JP2009216625A - Vibration detection element, vibration measuring device, and vibration measuring method - Google Patents

Vibration detection element, vibration measuring device, and vibration measuring method Download PDF

Info

Publication number
JP2009216625A
JP2009216625A JP2008062318A JP2008062318A JP2009216625A JP 2009216625 A JP2009216625 A JP 2009216625A JP 2008062318 A JP2008062318 A JP 2008062318A JP 2008062318 A JP2008062318 A JP 2008062318A JP 2009216625 A JP2009216625 A JP 2009216625A
Authority
JP
Japan
Prior art keywords
radio wave
vibration
antenna
transmitted
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008062318A
Other languages
Japanese (ja)
Other versions
JP5322204B2 (en
Inventor
Naoki Sakurai
直樹 桜井
Ryoichi Yamamoto
良一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEZUKAYAMA GAKUEN
Hiroshima University NUC
Original Assignee
TEZUKAYAMA GAKUEN
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEZUKAYAMA GAKUEN, Hiroshima University NUC filed Critical TEZUKAYAMA GAKUEN
Priority to JP2008062318A priority Critical patent/JP5322204B2/en
Publication of JP2009216625A publication Critical patent/JP2009216625A/en
Application granted granted Critical
Publication of JP5322204B2 publication Critical patent/JP5322204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration detection element for detecting vibration in the noncontact state without laminating a reflection seal even on an object not having a characteristic for reflecting laser light, and taking out a sufficient signal from a received radio wave, and a vibration measuring device and a vibration measuring method for using properly the vibration detection element. <P>SOLUTION: A radio wave is transmitted to a measuring target object by a radio wave transmission means 2. A transmitted radio wave and a reflected radio wave are received by an antenna 4 arranged inside a radio wave reflection means 3 and near the radio wave transmission means 2, and a signal including information on phases of the transmitted radio wave and the reflected radio wave received by the antenna 4 is detected by a transistor 5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、物体の振動を非接触で検出できる振動検出素子、前記振動検出素子を好適に用いることができる振動測定装置並びに振動測定方法に関する。   The present invention relates to a vibration detecting element that can detect vibration of an object in a non-contact manner, a vibration measuring apparatus and a vibration measuring method that can suitably use the vibration detecting element.

従来から、例えば機械装置等の物体の振動を測定する際には、一般的に、加速度ピックアップ等の振動センサを該物体に接触させて振動を検出して測定する方法が用いられる。
この振動センサを接触させて測定する方法は生物計測の分野でも応用され、様々な手法が提案されている。例えば、果実のような生物体の内部品質を振動によって計測するには、果実に接触式振動検出素子(例えばピエゾ素子等)を接触させることによって行われる。
Conventionally, when measuring vibration of an object such as a mechanical apparatus, a method of detecting vibration by bringing a vibration sensor such as an acceleration pickup into contact with the object is generally used.
The method of measuring by contacting the vibration sensor is also applied in the field of biological measurement, and various methods have been proposed. For example, in order to measure the internal quality of a living organism such as a fruit by vibration, it is performed by bringing a contact-type vibration detecting element (for example, a piezo element) into contact with the fruit.

しかし、本発明者らはこのような接触式振動子を果実等のような柔らかい物体に接触させる行為自体が測定対象の特性変化を引き起し、正確な測定が行なえないことを見出した。
そこで、本発明者らは測定対象の物体に非接触で振動を測定するために、従来から工業計測に用いられていたレーザードップラー振動計を果実等の生物計測に利用して内部品質を計測する技術であるレーザードップラー法を提案している。(特許文献1参照)。
また、さらに本発明者らはマイクロ波を測定対象の物体に照射し、照射電波を櫛型アンテナで受信し検波することにより振動を測定する技術も提案している(特許文献2参照)。
特開平9−236587号公報 特開20007−198787号公報
However, the present inventors have found that the action itself of bringing such a contact-type vibrator into contact with a soft object such as a fruit causes a change in the characteristics of the measurement target, and accurate measurement cannot be performed.
Therefore, the present inventors measure the internal quality by using a laser Doppler vibrometer that has been conventionally used for industrial measurement in order to measure vibration without contact with the object to be measured. A laser Doppler method is proposed. (See Patent Document 1).
Furthermore, the present inventors have also proposed a technique for measuring vibrations by irradiating an object to be measured with microwaves, receiving the detected radio wave with a comb antenna, and detecting it (see Patent Document 2).
Japanese Patent Laid-Open No. 9-236587 Japanese Patent Laid-Open No. 20007-198787

しかしながら、特許文献1に記載の技術では、レーザー光を反射しない物体の振動を測定するには該物体の表面に反射シールを貼る必要があり、この作業が非常に煩雑で、またその貼り方によっては該物体の振動を正確に測定できない恐れがある。
また、特許文献2に記載の技術では、アンテナが信号源から遠い位置に配置されている。そのため、受信電波の信号強度が弱くその受信感度が低くなる。その結果受信電波から振動測定のための十分な信号を取り出せない恐れがある。
However, in the technique described in Patent Document 1, in order to measure the vibration of an object that does not reflect laser light, it is necessary to apply a reflective sticker to the surface of the object. May not be able to accurately measure the vibration of the object.
In the technique described in Patent Document 2, the antenna is arranged at a position far from the signal source. Therefore, the signal strength of the received radio wave is weak and the reception sensitivity is low. As a result, a sufficient signal for vibration measurement may not be extracted from the received radio wave.

本発明には、上記課題に鑑みてなされたものであり、レーザー光を反射する特性を有していない物体に対しても反射シールは貼ることなしに非接触で振動の検出が可能で、かつ受信電波から十分な信号を取り出すことができる振動検出素子、前記振動検出素子を好適に用いることのできる振動測定装置並びに振動測定方法を提供することを課題とする。   The present invention has been made in view of the above problems, and can detect vibration without contact without sticking a reflective sticker to an object that does not have the property of reflecting laser light, and It is an object of the present invention to provide a vibration detecting element that can extract a sufficient signal from a received radio wave, a vibration measuring device and a vibration measuring method that can suitably use the vibration detecting element.

