JP2009216513A - Oxygen concentration cell - Google Patents

Oxygen concentration cell Download PDF

Info

Publication number
JP2009216513A
JP2009216513A JP2008060008A JP2008060008A JP2009216513A JP 2009216513 A JP2009216513 A JP 2009216513A JP 2008060008 A JP2008060008 A JP 2008060008A JP 2008060008 A JP2008060008 A JP 2008060008A JP 2009216513 A JP2009216513 A JP 2009216513A
Authority
JP
Japan
Prior art keywords
slag
stainless steel
oxygen
positive electrode
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008060008A
Other languages
Japanese (ja)
Inventor
Junichi Katsuki
淳一 香月
Takashi Kawagoe
崇史 川越
Yasunobu Yoshimi
康信 吉見
Takahiro Yoshikawa
隆宏 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Electro Nite Japan Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Heraeus Electro Nite Japan Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Electro Nite Japan Ltd, Nisshin Steel Co Ltd filed Critical Heraeus Electro Nite Japan Ltd
Priority to JP2008060008A priority Critical patent/JP2009216513A/en
Publication of JP2009216513A publication Critical patent/JP2009216513A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen concentration cell that stably measures electromotive force corresponding to the oxygen activity in slag-containing molten steel formed during production of stainless steel. <P>SOLUTION: An oxygen concentration cell 10 includes a reference electrode 12 and a positive electrode 14 made of metallic molybdenum. The distance X (mm) between the reference electrode 12 and the positive electrode 14 satisfies the equation (1) according to the temperature T (°C) of molten steel and the slag mass (kg) per ton of molten steel; X≥0.03×W+2 [where, W represents slag mass contained in one ton of slag-containing molten steel, (10≤W (kg)≤100)]. Moreover, The diameter D (mm) of the positive electrode 14 satisfies the equation (2) : D≥0.01×T-14.0 [where, T represents the temperature of molten steel (1600≤T (°C) ≤1750)]. In the oxygen concentration cell 10, the distance X between both electrodes and the diameter D of the positive electrode 14 are properly adjusted, and thereby suppressing catching of slag in between both electrodes or elution of the positive electrode 14 into molten stainless steel. Thus, it is possible to stably measure accurate electromotive force corresponding to the oxygen activity even in slag-containing hot molten steel. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ステンレス鋼の製造途中で生成するスラグ含有溶鋼中の酸素活量に応じた起電力を測定する酸素濃淡電池に関する。   The present invention relates to an oxygen concentration cell for measuring an electromotive force according to the oxygen activity in molten steel containing slag produced during the production of stainless steel.

ステンレス鋼は、自動車用部材や建築・住宅材料、家電用部材など、幅広い分野で利用されているが、近年、フラットパネルディスプレイ(FPD)や燃料電池のセパレータのような従来のステンレス鋼では使われにくかった電子部品としての用途展開が期待されている。そこで、現在、ステンレス鋼には、当該用途展開が可能な高機能化・高品質化が強く求められている。   Stainless steel is used in a wide range of fields such as automotive parts, building / housing materials, and household appliances, but in recent years it has been used in conventional stainless steels such as flat panel displays (FPD) and fuel cell separators. Application development as difficult electronic parts is expected. Therefore, at present, there is a strong demand for high performance and high quality stainless steel that can be used in various applications.

ステンレス鋼の特性を変える有用な方法としては、ステンレス溶鋼中に微量の金属元素を添加し、ステンレス鋼の金属組織を制御する方法がある。ステンレス鋼の特性を変える添加元素としては、Al、Si、Mg、Tiなどが知られており、例えば、AlまたはSiは、ステンレス鋼の溶接性を向上させる。   As a useful method for changing the properties of stainless steel, there is a method of adding a trace amount of metal element to molten stainless steel to control the metal structure of stainless steel. Al, Si, Mg, Ti and the like are known as additive elements that change the characteristics of stainless steel. For example, Al or Si improves the weldability of stainless steel.

ところで、固体の鋼に酸素は溶けないが、鋼が溶解した溶鋼には酸素が非常に溶けやすいため、ステンレス溶鋼中には酸素が多量に存在する。当該酸素としては、例えば、O2−のようにイオンで存在するものもあれば、Crのように酸化物として存在するものもある。前記Al、Si、およびMgのような金属元素はいずれも酸素との親和力が強いため、溶鋼中の酸素と反応して酸化物を形成しやすい。上記反応が起こるほど、AlやSiによるステンレス鋼の組成設計が阻害されるため、所望の特性をステンレス鋼に付与することが困難となる。 By the way, although oxygen does not melt in solid steel, oxygen is very easily dissolved in molten steel in which steel is melted. Therefore, a large amount of oxygen is present in molten stainless steel. As the oxygen, for example, some exist as ions such as O 2− , and some exist as oxides such as Cr 2 O 3 . Since metal elements such as Al, Si, and Mg all have a strong affinity for oxygen, they easily react with oxygen in molten steel to form oxides. As the above reaction occurs, the composition design of stainless steel by Al or Si is hindered, so that it becomes difficult to impart desired characteristics to stainless steel.

また、ステンレス溶鋼中の酸素量は、成形品であるステンレス鋼板の電気的・機械的特性、また加工性にも大きく影響する。よって、ステンレス鋼の高機能化・高品質化を行うためには、高精度の組成設計を実現させる観点から、ステンレス溶鋼中の酸素量、すなわち酸素活量を正確に知ることが非常に重要となる。実際、特許文献1には、ステンレス溶鋼中の酸素活量を測定し、その測定値から見積もられるAlやSiの必要量に応じて組成設計を適宜行うことにより、高品質のステンレス鋼を製造し得る方法が記載されている。   Further, the amount of oxygen in the molten stainless steel greatly affects the electrical and mechanical characteristics and workability of the stainless steel sheet as a molded product. Therefore, in order to improve the function and quality of stainless steel, it is very important to accurately know the oxygen content in the molten stainless steel, that is, the oxygen activity, from the viewpoint of realizing a highly accurate composition design. Become. In fact, in Patent Document 1, high-quality stainless steel is manufactured by measuring the oxygen activity in molten stainless steel and appropriately designing the composition according to the required amount of Al or Si estimated from the measured value. The method of obtaining is described.

ステンレス溶鋼中の酸素活量の測定には、酸素濃淡電池の原理を利用した酸素センサが主に使われている。酸素センサは、酸素濃淡電池と、溶鋼温度を測定する温度センサとを具備する形態が一般的である。この酸素濃淡電池としては、例えば、特許文献2で開示されているような、酸素イオン導電性を有する固体電解質で覆われた基準極、およびこの基準極と対をなす正極とで構成されたものが典型である。また、酸素センサは、酸素センサを溶鋼に浸漬させた際に酸素濃淡電池で検出される起電力E(V)と、温度センサで測定される溶鋼温度T(℃)とに基づき、下記ネルンストの式にしたがって算出される酸素分圧から溶鋼中の酸素活量を得る。
E=(RT/nF)In(P/P
本式中において、
Rは、気体定数であり、
nは、反応に含まれる電子数、すなわちn=4であり、
Fは、ファラデー定数であり、
は、ステンレス溶鋼中の酸素分圧であり、
は、基準の酸素分圧である。
An oxygen sensor using the principle of an oxygen concentration cell is mainly used for measuring oxygen activity in molten stainless steel. The oxygen sensor generally has an oxygen concentration cell and a temperature sensor for measuring the molten steel temperature. As this oxygen concentration cell, for example, as disclosed in Patent Document 2, a reference electrode covered with a solid electrolyte having oxygen ion conductivity, and a positive electrode paired with this reference electrode Is typical. The oxygen sensor is based on the electromotive force E (V) detected by the oxygen concentration cell when the oxygen sensor is immersed in molten steel and the molten steel temperature T (° C.) measured by the temperature sensor. The oxygen activity in the molten steel is obtained from the oxygen partial pressure calculated according to the equation.
E = (RT / nF) In (P S / P R)
In this formula,
R is a gas constant,
n is the number of electrons contained in the reaction, i.e. n = 4,
F is a Faraday constant,
P S is the oxygen partial pressure in the stainless molten steel,
P R is the oxygen partial pressure in the reference.

酸素濃淡電池によりステンレス溶鋼中の起電力が検出される原理は以下の通りである。酸素イオンが存在するステンレス溶鋼中に酸素濃淡電池を浸漬すると、当該酸素イオンは酸素イオン導電性を有する固体電解質を通過して、固体電解質で覆われた基準極に達する。その結果、基準極と正極との間には、酸素分圧の差が生じる。この際、基準極では2O2−→2O+4e(酸化反応)が起こるとともに、正極ではO+4e→2O2−(還元反応)が起こるため、両極間には酸素分圧の差に応じた起電力E(V)が発生する。最後に、当該起電力E(V)が電圧計などで読み取られる。以上より、酸素濃淡電池によってステンレス溶鋼中の起電力が検出される。
特許第3993032号公報 特開昭58−014052号公報
The principle of detecting the electromotive force in the molten stainless steel by the oxygen concentration cell is as follows. When the oxygen concentration cell is immersed in the molten stainless steel in which oxygen ions are present, the oxygen ions pass through the solid electrolyte having oxygen ion conductivity and reach the reference electrode covered with the solid electrolyte. As a result, a difference in oxygen partial pressure occurs between the reference electrode and the positive electrode. At this time, 2O 2− → 2O 2 + 4e (oxidation reaction) occurs at the reference electrode, and O 2 + 4e → 2O 2− (reduction reaction) occurs at the positive electrode, so there is a difference in oxygen partial pressure between the two electrodes. A corresponding electromotive force E (V) is generated. Finally, the electromotive force E (V) is read with a voltmeter or the like. From the above, the electromotive force in the molten stainless steel is detected by the oxygen concentration cell.
Japanese Patent No. 3993032 JP 58-014052 A

前述の通り、酸素濃淡電池を利用した酸素センサを使ってステンレス溶鋼中の酸素活量を正確に測定するためには、ステンレス溶鋼中の正確な起電力および溶鋼温度を知る必要がある。酸素濃淡電池で測定される「正確な起電力」とは、酸素濃淡電池を溶鋼中に浸漬させてから一定時間、継続的に安定した波形として測定される起電力をいう。   As described above, in order to accurately measure the oxygen activity in the molten stainless steel using the oxygen sensor using the oxygen concentration cell, it is necessary to know the exact electromotive force and molten steel temperature in the molten stainless steel. The “accurate electromotive force” measured by an oxygen concentration cell refers to an electromotive force measured as a stable waveform continuously for a certain time after the oxygen concentration cell is immersed in molten steel.

