JP2009216088A - Displacement type fluid machine - Google Patents

Displacement type fluid machine Download PDF

Info

Publication number
JP2009216088A
JP2009216088A JP2009034075A JP2009034075A JP2009216088A JP 2009216088 A JP2009216088 A JP 2009216088A JP 2009034075 A JP2009034075 A JP 2009034075A JP 2009034075 A JP2009034075 A JP 2009034075A JP 2009216088 A JP2009216088 A JP 2009216088A
Authority
JP
Japan
Prior art keywords
working chamber
vane
rotor
chamber
main working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009034075A
Other languages
Japanese (ja)
Other versions
JP4348715B2 (en
Inventor
Suenori Tsujimoto
末則 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009034075A priority Critical patent/JP4348715B2/en
Publication of JP2009216088A publication Critical patent/JP2009216088A/en
Application granted granted Critical
Publication of JP4348715B2 publication Critical patent/JP4348715B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a displacement type fluid machine, with improved volume efficiency by improving seal performance of an actuation chamber. <P>SOLUTION: The device includes a cylindrical rotor 22 installed on the outer circumferential side of a bearing 23 to revolve in accordance with the rotation of a drive shaft 15, a casing 11 to house the rotor 22, and a main actuation chamber 40 formed between an inner circumferential surface 110 of the casing 11 and an outer circumferential surface 24 of the rotor 22. A vane part 51 is housed in a vane groove 50 formed on the rotor 22 to be capable of projecting/retracting, and the main actuation chamber 40 formed on the outer circumferential side of the rotor 22 is defined to the low pressure side and the high pressure side. An oscillating vane 56 in the shape of a projected disc is provided on an end part of the vane part 51 to be capable of oscillating in accordance with revolution of the rotor 22. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、偏心部を備えた駆動軸の回転軸線を中心にして公転するロータにより作動室の容積を拡大、縮小させて、吸入室から吸入される圧縮性流体または非圧縮性流体を吐出室から吐出させるように構成された容積型流体機械に関する。   The present invention expands or reduces the volume of a working chamber by a rotor that revolves around a rotation axis of a drive shaft having an eccentric portion, and discharges a compressive fluid or an incompressible fluid sucked from the suction chamber. The present invention relates to a positive displacement fluid machine configured to be discharged from a fluid.

この種の容積型流体機械として、複数個のベーン40にて作動室51、52、53を駆動軸20の回転向きに沿って複数個に区画し、作動室51、52、53毎に流体の吸入および吐出がなされるように構成し、ロータ30の公転に伴う作動室51、52、53の容積の変化により、吸入穴から作動室51、52、53に吸入した流体を吐出穴から吐出する流体ポンプがある(例えば、特許文献1、図2参照)。   As a positive displacement fluid machine of this type, a plurality of vanes 40 divide a plurality of working chambers 51, 52, 53 along the rotational direction of the drive shaft 20, and each of the working chambers 51, 52, 53 has a fluid flow. The suction and discharge are configured, and the fluid sucked into the working chambers 51, 52, and 53 is discharged from the discharge holes by the change in volume of the working chambers 51, 52, and 53 accompanying the revolution of the rotor 30. There is a fluid pump (see, for example, Patent Document 1 and FIG. 2).

特開2002−303283号公報JP 2002-303283 A

しかしながら、上記流体ポンプでは、ベーン40の端部が先細りに形成されており、ロータ30の外周面301との接触面積が小さく、点あるいは線で接触しているため、作動室のシール性が低いという問題があった。   However, in the above fluid pump, the end portion of the vane 40 is tapered, the contact area with the outer peripheral surface 301 of the rotor 30 is small, and is in contact with dots or lines, so the sealing performance of the working chamber is low. There was a problem.

そこで、本発明は、作動室のシール性を高めて容積効率が改善された容積型流体機械を提供することを課題とする。   Therefore, an object of the present invention is to provide a positive displacement fluid machine with improved volumetric efficiency by improving the sealing performance of the working chamber.