(1)少なくとも一端が開口された筒状の電波反射手段と、電波反射手段の一端に、発信した電波が開口端の方向に向かうように取り付けられた電波発信手段と、電波発信手段の近傍、かつ電波反射手段の内部に配置され、電波発信手段から発信された電波を受信するとともに、発信された電波が測定対象の物体で反射した反射電波を受信するアンテナと、
アンテナで受信された発信電波と反射電波との位相に関する情報含む信号を検波するトランジスターと、を備えたことを特徴とする振動検出素子。
(2)アンテナが櫛型である前項1に記載の振動検出素子。
(3)アンテナが折り返し型ダイポールアンテナである前項1に記載の振動検出素子。
(4) 少なくとも一端が開口された筒状の電波反射手段と、電波反射手段の一端に、発信した電波が開口端の方向に向かうように取り付けられた電波発信手段と、電波発信手段の近傍、かつ電波反射手段の内部に配置され、電波発信手段から発信された電波を受信するとともに、発信された電波が測定対象の物体で反射した反射電波を受信するダイポールアンテナと、ダイポールアンテナで受信した発信電波と反射電波との位相に関する情報含む信号を検波するダイオードと、を備えたことを特徴とする振動検出素子。
(5)少なくとも一端が開口された筒状の電波反射手段と、電波反射手段の一端に、発信した電波が開口端の方向に向かうように取り付けられた電波発信手段と、4つのダイオードをブリッジ結合したブリッジ回路と、ブリッジ回路の入力側に接続された第一同調回路と、ブリッジ回路の出力側に接続された第二同調回路と、電波反射手段の内部、かつ電波発信手段の近傍に配置され一対の導体板によってくの字状に形成されたレフレクターと、を備え、第一同調回路はレフレクターの成す角が鋭角である側の空間に、第二同調回路はレフレクターの成す角が鈍角である側の空間にそれぞれ配置されたことを特徴とする振動検出素子。
(6)電波反射手段は、電磁ホーンアンテナである前項1から5のいずれかに記載の振動検出素子。
(7)電波発信手段から発信される電波の周波数が、5GHzから30GHzの範囲である、前項1から6のいずれかに記載の振動検出素子。
(8)位相に関する情報を含む信号とは、発信電波と反射電波との位相差の情報を含む信号であること特徴とする前項1から7のいずれかに記載の振動検出素子。
(9)前項1から8のいずれかに記載された振動検出素子と、位相に関する情報を含む信号を周波数解析する周波数解析手段と、を備えたことを特徴とする振動測定装置。
(10)測定対象の物体に電波を発信する第1の工程と、電波発信手段の近傍、かつ電波反射手段の内部に配置されたアンテナによって、第1工程で発信された電波を受信するとともに、発信された電波が測定対象の物体で反射した反射電波を受信する第2の工程と、第2工程で受信された発信電波と受信電波との位相に関する情報を含む信号をトランジスターで検波する第3の工程と、第3工程で検波された位相に関する情報を含む信号を周波数解析する第4の工程と、を備えたことを特徴とする振動測定方法。
(11)位相に関する情報を含む信号とは、発信電波と受信電波との位相差の情報を含む信号であることを特徴とする前項10に記載の振動測定方法。
(1) A cylindrical radio wave reflecting means having at least one end opened, a radio wave transmitting means attached to one end of the radio wave reflecting means so that a transmitted radio wave is directed toward the open end, And an antenna that is disposed inside the radio wave reflecting means, receives the radio wave transmitted from the radio wave transmitting means, and receives the reflected radio wave reflected by the object to be measured.
A vibration detecting element comprising: a transistor for detecting a signal including information related to a phase between a transmitted radio wave and a reflected radio wave received by an antenna.
(2) The vibration detecting element according to item 1, wherein the antenna is comb-shaped.
(3) The vibration detecting element according to item 1 above, wherein the antenna is a folded dipole antenna.
(4) A cylindrical radio wave reflecting means having at least one end opened, a radio wave transmitting means attached to one end of the radio wave reflecting means so that a transmitted radio wave is directed toward the open end, and the vicinity of the radio wave transmitting means, The dipole antenna is disposed inside the radio wave reflecting means and receives the radio wave transmitted from the radio wave transmitting means, and receives the reflected radio wave reflected by the object to be measured, and the transmission received by the dipole antenna. A vibration detecting element comprising: a diode for detecting a signal including information on a phase between a radio wave and a reflected radio wave.
(5) A bridge of a cylindrical radio wave reflecting means having at least one open end, a radio wave transmitting means attached to one end of the radio wave reflecting means so that the transmitted radio wave is directed toward the open end, and four diodes The bridge circuit, the first tuning circuit connected to the input side of the bridge circuit, the second tuning circuit connected to the output side of the bridge circuit, the inside of the radio wave reflection means, and the vicinity of the radio wave transmission means A reflector formed in a U shape by a pair of conductor plates, the first tuning circuit is in a space where the angle formed by the reflector is an acute angle, and the second tuning circuit is an obtuse angle formed by the reflector A vibration detecting element arranged in each side space.
(6) The vibration detecting element according to any one of items 1 to 5, wherein the radio wave reflecting means is an electromagnetic horn antenna.
(7) The vibration detecting element according to any one of items 1 to 6, wherein the frequency of the radio wave transmitted from the radio wave transmitting means is in a range of 5 GHz to 30 GHz.
(8) The vibration detection element according to any one of (1) to (7), wherein the signal including information on the phase is a signal including information on a phase difference between the transmitted radio wave and the reflected radio wave.
(9) A vibration measuring apparatus comprising: the vibration detecting element according to any one of items 1 to 8; and a frequency analyzing unit that performs frequency analysis on a signal including information related to a phase.
(10) While receiving the radio wave transmitted in the first step by the first step of transmitting a radio wave to the object to be measured, and the antenna disposed in the vicinity of the radio wave transmitting unit and inside the radio wave reflecting unit, A second step of receiving a reflected radio wave reflected by an object to be measured, and a signal including information on the phase of the transmitted radio wave and the received radio wave received in the second step are detected by a transistor; And a fourth step of analyzing the frequency of a signal including information relating to the phase detected in the third step.
(11) The vibration measurement method according to item 10 above, wherein the signal including information on the phase is a signal including information on a phase difference between the transmission radio wave and the reception radio wave.

前項(1)に記載の発明によれば、測定対象の物体に対して電波発信手段から電波が発信され、アンテナによって発信電波と反射電波とが、電波反射手段の内部かつ電波発信手段の近傍に配置されたアンテナによって受信される。そして、発信電波と反射電波との位相に関する情報がトランジスターによって検波される。これにより、電波を用いることでレーザーを反射しない特性を有する物体に対しても反射シールを貼るといった煩雑な作業をすることなしに非接触で物体の振動の検出が可能となる。また、反射シールを貼る必要がないので、反射シールの貼り方によっては物体の振動を正確に測定できない恐れを解消できる。また、アンテナを電波発信手段(信号源)の近く、かつ反射電波が集まってくる電波反射手段の内部に配置したので発信電波と反射電波との受信強度が強くなり感度が高くとれ、受信電波からの振動測定のための十分な信号を取り出すことが出来る。また、トランジスターによって発信電波と反射電波との位相に関する情報を含む信号を検波するので高い復調効率を得ることができる。   According to the invention described in item (1) above, radio waves are transmitted from the radio wave transmitting means to the object to be measured, and the transmitted radio waves and the reflected radio waves are placed inside the radio wave reflecting means and in the vicinity of the radio wave transmitting means by the antenna. Received by a deployed antenna. Information on the phase between the transmitted radio wave and the reflected radio wave is detected by the transistor. Thereby, it is possible to detect vibration of the object in a non-contact manner without performing a complicated operation of applying a reflective seal even to an object having a characteristic of not reflecting the laser by using radio waves. In addition, since it is not necessary to attach a reflective seal, it is possible to eliminate the possibility that the vibration of the object cannot be measured accurately depending on how the reflective seal is applied. In addition, since the antenna is placed near the radio wave transmission means (signal source) and inside the radio wave reflection means where the reflected radio waves gather, the receiving intensity of the outgoing radio wave and the reflected radio wave is increased and the sensitivity is increased. It is possible to extract a sufficient signal for the vibration measurement. In addition, since a signal including information on the phase between the transmitted radio wave and the reflected radio wave is detected by the transistor, high demodulation efficiency can be obtained.

前項(2)に記載の発明によれば、発信電波と受信波とを受信するアンテナを櫛型とすることができる。   According to the invention described in item (2) above, the antenna that receives the transmitted radio wave and the received wave can be formed in a comb shape.

前項(3)に記載の発明によれば、発信電波と受信波とを受信するアンテナを折り返し型ダイポールアンテナとすることができる。   According to the invention described in item (3) above, the antenna that receives the transmission radio wave and the reception wave can be a folded dipole antenna.