しかしながら、ステンレス鋼の製造工程において、ステンレス溶鋼の表面には、CaO、TiO、Cr、MgO、Al、FeO、SiOのような酸化物を含むスラグ相が形成される。このようなスラグ相を含有するステンレス溶鋼(「スラグ含有溶鋼」ともいう)中の起電力を従来の酸素濃淡電池を使って測定すると、例えば、図6に示すように、起電力の波形が時間を経ても安定しないため、正確な起電力を測定することができないことがあった。この原因として、基準極と正極との間にスラグの噛み込みが発生することによって両極間に発生する起電力の測定が困難になることが考えられる。 However, in the manufacturing process of stainless steel, a slag phase containing oxides such as CaO, TiO 2 , Cr 2 O 3 , MgO, Al 2 O 3 , FeO, and SiO 2 is formed on the surface of the molten stainless steel. . When the electromotive force in the molten stainless steel containing such a slag phase (also referred to as “slag-containing molten steel”) is measured using a conventional oxygen concentration cell, for example, as shown in FIG. Since it is not stable even after passing through, accurate electromotive force may not be measured. As a cause of this, it is considered that the measurement of the electromotive force generated between the two electrodes becomes difficult due to the slag biting between the reference electrode and the positive electrode.

また、1600℃以上のような高温のステンレス溶鋼を測定対象とする従来の酸素濃淡電池には、耐熱性の観点から高融点材料である金属モリブデン製の正極が一般的に使われている。しかしながら、溶鋼温度が1600〜1750℃程度の場合、起電力の測定中に金属モリブデン製の正極がステンレス溶鋼に溶け出し、正確な起電力を検出することが難しいという問題がある。   In addition, in a conventional oxygen concentration cell measuring high temperature molten stainless steel such as 1600 ° C. or higher, a metal molybdenum positive electrode which is a high melting point material is generally used from the viewpoint of heat resistance. However, when the molten steel temperature is about 1600 to 1750 ° C., there is a problem that the positive electrode made of metal molybdenum is melted into the molten stainless steel during the measurement of the electromotive force and it is difficult to detect an accurate electromotive force.

そこで、本発明は、溶鋼温度が1600℃以上の高温なスラグ含有溶鋼であっても、当該溶鋼中の酸素活量に応じた起電力を正確かつ安定して測定することができる酸素濃淡電池を提供することを目的とする。   Therefore, the present invention provides an oxygen concentration cell that can accurately and stably measure the electromotive force according to the oxygen activity in the molten steel even when the molten steel temperature is 1600 ° C. or higher. The purpose is to provide.

上記課題に鑑見て、本発明者らは鋭意検討を重ねた結果、酸素濃淡電池の基準極と正極との間隔および、正極の直径を最適化することにより、上記課題が解決できることを見出し、本発明を完成させた。   As a result of intensive studies, the inventors have found that the above problem can be solved by optimizing the distance between the reference electrode and the positive electrode of the oxygen concentration battery and the positive electrode, The present invention has been completed.

すなわち、上記課題は、本発明の酸素濃淡電池によって解決される。
[1] ステンレス鋼の製造途中で生成するスラグ含有溶鋼中の酸素活量に応じた起電力を測定する酸素濃淡電池であって、
基準極と、金属モリブデン製の正極と、を有し、
前記基準極と前記正極との間隔Xと、前記正極の直径Dとは、下記の式(1)、(2)を満たす、酸素濃淡電池。
X≧0.03×W+2 ・・・・(1)
前記式(1)中の、
Xは、前記基準極と正極との間隔[mm]を表し、
Wは、前記スラグ含有溶鋼1tにあたりに含有するスラグ質量(10≦W[kg]≦100)を表す。
D≧0.01×T−14.0 ・・・・(2)
前記式(2)中の、
Dは、正極の直径[mm]を表し、
Tは、溶鋼温度(1600≦T[℃]≦1750)を表す。
[2] 前記スラグは、その総質量あたり10質量%以下のCrおよび、3〜30質量%のMgOを含む、[1]に記載の酸素濃淡電池。
That is, the said subject is solved by the oxygen concentration battery of this invention.
[1] An oxygen concentration cell for measuring an electromotive force according to an oxygen activity in a molten steel containing slag produced during the production of stainless steel,
A reference electrode and a metal molybdenum positive electrode;
An oxygen concentration cell in which an interval X between the reference electrode and the positive electrode and a diameter D of the positive electrode satisfy the following expressions (1) and (2).
X ≧ 0.03 × W + 2 (1)
In the formula (1),
X represents a distance [mm] between the reference electrode and the positive electrode,
W represents the mass of slag contained in the slag-containing molten steel 1t (10 ≦ W [kg] ≦ 100).
D ≧ 0.01 × T-14.0 (2)
In the formula (2),
D represents the diameter [mm] of the positive electrode;
T represents the molten steel temperature (1600 ≦ T [° C.] ≦ 1750).
[2] The oxygen concentration cell according to [1], wherein the slag includes 10% by mass or less of Cr 2 O 3 and 3 to 30% by mass of MgO per total mass.

本発明により、溶鋼温度が1600℃以上の高温なスラグ含有溶鋼であっても、当該溶鋼中の酸素活量に応じた起電力を正確かつ安定して測定することができる酸素濃淡電池を提供することができる。   According to the present invention, there is provided an oxygen concentration cell capable of accurately and stably measuring an electromotive force according to an oxygen activity in a molten steel even if the molten steel is a high-temperature slag-containing molten steel having a temperature of 1600 ° C. or higher. be able to.

以下に、本発明の酸素濃淡電池の実施形態について、図面を示しながら具体的に説明する。   Hereinafter, embodiments of the oxygen concentration battery of the present invention will be specifically described with reference to the drawings.

1.酸素濃淡電池
本発明の酸素濃淡電池は、基準極と、金属モリブデン製の正極とを有し、前記基準極と正極との間隔X、および正極の直径Dが、上記式(1)、(2)を満たすことを特徴とする。
1. Oxygen concentration cell The oxygen concentration cell of the present invention has a reference electrode and a positive electrode made of metallic molybdenum, and the distance X between the reference electrode and the positive electrode and the diameter D of the positive electrode are expressed by the above formulas (1) and (2). ) Is satisfied.

図1は、本発明の酸素濃淡電池10の一例の概略図である。図1に示すように、本発明の酸素濃淡電池10は、支持体16の上に所定の間隔Xを設けて基準極12と正極14とが固定された構造を有する。   FIG. 1 is a schematic view of an example of the oxygen concentration cell 10 of the present invention. As shown in FIG. 1, the oxygen concentration cell 10 of the present invention has a structure in which a reference electrode 12 and a cathode 14 are fixed on a support 16 with a predetermined interval X.

基準極12は、通常、酸素分圧が既知の物質で構成された電極である。基準極12の材質は特に限定されないが、CrとCrとの混合物が好ましい。 The reference electrode 12 is usually an electrode made of a substance having a known oxygen partial pressure. The material of the reference electrode 12 is not particularly limited, but a mixture of Cr and Cr 2 O 3 is preferable.

また、基準極12は、その外周が底部を有する筒状の固体電解質(図示しない)で覆われている。基準極12を覆う筒状の固体電解質は、溶鋼中の酸素イオンが透過しやすい酸素イオン導電性を有する導電体で作られる。固体電解質は、酸素濃淡電池への使用が知られている公知のものを使うことができ、例えば、酸化ジルコニウム(ジルコニア)や酸化トリウムを主体とし、必要に応じて、二酸化珪素、アルミナ、酸化チタン若しくは酸化鉄などを所定量(数モル程度)固溶して部分安定化された焼結体が使われる。中でも、特に部分安定化ジルコニアは、優れた耐熱衝撃性を有するとともに、酸素活量に対する応答速度が速いため好ましい。基準極12と固体電解質との間には、基準極12を筒状の固体電解質に保持するための充填材が充填されていてもよい。   The reference electrode 12 is covered with a cylindrical solid electrolyte (not shown) whose outer periphery has a bottom. The cylindrical solid electrolyte covering the reference electrode 12 is made of a conductor having oxygen ion conductivity that allows oxygen ions in molten steel to easily pass therethrough. As the solid electrolyte, known ones that are known to be used for oxygen concentration batteries can be used. For example, zirconium oxide (zirconia) or thorium oxide is mainly used, and silicon dioxide, alumina, titanium oxide is used as necessary. Alternatively, a sintered body partially stabilized by dissolving a predetermined amount (several moles) of iron oxide or the like is used. Among these, partially stabilized zirconia is particularly preferable because it has excellent thermal shock resistance and a high response speed to oxygen activity. A filler for holding the reference electrode 12 in the cylindrical solid electrolyte may be filled between the reference electrode 12 and the solid electrolyte.

正極14は、略円形または略多角形の断面形状を有しており、基準極12と対となって酸素濃淡電池を構成する電極である。本発明の正極14は、1600℃以上と高温のステンレス溶鋼中であっても耐熱性に優れるという観点から、金属モリブデン製のものが使われる。   The positive electrode 14 has an approximately circular or substantially polygonal cross-sectional shape, and is an electrode that constitutes an oxygen concentration cell in combination with the reference electrode 12. The positive electrode 14 of the present invention is made of metallic molybdenum from the viewpoint of excellent heat resistance even in high-temperature stainless molten steel at 1600 ° C. or higher.