上記課題を解決するため、この発明の容積型流体機械は以下の1〜の技術的手段を講じている。
1.この発明の容積型流体機械は、
吸入側連通路150及び吐出側連通路151を内設した駆動軸15と
駆動軸15に形成される偏心部20と、
前記偏心部20の外周側に配置される軸受23と、
前記軸受23の外周側に装着され、前記駆動軸15の回転に伴って前記駆動軸15周りを公転する円筒状のロータ22と、
前記駆動軸15と同心状に配置され、前記ロータ22を収容するケーシング11と、
前記ケーシング11の内周面110とロータ22の外周面24との間に形成される主作動室40と、
ロータ22に形成されたベーン溝50に出没可能に収容されて前記主作動室40を低圧側と高圧側とに区画するベーン部51と、
前記ベーン部51の主作動室40側の端部に前記ロータ22の公転に応じて揺動可能な揺動ベーン56と、
揺動ベーン56のベーン部51側の端部、及び前記ケーシング11側の端部にそれぞれ設けられた第一圧力室60、及び第二圧力室62とを備えてなる。
さらに、前記ベーン部51が収容されるベーン溝50内の奥部を副作動室45とし、副作動室45内の流体圧力が背圧としてベーン部51に作用するように構成しており、
前記ロータ22には、主作動室連通孔220および副作動室連通孔221が、共に径方向を貫通して設けられ、これら主作動室連通孔220および副作動室連通孔221は、外周端がそれぞれ主作動室40および副作動室45に連通する。
また前記ベーン部51および揺動ベーン56には、副作動室45内の流体を前記第一圧力室60ないし第二圧力室62内に導入する導通孔65、66が設けられている。
そして、駆動軸15の回転に応じて、前記ロータ22が公転し、このロータ22の公転に伴う前記主作動室40の容積の変化により、吸入口29から吸入された流体が、吸入側連通路150を通って吸入側分配室154から主作動室40および副作動室45に導かれ、次いで吐出側分配室155から吐出側連通路151を通って吐出口39から排出される。
この容積型流体機械において、
前記吸入側連通路150及び吐出側連通路151にはそれぞれ、一端側に吸入側分配室154及び吐出側分配室155が連通形成されると共に、他端側に吸入側開口部150a及び吐出側開口部151aが連通形成され、
吸入側分配室154及び吐出側分配室155は、駆動軸15を切り欠いて互いに異なる軸方向位置且つ互いに異なる位相の範囲に形成されることで、
前記主作動室連通孔220及び副作動室連通孔221の内周端が、回転軸15の回転に応じて、吸入側分配室154に連通する状態、或いは吐出側分配室155に連通する状態となって、主作動室連通孔220の外周端が、容積拡大状態の主作動室40、或いは容積縮小状態の主作動室40に連通するものであり、
かつ、吸入口29と吸入側連通路150、吐出口39と吐出側連通路151がそれぞれ、吸入側開口部150a及び吐出側開口部151aと常に連通状態にあることを特徴とする。
In order to solve the above problems, the positive displacement fluid machine of the present invention employs the following technical means 1 to 5 .
1. The positive displacement fluid machine of this invention is
A drive shaft 15 provided with a suction side communication path 150 and a discharge side communication path 151 ;
An eccentric portion 20 formed on the drive shaft 15;
A bearing 23 disposed on the outer peripheral side of the eccentric portion 20;
A cylindrical rotor 22 mounted on the outer peripheral side of the bearing 23 and revolving around the drive shaft 15 as the drive shaft 15 rotates;
A casing 11 disposed concentrically with the drive shaft 15 and containing the rotor 22;
A main working chamber 40 formed between the inner peripheral surface 110 of the casing 11 and the outer peripheral surface 24 of the rotor 22;
A vane portion 51 which is accommodated in a vane groove 50 formed in the rotor 22 so as to be able to appear and retract and divides the main working chamber 40 into a low pressure side and a high pressure side;
A swing vane 56 that can swing in accordance with the revolution of the rotor 22 at the end of the vane portion 51 on the main working chamber 40 side;
The swing vane 56 includes a first pressure chamber 60 and a second pressure chamber 62 provided at the end portion on the vane portion 51 side and the end portion on the casing 11 side, respectively .
Furthermore, the inner part of the vane groove 50 in which the vane part 51 is accommodated is a sub working chamber 45, and the fluid pressure in the sub working chamber 45 is configured to act on the vane part 51 as a back pressure.
The rotor 22 is provided with a main working chamber communication hole 220 and a sub working chamber communication hole 221 both penetrating in the radial direction. The main working chamber communication hole 220 and the sub working chamber communication hole 221 have outer peripheral ends. The main working chamber 40 and the sub working chamber 45 communicate with each other.
The vane portion 51 and the swing vane 56 are provided with conduction holes 65 and 66 for introducing the fluid in the sub working chamber 45 into the first pressure chamber 60 or the second pressure chamber 62.
The rotor 22 revolves according to the rotation of the drive shaft 15, and the fluid sucked from the suction port 29 is caused to change by the change in volume of the main working chamber 40 accompanying the revolution of the rotor 22. 150 is led from the suction side distribution chamber 154 to the main working chamber 40 and the sub working chamber 45, and then discharged from the discharge side distribution chamber 155 through the discharge side communication passage 151 and from the discharge port 39.
In this positive displacement fluid machine,
The suction-side communication passage 150 and the discharge-side communication passage 151 are respectively formed with a suction-side distribution chamber 154 and a discharge-side distribution chamber 155 at one end, and at the other end, a suction-side opening 150a and a discharge-side opening. Part 151a is formed in communication,
The suction-side distribution chamber 154 and the discharge-side distribution chamber 155 are formed by notching the drive shaft 15 and having different axial positions and different phase ranges.
A state in which inner peripheral ends of the main working chamber communication hole 220 and the sub working chamber communication hole 221 communicate with the suction-side distribution chamber 154 or communicate with the discharge-side distribution chamber 155 according to the rotation of the rotary shaft 15; Thus, the outer peripheral end of the main working chamber communication hole 220 communicates with the main working chamber 40 in the volume expansion state or the main working chamber 40 in the volume reduction state,
In addition, the suction port 29 and the suction side communication path 150, and the discharge port 39 and the discharge side communication path 151 are always in communication with the suction side opening 150a and the discharge side opening 151a , respectively.