前項(4)に記載の発明によれば、電波を用いての測定対象の物体の振動測定が可能となるので、レーザーを反射しない性質を有する物体に対しても、反射シールを貼るといった手間をかけずに非接触で物体の振動を検出できる。また、反射シールを貼る必要がないので、反射シールの貼り方によっては物体の振動を正確に測定できない恐れを解消できる。また、ダイポールアンテナを電波発射手段の近く、かつ電波反射手段の内部に配置したので、発信電波と反射電波との受信強度が強くなり感度が高くとれ、受信電波からの振動測定のための十分な信号を取り出すことが出来る。また、ダイポールアンテナとダイオードとを組み合わせることにより、発信電波と反射電波との位相に関する情報を含む信号を効率よく復調できる。   According to the invention described in item (4) above, since vibration measurement of an object to be measured using radio waves is possible, the trouble of applying a reflective sticker to an object that does not reflect a laser can be reduced. The vibration of the object can be detected in a non-contact manner without being applied. In addition, since it is not necessary to attach a reflective seal, it is possible to eliminate the possibility that the vibration of the object cannot be measured accurately depending on how the reflective seal is applied. In addition, since the dipole antenna is placed near the radio wave emitting means and inside the radio wave reflecting means, the receiving intensity of the outgoing radio wave and the reflected radio wave is increased and the sensitivity is high, and sufficient for measuring vibration from the received radio wave. The signal can be taken out. Further, by combining a dipole antenna and a diode, a signal including information on the phase between the transmitted radio wave and the reflected radio wave can be demodulated efficiently.

前項(5)に記載の発明によれば、電波を用いての測定対象の物体の振動測定が可能となるので、レーザーを反射しない性質を有する物体に対しても、反射シールを貼る手間をかけずに非接触で物体の振動を検出できる。また、反射シールを貼る必要がないので、反射シールの貼り方によっては物体の振動を正確に測定できない恐れを解消できる。さらに、レフレクター、2つの同調回路及び該2つの同調回路の接続されたブリッジ回路を組合せることで発信電波と反射電波との位相に関する情報を含む信号を効率よく復調できる。   According to the invention described in item (5) above, vibration measurement of an object to be measured using radio waves is possible. Therefore, it takes time and effort to put a reflective sticker on an object that does not reflect a laser. The vibration of the object can be detected without contact. In addition, since it is not necessary to attach a reflective seal, it is possible to eliminate the possibility that the vibration of the object cannot be measured accurately depending on how the reflective seal is applied. Further, by combining a reflector, two tuning circuits, and a bridge circuit to which the two tuning circuits are connected, it is possible to efficiently demodulate a signal including information on the phase of the transmitted radio wave and the reflected radio wave.

前項(6)に記載の発明によれば、電波反射手段を電磁ホーンアンテナとすることができる。
前項(7)に記載の発明によれば、5GHzから30GHzの範囲の電波を用いて、測定対象の物体の振動を検出することができる。
前項(8)に記載の発明によれば、発信電波と反射電波との位相差の情報を含む信号によって測定対象の物体の振動を検出できる。
前項(9)に記載の発明によれば、発信電波と反射電波との位相に関する情報を含む信号に基づいて、測定対象の物体の振動の周波数を解析することができる。
According to the invention described in item (6), the radio wave reflecting means can be an electromagnetic horn antenna.
According to the invention described in item (7) above, it is possible to detect the vibration of the object to be measured using radio waves in the range of 5 GHz to 30 GHz.
According to the invention described in item (8), the vibration of the object to be measured can be detected by a signal including information on the phase difference between the transmitted radio wave and the reflected radio wave.
According to the invention described in item (9) above, it is possible to analyze the frequency of vibration of the object to be measured based on a signal including information related to the phase between the transmitted radio wave and the reflected radio wave.

前項(10)に記載の発明によれば、測定に電波を用いるのでレーザーを反射しない特性を有する物体に対して反射シールを貼るといった煩雑な作業をすることなしに非接触で物体の振動測定が可能となる。また、アンテナが電波反射手段の内部、かつ電波発信手段の近傍に配置されているので信号受信強度が強く感度が高くとれ、受信電波からの振動測定のための十分な信号を取り出すことができる。その結果、精度の高い振動測定が可能となる。
前項(11)に記載の発明によれば、発信電波と反射電波との位相差の情報を含む信号に基づいて、測定対象の物体の振動の周波数を解析することができる。
According to the invention described in the above item (10), since radio waves are used for measurement, vibration measurement of an object can be performed in a non-contact manner without performing a complicated operation such as attaching a reflective seal to an object that does not reflect a laser. It becomes possible. Further, since the antenna is disposed inside the radio wave reflection means and in the vicinity of the radio wave transmission means, the signal reception intensity is high and the sensitivity is high, and a sufficient signal for vibration measurement from the received radio wave can be extracted. As a result, highly accurate vibration measurement is possible.
According to the invention described in item (11) above, it is possible to analyze the frequency of vibration of the object to be measured based on a signal including information on the phase difference between the transmitted radio wave and the reflected radio wave.

(実施例1)
以下に、本発明の実施例1に係る振動検出素子及び振動測定装置を、図面を参照しながら説明する。
図1は、振動測定装置1の概略構成を示した図である。
図1に示すように、振動測定装置1は電波発信手段2、電磁ホーンアンテナ3、4本櫛型アンテナ4、トランジスター5、リアクタンス6、電源電圧7及び周波数解析手段8を備えており、4本櫛型アンテナ4、トランジスター5及びリアクタンス6は、電磁ホーンアンテナ3の内部に配置されている。
Example 1
Hereinafter, a vibration detecting element and a vibration measuring apparatus according to Embodiment 1 of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of the vibration measuring apparatus 1.
As shown in FIG. 1, the vibration measuring apparatus 1 includes a radio wave transmission means 2, an electromagnetic horn antenna 3, a four comb antenna 4, a transistor 5, a reactance 6, a power supply voltage 7, and a frequency analysis means 8. The comb antenna 4, the transistor 5, and the reactance 6 are disposed inside the electromagnetic horn antenna 3.

トランジスター5のベース部は4本櫛型アンテナ4に、コレクタ部はリアクタンス6にそれぞれ接続され、エミッタ部は接地されている。また、リアクタンス6のもう一端は電源電圧7のプラス側に接続されている。
電波発信手段2は、電磁ホーンアンテナ3の一端(基部)に、発信された電波が電磁ホーンアンテナ3の開口端の方向に向かうように配置され、測定対象の物体対して周波数10GHzの電波を発信する。
The base of the transistor 5 is connected to the four comb antennas 4, the collector is connected to the reactance 6, and the emitter is grounded. The other end of the reactance 6 is connected to the positive side of the power supply voltage 7.
The radio wave transmitting means 2 is disposed at one end (base) of the electromagnetic horn antenna 3 so that the transmitted radio wave is directed toward the opening end of the electromagnetic horn antenna 3, and transmits a radio wave having a frequency of 10 GHz to the object to be measured. To do.