ステンレス溶鋼のような高温の溶鋼を起電力の測定対象とする酸素濃淡電池の電極としては、金属元素の中で最も融点が高く、かつ電気抵抗も高いタングステンが有用とされている。しかしながら、タングステンは非常に高価であるため、酸素濃淡電池のように使い捨てが主流とされる装置には経済的に不向きである。その点、金属モリブデンは、融点が2600℃以上と高温であり、かつ比較的大きな電気抵抗を持ちながら安価であるためコストが抑えられるという利点がある。また、金属モリブデンは、ステンレス鋼の機械的特性を向上させる金属元素でもあるため、酸素濃淡電池を使用中に、仮に正極の一部が溶鋼中に溶け出しても、ステンレス鋼板の品質を低下させる可能性が低い。   As an electrode of an oxygen concentration cell in which high-temperature molten steel such as stainless steel is measured for electromotive force, tungsten having the highest melting point and high electric resistance among metal elements is considered useful. However, since tungsten is very expensive, it is economically unsuitable for devices that are mainly disposable, such as oxygen concentration cells. In that respect, metallic molybdenum has an advantage that the melting point is as high as 2600 ° C. or higher and is inexpensive while having a relatively large electric resistance, so that the cost can be suppressed. In addition, since metallic molybdenum is a metal element that improves the mechanical properties of stainless steel, even if a part of the positive electrode is dissolved in the molten steel while using an oxygen concentration cell, the quality of the stainless steel plate is degraded. Less likely.

また、本発明の基準極12と正極14との間隔Xは下記の式(1)を満たす。
X≧0.03×W+2 ・・・・(1)
前記式(1)中の、
Xは、前記基準極と正極との間隔[mm]を表し、
Wは、前記溶鋼1tあたりに含有するスラグ質量(10≦W[kg]≦100)を表す。
Further, the distance X between the reference electrode 12 and the positive electrode 14 of the present invention satisfies the following formula (1).
X ≧ 0.03 × W + 2 (1)
In the formula (1),
X represents a distance [mm] between the reference electrode and the positive electrode,
W represents the mass of slag contained per 1 ton of molten steel (10 ≦ W [kg] ≦ 100).

本発明の「基準極と正極との間隔X」は、基準極12および正極14の側面上または一辺上の任意の点同士を結んだ最短距離をいう。当該任意の点が存在する位置は、両極の形状や近接状態などに応じて異なる。   The “interval X between the reference electrode and the positive electrode” in the present invention refers to the shortest distance connecting arbitrary points on the side surface or one side of the reference electrode 12 and the positive electrode 14. The position where the arbitrary point exists differs depending on the shape of both poles, the proximity state, and the like.

基準極と正極との間隔Xの求め方を、図2を用いて具体的に説明する。図2は、本発明の酸素濃淡電池の一例を上部からみた概略図である。図2中の符号は、図1と同じ部材を意味する。図2に示すように、両極の断面形状が円形である酸素濃淡電池10の場合、円柱状の両極12、14の側面上の任意の点同士を結んだ最短距離が上記間隔Xとなる。   A method of obtaining the distance X between the reference electrode and the positive electrode will be specifically described with reference to FIG. FIG. 2 is a schematic view of an example of the oxygen concentration cell of the present invention as viewed from above. The symbols in FIG. 2 mean the same members as in FIG. As shown in FIG. 2, in the case of the oxygen concentration battery 10 in which the cross-sectional shape of both electrodes is circular, the shortest distance connecting arbitrary points on the side surfaces of the cylindrical electrodes 12 and 14 is the distance X.

式(1)中のWは、ステンレス鋼の製造途中で生成するスラグであって、酸素濃淡電池によって酸素活量を測定する対象となるステンレス溶鋼1tあたりに含有するスラグの質量を表す。ステンレス鋼の製造途中とは、取鍋に仕込んだステンレス鋼の原料を溶解させてステンレス溶鋼としてから、これを連続鋳造し、取鍋内よりCCスラブとして回収するまでの間をいう。また、本発明では、酸素濃淡電池による酸素活量測定時のステンレス溶鋼1tあたりに含有するスラグを「測定時スラグ」ともいう。   W in Formula (1) is the slag produced | generated in the middle of manufacture of stainless steel, Comprising: The mass of the slag contained per 1t of stainless steel molten steel used as the object which measures oxygen activity with an oxygen concentration cell is represented. The process of producing stainless steel refers to the period from when the raw material of stainless steel charged in the ladle is melted to form molten stainless steel, which is continuously cast and recovered as CC slab from the ladle. Moreover, in this invention, the slag contained per 1 ton of molten stainless steel at the time of the oxygen activity measurement by an oxygen concentration cell is also called "measurement slag."

酸素濃淡電池で酸素活量を測定する段階は、当該製造途中の任意の段階であればよく特に限定されないが、ステンレス鋼の適確な組成設計を目的として、仕上げに脱酸剤を添加する直前であることが好ましい。ステンレス溶鋼の酸素活量の測定値に応じて、ステンレス鋼の組成設計を適正に行うために必要な脱酸剤の添加量を決定することができるためである。また、通常、仕上げに脱酸剤が添加される直前のスラグ含有溶鋼のスラグ質量Wは、10≦W[kg]≦100の範囲である。   The stage of measuring oxygen activity with an oxygen concentration cell is not particularly limited as long as it is an arbitrary stage during the production, but for the purpose of designing an appropriate composition of stainless steel, immediately before adding a deoxidizer to the finish. It is preferable that This is because the addition amount of the deoxidizer necessary for appropriately designing the composition of the stainless steel can be determined according to the measured value of the oxygen activity of the molten stainless steel. In general, the slag mass W of the slag-containing molten steel immediately before the deoxidizer is added to the finish is in the range of 10 ≦ W [kg] ≦ 100.

上記スラグ質量Wを求める方法は特に限定されないが、以下2つの方法のいずれかに準じて測定することが好ましい。具体的には、1)ステンレス溶鋼に通常添加される元素などからスラグ主成分を推定し、化学量論的に求められる各主成分量の総計を測定時スラグ質量として求める方法、2)CCスラブを製造した後の取鍋内に残留したスラグ質量から求める方法、の2つである。以下、各方法について説明する。   Although the method for obtaining the slag mass W is not particularly limited, it is preferably measured according to one of the following two methods. Specifically, 1) A method for estimating the slag main component from elements ordinarily added to molten stainless steel, and obtaining the total amount of each slag determined stoichiometrically as the slag mass during measurement, 2) CC slab Are obtained from the mass of slag remaining in the ladle after the production. Hereinafter, each method will be described.

1)の方法
1)の方法は、ステンレス鋼を製造する際に生成するスラグ主成分を推定し、化学量論的に見積もられる各主成分の生成量の総計を「みなしのスラグ質量」とし、さらに、当該みなしのスラグ質量をスラグ含有溶鋼1tあたりに換算することによって得られる値を、「測定時スラグ質量W」として求める方法である。スラグ主成分の推定は、製造するステンレス鋼の組成と、脱酸や脱硫の促進などを目的としてステンレス溶鋼に添加される金属元素の種類や添加量などにより化学量論的に見積もることで行うことができる。
Method 1) The method 1) estimates the slag main component produced when producing stainless steel, and the total amount of each main component generated stoichiometrically estimated is the “deemed slag mass”. Furthermore, it is a method of obtaining a value obtained by converting the deemed slag mass per 1 ton of molten steel containing slag as “measurement slag mass W”. The main component of slag is estimated by stoichiometrically estimating the composition of the stainless steel to be manufactured and the type and amount of metal elements added to the molten stainless steel for the purpose of promoting deoxidation and desulfurization. Can do.

1)の方法により、測定時スラグ質量Wを求める手順を具体的に説明する。例えば、鋼に11〜30質量%のCrを含有させたステンレス鋼を80t/1チャージ製造する場合、酸素活量を測定する前のステンレス溶鋼に対して、ステンレス溶鋼中の炭素量の低減を目的として酸素を吹き付けた後(酸素吹精)、脱酸や脱硫を目的とするCaOの添加(約600kg)、および予備脱酸を目的とするSi、Al元素の添加が適宜行われる。酸素吹精によりステンレス溶鋼中のCrが酸化されてCrが生成し、また、Si、Alとステンレス溶鋼中の酸素とが反応してSiO、Alが生成する。そのため、ステンレス溶鋼の表面には、CaO、Cr、SiO、Alを主成分とするスラグ相が形成される。この状態でステンレス溶鋼中の酸素活量を求める場合、このステンレス溶鋼1tあたりに含まれるスラグ量が測定時スラグの量である。 The procedure for obtaining the measurement slag mass W by the method 1) will be specifically described. For example, when producing 80t / 1 charge of stainless steel containing 11-30% by mass of Cr in the steel, the purpose is to reduce the amount of carbon in the molten stainless steel compared to the molten stainless steel before measuring the oxygen activity. After adding oxygen (oxygen blowing), addition of CaO for deoxidation and desulfurization (about 600 kg) and addition of Si and Al elements for the purpose of preliminary deoxidation are appropriately performed. Cr in the molten stainless steel is oxidized by oxygen blowing to produce Cr 2 O 3 , and Si and Al react with oxygen in the molten stainless steel to produce SiO 2 and Al 2 O 3 . Therefore, the surface of the stainless molten steel, CaO, Cr 2 O 3, SiO 2, Al 2 O 3 slag phase mainly composed of are formed. When the oxygen activity in the molten stainless steel is determined in this state, the amount of slag contained per 1 ton of molten stainless steel is the amount of slag at the time of measurement.