2.上記1記載の容積型流体機械において、吸入側開口部150a及び吐出側開口部151aは、駆動軸15を切り欠いて互いに異なる軸方向位置に形成され、  2. In the positive displacement fluid machine described in 1 above, the suction side opening 150a and the discharge side opening 151a are formed at different axial positions by cutting out the drive shaft 15;
吸入側開口部150a周り及び吐出側開口部151a周りには、それぞれ吸入側円形溝152及び吐出側円形溝153が、駆動軸15の全周に形成されており、A suction-side circular groove 152 and a discharge-side circular groove 153 are formed around the entire circumference of the drive shaft 15 around the suction-side opening 150a and the discharge-side opening 151a, respectively.
吸入側円形溝152の先に吸入口29が、及び、吐出側円形溝153の先に吐出口39がそれぞれ連通形成され、回転する回転軸15の回転位相に拘らず、吸入口29と吸入側連通路150、吐出口39と吐出側連通路151がそれぞれ常に連通状態にあるものとしてもよい。A suction port 29 is formed at the tip of the suction-side circular groove 152, and a discharge port 39 is formed at the tip of the discharge-side circular groove 153, so that the suction port 29 and the suction side are connected regardless of the rotational phase of the rotating rotary shaft 15. The communication path 150, the discharge port 39, and the discharge side communication path 151 may be always in communication.

3.上記1又は2記載の容積型流体機械において、前記揺動ベーン56の摺接面57が、前記ケーシング11の内周面110と略同心の凸形円弧状に形成されているものとしてもよい。 3. In the positive displacement fluid machine according to 1 or 2, the sliding contact surface 57 of the swing vane 56 may be formed in a convex arc shape substantially concentric with the inner peripheral surface 110 of the casing 11.

4.上記1乃至3のいずれか記載の容積型流体機械において、ベーン部51の揺動ベーン56側の端部に円弧凹面が形成され、揺動ベーン56のベーン部51側の端部には円弧凸面が形成されており、揺動ベーン56は、前記円弧凸面をベーン部51の円弧凹面に嵌合することによってベーン部51に揺動可能に連結され、ベーン部51と共にベーン溝50内に出没可能に収納されているものとしてもよい。 4). 4. The positive displacement fluid machine according to any one of 1 to 3, wherein an arc concave surface is formed at an end of the vane portion 51 on the swing vane 56 side, and an arc convex surface is formed at the end of the swing vane 56 on the vane portion 51 side. The swing vane 56 is slidably connected to the vane portion 51 by fitting the circular arc convex surface to the arc concave surface of the vane portion 51, and can swing in and out of the vane groove 50 together with the vane portion 51. It is good also as what is stored in .

5.上記1乃至4のいずれか記載の容積型流体機械において、前記揺動ベーン56が、前記副作動室45内の流体圧力と、前記ベーン部51を前記ケーシング11の内周面110側に付勢するばねの付勢力とによって、前記ケーシング11の内周面110に押圧されながら前記ロータ22の公転に伴い揺動して、前記揺動ベーン56の摺接面57がケーシング11の内周面110への接触を保持するものとしてもよい。 5). 5. The positive displacement fluid machine according to any one of 1 to 4, wherein the oscillating vane 56 biases the fluid pressure in the auxiliary working chamber 45 and the vane portion 51 toward the inner peripheral surface 110 of the casing 11. The slidable contact surface 57 of the swing vane 56 is oscillated with the revolution of the rotor 22 while being pressed against the inner peripheral surface 110 of the casing 11 by the urging force of the spring, and the inner peripheral surface 110 of the casing 11 is swung. It is good also as what keeps the contact to .

上記の容積型流体機械において、駆動軸15には、吸入側連通路150と吐出側連通路151が設けられており、吸入口29から吸入された流体が、吸入側連通路150を通って主作動室40および副作動室45に導かれ、次いで吐出側連通路151を通って吐出口39から排出される In the positive displacement fluid machine described above , the drive shaft 15 is provided with the suction side communication path 150 and the discharge side communication path 151, and the fluid sucked from the suction port 29 passes through the suction side communication path 150 and is mainly used. It is guided to the working chamber 40 and the sub working chamber 45 and then discharged from the discharge port 39 through the discharge side communication passage 151 .

また上記の容積型流体機械において、軸部15の、ロータ22の中心部よりそれぞれリアプレート130寄りの位置に、軸部15を切り欠いて吸入側分配室154が形成され、
軸部15の、ロータ22の中心部よりそれぞれフロントプレート120寄りの位置に、軸部15を切り欠いて吐出側分配室155が形成され、
ロータ22には、外周端がそれぞれ主作動室40および副作動室45に連通した主作動室連通孔220および副作動室連通孔221が設けられ、
回転軸15の回転に応じて、
主作動室40および副作動室45がその容積を拡大させる際には、主作動室連通孔220および副作動室連通孔221の内周端が回転軸15の吸入側分配室154に連通されて吸入口29から流体が吸入され、
主作動室40および副作動室45がその容積を縮小させる際には、主作動室連通孔220および副作動室連通孔221の内周端が回転軸15の吐出側分配室155に連通されて主作動室40および副作動室45内の流体が吐出側連通路151を介して吐出口39から排出される
Further, in the positive displacement fluid machine, the suction side distribution chamber 154 is formed by cutting the shaft portion 15 at a position closer to the rear plate 130 than the center portion of the rotor 22 of the shaft portion 15;
A discharge side distribution chamber 155 is formed by notching the shaft portion 15 at a position closer to the front plate 120 than the center portion of the rotor 22 of the shaft portion 15.
The rotor 22 is provided with a main working chamber communication hole 220 and a sub working chamber communication hole 221 whose outer peripheral ends communicate with the main working chamber 40 and the sub working chamber 45, respectively.
According to the rotation of the rotating shaft 15,
When the volumes of the main working chamber 40 and the sub working chamber 45 are enlarged, the inner peripheral ends of the main working chamber communication hole 220 and the sub working chamber communication hole 221 are communicated with the suction side distribution chamber 154 of the rotating shaft 15. Fluid is sucked from the suction port 29,
When the volumes of the main working chamber 40 and the sub working chamber 45 are reduced, the inner peripheral ends of the main working chamber communication hole 220 and the sub working chamber communication hole 221 are communicated with the discharge side distribution chamber 155 of the rotary shaft 15. The fluid in the main working chamber 40 and the sub working chamber 45 is discharged from the discharge port 39 through the discharge side communication path 151 .