電磁ホーンアンテナ3は電波反射手段として利用され電波を効率良く集光する。
4本櫛型アンテナ4は、発信電波と反射電波とを受信する。
トランジスター5は、受信された発信電波と受信電波との位相差情報を含む信号の検波を行う。
リアクタンス6は、検波された信号を周波数解析手段8に出力する。
電源電圧7は、信号を出力するのに利用される。
周波数解析手段8は、出力された信号に対して、高速フーリエ解析等の公知の周波数解析を行う。
なお、電波発信手段2、電磁ホーンアンテナ3、4本櫛型アンテナ4及びトランジスター5によって振動検出素子が構成されている。
The electromagnetic horn antenna 3 is used as a radio wave reflecting means and efficiently collects radio waves.
The four comb antennas 4 receive outgoing radio waves and reflected radio waves.
The transistor 5 detects a signal including phase difference information between the received transmitted radio wave and the received radio wave.
The reactance 6 outputs the detected signal to the frequency analysis means 8.
The power supply voltage 7 is used to output a signal.
The frequency analysis means 8 performs known frequency analysis such as fast Fourier analysis on the output signal.
The radio wave transmitting means 2, the electromagnetic horn antenna 3, the four comb antenna 4, and the transistor 5 constitute a vibration detecting element.

電波発信手段2で発信された発信電波と測定対象の物体から反射した反射電波とが、4本櫛型アンテナ4で受信される。発信電波と反射電波との位相差情報を含む信号はトランジスター5で検波され、電源電圧7を用いて周波数解析手段8に出力される。
次に、図2を参照しながら、測定対象の物体10(以下では、単に物体ともいう)に電波を発信した際の発信電波と反射電波との関係を説明する。
The transmitted radio wave transmitted by the radio wave transmitting means 2 and the reflected radio wave reflected from the object to be measured are received by the four comb antennas 4. A signal including phase difference information between the transmitted radio wave and the reflected radio wave is detected by the transistor 5 and output to the frequency analysis means 8 using the power supply voltage 7.
Next, the relationship between the transmitted radio wave and the reflected radio wave when the radio wave is transmitted to the measurement target object 10 (hereinafter also simply referred to as an object) will be described with reference to FIG.

電波発信手段2から、周波数10GHzの発信電波15が物体10(この実施形態では、りんご)に向けて発信されると、4本櫛型アンテナ4によって受信されると共に、物体10に照射される。物体10に照射された発信電波15は反射され、その反射波である反射電波16が4本櫛型アンテナ4で受信される。   When a radio wave 15 having a frequency of 10 GHz is transmitted from the radio wave transmission means 2 toward the object 10 (in this embodiment, an apple), it is received by the four comb antennas 4 and applied to the object 10. The transmitted radio wave 15 applied to the object 10 is reflected, and the reflected radio wave 16 that is the reflected wave is received by the four comb antennas 4.

次に、図3〜図6を参照しながら、振動測定装置1の測定原理を説明する。
図3は、4本櫛型アンテナ4の詳細を示した図である。
本実施例では、周波数が10GHzの電波が使用される。該周波数を持つ電波の波長は約3.0cmであるので、4本櫛型アンテナ4には、アンテナ素子30〜33が半波長分(約1.5cm)間隔ではしご状につながれている。また、アンテナ素子30〜33と向かい合うようにアンテナ素子34〜37がはしご状につなげられている。
Next, the measurement principle of the vibration measuring apparatus 1 will be described with reference to FIGS.
FIG. 3 is a diagram showing details of the four comb antenna 4.
In this embodiment, a radio wave having a frequency of 10 GHz is used. Since the wavelength of the radio wave having the frequency is about 3.0 cm, the antenna elements 30 to 33 are connected to the four comb antennas 4 in a ladder shape at intervals of a half wavelength (about 1.5 cm). The antenna elements 34 to 37 are connected in a ladder shape so as to face the antenna elements 30 to 33.

電波発信手段2から電波が発信されると、発信電波15は4本櫛型アンテナ4で受信され、同時に物体10に投射される。投射された電波は物体10の表面で反射され、その反射波である反射電波16が4本櫛型アンテナ4によって受信される。   When radio waves are transmitted from the radio wave transmitting means 2, the transmitted radio waves 15 are received by the four comb antennas 4 and simultaneously projected onto the object 10. The projected radio wave is reflected on the surface of the object 10, and the reflected radio wave 16 that is the reflected wave is received by the four comb antennas 4.

発信電波15が4本櫛型アンテナ4で受信されると、アンテナ素子30では、

Figure 2009216625
の信号が受信される。 When the transmission radio wave 15 is received by the four comb antennas 4, the antenna element 30
Figure 2009216625
Are received.

半波長分(約1.5cm)離れたアンテナ素子31では、

Figure 2009216625
の信号が受信される。 In the antenna element 31 separated by half a wavelength (about 1.5 cm),
Figure 2009216625
Are received.

また、アンテナ素子32、アンテナ素子33ではそれぞれ

Figure 2009216625
Figure 2009216625
の信号が受信される。 In the antenna element 32 and the antenna element 33, respectively.
Figure 2009216625
Figure 2009216625
Are received.

アンテナ素子31〜33で受信された信号はアンテナ素子30の位置に伝播される際には、それぞれπ、2π、3π分位相が遅れる。
よって、アンテナ素子30の位置では、図4に示すように、

Figure 2009216625
で表される信号が得られる。 When the signals received by the antenna elements 31 to 33 are propagated to the position of the antenna element 30, the phases are delayed by π, 2π, and 3π, respectively.
Therefore, at the position of the antenna element 30, as shown in FIG.
Figure 2009216625
Is obtained.

一方、発信電波15が物体10に照射されると物体の振動のため反射する位置が変化し位相変化を受ける。アンテナ素子34の位置ではψで表す位相の変化を受けるものとする。
反射電波16を4本櫛型アンテナ4で受信すると、
アンテナ素子34では、

Figure 2009216625
の信号が受信される。 On the other hand, when the transmission radio wave 15 is applied to the object 10, the reflected position changes due to the vibration of the object and receives a phase change. It is assumed that a change in phase represented by ψ is received at the position of the antenna element 34.
When the reflected radio wave 16 is received by the four comb antennas 4,
In the antenna element 34,
Figure 2009216625
Are received.

また、アンテナ素子35、36及び37では、

Figure 2009216625
Figure 2009216625
Figure 2009216625
の信号がそれぞれ受信される。 In the antenna elements 35, 36 and 37,
Figure 2009216625
Figure 2009216625
Figure 2009216625
Are respectively received.

アンテナ素子30〜33でそれぞれ受信された信号がアンテナ素子34に伝播されると、
位相がそれぞれ、π、2π、3π進むので、アンテナ素子34の位置では、図4に示すように、

Figure 2009216625
の信号が得られる。 When signals respectively received by the antenna elements 30 to 33 are propagated to the antenna element 34,
As the phase advances by π, 2π, and 3π, respectively, at the position of the antenna element 34, as shown in FIG.
Figure 2009216625
Is obtained.

そして、2つの信号の合計Iは、

Figure 2009216625
Figure 2009216625
And the total I of the two signals is
Figure 2009216625
Figure 2009216625

ここで、

Figure 2009216625
Figure 2009216625
とおくと、
Figure 2009216625
となる。 here,
Figure 2009216625
Figure 2009216625
After all,
Figure 2009216625
It becomes.

これが位相差情報を含む信号であり、この信号をトランジスター5で検波(整流)する。
当該信号を整流して平滑した後の出力は、図5に示すように

Figure 2009216625
となり、出力効率をαとすると
Figure 2009216625
となる。つまり、位相差(ψ)に従った出力(振動強度)が得られ、(a-b)>0の場合、ψが2π毎に値が最低となる。 This is a signal including phase difference information, and this signal is detected (rectified) by the transistor 5.
The output after rectifying and smoothing the signal is as shown in FIG.
Figure 2009216625
If the output efficiency is α
Figure 2009216625
It becomes. That is, an output (vibration intensity) according to the phase difference (ψ) is obtained, and when (ab)> 0, ψ has the lowest value every 2π.