ただし、Cr、SiO、Alを主成分とする測定時スラグの質量を実測することは難しい。ただし、当該酸化物量は、酸素の吹き付け量やステンレス溶鋼の組成などに応じて化学量論的に算出することができる。例えば、通常、酸素吹精では、ステンレス溶鋼中の炭素濃度を約0.3%から0.01%以下まで低減するようにステンレス溶鋼に対して酸素が吹き付けられる。ステンレス溶鋼中の炭素濃度が約0.02%程度まで低くなると、ステンレス溶鋼中のCrは酸化するためCrが生成する。よって、ステンレス溶鋼の組成に基づくCr量などから、Crは化学量論的に約300kgと見積もることができる。 However, it is difficult to actually measure the mass of the slag at the time of measurement mainly containing Cr 2 O 3 , SiO 2 , and Al 2 O 3 . However, the oxide amount can be calculated stoichiometrically according to the amount of oxygen sprayed, the composition of the molten stainless steel, and the like. For example, normally, in oxygen blowing, oxygen is sprayed on molten stainless steel so as to reduce the carbon concentration in the molten stainless steel from about 0.3% to 0.01% or less. When the carbon concentration in the molten stainless steel is lowered to about 0.02%, Cr in the molten stainless steel is oxidized, so that Cr 2 O 3 is generated. Therefore, from the amount of Cr based on the composition of the molten stainless steel, Cr 2 O 3 can be estimated to be about 300 kg stoichiometrically.

一方、SiO、Alについて、通常、予備脱酸では、Si、Alの添加量は、いずれもステンレス溶鋼1tあたり1〜3kg程度である。よって、本例のように80tのステンレス鋼を製造する場合、各酸化物の生成量は、化学量論的に約300kgと見積もることができる。よって、スラグの主成分であるCaO、Cr、SiO、Alの総計は約1200kgと概算される。この概算値は80tのステンレス溶鋼を製造する場合のみなしスラグ質量に値するから、これをスラグ含有溶鋼1tあたりに換算することにより、当該事例における測定時スラグ質量Wは15kgと求めることができる。 On the other hand, for SiO 2 and Al 2 O 3 , the amount of Si and Al added is usually about 1 to 3 kg per 1 ton of molten stainless steel in preliminary deoxidation. Therefore, when manufacturing 80t stainless steel like this example, the production amount of each oxide can be estimated to be about 300 kg stoichiometrically. Therefore, the total of CaO, Cr 2 O 3 , SiO 2 , and Al 2 O 3 that are the main components of slag is estimated to be about 1200 kg. Since this approximate value is equivalent to the slag mass only when 80t stainless molten steel is manufactured, the slag mass W at the time of measurement in this case can be determined to be 15kg by converting this per 1t of slag-containing molten steel.

なお、上述した1)の方法で求められる測定時スラグ質量Wは、ステンレス溶鋼の組成や酸素吹き付け量、および脱酸剤の添加量のようなステンレス溶鋼の製造条件に応じて変動するが、上記方法と同様に適宜算出すればよい。また、ラボスケールにより、これらの反応を予備的に行い、実際に生成したスラグ量を分析して、測定時スラグ質量Wを求める際の参考にしてもよい。   In addition, the slag mass W at the time of measurement calculated | required by the method of 1) mentioned above fluctuates | varies according to the manufacturing conditions of molten stainless steel like the composition of stainless molten steel, the amount of oxygen spraying, and the addition amount of a deoxidizer, What is necessary is just to calculate suitably like the method. Further, these reactions may be carried out preliminarily on a lab scale, and the amount of slag actually generated may be analyzed to be used as a reference when determining the slag mass W during measurement.

2)の方法
2)の方法は、連続鋳造(continuous casting)後に得られるCCスラブを製造した後の取鍋内に残留したスラグ(残留スラグともいう)から測定時スラグを見積もる方法である。具体的には、精錬前(ステンレス鋼成分を仕込む前)の取鍋のみの質量をa(kg)とし、残留スラグと取鍋の総質量をa(kg)とするとき、aからaを単に引いた値を測定時スラグ質量Wとして求める方法である。なお、aおよびaは、ラボスケールでステンレス鋼を製造したときに実測される値でもよい。
Method 2) The method 2) is a method of estimating the slag at the time of measurement from the slag remaining in the ladle after manufacturing the CC slab obtained after continuous casting (also referred to as residual slag). Specifically, when the mass of only the ladle before refining (before charging the stainless steel component) is a 0 (kg), and the total mass of residual slag and ladle is a 1 (kg), from a 1 a method of obtaining a mere minus a 0 as measured at the slag mass W. Note that a 0 and a 1 may be values actually measured when stainless steel is manufactured on a lab scale.

ところで、測定時スラグの組成と残留スラグの組成とが同一である場合は、上記のように、単にaからaを引くことでスラグ質量Wを求めることができるものの、その一方で、ステンレス溶鋼中の酸素活量を求めてから残留スラグを得るまでの間にステンレス溶鋼中に脱酸剤を添加した場合などにおいては、測定時スラグと残留スラグとの組成が異なることがある。この場合、酸素濃淡電池における基準極と正極との間隔Xを適正に見積もることができないおそれがあるが、以下の手順にしたがって当該組成の違いを補正すると、脱酸剤を添加する前のスラグ(元スラグともいう)量を正確に求めることができる。そこで、例えば、CrとSiOとを含むスラグが存在するスラグ含有溶鋼に対し、仕上脱酸工程において脱酸剤としてAlを添加する際のAl添加量を適正に把握するために酸素活量を測定する場合における当該補正の仕方を説明する。 By the way, when the composition of the slag at the time of measurement and the composition of the residual slag are the same, the slag mass W can be obtained by simply subtracting a 0 from a 1 as described above. When a deoxidizer is added to the stainless steel molten steel after obtaining the oxygen activity in the molten steel until the residual slag is obtained, the composition of the slag during measurement and the residual slag may be different. In this case, there is a possibility that the distance X between the reference electrode and the positive electrode in the oxygen concentration cell cannot be properly estimated. However, when the difference in the composition is corrected according to the following procedure, the slag before adding the deoxidizer ( The amount can be accurately determined. Therefore, for example, for slag-containing molten steel containing slag containing Cr 2 O 3 and SiO 2 , oxygen is added to properly grasp the amount of Al added when adding Al as a deoxidizer in the finish deoxidation step. The correction method in the case of measuring the activity will be described.

この場合、以下の2つの反応が起こり、(i)は完結するが、(ii)は途中で反応が停止することが知られている。
Cr+2Al→2Cr+Al ・・・・(i)
3SiO+4Al→3Si+4Al ・・・・(ii)
そこで、先ず、単位質量当たりの元スラグに含まれるSiOの量と、単位質量当たりの残留スラグに含まれるSiOの量を測定する。測定手段は、後述するような公知の湿式化学分析方法などを用いればよい。上記SiOの差から、(ii)の反応で生成したアルミナ量(x)が求まる。単位質量当たりの残留スラグに含まれるアルミナ量(y)から(x)を引けば、(i)の反応で生成したアルミナの量が求まる。よって、このアルミナの量から、単位質量当たりの元スラグに存在したCr量を見積もることができる。
以上から、残留スラグから脱酸剤としてAlを添加する前のスラグ含有溶鋼中に存在するスラグ(元スラグ)の量が正確に求められる。
In this case, the following two reactions occur, and (i) is completed, but (ii) is known to stop during the reaction.
Cr 2 O 3 + 2Al → 2Cr + Al 2 O 3 ... (I)
3SiO 2 + 4Al → 3Si + 4Al 2 O 3 (ii)
Therefore, first, the amount of SiO 2 contained in the original slag per unit mass and the amount of SiO 2 contained in the residual slag per unit mass are measured. The measuring means may be a known wet chemical analysis method as described later. From the difference in SiO 2, the amount of alumina (x) produced by the reaction (ii) is obtained. By subtracting (x) from the amount of alumina (y) contained in the residual slag per unit mass, the amount of alumina produced by the reaction (i) can be determined. Therefore, the amount of Cr 2 O 3 present in the original slag per unit mass can be estimated from the amount of alumina.
As mentioned above, the quantity of slag (original slag) which exists in slag containing molten steel before adding Al as a deoxidizer from residual slag is calculated | required correctly.

上記例では、(i)、(ii)の反応が起きるが、ステンレス溶鋼中で生じる反応は、元スラグに存在する酸化物や脱酸剤として添加される金属の種類により種々である。その点においては、種々のケースにおいて同様に補正すればよい。また、仮にスラグが脱酸剤(Alなど)により還元されにくい酸化物(MgOなど)を含んでいる場合、当該酸化物の量は、残留スラグと元スラグとで変わらないので補正は不要である。このような酸化物の質量は、残留スラグの質量から、(i)、(ii)の反応で生成したアルミナ量を引けば求められる。   In the above example, the reactions (i) and (ii) occur, but the reactions occurring in the molten stainless steel vary depending on the oxides present in the original slag and the type of metal added as a deoxidizer. In that respect, it may be corrected similarly in various cases. Further, if the slag contains an oxide (such as MgO) that is difficult to be reduced by a deoxidizer (such as Al), the amount of the oxide does not change between the residual slag and the original slag, so correction is not necessary. . The mass of such an oxide can be obtained by subtracting the amount of alumina produced by the reactions (i) and (ii) from the mass of the residual slag.

上記式(1)を満たす間隔Xの酸素濃淡電池は、スラグ含有溶鋼中の正確な起電力を安定して測定することができる。その理由として、通常、両極間でのスラグの噛み込みは、ステンレス溶鋼中のスラグ量が増えるほど多くなる。その点、本発明者らは、スラグ含有溶鋼1tあたりに含有するスラグ質量Wとの関係において、最適な係数があることを見出した。すなわち、式(1)におけるWの係数0.03は、スラグ質量の増加に比例して増大し得るスラグ噛み込み量に対応するために決定された値である。   The oxygen concentration cell with the interval X that satisfies the above formula (1) can stably measure the exact electromotive force in the slag-containing molten steel. The reason is that the slag biting between the two poles usually increases as the amount of slag in the molten stainless steel increases. In this regard, the present inventors have found that there is an optimum coefficient in relation to the slag mass W contained per 1 ton of molten slag-containing steel. That is, the coefficient 0.03 of W in the equation (1) is a value determined to correspond to the slag biting amount that can increase in proportion to the increase in the slag mass.

