,2を傾斜した状態で撮影する際に、計数期間の始期を半導体素子毎に制御するために設けられている。なお、撮影とは、被検体に投与された放射性同位元素からのガンマ線をフォトン数として計数する動作のことである。   The time control circuits 8 and 9 for each detector element are provided to control the start of the counting period for each semiconductor element when the two-dimensional semiconductor detectors 1 and 2 are imaged in an inclined state. Imaging is an operation for counting gamma rays from a radioisotope administered to a subject as the number of photons.

位置・エネルギー計算回路10,11は、2次元半導体検出器1,2〜の出力に基づいて、ガンマ線が入射する毎に、その入射位置及び角度を表す位置信号とそのエネルギーを表すエネルギー信号とを出力する。イメージメモリ12は、位置信号とエネルギー信号とに基づいて、入射位置と角度とエネルギー毎にガンマ線をフォトン数として計数する。データ処理回路13は、イメージメモリ12に保持されている計数結果に基づいて、ホールボディ撮影時(全身撮影時)には放射性同位元素の平面的な濃度分布(プレーナ像)を生成し、またSPECT撮影時には被検体の断面内の放射性同位元素の濃度分布(断層像)を再構成する。これらプレーナ像や断層像は表示回路14に送られ例えば濃淡で表示される。コン卜ローラ15は、これら装置全体の動きを統括制御するために設けられている。   The position / energy calculation circuits 10 and 11 generate, based on the outputs of the two-dimensional semiconductor detectors 1 and 2, each time a gamma ray is incident, a position signal indicating the incident position and angle and an energy signal indicating the energy. Output. Based on the position signal and the energy signal, the image memory 12 counts gamma rays as the number of photons for each incident position, angle, and energy. The data processing circuit 13 generates a planar concentration distribution (planar image) of a radioisotope based on the counting result stored in the image memory 12 during whole body imaging (in whole body imaging), and SPECT. At the time of imaging, the concentration distribution (tomographic image) of the radioisotope in the cross section of the subject is reconstructed. These planar images and tomographic images are sent to the display circuit 14 and displayed, for example, in shades. The controller 15 is provided for comprehensively controlling the movement of the entire apparatus.

このような本実施形態に係る核医学診断装置は、ホールボディ撮影とSPECT撮影とを選択的に行うことができる。以下、各々の撮影動作について順番に説明する。   Such a nuclear medicine diagnostic apparatus according to the present embodiment can selectively perform whole body imaging and SPECT imaging. Hereinafter, each photographing operation will be described in order.

(ホールボディ撮影)
図3には、本実施形態のホールボディ撮影時の動作手順を示しており、図4には、ホールボディ撮影時のある半導体素子の中心点の軌道を示している。まず、ホールボディ撮影時の基本的な動きは、2次元半導体検出器1,2を被検体Pに対して相対的に回転軸(体軸)方向に沿って連続的に移動させ、この連続的な移動と並行して一定の計数期間Tで計数動作を繰り返すというもので、このような動きにより、被検体Pのほぼ全身を対象として多数の位置でガンマ線を計数することができる。
(Hole body shooting)
FIG. 3 shows an operation procedure at the time of hole body photographing according to the present embodiment, and FIG. 4 shows a trajectory of a central point of a certain semiconductor element at the time of hole body photographing. First, the basic movement at the time of whole body imaging is the continuous movement of the two-dimensional semiconductor detectors 1 and 2 relative to the subject P along the rotation axis (body axis) direction. The counting operation is repeated in a certain counting period T in parallel with the movement, and by such movement, gamma rays can be counted at a large number of positions for almost the whole body of the subject P.

本実施形態では、このような基本的な動きを、2次元半導体検出器1,2を一定のストロークで往復移動させながら繰り返すというもので、特に、往路から復路及びその逆の移動方向が反転する間に、回転軸に対して略直交する直交軸の方向に、d/nの距離だけシフトさせることに特徴がある。ここで、dは、直交軸の方向に関する隣り合う半導体素子の中心点間の距離であり、nは2以上の整数である。   In this embodiment, such basic movement is repeated while reciprocating the two-dimensional semiconductor detectors 1 and 2 with a fixed stroke. In particular, the moving direction from the forward path to the backward path and vice versa is reversed. In the meantime, the distance is shifted by a distance of d / n in the direction of the orthogonal axis substantially orthogonal to the rotation axis. Here, d is the distance between the center points of adjacent semiconductor elements in the direction of the orthogonal axis, and n is an integer of 2 or more.