これを示したのが、図6である。
図6は、電波発信手段2の位置を変化させ、電波発信手段2の物体からの位置(横軸)と振動強度(縦軸)との関係を測定したグラフである。電波が行き帰りするので、位相2πは距離としては半波長分相当する。よって、発信される電波の周波数は10GHzなので、半波長(約1.5cm)毎に振動強度の値が最低となる。
なお、ψがゼロの時、整流した信号の振幅はa+bに比例し、ψがπの時はa−bに比例する。
This is shown in FIG.
FIG. 6 is a graph in which the position of the radio wave transmitting means 2 is changed and the relationship between the position of the radio wave transmitting means 2 from the object (horizontal axis) and the vibration intensity (vertical axis) is measured. Since the radio wave goes back and forth, the phase 2π corresponds to a half wavelength as a distance. Therefore, since the frequency of the transmitted radio wave is 10 GHz, the value of the vibration intensity becomes the lowest every half wavelength (about 1.5 cm).
The amplitude of the rectified signal is proportional to a + b when ψ is zero, and is proportional to a−b when ψ is π.

最後に、整流され平滑された信号に対して周波数解析手段8で高速フーリエ解析等の公知の周波数解析することによって物体10の振動を解析する。   Finally, the vibration of the object 10 is analyzed by performing known frequency analysis such as fast Fourier analysis on the rectified and smoothed signal by the frequency analysis means 8.

次に、振動測定装置1を用いてスイカの振動特性を測定した際の測定結果を説明する。
図7に示すように、スイカ40を加振器41の上におき、10MHz〜100MHzまでの振動を与え、その振動を振動測定装置1によって測定し高速フーリエ解析を行う。
図8は、上記方法により測定したスイカの振動をグラフで表した図である。
図8から読み取れるように、周波数190地点45、周波数230地点46、周波数350MHz地点47にスイカ特有の第2、第3及び第4共鳴ピークが観察された。
Next, the measurement result when the vibration characteristic of the watermelon is measured using the vibration measuring device 1 will be described.
As shown in FIG. 7, the watermelon 40 is placed on the vibration exciter 41 and vibrations of 10 MHz to 100 MHz are applied, and the vibrations are measured by the vibration measuring device 1 to perform fast Fourier analysis.
FIG. 8 is a graph showing the vibration of the watermelon measured by the above method.
As can be seen from FIG. 8, the second, third, and fourth resonance peaks peculiar to watermelon were observed at the frequency 190 point 45, the frequency 230 point 46, and the frequency 350 MHz point 47.

なお、本実施例ではアンテナとして4本櫛型アンテナを用いたが、これに限定されず、例えば図9に示す折り返し型ダイポールアンテナ50や、他の形状のアンテナでも良い。
また、本実施例では、周波数が10GHzの電波を利用したが、これに限定されず周波数が5GHzから30GHzの範囲であれば如何なる周波数の電波を用いても良い。
また、トランジスター5とリアクタンス6を電磁ホーンアンテナ3の内部に配置するものとしたが、これらを電磁ホーンアンテナ3の外部に配置するものとしても良い。
In this embodiment, a four comb antenna is used as an antenna. However, the present invention is not limited to this. For example, a folded dipole antenna 50 shown in FIG. 9 or an antenna having another shape may be used.
In this embodiment, a radio wave having a frequency of 10 GHz is used. However, the present invention is not limited to this, and a radio wave having any frequency may be used as long as the frequency is in the range of 5 GHz to 30 GHz.
Further, although the transistor 5 and the reactance 6 are arranged inside the electromagnetic horn antenna 3, they may be arranged outside the electromagnetic horn antenna 3.

以上のように、実施例1に係る振動検出素子及び振動測定装置は、以下に示す効果を奏する。
第一に、測定に電波を用いるため、レーザーを反射しない物体に対しても、反射シールを貼るといった手間なしに非接触で物体の振動の検出・測定が可能となる。
第二に、反射シールを貼る必要がないので反射シールの貼り方によっては物体の振動を正確に測定できない恐れを解消できる。
As described above, the vibration detecting element and the vibration measuring device according to the first embodiment have the following effects.
First, since radio waves are used for measurement, it is possible to detect and measure vibrations of an object in a non-contact manner without the trouble of attaching a reflective sticker to an object that does not reflect a laser.
Secondly, since it is not necessary to attach a reflective seal, it is possible to eliminate the possibility that the vibration of the object cannot be measured accurately depending on how the reflective seal is applied.

第三に、トランジスターのC級増幅回路によって発信電波と反射電波との位相差に関する情報を含む信号を検波するので高い復調効率を得ることができる。   Third, since a signal including information on the phase difference between the transmitted radio wave and the reflected radio wave is detected by the class C amplifier circuit of the transistor, high demodulation efficiency can be obtained.

第四に、受信用の4本櫛形アンテナ4を、電波発信手段2の近傍、かつ反射電波が集まってくる電磁ホーンアンテナ3内に配置したので、発信電波及び反射電波の受信強度が強くなり、感度が高くとれる。その結果受信電波からの振動測定のための十分な信号を取り出すことが出来るので精度の高い振動測定が可能となる。
(実施例2)
次に、本発明の実施例2に係る振動検出素子及び振動測定装置を、図面を参照しながら説明する。
Fourthly, since the receiving four comb antennas 4 are arranged in the vicinity of the radio wave transmitting means 2 and in the electromagnetic horn antenna 3 where the reflected radio waves gather, the reception intensity of the transmitted radio waves and the reflected radio waves is increased. High sensitivity. As a result, a sufficient signal for vibration measurement from the received radio wave can be extracted, so that vibration measurement with high accuracy is possible.
(Example 2)
Next, a vibration detecting element and a vibration measuring apparatus according to Embodiment 2 of the present invention will be described with reference to the drawings.

実施例1では、4本櫛型アンテナで発信電波と反射電波とを受信し、トランジスターによって検波を行った。実施例2では、4つのダイオードをブリッジ結合したブリッジ回路と2つの同調回路を用いて、電波の受信や検波等を行う。   In Example 1, the transmitted and reflected radio waves were received by the four comb antennas, and the detection was performed by the transistor. In the second embodiment, radio waves are received and detected using a bridge circuit in which four diodes are bridge-coupled and two tuning circuits.

図10は、本実施例で使用される振動検出素子が備えている検波回路の構成を示した図である。図10に示されるように、検波回路は、4つのダイオードをブリッジ結合したブリッジ回路53に、アンテナと共用される2つの同調回路51、52を備えており、同調回路51がブリッジ回路53の入力側に接続され、また同調回路52がブリッジ回路53の出力側に接続されている。   FIG. 10 is a diagram showing a configuration of a detection circuit provided in the vibration detection element used in this embodiment. As shown in FIG. 10, the detection circuit includes two tuning circuits 51 and 52 shared with the antenna in a bridge circuit 53 in which four diodes are bridge-coupled, and the tuning circuit 51 is input to the bridge circuit 53. The tuning circuit 52 is connected to the output side of the bridge circuit 53.