また、ステンレス溶鋼の溶鋼温度Tが上がると、ステンレス溶鋼中のスラグ質量が増大し、これに比例してスラグ噛み込み量も増加する傾向にある。その点、本発明者らは、式(1)において、+2を補正値として用いることにより、溶鋼温度Tの上昇に比例して増大し得るスラグ噛み込み量に対応し得ることを見出した。   Moreover, when the molten steel temperature T of molten stainless steel rises, the slag mass in the molten stainless steel increases, and the amount of slag bite tends to increase in proportion to this. In this regard, the present inventors have found that by using +2 as a correction value in equation (1), it is possible to cope with the amount of slag biting that can be increased in proportion to the increase in the molten steel temperature T.

また、本発明の酸素濃淡電池は、溶鋼温度T(℃)が1600≦T≦1750のときに、スラグの噛み込みや正極の溶出などをより顕著に抑制しながら、スラグ含有溶鋼中の起電力を正確に測定することができる。本発明の溶鋼温度Tは、酸素活量測定の際の温度をいう。   Moreover, the oxygen concentration cell of the present invention has an electromotive force in slag-containing molten steel while more significantly suppressing slag biting and positive electrode elution when the molten steel temperature T (° C.) is 1600 ≦ T ≦ 1750. Can be measured accurately. The molten steel temperature T of the present invention refers to the temperature at the time of measuring oxygen activity.

また、本発明の金属モリブデン製の正極14の直径Dは、下記の式(2)を満たす。
D≧0.01×T−14.0 ・・・・(2)
前記式(2)中の、
Dは、正極の直径[mm]を表し、
Tは、溶鋼温度(1600≦T[℃]≦1750)を表す。
Moreover, the diameter D of the positive electrode 14 made of metallic molybdenum of the present invention satisfies the following formula (2).
D ≧ 0.01 × T-14.0 (2)
In the formula (2),
D represents the diameter [mm] of the positive electrode;
T represents the molten steel temperature (1600 ≦ T [° C.] ≦ 1750).

本発明の正極14の断面形状は、前述の通り、略円形または略多角形、すなわち直線または曲線の組み合わせにより構成される。具体的には、直線同士の組み合わせにより構成された多角形や、曲線による円形または楕円形が挙げられる。また、当該断面形状は、直線と曲線との組み合わせにより構成されたものでもよい。正極14の断面形状が多角形の場合、その直径Dは当該多角形の外接円の直径とする。   As described above, the cross-sectional shape of the positive electrode 14 of the present invention is constituted by a substantially circular shape or a substantially polygonal shape, that is, a combination of straight lines or curved lines. Specifically, a polygon formed by a combination of straight lines, a circle or an ellipse by a curve, and the like can be given. Moreover, the said cross-sectional shape may be comprised by the combination of the straight line and the curve. When the cross-sectional shape of the positive electrode 14 is a polygon, the diameter D is the diameter of the circumscribed circle of the polygon.

その中でも、本発明の正極14の断面形状は円形が好ましい。その理由として、断面が円形の正極はその表面積が小さいため、ステンレス溶鋼中に浸漬させても熱エネルギーの影響を受けにくいから、正極の溶出が抑えられるためである。また、スラグの付着量が少なく抑えられるため、起電力の測定精度が向上するという利点もある。   Among these, the cross-sectional shape of the positive electrode 14 of the present invention is preferably circular. The reason for this is that the positive electrode having a circular cross section has a small surface area, so that it is difficult to be influenced by thermal energy even when immersed in molten stainless steel, so that elution of the positive electrode is suppressed. In addition, since the amount of slag attached can be suppressed, there is an advantage that the measurement accuracy of electromotive force is improved.

上記式(2)によって得られる金属モリブデン製の正極14の直径Dは、酸素濃淡電池を使ってスラグ含有溶鋼中の正確な起電力を安定して測定できるよう、正極が溶鋼中へ溶け出すことを抑制するという理由から決定される。   The diameter D of the metal molybdenum positive electrode 14 obtained by the above formula (2) is such that the positive electrode melts into the molten steel so that an accurate electromotive force in the slag-containing molten steel can be stably measured using an oxygen concentration cell. It is determined for the reason of suppressing.

次に、上記式(2)をどのようにして求めたかを説明する。本発明者らは、製鋼中に酸素濃淡電池を浸漬させた場合、金属モリブデン製の正極の直径がどのように変化するかについて調べたところ、溶鋼温度の違いに応じて正極の径の最適値があることを見出した。そこで、1600〜1750℃程度の非常に高温なステンレス溶鋼中において、融点が2600℃金属モリブデン製の正極を使用する場合、起電力の測定が困難となるまで正極がステンレス溶鋼中に溶出する前に起電力を速やかに検出し得るために溶鋼温度Tと正極の直径Dとの間に成り立つ好ましい関係として見出したものが、前記式(2)である。   Next, how the equation (2) is obtained will be described. The present inventors investigated how the diameter of the positive electrode made of metallic molybdenum changes when the oxygen concentration cell is immersed in the steel making, and the optimum value of the positive electrode diameter according to the difference in molten steel temperature. Found that there is. Therefore, when a positive electrode made of metallic molybdenum having a melting point of 2600 ° C. is used in a very high temperature stainless molten steel of about 1600 to 1750 ° C., before the positive electrode elutes into the molten stainless steel until it becomes difficult to measure the electromotive force. What is found as a preferable relationship between the molten steel temperature T and the diameter D of the positive electrode so that the electromotive force can be detected quickly is the equation (2).

このように本発明の酸素濃淡電池10は、正極14の直径Dが適正な範囲内で調節されているため、高温のステンレス溶鋼中に浸漬させても、ステンレス溶鋼中への正極の溶出が抑制される。そのため、両電極を覆うようなカバー部材などを使わずに正極などの溶出を抑えて測定精度を上げることができるから、酸素濃淡電池10のコストを低く抑えることができるなどの利点もある。   As described above, in the oxygen concentration cell 10 of the present invention, since the diameter D of the positive electrode 14 is adjusted within an appropriate range, the elution of the positive electrode into the molten stainless steel is suppressed even when immersed in the hot molten stainless steel. Is done. Therefore, the elution of the positive electrode and the like can be suppressed without using a cover member that covers both electrodes, and the measurement accuracy can be increased. Therefore, there is an advantage that the cost of the oxygen concentration cell 10 can be reduced.

また、基準極12の長さL1、および正極14の長さL2は特に限定されないが、一般的には10〜20mmの範囲内である。上記いずれの長さも、測定対象である溶鋼に対して支持体16から伸びた各極の長さをいう。ただし、各極の長さを必要以上に長くすると、両極間でのスラグの噛み込みが生じやすく、また両極に付着するスラグ量が多くなるため、注意が必要である。   The length L1 of the reference electrode 12 and the length L2 of the positive electrode 14 are not particularly limited, but are generally in the range of 10 to 20 mm. Any of the above lengths refers to the length of each pole extending from the support 16 with respect to the molten steel to be measured. However, if the length of each pole is longer than necessary, slag is likely to bite between the two poles, and the amount of slag adhering to both poles increases, so care must be taken.

本発明の酸素濃淡電池は、上記基準極などとともに熱電対が併置されていてもよい。熱電対を併置した酸素濃淡電池は、酸素活量とともにステンレス溶鋼の温度を同時に測定することができるという利点から、酸素濃淡電池の構成として主流とされる。   In the oxygen concentration cell of the present invention, a thermocouple may be juxtaposed along with the reference electrode. An oxygen concentration cell in which a thermocouple is disposed is mainly used as a configuration of an oxygen concentration cell because it can simultaneously measure the temperature of molten stainless steel together with the oxygen activity.

2.起電力の検出方法
本発明の酸素濃淡電池によるステンレス溶鋼中の酸素活量に応じた起電力の検出は、以下の手順にしたがって行えばよい。
2. Detection method of electromotive force The detection of the electromotive force according to the oxygen activity in the molten stainless steel by the oxygen concentration cell of the present invention may be performed according to the following procedure.

図3に示すように、先ず、表面にスラグ相30が形成されたステンレス溶鋼31中に酸素濃淡電池10を浸漬し、所定の深さ(測定位置)で停止させる。酸素濃淡電池10の停止状態は、ステンレス溶鋼31中の起電力の検出が終了するまでの数秒間、維持される。   As shown in FIG. 3, first, the oxygen concentration cell 10 is immersed in a molten stainless steel 31 having a slag phase 30 formed on the surface, and is stopped at a predetermined depth (measurement position). The stopped state of the oxygen concentration cell 10 is maintained for several seconds until the detection of the electromotive force in the molten stainless steel 31 is completed.

起電力を測定するタイミングは、ステンレス鋼の製造途中の任意の段階でよい。ただし、ステンレス鋼の高品質化を目的とした組成設計を適確に行うためには、仕上脱酸工程の直前において起電力を測定することが好ましい。これにより、Alのような仕上脱酸工程に必要となる脱酸剤などの添加量を正確に見積もることができる。仕上脱酸工程の直前における測定時スラグは、通常、CrおよびMgOを主成分とし、またその割合は、スラグの総質量あたり、Crが10質量%以下、MgOが3〜30質量%である。本発明の酸素濃淡電池は、このような組成のスラグ相が存在するステンレス溶鋼に浸漬させても、両極間でのスラグの噛み込みが抑制されるよう設計されているので、正確かつ安定して起電力が測定できる。 The timing for measuring the electromotive force may be at any stage during the production of stainless steel. However, it is preferable to measure the electromotive force immediately before the finish deoxidation step in order to accurately perform composition design for the purpose of improving the quality of stainless steel. Thereby, the addition amount of a deoxidizer etc. required for the finishing deoxidation processes like Al can be estimated correctly. The slag at the time of measurement immediately before the finishing deoxidation step is usually composed mainly of Cr 2 O 3 and MgO, and the proportion thereof is 10% by mass or less of Cr 2 O 3 and 3 % of MgO per total mass of the slag. 30% by mass. The oxygen concentration cell of the present invention is designed to suppress slag biting between the two electrodes even when immersed in a molten stainless steel in which a slag phase having such a composition exists, so that it is accurate and stable. The electromotive force can be measured.