このようなシフトにより、直交軸の方向に関する空間分解能は、図5に示すように、シフトしない場合の空間分解能dに比べて、1/nに向上する。   As a result of such a shift, the spatial resolution in the direction of the orthogonal axis is improved to 1 / n as compared with the spatial resolution d in the case of no shift, as shown in FIG.

次に、図6に示すように、2次元半導体検出器1,2を回転軸(体軸)に対して、だけ傾斜させる場合の動作について説明する。このように2次元半導体検出器1,2を回転軸(体軸)に対して、θ゜だけ傾斜させた状態で、上述のホールボディ撮影の基本的な動きを行うことにより、直交軸の方向に関する空間分解能は、傾斜させない場合の空間分解能dから、d・cosθに向上する。例えば、θ=11.5゜のとき、直交軸の方向に関する空間分解能は、略d/5になる。   Next, the operation when the two-dimensional semiconductor detectors 1 and 2 are inclined only with respect to the rotation axis (body axis) as shown in FIG. 6 will be described. In this way, the two-dimensional semiconductor detectors 1 and 2 are tilted by θ ° with respect to the rotation axis (body axis), and the above-mentioned basic movement of the whole body photographing is performed, whereby the direction of the orthogonal axis Is improved from d to cos θ from the spatial resolution d when not inclined. For example, when θ = 11.5 °, the spatial resolution in the direction of the orthogonal axis is substantially d / 5.

このような傾斜撮影において、基本的なホールボディ撮影と同様に、全半導体素子で一律に同期して計数動作を繰り返すと、図7(a)に示すように、計数期間Tに半導体素子が移動する範囲(太線)は、直交軸の方向に関して隣り合う半導体素子A,Bの間でずれが生じてしまう。このずれを解消して、隣り合う半導体素子 A,Bの間で計数範囲が一致するように、図7(b)に示すように、時間制御回路8,9では、計数期間Tの始期を半導体素子A,Bの間で、移動速度Vと中心点間距離dと傾斜角θに応じた時間、具体的には、(d・cosθ)/Vだけずらすように、計数期間Tの始期を半導体素子毎に個別に制御している。   In such tilt photography, as in basic hole body photography, when the counting operation is repeated in a uniform manner for all semiconductor elements, the semiconductor element moves during the counting period T as shown in FIG. In the range (thick line) to be produced, a deviation occurs between the semiconductor elements A and B adjacent to each other in the direction of the orthogonal axis. As shown in FIG. 7 (b), the time control circuits 8 and 9 start the counting period T at the start of the semiconductor so that this shift is eliminated and the counting ranges are matched between the adjacent semiconductor elements A and B. Between the elements A and B, the start time of the counting period T is set to the semiconductor so as to be shifted by a time according to the moving speed V, the distance d between the center points, and the inclination angle θ, specifically, (d · cos θ) / V. Each element is controlled individually.

なお、2次元半導体検出器1,2を傾斜させた状態で、2次元半導体検出器1,2を往復移動し、その反転の間に直交軸方向に少しシフトする動きを行うようにしても良い。この場合、シフトする距離は、(d・cosθ)/nになり、この方向の空間分解能も(d−cosθ)/nに向上させることができる。   Note that the two-dimensional semiconductor detectors 1 and 2 may be reciprocated while the two-dimensional semiconductor detectors 1 and 2 are tilted, and a movement that slightly shifts in the orthogonal axis direction may be performed during the reversal. . In this case, the shifting distance is (d · cos θ) / n, and the spatial resolution in this direction can also be improved to (d−cos θ) / n.

(SPECT撮影)
図8には、本実施形態のSPECT撮影時の動作手順を示しており、図9には、SPECT撮影時のある半導体素子の中心点の軌道を示している。まず、SPECT撮影時の基本的な動きは、2次元半導体検出器1,2を被検体Pの周囲を連続的に回転させ、この連続的な回転と並行して一定の計数期間Tで計数動作を繰り返すというもので、このような動きにより、被検体Pに対して多方向からガンマ線を計数することができる。
(SPECT photography)
FIG. 8 shows an operation procedure at the time of SPECT imaging according to this embodiment, and FIG. 9 shows a trajectory of a center point of a certain semiconductor element at the time of SPECT imaging. First, the basic movement at the time of SPECT imaging is that the two-dimensional semiconductor detectors 1 and 2 are continuously rotated around the subject P, and the counting operation is performed in a constant counting period T in parallel with the continuous rotation. Thus, gamma rays can be counted with respect to the subject P from multiple directions.