この発明の容積型流体機械では、揺動ベーンに備える幅広の摺接面が、ケーシングの内周面と略同心の円弧状に形成され、ロータの公転に追随してケーシングの内周面と常に面接触するように構成されているので、作動室内のシール性が高まり作動室の容積効率が改善される。   In the positive displacement fluid machine according to the present invention, the wide sliding contact surface provided in the swing vane is formed in an arc shape substantially concentric with the inner peripheral surface of the casing, and always follows the inner peripheral surface of the casing following the revolution of the rotor. Since the surface contact is made, the sealing performance in the working chamber is enhanced and the volumetric efficiency of the working chamber is improved.

参考形態1の容積型流体機械の断面図。Sectional drawing of the displacement type fluid machine of the reference form 1. FIG. 図1のA−A線に沿う断面図。Sectional drawing in alignment with the AA of FIG. 図1のB−B線に沿う断面図。Sectional drawing which follows the BB line of FIG. 図3に示すベーンばね収容部の拡大図。The enlarged view of the vane spring accommodating part shown in FIG. 図2に示すベーン部の拡大図。The enlarged view of the vane part shown in FIG. 図1のC−C線に沿う断面図。Sectional drawing which follows the CC line | wire of FIG. 図1のD−D線に沿う断面図。Sectional drawing which follows the DD line | wire of FIG. 参考形態2の容積型流体機械の吸入室側の断面図。Sectional drawing by the side of the suction chamber of the positive displacement fluid machine of reference form 2. 参考形態2の容積型流体機械の吐出室側の断面図。Sectional drawing by the side of the discharge chamber of the positive displacement fluid machine of the reference form 2. 参考形態2の容積型流体機械の斜視図。The perspective view of the positive displacement fluid machine of reference form 2. FIG. 参考形態3の容積型流体機械の断面図。Sectional drawing of the displacement type fluid machine of the reference form 3. FIG. 図11のE−E線に沿う断面図。Sectional drawing which follows the EE line | wire of FIG. 図11のF−F線に沿う断面図。Sectional drawing which follows the FF line | wire of FIG. 図11のG−G線に沿う断面図。Sectional drawing which follows the GG line of FIG. 図11のH−H線に沿う断面図。Sectional drawing which follows the HH line | wire of FIG. 図11のJ−J線に沿う断面図。Sectional drawing which follows the JJ line of FIG. 図11のK−K線に沿う断面図。Sectional drawing which follows the KK line | wire of FIG. 図11のL−L線に沿う断面図。Sectional drawing which follows the LL line | wire of FIG. 図12に示すベーン部の拡大図。The enlarged view of the vane part shown in FIG. 本発明の参考形態4の容積型流体機械の断面図。Sectional drawing of the positive displacement fluid machine of the reference form 4 of this invention. 図20のM−M線に沿う断面図。Sectional drawing which follows the MM line | wire of FIG. 図20のN−N線に沿う断面図。Sectional drawing which follows the NN line | wire of FIG. 図20のO−O線に沿う断面図。Sectional drawing which follows the OO line of FIG. 図20のP−P線に沿う断面図で、駆動軸15の回転に伴う作動状態の変化を駆動軸15の回転角90°毎に示すものである。FIG. 21 is a cross-sectional view taken along the line P-P in FIG. 20 and shows changes in the operating state accompanying rotation of the drive shaft 15 at every 90 ° rotation angle of the drive shaft 15. 本発明の実施例の容積型流体機械の断面図。Sectional drawing of the positive displacement fluid machine of the Example of this invention. 本発明の実施例の容積型流体機械の流体の流れを示した斜視図。The perspective view which showed the flow of the fluid of the positive displacement fluid machine of the Example of this invention. 図25のW−W線に沿う断面図。FIG. 26 is a sectional view taken along line WW in FIG. 25. 図25のT−T線に沿う断面図。FIG. 26 is a sectional view taken along line TT in FIG. 25. 図25のV−V線に沿う断面図。FIG. 26 is a sectional view taken along line VV in FIG. 25. 図25のU−U線に沿う断面図。FIG. 26 is a cross-sectional view taken along the line U-U in FIG. 25. 図25のQ−Q線に沿う断面図。FIG. 26 is a sectional view taken along line Q-Q in FIG. 25. 図25のR−R線に沿う断面図。FIG. 26 is a sectional view taken along line RR in FIG. 25. 図25のS−S線に沿う断面図。FIG. 26 is a cross-sectional view taken along line SS of FIG. 25.