スラグ相中のCrおよびMgOの含有量を測定する方法は、短時間で高精度の元素分析を実現し得る観点から、湿式化学分析を用いることが好ましい。湿式化学分析は公知の方法を用いればよく特に限定されない。湿式化学分析方法によって当該含有量を測定する基本操作の一例を以下に示す。 As a method for measuring the contents of Cr 2 O 3 and MgO in the slag phase, wet chemical analysis is preferably used from the viewpoint of realizing high-precision elemental analysis in a short time. The wet chemical analysis may be a known method and is not particularly limited. An example of the basic operation for measuring the content by a wet chemical analysis method is shown below.

先ず、測定対象となるスラグを使って試料を調製する。試料の調製は、スラグを粉砕または切断することにより行われる。次に、調製した試料を酸(例えば、HCl、HF、HNOなど)などに溶解させて溶液化する。溶液化の方法は特に限定されず、酸のほかにもアルカリ融解などが含まれる。続けて、溶液化により得た溶液を元素分析し、金属Cr、Mgを測定する。元素分析の方法はICP質量分析や重量法のような公知の方法が用いられる。そして、上記元素分析結果から化学量論的にCrおよびMgOの量を算出する。当該算出された値が、スラグ相中に含有するCrおよびMgO量である。 First, a sample is prepared using slag to be measured. The sample is prepared by crushing or cutting the slag. Next, the prepared sample is dissolved in an acid (for example, HCl, HF, HNO 3, etc.) to form a solution. The method of making the solution is not particularly limited, and includes alkali melting in addition to the acid. Subsequently, the solution obtained by the solution is subjected to elemental analysis, and the metals Cr and Mg are measured. As the elemental analysis method, a known method such as ICP mass spectrometry or gravimetric method is used. Then, to calculate the amount of stoichiometrically Cr 2 O 3 and MgO from the elemental analysis. The calculated value is the amount of Cr 2 O 3 and MgO contained in the slag phase.

酸素濃淡電池10を構成する基準極12と正極14との間には、各極における酸素分圧の差に応じた起電力が発生する。発生した起電力は、酸素濃淡電池10に具備された電圧測定器(図示しない)によって検出される。   An electromotive force is generated between the reference electrode 12 and the positive electrode 14 constituting the oxygen concentration battery 10 according to the difference in oxygen partial pressure at each electrode. The generated electromotive force is detected by a voltage measuring device (not shown) provided in the oxygen concentration cell 10.

上記電圧測定器において、ステンレス溶鋼31中の起電力が適正に算出されたことを確認した後、酸素濃淡電池10はスラグ含有溶鋼中から引き抜かれる。起電力が適正に算出されたかどうかは、前述の通り、起電力による経時的な波形の変化が、波形のブレが小さく安定している状態が約2〜5秒間保持されることで確認することができる。より適正な起電力は、上記波形が安定している状態が約5秒間保持されることをいう。   After confirming that the electromotive force in the stainless steel melt 31 is properly calculated in the voltage measuring instrument, the oxygen concentration cell 10 is pulled out from the slag-containing molten steel. Whether or not the electromotive force has been calculated properly is confirmed by the fact that the waveform change over time due to the electromotive force is kept stable for about 2 to 5 seconds, with the waveform fluctuation being small and stable. Can do. More appropriate electromotive force means that the state in which the waveform is stable is maintained for about 5 seconds.

本発明の酸素濃淡電池10を使ってステンレス溶鋼中の起電力を測定すると、図4に示されるように、起電力は浸漬開始から約2秒ほどで速やかに安定するとともに、約5秒間、起電力の波形が安定することが分かる。この原因として、前述の通り、本発明の酸素濃淡電池10は、基準極12と正極14との間隔Xが、溶鋼温度とステンレス溶鋼に含有するスラグ量に応じて決定されているため、スラグ含有溶鋼中に浸漬させても、両極間でのスラグの噛み込みが抑制される。また、正極14の直径Dが、ステンレス溶鋼の溶鋼温度に応じて決定されているため、溶鋼中への溶出が低減されるためである。   When the electromotive force in the molten stainless steel is measured using the oxygen concentration cell 10 of the present invention, as shown in FIG. 4, the electromotive force stabilizes rapidly in about 2 seconds from the start of immersion, and the electromotive force is stabilized for about 5 seconds. It can be seen that the power waveform is stable. As the cause, as described above, the oxygen concentration cell 10 of the present invention has the slag content because the interval X between the reference electrode 12 and the positive electrode 14 is determined according to the molten steel temperature and the amount of slag contained in the molten stainless steel. Even if immersed in molten steel, the slag biting between the two electrodes is suppressed. Moreover, since the diameter D of the positive electrode 14 is determined according to the molten steel temperature of the molten stainless steel, elution into the molten steel is reduced.

以上より、本発明の酸素濃淡電池10によれば、正確な起電力を安定して測定することができるので、測定精度を高めることができ、ひいては、酸素センサの性能を高めて、製鋼の品質を高めることができる。また、本発明の酸素濃淡電池10によると、従来よりも浸漬時間を短縮することができるから、電極が溶出する可能性も低減することができるとともに、両電極表面でのスラグの付着や、両極間でのスラグの噛み込みが抑えられる。そのため、電極の径や長さを必要以上に大きくする必要がないので、装置の低コスト化にもつながる。   As described above, according to the oxygen concentration cell 10 of the present invention, accurate electromotive force can be stably measured, so that the measurement accuracy can be improved, and consequently the performance of the oxygen sensor can be improved to improve the quality of steelmaking. Can be increased. Further, according to the oxygen concentration cell 10 of the present invention, since the immersion time can be shortened compared to the conventional case, the possibility that the electrode elutes can be reduced, slag adhesion on both electrode surfaces, Slag biting in between is suppressed. Therefore, it is not necessary to increase the diameter and length of the electrode more than necessary, which leads to cost reduction of the apparatus.

3.酸素センサへの応用
本発明の酸素濃淡電池は、ステンレス溶鋼中の酸素活量を測定するための酸素センサに応用することができる。本発明の「酸素センサ」は、酸素濃淡電池の原理を利用して、酸素濃淡電池で検出される起電力と、温度センサなどで測定される溶鋼温度に基づき酸素活量を算出しうるセンサをいう。酸素センサの形態は特に限定されず、ひとつの筐体に酸素濃淡電池と温度センサとを兼備した一体型でもよいし、酸素濃淡電池と温度センサとがそれぞれ独立した形態でもよい。
3. Application to oxygen sensor The oxygen concentration cell of the present invention can be applied to an oxygen sensor for measuring the oxygen activity in molten stainless steel. The “oxygen sensor” of the present invention is a sensor that can calculate the oxygen activity based on the electromotive force detected by the oxygen concentration cell and the molten steel temperature measured by the temperature sensor, etc., using the principle of the oxygen concentration cell. Say. The form of the oxygen sensor is not particularly limited, and may be an integrated type in which the oxygen concentration battery and the temperature sensor are combined in one housing, or the oxygen concentration battery and the temperature sensor may be independent from each other.

酸素センサに具備する温度センサは、ステンレス溶鋼中の温度を測定する装置として公知のものを使えばよい。例えば、石英などからなるチューブ状保護管の内部に熱電対を具備した温度センサが挙げられる。   What is necessary is just to use the well-known thing as a temperature sensor with which an oxygen sensor is equipped as an apparatus which measures the temperature in stainless steel molten steel. For example, a temperature sensor having a thermocouple inside a tube-shaped protective tube made of quartz or the like can be mentioned.

以下、実施例などを参照して本発明をより具体的に説明する。ただし、本発明の形態は、ここに示す実施例などに限定されない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the form of the present invention is not limited to the examples shown here.

1.ステンレス鋼の製造
以下の実施例および比較例では、後述の酸素濃淡電池によって起電力を測定するサンプルとして、鋼に11〜30質量%のCrを含有させたステンレス鋼を製造した。先ず、当該ステンレス鋼の製造方法を説明する。
1. Production of Stainless Steel In the following Examples and Comparative Examples, stainless steel in which 11 to 30% by mass of Cr was contained in steel was produced as a sample for measuring electromotive force with an oxygen concentration cell described later. First, the manufacturing method of the stainless steel will be described.

1)脱酸処理
先ず、電気炉によって原料を溶解することにより80tのステンレス溶鋼を製造した後、転炉を使って当該ステンレス溶鋼の粗脱炭を行った(図5の脱炭工程50)。次に、このステンレス溶鋼16チャージを、図5に示すVOD工程40に移し、圧延工程52までの脱酸処理を行った。
1) Deoxidation treatment First, 80 t of molten stainless steel was produced by melting the raw material in an electric furnace, and then the molten stainless steel was roughly decarburized using a converter (decarburization step 50 in FIG. 5). Next, this stainless steel molten steel 16 charge was transferred to the VOD step 40 shown in FIG. 5 and subjected to deoxidation treatment up to the rolling step 52.

VOD工程40では、先ず、脱炭処理したステンレス溶鋼を予備脱酸工程42に供した。予備脱酸工程42では、炭素含有量が0.01質量%以下になるまでステンレス溶鋼表面に酸素ガスを吹き付けて脱炭精錬を行った後、ステンレス溶鋼中に生成したCrを6質量%以下まで還元するため、AlあるいはSiを所定量添加して予備脱酸を行った。ここで、AlあるいはSiの添加量は、ステンレス溶鋼1tあたり1〜3kgの範囲内で適宜調整した。 In the VOD process 40, first, the decarburized stainless steel melt was subjected to a preliminary deoxidation process 42. In the preliminary deoxidation step 42, after decarburization refining by blowing oxygen gas to the surface of the molten stainless steel until the carbon content becomes 0.01% by mass or less, 6 mass of Cr 2 O 3 produced in the molten stainless steel is obtained. In order to reduce it to less than or equal to%, a predetermined amount of Al or Si was added and preliminary deoxidation was performed. Here, the addition amount of Al or Si was appropriately adjusted within a range of 1 to 3 kg per 1 ton of molten stainless steel.