図11は、本実施例で用いられる振動検出素子の構成を示した図である。
図11に示すように、電磁ホーンアンテナ3の内部に一対の導体板をくの字型にすることにより形成されたレフレクター54配置され、また電磁ホーンアンテナ3の一端(基部)に電波発信手段2が配置されている。
FIG. 11 is a diagram showing the configuration of the vibration detecting element used in this embodiment.
As shown in FIG. 11, a reflector 54 formed by making a pair of conductor plates into a U shape inside the electromagnetic horn antenna 3 is disposed, and the radio wave transmitting means 2 is disposed at one end (base) of the electromagnetic horn antenna 3. Is arranged.

レフレクター54の成す角が鋭角である側の空間に同調回路51が、またレフレクターの成す角が鈍角である側の空間に同調回路52が配置されている。また、同調回路51の一端はレフレクター54に接地されている。発信電波を位相検出の対照とし、その信号に対する反射信号の位相を検波回路で検出する。なお、レフレクター54は対照用の信号と反射信号とを隔離するために配置されている。   A tuning circuit 51 is disposed in a space where the angle formed by the reflector 54 is an acute angle, and a tuning circuit 52 is disposed in a space where the angle formed by the reflector is an obtuse angle. One end of the tuning circuit 51 is grounded to the reflector 54. The transmitted radio wave is used as a reference for phase detection, and the phase of the reflected signal with respect to that signal is detected by a detection circuit. The reflector 54 is arranged to isolate the control signal and the reflected signal.

一方の同調回路に信号を、もう一方に同調回路に対照信号を入力して平衡復調回路で位相信号を取り出して出力する。出力信号は2つの同調回路の中点から得られ、出力信号線は干渉がないように電波の偏波に直角の向きに引き出される。
なお、該振動検出素子を備えた振動測定装置の構成及び該振動測定装置を用いた振動測定の方法に関しては、実施例1と同様なので、ここでは割愛する。
このように、実施例2に係る振動検出素子及び振動測定装置は、以下に示す効果を奏する。
A signal is input to one tuning circuit, a reference signal is input to the other tuning circuit, and a phase signal is extracted and output by a balanced demodulation circuit. The output signal is obtained from the midpoint of the two tuning circuits, and the output signal line is drawn in a direction perpendicular to the polarization of the radio wave so that there is no interference.
Note that the configuration of the vibration measuring device provided with the vibration detecting element and the method of vibration measurement using the vibration measuring device are the same as those in the first embodiment, and are omitted here.
As described above, the vibration detecting element and the vibration measuring apparatus according to the second embodiment have the following effects.

第一に、測定に電波を用いるのでレーザーを反射しない物体に対しても、反射シールを貼るといった手間なしに非接触で物体の振動の検出・測定が可能となる。
第二に、反射シールを貼る必要がないので反射シールの貼り方によっては物体の振動を正確に測定できない恐れを解消できる。
第三に、レフレクター54、同調回路51,52及びブリッジ回路53を組み合わせることにより、高い復調率が実現できる。
First, since radio waves are used for measurement, it is possible to detect and measure vibrations of an object without contact with an object that does not reflect a laser without a trouble of attaching a reflective seal.
Secondly, since it is not necessary to attach a reflective seal, it is possible to eliminate the possibility that the vibration of the object cannot be measured accurately depending on how the reflective seal is applied.
Third, by combining the reflector 54, the tuning circuits 51 and 52, and the bridge circuit 53, a high demodulation rate can be realized.

第四に、アンテナと共用する同調回路を電波発信手段2の近傍、かつ反射電波が集まってくる電磁ホーンアンテナ3内に配置したので、受信電波の受信強度が強くなり感度が高くとれる。その結果受信電波からの振動測定のための十分な信号を取り出すことが出来るので精度の高い振動測定が可能となる。
(実施例3)
次に、本発明の実施例3に係る振動検出素子及び振動測定装置を、図面を参照しながら説明する。
Fourthly, since the tuning circuit shared with the antenna is arranged in the vicinity of the radio wave transmitting means 2 and in the electromagnetic horn antenna 3 where the reflected radio waves are collected, the reception intensity of the received radio wave is increased and the sensitivity can be increased. As a result, a sufficient signal for vibration measurement from the received radio wave can be extracted, so that vibration measurement with high accuracy is possible.
(Example 3)
Next, a vibration detecting element and a vibration measuring apparatus according to Embodiment 3 of the present invention will be described with reference to the drawings.

本実施例は、アンテナとして多重ダイポール型アンテナ60を使用し、検波用のダイオード61を接続したものである。
図12は、本実施例で利用される振動検出素子の構成を示した図である。
振動検出素子は、電波発信手段2、電磁ホーンアンテナ3、多重ダイポールアンテナ60及びダイオード61を備えている。電磁ホーンアンテナ3の内部に、多重ダイポールアンテナ60、ダイオード61が配置され、また電波発射手段2は電磁ホーンアンテナ3の一端(基部)に配置されている。
In this embodiment, a multi-dipole antenna 60 is used as an antenna and a detection diode 61 is connected.
FIG. 12 is a diagram showing a configuration of a vibration detection element used in the present embodiment.
The vibration detection element includes a radio wave transmission means 2, an electromagnetic horn antenna 3, a multiple dipole antenna 60, and a diode 61. A multiple dipole antenna 60 and a diode 61 are disposed inside the electromagnetic horn antenna 3, and the radio wave emitting means 2 is disposed at one end (base) of the electromagnetic horn antenna 3.

多重ダイポールアンテナ60は、復調効率を上げるためにアンテナを多重にされている。
電波発信手段2から発信された電波の発信電波と反射電波とが、多重ダイポールアンテナ60で受信され、ダイオード61で位相差情報を含む信号を検波(整流)する。
なお、該振動検出素子を備えた振動測定装置の構成及び該振動測定装置を用いた振動測定の方法に関しては、実施例1と同様なので、ここでは割愛する。
また、本実施例では、電磁ホーンアンテナ3の内部にダイオード61を配置するものとしたが、ダイオード61を電磁ホーンアンテナ3の外部に配置するものとしても良い。
Multiple dipole antenna 60 has multiple antennas in order to increase demodulation efficiency.
The transmitted radio wave and the reflected radio wave transmitted from the radio wave transmitting means 2 are received by the multiple dipole antenna 60, and a signal including phase difference information is detected (rectified) by the diode 61.
Note that the configuration of the vibration measuring device provided with the vibration detecting element and the method of vibration measurement using the vibration measuring device are the same as those in the first embodiment, and are omitted here.
In the present embodiment, the diode 61 is disposed inside the electromagnetic horn antenna 3. However, the diode 61 may be disposed outside the electromagnetic horn antenna 3.

実施例3に係る振動検出素子及び振動測定装置は、以下に示す効果を奏する。
第一に、測定に電波を利用するのでレーザーを反射しない物体に対しても、反射シールを貼るといった手間なしに非接触で物体の振動の検出・測定が可能となる。
第二に、反射シールを貼る必要がないので、反射シールの貼り方によっては物体の振動を正確に測定できない恐れを解消できる。
The vibration detecting element and the vibration measuring device according to the third embodiment have the following effects.
First, since radio waves are used for the measurement, it is possible to detect and measure the vibration of the object in a non-contact manner without the trouble of attaching a reflective sticker to an object that does not reflect the laser.
Secondly, since it is not necessary to attach a reflective seal, it is possible to eliminate the possibility that the vibration of the object cannot be measured accurately depending on how the reflective seal is applied.