(参考形態1)
以下、本発明の第一の参考形態を図面に基づいて説明する。参考形態1の容積型流体機械10は、たとえば、空気、冷凍サイクル用の冷媒ガス、などの圧縮性流体を取り扱う容積型の流体機械に関する。構成部材および流体貯留室をケーシング11内に形成してコンパクトな構造に形成してある。図1に示すように、ケーシング11には、両端部を閉塞するようにフロントプレート12およびリアプレート13がそれぞれボルト14により締め付けられている。駆動軸15は、容積型流体機械10の中心部に配置され両側の側部まで延びており、一端部には入力部材の連結部が形成されている。フロントプレート12とリアプレート13に装着されたベアリング16a,16bにより回転自在に支持される。
(Reference form 1)
Hereinafter, a first reference embodiment of the present invention will be described with reference to the drawings. The positive displacement fluid machine 10 of the reference form 1 relates to a positive displacement fluid machine that handles a compressible fluid such as air or refrigerant gas for a refrigeration cycle. The structural member and the fluid storage chamber are formed in the casing 11 to form a compact structure. As shown in FIG. 1, a front plate 12 and a rear plate 13 are fastened to the casing 11 with bolts 14 so as to close both ends. The drive shaft 15 is disposed at the center portion of the positive displacement fluid machine 10 and extends to both side portions, and a connection portion for an input member is formed at one end portion. It is rotatably supported by bearings 16a and 16b attached to the front plate 12 and the rear plate 13.

図1および図2にみられるように駆動軸15には、駆動軸15の回転軸線15cに対して、ロータ22の中心軸線22cを偏心させる偏心部20が形成され、この偏心部20の外周側には図1,2および図7にみられるように、ロータ支持用ベアリング23a,23bが装着されている。そして、このロータ支持用のベアリング23a,23bの中心、およびロータ22の中心軸線22cは、偏心部20の中心軸線と一致する。図2および図3に示すように、ケーシング11の内周面にボルト14により固定されるシリンダ30には、駆動軸15の回転向きDに沿って概ね60°の間隔に6つのベーン溝50が形成されている。それぞれのベーン溝50には、主作動室40を低圧側と高圧側とに区画するベーン部51a,51b,51c,51d,51e,51fが径方向に摺動自在に収容されている。これらのベーン部51a,51b,51c,51d,51e,51fには、径方向内側の端部に揺動ベーン56が配設されている。ベーン部51の揺動ベーン56側の端部に円弧凹面が形成され、揺動ベーン56のベーン部51側の端部には円弧凸面が形成されており、揺動ベーン56は、円弧凸面をベーン部51の円弧凹面に嵌合することによってベーン部51に揺動可能に連結されている。そして、ベーン部51および揺動ベーン56の軽量化を図るため中空部68がそれぞれ形成されている。ベーン溝50の閉口部側にはベーン部51a,51b,51c,51d,51e,51fをロータ22に向けてそれぞれ付勢する円錐ばね52が配置されている。この円錐ばね52により揺動ベーン56の摺接面57はロータ22の外周面24に押し付けられる。また、ロータ22の公転運動に応じて、ベーン部51がベーン溝50内を往復動すると共に、ロータ摺接面24の変位に追随して揺動ベーン56が揺動し、揺動ベーン56の摺接面57も自在に変移するため、ロータの摺接面24と揺動ベーンの摺接面57との摺接面は常に面接触が維持される。したがって、摺接面57をロータ摺接面24に当接させる円錐ばね52の押し付ける力が小さくても主作動室40のシール性が確保されるため、摺動抵抗が軽減され、容積型流体機械10の効率と、摺接部の磨耗が抑制され耐久性が向上するとともに後述する圧縮行程時にばねを縮小させるための動力が軽減され、入力動力も軽減されるため入力効率が改善される。さらに、各ベーン溝50の閉口部側、すなわち背圧室を有効に活用して機械の充填効率を高めることにより装置の小型軽量化を図るため、副作動室45が形成されている。これにより容積型流体機械10から吐出される流体の量が大幅に増加する。   As shown in FIGS. 1 and 2, the drive shaft 15 is formed with an eccentric portion 20 that decenters the central axis 22 c of the rotor 22 with respect to the rotation axis 15 c of the drive shaft 15. As shown in FIGS. 1, 2, and 7, rotor support bearings 23a and 23b are mounted. The centers of the bearings 23 a and 23 b for supporting the rotor and the center axis 22 c of the rotor 22 coincide with the center axis of the eccentric portion 20. As shown in FIGS. 2 and 3, the cylinder 30 fixed to the inner peripheral surface of the casing 11 with bolts 14 has six vane grooves 50 at intervals of approximately 60 ° along the rotational direction D of the drive shaft 15. Is formed. In each vane groove 50, vane portions 51a, 51b, 51c, 51d, 51e, 51f that divide the main working chamber 40 into a low pressure side and a high pressure side are accommodated slidably in the radial direction. In these vane portions 51a, 51b, 51c, 51d, 51e, and 51f, a swinging vane 56 is disposed at the radially inner end. An arc concave surface is formed at the end of the vane portion 51 on the swing vane 56 side, an arc convex surface is formed at the end of the swing vane 56 on the vane portion 51 side, and the swing vane 56 has an arc convex surface. The vane portion 51 is swingably connected to the vane portion 51 by fitting into the concave arc surface of the vane portion 51. In order to reduce the weight of the vane portion 51 and the swinging vane 56, hollow portions 68 are formed. Conical springs 52 that urge the vane portions 51 a, 51 b, 51 c, 51 d, 51 e, 51 f toward the rotor 22 are disposed on the closing portion side of the vane groove 50. By this conical spring 52, the sliding contact surface 57 of the swing vane 56 is pressed against the outer peripheral surface 24 of the rotor 22. Further, according to the revolution movement of the rotor 22, the vane portion 51 reciprocates in the vane groove 50, and the swing vane 56 swings following the displacement of the rotor sliding contact surface 24. Since the slidable contact surface 57 is also freely changed, the slidable contact surface between the slidable contact surface 24 of the rotor and the slidable contact surface 57 of the swing vane is always maintained in surface contact. Accordingly, the sealing performance of the main working chamber 40 is ensured even if the pressing force of the conical spring 52 that makes the sliding contact surface 57 abut against the rotor sliding contact surface 24 is small, so that the sliding resistance is reduced, and the positive displacement fluid machine 10 and the wear of the sliding contact portion are suppressed, the durability is improved, the power for reducing the spring during the compression stroke described later is reduced, and the input power is also reduced, so that the input efficiency is improved. Further, the auxiliary working chamber 45 is formed in order to reduce the size and weight of the apparatus by effectively using the closed portion side of each vane groove 50, that is, the back pressure chamber to increase the filling efficiency of the machine. This greatly increases the amount of fluid discharged from the positive displacement fluid machine 10.