2)酸素活量の測定
次に、酸素活量測定工程43において、予備脱酸したステンレス溶鋼中の酸素活量を、後述する通りに作製した酸素濃淡電池を有する酸素センサにより測定した。また、このとき、酸素濃淡電池に併置された熱電対によりステンレス溶鋼の溶鋼温度を測定した。
2) Measurement of oxygen activity Next, in the oxygen activity measurement step 43, the oxygen activity in the predeoxidized stainless steel melt was measured by an oxygen sensor having an oxygen concentration cell produced as described later. At this time, the molten steel temperature of the molten stainless steel was measured by a thermocouple disposed in the oxygen concentration cell.

3)仕上げ脱酸
そして、仕上脱酸工程44において、測定される酸素活量に応じて、ステンレス溶鋼中のAl濃度が0.0005〜0.05質量%の範囲になるようにAlを添加し、ステンレス溶鋼の脱酸を十分に進めた。
3) Finish deoxidation And, in the finish deoxidation step 44, according to the oxygen activity to be measured, Al is added so that the Al concentration in the molten stainless steel is in the range of 0.0005 to 0.05 mass%. The deoxidation of molten stainless steel was sufficiently advanced.

仕上脱酸工程44では、各ステンレス溶鋼に対するAlの添加量について、酸素活量が測定できたチャージでは、あらかじめ後述する方法で作成しておいた検量線を用いて必要なAlの添加量を求めた。Al添加量は、そもそも酸素濃淡電池で測定される酸素活量に基づいて決まるが、Alはスラグ相に存在するCrの還元などにより消費されてしまうおそれがあるため、より正確なAlの添加量を決定することを目的として、Alの検量線を利用した。一方、酸素活量が測定できなかったチャージでは、一定量のAlを添加した。 In the finishing deoxidation step 44, for the amount of Al added to each molten stainless steel, in the charge in which the oxygen activity could be measured, the required amount of Al added was obtained using a calibration curve prepared in advance by the method described later. It was. The amount of Al added is originally determined based on the oxygen activity measured by the oxygen concentration cell, but since Al may be consumed by reduction of Cr 2 O 3 present in the slag phase, more accurate Al For the purpose of determining the addition amount of Al, a calibration curve of Al was used. On the other hand, a certain amount of Al was added in the charge whose oxygen activity could not be measured.

4)連続鋳造
最後に、連続鋳造工程45において、Alを適宜添加したステンレス溶鋼を連続鋳造し、CCスラブを得た。また、連続鋳造工程では、タンディッシュより溶鋼をサンプリングして得られた試料のAl濃度を測定した。当該Al濃度の測定は、湿式化学分析方法により行った。具体的には、採取した試料の一部を硝酸と塩酸の混酸液で溶解して溶液化した後、この溶液中のAlをICP(誘導結合プラズマ)発光分光分析法によって測定し、CCスラブ中のAl濃度を求めた。
4) Continuous casting Finally, in the continuous casting step 45, a stainless steel melt appropriately added with Al was continuously cast to obtain a CC slab. In the continuous casting process, the Al concentration of a sample obtained by sampling molten steel from a tundish was measured. The Al concentration was measured by a wet chemical analysis method. Specifically, a part of the collected sample was dissolved in a mixed acid solution of nitric acid and hydrochloric acid to form a solution, and then the Al in this solution was measured by ICP (inductively coupled plasma) emission spectroscopy, and in the CC slab. The Al concentration of was determined.

2.酸素濃淡電池
各実施例および比較例で使った酸素センサは、酸素濃淡電池の原理を利用して測定される起電力に基づき、酸素活量を検出するものである。当該酸素センサに利用した酸素濃淡電池は、Cr/Cr混合物製の基準極と、金属モリブデン製の正極とを有し、両極の間隔Xおよび正極の直径Dが適宜調整されたものを使用した。各実施例および比較例において使った酸素濃淡電池における両極の間隔Xおよび正極の直径Dは、後述の表1、2に纏めて示す。
2. Oxygen Concentration Battery The oxygen sensor used in each example and comparative example detects oxygen activity based on an electromotive force measured using the principle of an oxygen concentration battery. The oxygen concentration cell used for the oxygen sensor has a reference electrode made of a Cr / Cr 2 O 3 mixture and a positive electrode made of metallic molybdenum, and the distance X between both electrodes and the positive electrode diameter D are appropriately adjusted. used. The distance X between the two electrodes and the diameter D of the positive electrode in the oxygen concentration cell used in each example and comparative example are collectively shown in Tables 1 and 2 described later.

3.評価結果
実施例および比較例において、ステンレス鋼の製造中に測定したスラグ中の元素濃度(質量%)、ステンレス溶鋼1tあたりのスラグ質量(kg)、溶鋼温度、ステンレス溶鋼中の酸素活量(ppm)および、CCスラブのAl濃度(質量%)について、実施例1〜10の値を表1に示すとともに、比較例1〜7の値を表2に示す。また、各表に付した酸素濃淡電池の理論値は、溶鋼温度などの実測値を使って式(1)、(2)に則り求めた値である。また、溶鋼温度および酸素活量は酸素活量測定工程で測定した値である。
3. Evaluation Results In Examples and Comparative Examples, element concentration (mass%) in slag measured during the production of stainless steel, slag mass (kg) per 1 ton of molten stainless steel, molten steel temperature, oxygen activity in molten stainless steel (ppm) ) And the Al concentration (mass%) of the CC slab, the values of Examples 1 to 10 are shown in Table 1, and the values of Comparative Examples 1 to 7 are shown in Table 2. Moreover, the theoretical value of the oxygen concentration cell attached to each table is a value obtained according to the formulas (1) and (2) using the actual measurement values such as the molten steel temperature. Moreover, molten steel temperature and oxygen activity are the values measured in the oxygen activity measurement process.

上記スラグ中のCrおよびMgO濃度の測定方法について説明する。当該測定は、予備脱酸工程におけるステンレス溶鋼中のスラグをサンプルとし、当該サンプル中のCr、Mg量を湿式化学分析によって測定した。具体的には、先ず、予備脱酸工程で採取したステンレス溶鋼中のスラグを硝酸、塩酸、硫酸などの混酸に溶解して溶液化した。次に、得られた溶液中の金属Cr、MgをICP(誘導結合プラズマ)発光分光分析法により測定した。そして、この測定結果から化学量論的にCr、MgOの量を算出し、これをスラグ相中の含有量とした。 A method for measuring the Cr 2 O 3 and MgO concentrations in the slag will be described. The said measurement made the slag in the stainless steel molten steel in a preliminary deoxidation process a sample, and measured the Cr and Mg amount in the said sample by wet chemical analysis. Specifically, first, the slag in the molten stainless steel collected in the preliminary deoxidation step was dissolved in a mixed acid such as nitric acid, hydrochloric acid, sulfuric acid and the like to form a solution. Next, metals Cr and Mg in the obtained solution were measured by ICP (inductively coupled plasma) emission spectroscopy. Then, to calculate the amount of stoichiometrically Cr 2 O 3, MgO from the measurement results, which was used as a content of the slag phase.

酸素活量測定時のスラグ質量(kg)は、前述した測定時スラグ質量の求め方のうち、2)の方法により求めた。すなわち、精錬前の取鍋のみの質量をa(kg)、仕上脱酸工程を経て連続鋳造工程後に得られる残留スラグと取鍋の総質量をa(kg)とするとき、aからaを引いた値を酸素活量測定時のスラグ質量Wとして求めた。ただし、酸素活量を測定した後のスラグ含有溶鋼にはAlが添加されているので、測定時スラグの組成と残留スラグの組成とが異なる。そこで、本実施例では、先に説明した方法に基づき、CrおよびSiOとAlとの還元反応に基づく反応変化分に応じてスラグ組成の違いを補正した。 The slag mass (kg) at the time of measuring the oxygen activity was determined by the method 2) in the above-described method for determining the slag mass at the time of measurement. That is, when the mass of only the ladle before refining is a 0 (kg) and the total mass of the residual slag and ladle obtained after the continuous deoxidation step and the continuous casting step is a 1 (kg), from a 1 was determined minus a 0 as slag weight W during oxygen activity measurement. However, since Al is added to the slag-containing molten steel after measuring the oxygen activity, the composition of the slag during measurement and the composition of the residual slag are different. Therefore, in this example, the difference in the slag composition was corrected based on the reaction change based on the reduction reaction between Cr 2 O 3 and SiO 2 and Al based on the method described above.

Figure 2009216513
Figure 2009216513

Figure 2009216513
Figure 2009216513

実施例1〜10の結果から、先ず、本発明の酸素濃淡電池を利用した酸素センサを使うと、ステンレス溶鋼中の正確な酸素活量を安定して測定することができることが明らかである。また、この測定結果に基づいて算出された量に応じてステンレス溶鋼へのAl添加量を調整した結果、CCスラブのAl濃度を所望の範囲内(0.005〜0.05質量%)に制御することができた。   From the results of Examples 1 to 10, it is apparent that the accurate oxygen activity in molten stainless steel can be stably measured by using the oxygen sensor using the oxygen concentration cell of the present invention. Moreover, as a result of adjusting the amount of Al added to the molten stainless steel according to the amount calculated based on this measurement result, the Al concentration of the CC slab is controlled within a desired range (0.005 to 0.05 mass%). We were able to.

一方、比較例1〜7では、酸素センサを構成する酸素濃淡電池において、基準極と正極との間にスラグの噛み込みが生じたり、ステンレス溶鋼中に正極が溶け出したりしたため、正確な起電力を測定することができず、結果として、酸素活量も正確に測定することができなかった。そこで、ステンレス溶鋼中に止むを得ず一定量のAlを添加したが、Alが過不足となり、結果として、CCスラブのAl濃度を0.005〜0.05質量%の範囲に制御することができなかった。よって、各比較例の結果から明らかな通り、酸素濃淡電池における基準極と正極との間隔Xと正極の直径Dとが、所定の条件を満たす場合に限り、正確な起電力を安定して測定することができることが分かった。   On the other hand, in Comparative Examples 1 to 7, in the oxygen concentration cell constituting the oxygen sensor, the slag was caught between the reference electrode and the positive electrode, or the positive electrode was dissolved in the molten stainless steel. As a result, the oxygen activity could not be measured accurately. Therefore, a certain amount of Al is inevitably added to the molten stainless steel, but Al becomes excessive and insufficient, and as a result, the Al concentration of the CC slab can be controlled in the range of 0.005 to 0.05 mass%. could not. Therefore, as is apparent from the results of the comparative examples, accurate electromotive force is stably measured only when the distance X between the reference electrode and the positive electrode and the diameter D of the positive electrode in the oxygen concentration cell satisfy the predetermined conditions. I found out that I can do it.