本実施形態では、このような基本的な動きを、2次元半導体検出器1,2を被検体の周囲を複数回転させながら、繰り返すというもので、特に、2次元半導体検出器1,2を被検体の周囲を1周回転する毎に、回転軸(体軸)の方向に沿って、d/nの距離だけシフトさせることに特徴がある。この場合、dは回転軸の方向に関する隣り合う半導体素子の中心点間の距離になる。   In the present embodiment, such basic movement is repeated while rotating the two-dimensional semiconductor detectors 1 and 2 around the subject a plurality of times. Each time the sample is rotated once around the sample, it is characterized in that it is shifted by a distance of d / n along the direction of the rotation axis (body axis). In this case, d is the distance between the center points of adjacent semiconductor elements in the direction of the rotation axis.

このようなシフトにより、回転軸(体軸)の方向に関する空間分解能は、図5に示したように、シフトしない場合の空間分解能dに比べて、1/nに向上する。   By such a shift, the spatial resolution in the direction of the rotation axis (body axis) is improved to 1 / n as compared with the spatial resolution d in the case of no shift, as shown in FIG.

このSPECT撮影においても、図6に示したように、2次元半導体検出器1,2を回転軸(体軸)に対して、θ゜だけ傾斜させた状態で、上述のSPECT撮影の基本的な動きを行うことにより、回転軸の方向に関する空間分解能は、傾斜させない場合の空間分解能dから、d・cosθに向上する。ここでも、θ=11.5゜のと き、回転軸の方向に関する空間分解能は、略d/5になる。   Also in this SPECT imaging, as shown in FIG. 6, the two-dimensional semiconductor detectors 1 and 2 are tilted by θ ° with respect to the rotation axis (body axis), and the above-described basic SPECT imaging is performed. By performing the movement, the spatial resolution in the direction of the rotation axis is improved from the spatial resolution d when not tilted to d · cos θ. Again, when θ = 11.5 °, the spatial resolution in the direction of the rotation axis is approximately d / 5.

このようなSPECTの傾斜撮影においても、基本的なSPECT撮影と同様に、全半導体素子で一律に同期して計数動作を繰り返すと、図10(a)に示すように、計数期間Tに半導体素子が回転する角度範囲(太線)は、回転軸の方向に関して隣り合う半導体素子A,Bの問でずれが生じてしまう。このずれを解消して、隣り合う半導体素子A,Bの間で角度範囲が一致するように、図10(b)に示すように、時間制御回路8,9では、計数期間Tの始期を半導体素子A,Bの間で、回転速度ωと中心点間距離dと傾斜角0に応じた時間、具体的には、(d・cosθ)/ωだけずらすように、計数期間Tの始期を半導体素子毎に個別に制御している。   Also in such SPECT tilt imaging, as in basic SPECT imaging, when the counting operation is repeated in a uniform manner for all semiconductor elements, the semiconductor elements are counted during the counting period T as shown in FIG. The angular range (thick line) in which the rotation of the semiconductor element is shifted due to the adjacent semiconductor elements A and B with respect to the direction of the rotation axis. As shown in FIG. 10B, the time control circuits 8 and 9 start the counting period T at the start of the semiconductor so that the deviation is eliminated and the angle ranges coincide between the adjacent semiconductor elements A and B. The start of the counting period T is shifted between the elements A and B by a time corresponding to the rotational speed ω, the distance d between the center points, and the inclination angle 0, specifically, (d · cos θ) / ω. Each element is controlled individually.

なお、2次元半導体検出器1,2を傾斜させた状態で、2次元半導体検出器1,2を複数回転し、1周毎に回転軸方向に少しシフトする動きを行うようにしても良い。この場合、シフトする距離は、(d・cosθ)/nになり、この方向の空間分解能も(d・cosθ)/nに向上させることができる。   Note that the two-dimensional semiconductor detectors 1 and 2 may be rotated a plurality of times while the two-dimensional semiconductor detectors 1 and 2 are tilted, and a movement that slightly shifts in the rotation axis direction may be performed every round. In this case, the shifting distance is (d · cos θ) / n, and the spatial resolution in this direction can also be improved to (d · cos θ) / n.

本発明は、上述の実施形態に限定されることなく、種々変形して実施可能であるのは言うまでもない。   It goes without saying that the present invention is not limited to the above-described embodiment, and can be implemented with various modifications.