図1に仮想線で示すように、フロントプレート12と略平行に、かつシリンダ30の軸方向略中心部に吸入室33と吐出室36とを区画する隔壁35が形成される。図3に示すように、この隔壁35は、ベーン溝50と直交するように形成されシリンダ30と一体に構成されてもよい。これによりシリンダ30の鋼性が高まり、主作動室40および副作動室45に作用する流体圧力によりシリンダ30が歪むのを抑制される。   As shown in phantom lines in FIG. 1, a partition wall 35 is formed that is substantially parallel to the front plate 12 and that partitions the suction chamber 33 and the discharge chamber 36 at a substantially axial center portion of the cylinder 30. As shown in FIG. 3, the partition wall 35 may be formed so as to be orthogonal to the vane groove 50 and integrally formed with the cylinder 30. Thereby, the steel property of the cylinder 30 is enhanced, and the cylinder 30 is suppressed from being distorted by the fluid pressure acting on the main working chamber 40 and the sub working chamber 45.

図4は円錐ばね52の最縮小状態における円錐ばね52の収納部を拡大して示すものである。参考形態1では、付勢部材であるばね部材として、ばねの伸張に伴う反力の変動率が比較的小さく安定した付勢力が得られるとともに、ばねが圧縮された縮小状態における形状がコンパクトな円錐ばね52が使用される。円錐ばね52は、ベーン溝50の閉口部とベーン部51の径方向外側端部とに、形成されたばね収容部53に収容される。 FIG. 4 is an enlarged view of the storage portion of the conical spring 52 in the most contracted state of the conical spring 52 . In the reference form 1 , as a spring member which is an urging member, a stable urging force with a relatively small variation rate of the reaction force accompanying the extension of the spring is obtained, and a compact shape in a contracted state where the spring is compressed is a compact cone. A spring 52 is used. The conical spring 52 is accommodated in a spring accommodating portion 53 formed in the closing portion of the vane groove 50 and the radially outer end portion of the vane portion 51.

図5に示すものは、ベーン部51の拡大図である。ロータ22の進角に伴いベーン部51が径方向外側に移動するとき、すなわち圧縮行程にあるとき、主作動室40に蓄えられた流体が圧縮される圧力がピークを迎えようとしている高圧の主作動室40dから、圧縮行程初期にある低圧の主作動室40c側に向く力がベーン部51の側部に矢印で示すF1の方向に力が作用し、ベーン部51を捏ねる力が働き、ベーン溝50とベーン部51との摺動抵抗が増大し、入力効率の低下と、ベーン溝50の側面とベーン部51の摺接部の偏磨耗が進むという問題が発生する。上記問題を改善するためベーン部51の径方向外側端部の側面をベーン部51の中心軸線51Yに対して駆動軸の回転向きDの逆に向く下り傾斜面54が形成されている。これにより傾斜面54には矢印で示すF2の向きに力が作用する。一方、導通孔64を介して側室46に導かれた副作動室45dの流体圧は、矢印で示すF3に向く力が側室46に面するベーン部51dの側部に作用する。そして、主作動室40cに作用している低圧の作動流体は矢印F4に向く力が揺動ベーン56の周部およびベーン部51dの側部に作用する。さらに、導通孔65および第一圧力室60,導通孔66を介して第二圧力室62に導かれる副作動室45dの流体圧は矢印F5に示す向きに揺動ベーン56およびベーン部51dを付勢している。これらのF1、F2、F3、F4、F5の力の大きさは、主作動室40および副作動室45の圧力とそれぞれの受圧面積に比例する。このため傾斜面54の傾斜角および側室46と第二圧力室62の受圧面積は最良に調整されている。これによりベーン部51dの側部に作用する力は互いに打ち消し合われ均衡される。このようにしてベーン部51は良好な姿勢が維持されベーン溝50に沿って滑らかな摺動が可能になり、前記問題が改善される。   FIG. 5 is an enlarged view of the vane portion 51. When the vane portion 51 moves radially outward as the rotor 22 advances, that is, during the compression stroke, the pressure at which the fluid stored in the main working chamber 40 is compressed is about to reach a peak. A force directed from the working chamber 40d toward the low pressure main working chamber 40c in the initial stage of the compression stroke acts on the side of the vane portion 51 in the direction of F1 indicated by an arrow, and a force acting on the vane portion 51 acts. The sliding resistance between the groove 50 and the vane part 51 is increased, and there arises a problem that the input efficiency is lowered and the side surface of the vane groove 50 and the sliding contact part of the vane part 51 are further worn away. In order to improve the above problem, a downward inclined surface 54 is formed in which the side surface of the radially outer end of the vane portion 51 faces the center axis 51Y of the vane portion 51 in the direction opposite to the rotational direction D of the drive shaft. As a result, a force acts on the inclined surface 54 in the direction F2 indicated by the arrow. On the other hand, the fluid pressure in the auxiliary working chamber 45 d guided to the side chamber 46 through the conduction hole 64 acts on the side portion of the vane portion 51 d facing the side chamber 46, as indicated by the arrow F 3. In the low-pressure working fluid acting on the main working chamber 40c, the force directed to the arrow F4 acts on the peripheral portion of the swing vane 56 and the side portion of the vane portion 51d. Further, the fluid pressure in the sub working chamber 45d guided to the second pressure chamber 62 through the conduction hole 65, the first pressure chamber 60, and the conduction hole 66 is provided with the swing vane 56 and the vane portion 51d in the direction indicated by the arrow F5. It is fast. The magnitudes of these forces F1, F2, F3, F4, and F5 are proportional to the pressures in the main working chamber 40 and the sub working chamber 45 and the pressure receiving areas thereof. For this reason, the inclination angle of the inclined surface 54 and the pressure receiving areas of the side chamber 46 and the second pressure chamber 62 are optimally adjusted. As a result, the forces acting on the side portions of the vane portion 51d cancel each other and are balanced. In this way, the vane portion 51 is maintained in a good posture and can be smoothly slid along the vane groove 50, thereby improving the problem.