本発明の酸素濃淡電池は、酸素イオン導電性を有する筒状の固体電解質で覆われた基準極と、高融点材料である金属モリブデン製の正極とを兼備し、両極間の間隔と正極の直径とが適正に調整されているため、CrやMgOのようなスラグが存在するスラグ含有溶鋼中でも、基準極と正極との間におけるスラグの噛み込みや、ステンレス溶鋼中への正極の溶け出しが抑制される。そのため、ステンレス溶鋼中の酸素活量に応じた正確な起電力を速やかに安定して測定することができる。 The oxygen concentration cell of the present invention has both a reference electrode covered with a cylindrical solid electrolyte having oxygen ion conductivity and a positive electrode made of metallic molybdenum, which is a high melting point material, and the distance between both electrodes and the positive electrode diameter. Are adjusted appropriately, even in molten steel containing slag such as Cr 2 O 3 and MgO, slag biting between the reference electrode and the positive electrode, and melting of the positive electrode in the molten stainless steel Suppression is suppressed. Therefore, an accurate electromotive force according to the oxygen activity in molten stainless steel can be measured quickly and stably.

本発明の酸素濃淡電池の一例の概略図Schematic of an example of the oxygen concentration cell of the present invention 本発明の酸素濃淡電池の一例を上部から見た概略図Schematic view of an example of the oxygen concentration cell of the present invention viewed from above 本発明の酸素濃淡電池でステンレス溶鋼中の酸素活量に応じた起電力を測定する際の概略図Schematic when measuring electromotive force according to oxygen activity in molten stainless steel in oxygen concentration cell of the present invention 本発明の酸素濃淡電池で測定される起電力の経時変化を表す図The figure showing the time-dependent change of the electromotive force measured with the oxygen concentration cell of this invention 実施例・比較例で実施したVOD工程の流れを示す図The figure which shows the flow of the VOD process which was implemented with execution example / comparative example 従来の酸素濃淡電池で測定される起電力の経時変化を表す図The figure showing the time-dependent change of the electromotive force measured with the conventional oxygen concentration cell

符号の説明Explanation of symbols

10 酸素濃淡電池
12 基準極
14 正極
30 スラグ相
31 ステンレス溶鋼
40 VOD工程
42 予備脱酸工程
43 酸素活量測定工程
44 仕上脱酸工程
45 連続鋳造工程
50 脱炭工程
52 圧延工程
10 Oxygen Concentration Battery 12 Reference Electrode 14 Positive Electrode 30 Slag Phase 31 Stainless Steel Molten Steel 40 VOD Process 42 Preliminary Deoxidation Process 43 Oxygen Activity Measurement Process 44 Finish Deoxidation Process 45 Continuous Casting Process 50 Decarburization Process 52 Rolling Process

Claims (2)

ステンレス鋼の製造途中で生成するスラグ含有溶鋼中の酸素活量に応じた起電力を測定する酸素濃淡電池であって、
基準極と、金属モリブデン製の正極と、を有し、
前記基準極と前記正極との間隔Xと、前記正極の直径Dとは、下記の式(1)、(2)を満たす、酸素濃淡電池。
X≧0.03×W+2 ・・・・(1)
[前記式(1)中の、
Xは、前記基準極と正極との間隔[mm]を表し、
Wは、前記スラグ含有溶鋼1tにあたりに含有するスラグ質量(10≦W[kg]≦100)を表す]
D≧0.01×T−14.0 ・・・・(2)
[前記式(2)中の、
Dは、正極の直径[mm]を表し、
Tは、溶鋼温度(1600≦T[℃]≦1750)を表す]
An oxygen concentration cell for measuring electromotive force according to oxygen activity in molten steel containing slag produced during the production of stainless steel,
A reference electrode and a metal molybdenum positive electrode;
An oxygen concentration cell in which an interval X between the reference electrode and the positive electrode and a diameter D of the positive electrode satisfy the following expressions (1) and (2).
X ≧ 0.03 × W + 2 (1)
[In the formula (1),
X represents a distance [mm] between the reference electrode and the positive electrode,
W represents the mass of slag contained per 1 t of the slag-containing molten steel (10 ≦ W [kg] ≦ 100)]
D ≧ 0.01 × T-14.0 (2)
[In the above formula (2),
D represents the diameter [mm] of the positive electrode;
T represents molten steel temperature (1600 ≦ T [° C.] ≦ 1750)]
前記スラグは、その総質量あたり10質量%以下のCrおよび、3〜30質量%のMgOを含む、請求項1に記載の酸素濃淡電池。 The slag, the 10 wt% per total weight less Cr 2 O 3 and comprises 3 to 30 wt% of MgO, oxygen concentration cell according to claim 1.
JP2008060008A 2008-03-10 2008-03-10 Oxygen concentration cell Pending JP2009216513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008060008A JP2009216513A (en) 2008-03-10 2008-03-10 Oxygen concentration cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008060008A JP2009216513A (en) 2008-03-10 2008-03-10 Oxygen concentration cell

Publications (1)

Publication Number Publication Date
JP2009216513A true JP2009216513A (en) 2009-09-24

Family

ID=41188526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008060008A Pending JP2009216513A (en) 2008-03-10 2008-03-10 Oxygen concentration cell

Country Status (1)

Country Link
JP (1) JP2009216513A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814052A (en) * 1981-07-20 1983-01-26 Nippon Steel Corp Oxygen detector for molten steel
JPS6188139A (en) * 1984-10-05 1986-05-06 Sumitomo Metal Ind Ltd Continuous measuring method of dissolved oxygen in molten metal
JPS63249049A (en) * 1987-04-03 1988-10-17 Nkk Corp Continuous oxygen measuring probe for molten metal
JP2000506986A (en) * 1996-12-18 2000-06-06 ヘレウス エレクトロナイト インタナショナル エヌ.ヴィー. Method for measuring electrochemical activity and latent liquid measurement feeler
JP2004043838A (en) * 2002-07-09 2004-02-12 Nisshin Steel Co Ltd Method for melting ferritic stainless steel with excellent ridging resistance/workability, and steel sheet
JP2004125566A (en) * 2002-10-01 2004-04-22 Heraeus Electro Nite Kk Measuring method of molten steel layer surface position, slag layer thickness or both values, its device and probe used therefor
JP2005043297A (en) * 2003-07-25 2005-02-17 Japan Air Gases Ltd Probe for measuring carbon activity in molten steel metal and method for measuring carbon activity

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814052A (en) * 1981-07-20 1983-01-26 Nippon Steel Corp Oxygen detector for molten steel
JPS6188139A (en) * 1984-10-05 1986-05-06 Sumitomo Metal Ind Ltd Continuous measuring method of dissolved oxygen in molten metal
JPS63249049A (en) * 1987-04-03 1988-10-17 Nkk Corp Continuous oxygen measuring probe for molten metal
JP2000506986A (en) * 1996-12-18 2000-06-06 ヘレウス エレクトロナイト インタナショナル エヌ.ヴィー. Method for measuring electrochemical activity and latent liquid measurement feeler
JP2004043838A (en) * 2002-07-09 2004-02-12 Nisshin Steel Co Ltd Method for melting ferritic stainless steel with excellent ridging resistance/workability, and steel sheet
JP2004125566A (en) * 2002-10-01 2004-04-22 Heraeus Electro Nite Kk Measuring method of molten steel layer surface position, slag layer thickness or both values, its device and probe used therefor
JP2005043297A (en) * 2003-07-25 2005-02-17 Japan Air Gases Ltd Probe for measuring carbon activity in molten steel metal and method for measuring carbon activity

Similar Documents

Publication Publication Date Title
KR101768227B1 (en) Measuring probes for measuring and taking samples with a metal melt
Li et al. A thermodynamic model to design the equilibrium slag compositions during electroslag remelting process: description and verification
TW201621052A (en) Method for controlling a Ti concentration in a steel and method for producing a silicon killed steel
JP2009216513A (en) Oxygen concentration cell
KR100943649B1 (en) Oxygen sensor for low oxygen contents
JP4399927B2 (en) Apparatus and method for measuring oxygen partial pressure in slag
JP4181374B2 (en) Method for measuring surface position of molten steel layer and / or thickness of slag layer, apparatus thereof and probe used therefor
KR101441713B1 (en) Method for adjusting the properties of cast iron
JP6077636B1 (en) Oxygen sensor and method for manufacturing oxygen sensor
JPS59109852A (en) Reference oxygen electrode of oxygen sensor for molten metal
US6340418B1 (en) Slag oxygen sensor
JPH0246103B2 (en)
JP2566343B2 (en) Oxygen concentration measurement sensor for molten metal
JP5423614B2 (en) Hot metal desulfurization method
JP5334464B2 (en) Manufacturing method of steel for high strength steel wire
KR101129320B1 (en) A non-metallic inclusion decomposition method using electrochemical refining method
JP2023083079A (en) Oxygen sensor for molten copper, oxygen sensor device for molten copper, method for detecting concentration of oxygen in molten copper, and method for manufacturing copper wire
JP2003121408A (en) Slag oxidation degree measuring probe
JP2015198018A (en) glow plug
JP4714336B2 (en) Conductive refractories for immersion in molten steel
RU66252U1 (en) DEVICE FOR MEASURING PARAMETERS AND TAKING METAL SAMPLES IN THE CONVERTER
JP4897092B2 (en) How to select oxygen sensor for oxygen copper
JP2006132959A (en) Magnesium sensor probe
WO2001061333A1 (en) Sensors
JPH0385436A (en) Measuring sensor of concentration of solute element in molten metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120522