第三に、多重ダイポールアンテナ60とダイオード61とを組み合わせることにより高い復調率を得ることが可能となる。
第四に、多重ダイポールアンテナ60を電波発信手段2の近傍、かつ反射電波が集まってくる電磁ホーンアンテナ3内に配置したので、発信電波及び反射電波の受信強度が強くなり感度が高くとれる。その結果受信電波からの振動測定のための十分な信号を取り出すことが出来るので精度の高い振動測定が可能となる。
Third, a high demodulation rate can be obtained by combining the multiple dipole antenna 60 and the diode 61.
Fourthly, since the multiple dipole antenna 60 is disposed in the vicinity of the radio wave transmitting means 2 and in the electromagnetic horn antenna 3 where the reflected radio waves are collected, the receiving intensity of the transmitted radio waves and the reflected radio waves is increased and the sensitivity can be increased. As a result, a sufficient signal for vibration measurement from the received radio wave can be extracted, so that vibration measurement with high accuracy is possible.

なお、実施例1、実施例2及び実施例3では、トランジスター、ダイオード等を用いて検波を行ったが、これ以外の能動素子を用いて検波を行うものとしても良い。   In the first embodiment, the second embodiment, and the third embodiment, detection is performed using a transistor, a diode, or the like. However, detection may be performed using an active element other than this.

本発明に係る振動検出素子、振動測定装置並びに振動測定方法は、青果物のような軟らかい生物体、特にレーザー光を反射しにくい生物体の振動を非接触に測定できるので、青果物の品質を非接触で検査する選別機械や生育途上の青果物の生育モニタリングセンサーとして有用である。また、樹木、木材、といった青果物以外の生物体の品質を非接触で測定できる品質測定器にも有用である。さらには、コンクリートなどの人工物の建築構造物の内部劣化や構造を測定するという応用も可能である。   The vibration detecting element, the vibration measuring device and the vibration measuring method according to the present invention can measure the vibration of soft organisms such as fruits and vegetables, in particular, organisms that are difficult to reflect laser light, so that the quality of the fruits and vegetables is not contacted. It is useful as a sorting machine to be inspected and a growth monitoring sensor for growing fruits and vegetables. Moreover, it is useful also for the quality measuring device which can measure the quality of living organisms other than fruits and vegetables, such as a tree and wood, without contact. Furthermore, the application of measuring the internal deterioration and structure of an artificial building structure such as concrete is also possible.

実施例1に係る振動検出素子と振動測定装置との構成を示した図である。It is the figure which showed the structure of the vibration detection element and vibration measuring apparatus which concern on Example 1. FIG. 実施例1に係る振動測定装置と測定対象の物体との位置関係を示した図である。It is the figure which showed the positional relationship of the vibration measuring device which concerns on Example 1, and the object of a measuring object. 発信電波と反射電波とが各アンテナ素子で受信される際の位相を示した図である。It is the figure which showed the phase at the time of a transmission radio wave and a reflected radio wave being received by each antenna element. トランジスターの位置での合成された信号の位相を示した図である。It is the figure which showed the phase of the synthesized signal in the position of a transistor. トランジスターの位置での出力をベクトルで示した図である。It is the figure which showed the output in the position of a transistor with the vector. 電波発信手段の位置と振動出力との関係を示した図である。It is the figure which showed the relationship between the position of a radio wave transmission means, and a vibration output. 実施例1に係る振動測定装置を用いてスイカの振動を測定する際の図である。It is a figure at the time of measuring the vibration of a watermelon using the vibration measuring apparatus which concerns on Example 1. FIG. 実施例1に係る振動測定装置で測定したスイカの振動スペクトルを示した図である。It is the figure which showed the vibration spectrum of the watermelon measured with the vibration measuring apparatus which concerns on Example 1. FIG. 実施例1に係る振動検出素子のアンテナを折り返し型ダイポールアンテナとしたものである。The antenna of the vibration detection element according to Example 1 is a folded dipole antenna. 実施例2に係る振動検出素子で用いる検出回路を示した図である。6 is a diagram illustrating a detection circuit used in a vibration detection element according to Embodiment 2. FIG. 実施例2に係る振動検出素子を示した図である。6 is a diagram illustrating a vibration detecting element according to Example 2. FIG. 実施例3に係る振動検出素子を示した図である。6 is a diagram illustrating a vibration detection element according to Example 3. FIG.

符号の説明Explanation of symbols

1・・・振動測定装置
2・・・電波発信手段
3・・・電磁ホーンアンテナ
4・・・4本櫛型アンテナ
5・・・トランジスター
6・・・リアクタンス
7・・・電源電圧
8・・・周波数解析手段
DESCRIPTION OF SYMBOLS 1 ... Vibration measuring apparatus 2 ... Radio wave transmission means 3 ... Electromagnetic horn antenna 4 ... 4 comb antenna 5 ... Transistor 6 ... Reactance 7 ... Power supply voltage 8 ... Frequency analysis means

Claims (11)