本発明は、の分野に利用可能性がある。   The present invention has potential applications in the field of

1,2…2次元半導体検出器、3…寝台、4…回転フレーム、5…寝台移動・シフト・上下制御部、6…全体回転制御部、7…検出器移動・傾斜・シフト制御部、8,9…時間制御回路、10,11…位置・エネルギー計算回路、12…イメージメモリ、13…データ処理回路、14…表示回路、15…コントローラ、16…移動・傾斜・シフト機構   DESCRIPTION OF SYMBOLS 1, 2 ... Two-dimensional semiconductor detector, 3 ... Bed, 4 ... Rotation frame, 5 ... Bed movement / shift / up / down control unit, 6 ... Whole rotation control unit, 7 ... Detector movement / tilt / shift control unit, 8 , 9 ... Time control circuit, 10, 11 ... Position / energy calculation circuit, 12 ... Image memory, 13 ... Data processing circuit, 14 ... Display circuit, 15 ... Controller, 16 ... Moving / tilting / shifting mechanism

Claims (6)

被検体に放射性同位元素を投与し、この放射性同位元素から放出されるガンマ線を直接的に検出する半導体素子を2次元状に配列してなる少なくとも1台の2次元半導体検出器と、
前記被検体に対する前記2次元半導体検出器の相対的な位置を移動させる移動機構と、
前記2次元半導体検出器を前記相対的な位置の移動方向に対して傾斜させる傾斜機構と、
前記2次元半導体検出器の出力に基づいて、前記被検体の断面に関する前記放射性同位元素の濃度分布を再構成する再構成手段と、
前記移動機構と前記傾斜機構とを制御する制御手段とを具備する核医学診断装置において、
前記制御手段による制御によって、前記2次元半導体検出器は前記相対的な位置の移動方向に対して傾斜した状態で前記所定方向に移動することを特徴とする核医学診断装置。
At least one two-dimensional semiconductor detector formed by two-dimensionally arranging semiconductor elements that administer a radioisotope to a subject and directly detect gamma rays emitted from the radioisotope;
A moving mechanism for moving a relative position of the two-dimensional semiconductor detector with respect to the subject;
An inclination mechanism for inclining the two-dimensional semiconductor detector with respect to a moving direction of the relative position;
Reconstructing means for reconstructing a concentration distribution of the radioisotope with respect to a cross section of the subject based on an output of the two-dimensional semiconductor detector;
In a nuclear medicine diagnostic apparatus comprising a control means for controlling the moving mechanism and the tilt mechanism,
The nuclear medicine diagnosis apparatus according to claim 1, wherein the two-dimensional semiconductor detector is moved in the predetermined direction while being inclined with respect to the movement direction of the relative position by the control by the control means.
前記2次元半導体検出器の出力に基づいて所定の計数期間内に入射したガンマ線をフォトン数として半導体素子ごとに計数する計数手段と、前記計数期間の始期を前記半導体素子ごとに個別に制御する制御手段とをさらに備えることを特徴とする請求項1記載の核医学診断装置。 Counting means for counting gamma rays incident within a predetermined counting period as the number of photons for each semiconductor element based on the output of the two-dimensional semiconductor detector, and control for individually controlling the start of the counting period for each semiconductor element The nuclear medicine diagnosis apparatus according to claim 1, further comprising: means. 前記移動機構は、前記2次元半導体検出器を前記被検体の体軸に略平行な回転軸回りに回転させる回転移動機構と、前記2次元半導体検出器と前記被検体との少なくとも一方を前記回転軸に沿って移動させる第1の平行移動機構とを含み、
前記制御手段による制御によって、前記被検体の周囲を1周回転する毎に、前記2次元半導体検出器と前記被検体との少なくとも一方が前記回転軸に沿ってd/nの距離を移動することを特徴とする請求項1記載の核医学診断装置。
The moving mechanism rotates at least one of the two-dimensional semiconductor detector and the subject, and a rotational movement mechanism that rotates the two-dimensional semiconductor detector around a rotation axis substantially parallel to the body axis of the subject. A first translation mechanism that moves along the axis,
By the control by the control means, at least one of the two-dimensional semiconductor detector and the subject moves a distance of d / n along the rotation axis every time it rotates around the subject. The nuclear medicine diagnosis apparatus according to claim 1.
前記制御手段による制御によって、前記2次元半導体検出器は前記回転軸に対して傾斜した状態で前記被検体の周囲を回転することを特徴とする請求項3記載の核医学診断装置。 4. The nuclear medicine diagnosis apparatus according to claim 3, wherein the two-dimensional semiconductor detector rotates around the subject while being tilted with respect to the rotation axis under the control of the control means. 前記移動機構は、前記2次元半導体検出器と前記被検体との少なくとも一方を前記回転軸に沿って移動させる第1の平行移動機構と、前記2次元半導体検出器と前記被検体との少なくとも一方を前記回転軸に略直交する直交軸に沿って移動させる第2の平行移動機構をさらに備え、
前記制御手段による制御によって、前記2次元半導体検出器が前記回転軸に沿って往復移動すると共に、前記往復移動の中で移動の向きが反転するに際して前記2次元半導体検出器が前記直交軸に沿ってd/nの距離を移動することを特徴とする請求項3記載の核医学診断装置。
The moving mechanism includes: a first parallel moving mechanism that moves at least one of the two-dimensional semiconductor detector and the subject along the rotation axis; and at least one of the two-dimensional semiconductor detector and the subject. And a second translation mechanism that moves the axis along an orthogonal axis that is substantially orthogonal to the rotation axis,
By the control by the control means, the two-dimensional semiconductor detector reciprocates along the rotation axis, and the two-dimensional semiconductor detector moves along the orthogonal axis when the direction of movement is reversed during the reciprocation. 4. The nuclear medicine diagnosis apparatus according to claim 3, wherein the distance is d / n.
前記2次元半導体検出器を前記回転軸に対して傾斜させる傾斜機構とをさらに備え、
前記制御手段による制御によって、前記2次元半導体検出器は前記回転軸に対して傾斜した状態で前記回転軸に沿って往復移動する請求項5記載の核医学診断装置。
An inclination mechanism for inclining the two-dimensional semiconductor detector with respect to the rotation axis;
6. The nuclear medicine diagnosis apparatus according to claim 5, wherein the two-dimensional semiconductor detector reciprocates along the rotation axis while being inclined with respect to the rotation axis by the control by the control means.
JP2009153936A 2009-06-29 2009-06-29 Nuclear medicine diagnostic equipment Expired - Lifetime JP4497557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009153936A JP4497557B2 (en) 2009-06-29 2009-06-29 Nuclear medicine diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009153936A JP4497557B2 (en) 2009-06-29 2009-06-29 Nuclear medicine diagnostic equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP190899A Division JP4417458B2 (en) 1999-01-07 1999-01-07 Nuclear medicine diagnostic equipment