さらに、圧縮行程のピーク時におけるそれぞれの副作動室45内に作用する流体圧力は、ベーン部51dおよび揺動ベーン56をロータの摺接面24に向けて過剰な力で押し付ける。このためベーン部の摺接面55と揺動ベーンの摺接面58およびロータの摺接面24と揺動ベーンの摺接面57との摩擦が増加して、揺動ベーン56の滑らかな揺動運動が損なわれるとともに、ロータ22の自転に伴う摺動抵抗が増加して、容積型流体機械10の効率および耐久性を低下させるという問題がある。上記問題を改善するため、図4および図5に示すように、ベーン部51と揺動ベーン56との間には、主作動室40から遮断された第一圧力室60が設けられている。また、ベーン部51には、ベーン部51の中心軸線51Yに沿って導通孔65が形成されている。さらに、揺動ベーン56のロータ22側の端部には、ロータ22の外周面24により塞がれて主作動室40から遮断された第二圧力室62が設けられている。そして、揺動ベーン56には、ベーン部51の中心軸線51Yに沿って導通孔66が形成されている。副作動室45内の流体は、導通孔65を介して、第一圧力室60に導かれた後、さらに導通孔66を介して第二圧力室62に導かれる。これにより副作動室45内の流体圧力が第一圧力室60および第二圧力室62に作用して、ベーン部51の摺接面55と揺動ベーン56の摺接面58およびロータ22の摺接面24と揺動ベーン56の摺接面57とは互いに退け合う力が発生し、上記摩擦は軽減され、上記問題も改善されるとともに容積型流体機械10の効率および耐久性も向上する。図6に示すものは、隔壁35により区画された吸入室33の横断面図である。吸入室33には吸入口29が接続されている。シリンダ30の周部にそれぞれの吸入室33に吸入される流体を互いに流通させる連通溝32が形成されている。ベーン溝50の閉口部と吸入室33の間には、吸入室33から副作動室45へ流体を通過させ、逆流を阻止する吸入側の逆止弁34がそれぞれ設けられている。これにより、ベーン部51が上死点から下死点に向かうとき、すなわち主作動室40および副作動室45が吸入行程の動作を行っているとき、流体は、吸入口29から吸い込まれて吸入室33に導かれた後、流通溝32および逆止弁34を介して副作動室45に吸い込まれ、さらに連通孔59を介して、主作動室40にも吸い込まれる。   Further, the fluid pressure acting in each auxiliary working chamber 45 at the peak of the compression stroke presses the vane portion 51d and the swing vane 56 toward the sliding contact surface 24 of the rotor with an excessive force. For this reason, the friction between the sliding contact surface 55 of the vane portion and the sliding contact surface 58 of the swinging vane and the sliding contact surface 24 of the rotor and the sliding contact surface 57 of the swinging vane increases, and the swinging vane 56 is smoothly swung. There is a problem that the dynamic motion is impaired and the sliding resistance accompanying the rotation of the rotor 22 is increased, thereby reducing the efficiency and durability of the positive displacement fluid machine 10. In order to improve the above problem, as shown in FIGS. 4 and 5, a first pressure chamber 60 that is cut off from the main working chamber 40 is provided between the vane portion 51 and the swing vane 56. In addition, a conduction hole 65 is formed in the vane portion 51 along the central axis 51 </ b> Y of the vane portion 51. Further, a second pressure chamber 62 that is blocked by the outer peripheral surface 24 of the rotor 22 and is cut off from the main working chamber 40 is provided at the end of the swing vane 56 on the rotor 22 side. In the swing vane 56, a conduction hole 66 is formed along the central axis 51Y of the vane portion 51. The fluid in the sub working chamber 45 is led to the first pressure chamber 60 through the conduction hole 65 and then led to the second pressure chamber 62 through the conduction hole 66. As a result, the fluid pressure in the sub working chamber 45 acts on the first pressure chamber 60 and the second pressure chamber 62, and the sliding contact surface 55 of the vane portion 51, the sliding contact surface 58 of the swing vane 56, and the sliding of the rotor 22. The contact surface 24 and the sliding contact surface 57 of the oscillating vane 56 generate a retreating force, the friction is reduced, the above problems are improved, and the efficiency and durability of the positive displacement fluid machine 10 are improved. FIG. 6 is a cross-sectional view of the suction chamber 33 defined by the partition wall 35. A suction port 29 is connected to the suction chamber 33. A communication groove 32 through which fluids sucked into the respective suction chambers 33 circulate is formed in the periphery of the cylinder 30. Between the closed portion of the vane groove 50 and the suction chamber 33, a suction-side check valve 34 that allows fluid to pass from the suction chamber 33 to the auxiliary working chamber 45 and prevents backflow is provided. Thus, when the vane portion 51 moves from the top dead center to the bottom dead center, that is, when the main working chamber 40 and the sub working chamber 45 are performing the suction stroke, the fluid is sucked through the suction port 29 and sucked. After being guided to the chamber 33, it is sucked into the auxiliary working chamber 45 through the flow groove 32 and the check valve 34, and further sucked into the main working chamber 40 through the communication hole 59.