少なくとも一端が開口された筒状の電波反射手段と、
電波反射手段の一端に、発信した電波が開口端の方向に向かうように取り付けられた電波発信手段と、
電波発信手段の近傍、かつ電波反射手段の内部に配置され、電波発信手段から発信された電波を受信するとともに、発信された電波が測定対象の物体で反射した反射電波を受信するアンテナと、
アンテナで受信された発信電波と反射電波との位相に関する情報含む信号を検波するトランジスターと、
を備えたことを特徴とする振動検出素子。
A cylindrical radio wave reflecting means having at least one end opened;
Radio wave transmission means attached to one end of the radio wave reflection means so that the transmitted radio wave is directed toward the opening end;
An antenna that is disposed in the vicinity of the radio wave transmission means and inside the radio wave reflection means, receives the radio waves transmitted from the radio wave transmission means, and receives the reflected radio waves reflected by the object to be measured.
A transistor for detecting a signal including information on the phase of the transmitted radio wave and the reflected radio wave received by the antenna;
A vibration detecting element comprising:
アンテナが櫛型である請求項1に記載の振動検出素子。   The vibration detecting element according to claim 1, wherein the antenna has a comb shape. アンテナが折り返し型ダイポールアンテナである請求項1に記載の振動検出素子。   The vibration detecting element according to claim 1, wherein the antenna is a folded dipole antenna. 少なくとも一端が開口された筒状の電波反射手段と、
電波反射手段の一端に、発信した電波が開口端の方向に向かうように取り付けられた電波発信手段と、
電波発信手段の近傍、かつ電波反射手段の内部に配置され、電波発信手段から発信された電波を受信するとともに、発信された電波が測定対象の物体で反射した反射電波を受信するダイポールアンテナと、
ダイポールアンテナで受信した発信電波と反射電波との位相に関する情報含む信号を検波するダイオードと、
を備えたことを特徴とする振動検出素子。
A cylindrical radio wave reflecting means having at least one end opened;
Radio wave transmission means attached to one end of the radio wave reflection means so that the transmitted radio wave is directed toward the opening end;
A dipole antenna that is disposed in the vicinity of the radio wave transmission means and inside the radio wave reflection means, receives a radio wave transmitted from the radio wave transmission means, and receives a reflected radio wave reflected by the object to be measured.
A diode for detecting a signal including information on the phase of the transmitted radio wave and the reflected radio wave received by the dipole antenna;
A vibration detecting element comprising:
少なくとも一端が開口された筒状の電波反射手段と、
電波反射手段の一端に、発信した電波が開口端の方向に向かうように取り付けられた電波発信手段と、
4つのダイオードをブリッジ結合したブリッジ回路と、ブリッジ回路の入力側に接続された第一同調回路と、ブリッジ回路の出力側に接続された第二同調回路と、電波反射手段の内部、かつ電波発信手段の近傍に配置され一対の導体板によってくの字状に形成されたレフレクターと、
を備え、
第一同調回路はレフレクターの成す角が鋭角である側の空間に、第二同調回路はレフレクターの成す角が鈍角である側の空間にそれぞれ配置されたことを特徴とする振動検出素子。
A cylindrical radio wave reflecting means having at least one end opened;
Radio wave transmission means attached to one end of the radio wave reflection means so that the transmitted radio wave is directed toward the opening end;
A bridge circuit in which four diodes are bridge-coupled, a first tuning circuit connected to the input side of the bridge circuit, a second tuning circuit connected to the output side of the bridge circuit, the inside of the radio wave reflecting means, and radio wave transmission A reflector disposed in the vicinity of the means and formed in a U shape by a pair of conductor plates;
With
The vibration detecting element, wherein the first tuning circuit is disposed in a space on the side where the angle formed by the reflector is an acute angle, and the second tuning circuit is disposed in a space on the side where the angle formed by the reflector is an obtuse angle.
電波反射手段は、電磁ホーンアンテナである請求項1から5のいずれかに記載の振動検出素子。   6. The vibration detecting element according to claim 1, wherein the radio wave reflecting means is an electromagnetic horn antenna. 電波発信手段から発信される電波の周波数が、5GHzから30GHzの範囲である請求項1から6のいずれかに記載の振動検出素子。   The vibration detecting element according to any one of claims 1 to 6, wherein a frequency of a radio wave transmitted from the radio wave transmitting means is in a range of 5 GHz to 30 GHz. 位相に関する情報を含む信号とは、発信電波と反射電波との位相差の情報を含む信号であること特徴とする請求項1から7のいずれかに記載の振動検出素子。   The vibration detection element according to claim 1, wherein the signal including information on the phase is a signal including information on a phase difference between the transmitted radio wave and the reflected radio wave. 請求項1から8のいずれかに記載された振動検出素子と、
位相に関する情報を含む信号を周波数解析する周波数解析手段と、
を備えたことを特徴とする振動測定装置。
The vibration detection element according to any one of claims 1 to 8,
A frequency analysis means for frequency analysis of a signal including information on the phase;
A vibration measuring apparatus comprising:
測定対象の物体に電波を発信する第1の工程と、
電波発信手段の近傍、かつ電波反射手段の内部に配置されたアンテナによって、第1工程で発信された電波を受信するとともに、発信された電波が測定対象の物体で反射した反射電波を受信する第2の工程と、
第2工程で受信された発信電波と受信電波との位相に関する情報を含む信号をトランジスターで検波する第3の工程と、
第3工程で検波された位相に関する情報を含む信号を周波数解析する第4の工程と、
を備えたことを特徴とする振動測定方法。
A first step of transmitting radio waves to an object to be measured;
An antenna disposed in the vicinity of the radio wave transmission means and inside the radio wave reflection means receives the radio wave transmitted in the first step and receives the reflected radio wave reflected by the object to be measured. Two steps;
A third step of detecting, with a transistor, a signal including information on the phase of the transmitted radio wave and the received radio wave received in the second step;
A fourth step of performing frequency analysis on a signal including information on the phase detected in the third step;
A vibration measuring method comprising:
位相に関する情報を含む信号とは、発信電波と受信電波との位相差の情報を含む信号であることを特徴とする請求項10に記載の振動測定方法。   The vibration measurement method according to claim 10, wherein the signal including information on the phase is a signal including information on a phase difference between the transmission radio wave and the reception radio wave.
JP2008062318A 2008-03-12 2008-03-12 Vibration detecting element, vibration measuring apparatus and vibration measuring method Active JP5322204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008062318A JP5322204B2 (en) 2008-03-12 2008-03-12 Vibration detecting element, vibration measuring apparatus and vibration measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062318A JP5322204B2 (en) 2008-03-12 2008-03-12 Vibration detecting element, vibration measuring apparatus and vibration measuring method

Publications (2)

Publication Number Publication Date
JP2009216625A true JP2009216625A (en) 2009-09-24
JP5322204B2 JP5322204B2 (en) 2013-10-23

Family

ID=41188627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062318A Active JP5322204B2 (en) 2008-03-12 2008-03-12 Vibration detecting element, vibration measuring apparatus and vibration measuring method

Country Status (1)

Country Link
JP (1) JP5322204B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9877659B2 (en) 2012-11-30 2018-01-30 Industrial Technology Research Institute Sensing system and method for physiology measurements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153736A (en) * 1995-11-29 1997-06-10 Denki Kogyo Co Ltd Corner reflector antenna device
JP2003194918A (en) * 2001-12-25 2003-07-09 Yokowo Co Ltd Electric wave sensor and module for electric wave sensor
JP2007198787A (en) * 2006-01-24 2007-08-09 Hiroshima Univ Method and system for measuring vibration using radio wave

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153736A (en) * 1995-11-29 1997-06-10 Denki Kogyo Co Ltd Corner reflector antenna device
JP2003194918A (en) * 2001-12-25 2003-07-09 Yokowo Co Ltd Electric wave sensor and module for electric wave sensor
JP2007198787A (en) * 2006-01-24 2007-08-09 Hiroshima Univ Method and system for measuring vibration using radio wave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9877659B2 (en) 2012-11-30 2018-01-30 Industrial Technology Research Institute Sensing system and method for physiology measurements

Also Published As

Publication number Publication date
JP5322204B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
Michaels et al. Frequency–wavenumber domain analysis of guided wavefields
US8594961B2 (en) Remote interrogation of a passive wireless antenna sensor
US6996480B2 (en) Structural health monitoring system utilizing guided lamb waves embedded ultrasonic structural radar
EP2820595B1 (en) System and method for physically detecting counterfeit electronics
US7170288B2 (en) Parametric nuclear quadrupole resonance spectroscopy system and method
KR100336550B1 (en) Direction finder and device for processing measurement results for the same
US5886661A (en) Submerged object detection and classification system
Yang et al. Rf-ear: Contactless multi-device vibration sensing and identification using cots rfid
WO2008151141A1 (en) Non-contact measurement system for accurate measurement of frequency and amplitude of mechanical vibration
FR2938346A1 (en) METHOD FOR DETERMINING THE ARRIVAL DIRECTION OF A HIGH-FREQUENCY ELECTROMAGNETIC WAVE
CN109655833A (en) The detection method and device of life entity
TWI453415B (en) Method for detecting the motion of object by ultra-wideband radar imaging and system thereof
JP2013541696A5 (en)
EP0168335B1 (en) Method for constructing a microwave system and for correlation processing of its signals
JP5322204B2 (en) Vibration detecting element, vibration measuring apparatus and vibration measuring method
US20230147767A1 (en) State detection system
JP5697497B2 (en) Radar receiver and pulse radar device
Shanbhag et al. Contactless material identification with millimeter wave vibrometry
JP6868302B2 (en) Non-destructive detection method, non-destructive detection device and non-destructive detection program
CN114019496B (en) Non-contact measurement method and device for flow velocity of liquid in pipeline
JP5835681B2 (en) Signal processing method and signal processing apparatus
JP3777576B2 (en) Position estimation method and apparatus
JP2007198787A (en) Method and system for measuring vibration using radio wave
JPH02232580A (en) Object detector
RU2007117863A (en) DISAPPEARING METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130711

R150 Certificate of patent or registration of utility model

Ref document number: 5322204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250