Publications (2)

Publication Number Publication Date
JP2009216716A true JP2009216716A (en) 2009-09-24
JP4497557B2 JP4497557B2 (en) 2010-07-07

Family

ID=41188699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009153936A Expired - Lifetime JP4497557B2 (en) 2009-06-29 2009-06-29 Nuclear medicine diagnostic equipment

Country Status (1)

Country Link
JP (1) JP4497557B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10111634B2 (en) 2012-09-28 2018-10-30 Toshiba Medical Systems Corporation Nuclear medicine diagnostic apparatus, diagnostic imaging apparatus, and image processing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999384A (en) * 1982-11-30 1984-06-08 Shimadzu Corp Rotary type radiation position detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999384A (en) * 1982-11-30 1984-06-08 Shimadzu Corp Rotary type radiation position detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10111634B2 (en) 2012-09-28 2018-10-30 Toshiba Medical Systems Corporation Nuclear medicine diagnostic apparatus, diagnostic imaging apparatus, and image processing method
US10517559B2 (en) 2012-09-28 2019-12-31 Canon Medical Systems Corporation Nuclear medicine diagnostic apparatus, diagnostic imaging apparatus, and image processing method

Also Published As

Publication number Publication date
JP4497557B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
US10955569B2 (en) Detector systems for integrated radiation imaging
US10509136B2 (en) Detector systems for radiation imaging
US10067239B2 (en) Detector systems for radiation imaging
US6396898B1 (en) Radiation detector and x-ray CT apparatus
US7916831B2 (en) X-ray detector and X-ray CT apparatus
US10799200B2 (en) Pet system with crystal or detector unit spacing
US7535008B2 (en) Radiation imaging system and nuclear medicine diagnosis instrument therefor
US8487265B2 (en) Imaging detector and method of manufacturing
JP2010513908A (en) Energy decomposition detection system and imaging system
JP7094988B2 (en) Computer tomography (CT) detector and readout method for active pixel sensors
JP2014510270A (en) Detector array whose effective size is larger than the actual size {DETECTORARRAYHAVINGFFECTIVESIZELARGERTHANACTALSIZE}
US20120193545A1 (en) Detector systems with anode incidence face and methods of fabricating the same
WO2017015473A1 (en) Detector systems for radiation imaging
US11147522B2 (en) Photon counting detector and x-ray computed tomography apparatus
JP4497557B2 (en) Nuclear medicine diagnostic equipment
JP4417458B2 (en) Nuclear medicine diagnostic equipment
JP2000221272A (en) Radiation detection system and nuclear medicine diagnostic device
Přibil et al. Quantum Imaging X—ray CT Systems Based on GaAs Radiation Detectors Using Perspective Imaging Reconstruction Techniques
JP2015230194A (en) Radiation imaging device using location identification type detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term