図7に示すものは、隔壁35により区画された吐出室36の横断面図である。ベーン部51が下死点から上死点に向かうとき、すなわち主作動室40および副作動室45が圧縮行程の動作を行うとき、主作動室40に満たされている流体は、連通孔59を介して副作動室45に向けて押し出される。副作動室45に満たされている流体の圧縮圧力により吐出側の逆止弁37が開弁流通され、シリンダ30の周部にそれぞれの吐出室36に満たされている流体を流通させるように形成される連通溝38および吐出室36を経由して吐出口39から、主作動室40および副作動室45内の流体は、容積型流体機械10の機外へ吐出される FIG. 7 is a cross-sectional view of the discharge chamber 36 partitioned by the partition wall 35. When the vane portion 51 moves from the bottom dead center to the top dead center, that is, when the main working chamber 40 and the sub working chamber 45 perform the operation of the compression stroke, the fluid filled in the main working chamber 40 passes through the communication hole 59. And pushed out toward the sub working chamber 45. The check valve 37 on the discharge side is opened and circulated by the compression pressure of the fluid filled in the sub working chamber 45, and the fluid filled in each discharge chamber 36 is circulated around the periphery of the cylinder 30. The fluid in the main working chamber 40 and the sub working chamber 45 is discharged from the discharge port 39 to the outside of the positive displacement fluid machine 10 through the communication groove 38 and the discharge chamber 36 .

(参考形態2)
次に、図8ないし図10を参照して本発明の参考形態2による容積型流体機械10を説明する。なお、以下の参考形態2は上述の参考形態1と同様な原理によるものであるため、上述の実施形態と同様な部材には同様な符号を付してその詳細な説明を省略する。参考形態2による容積型流体機械10は、上述の第一の参考形態と同様に非圧縮性の流体を取り扱うものである。図8に示すものは参考形態2における吸入室33側の横断面図である。図8に明らかなように参考形態2では、参考形態1にみられたベーン部51に形成されていた連通孔59は省略されている。図8および図10から明らかなように、連通孔59にかえて、各吸入室33には、シリンダ30によって形成される吸入室33と主作動室40とが最も接近している部分の駆動軸15の回転向きD寄りの位置に、吸入室33側から主作動室40側へは流体を通過させ逆流を阻止する逆止弁44がそれぞれ配置されている。このため参考形態1に比べコストの上昇は避けられないものの、上述の参考形態1にあっては、ベーン部51に形成された連通孔59を介して主作動室40a,40b,40c,40d,40e,40fのそれぞれに流体が吸い込まれていたのに比べ、吸入口29から吸入され吸入室33に蓄えられている流体を、逆止弁44を介して短絡化された流通路を経て主作動室40a,40b,40c,40d,40e,40fのそれぞれに流体が取り込まれるようになり吸入効率が改善される。図9に示すものは参考形態2における吐出室36側の横断面図である。参考形態2ではベーン部51に形成されていた連通孔59は省略されている。図9および図10から明らかなように、連通孔59にかえて、各吐出室36には、シリンダ30によって形成される吐出室36と主作動室40とが最も接近している部分の駆動軸15の回転向きD寄りの位置に、主作動室40側から吐出室36側へは流体を通過させ逆流を阻止する逆止弁47がそれぞれ配置されている。このため参考形態1の構成に比べコストの上昇は避けられないものの、上述の参考形態1にあっては、ベーン部51に形成された連通孔59を介して主作動室40a,40b,40c,40d,40e,40fのそれぞれから吐出室36に流体が吐出されていた参考形態1の場合に比べ、主作動室40a,40b,40c,40d,40e,40fのそれぞれから逆止弁37を介して短絡化された流通路を経て吐出室36に吐出されるようになり吐出効率が改善される。
(Reference form 2)
Next, the positive displacement fluid machine 10 according to the second embodiment of the present invention will be described with reference to FIGS. In addition, since the following reference form 2 is based on the same principle as the above-mentioned reference form 1, the same code | symbol is attached | subjected to the member similar to the above-mentioned embodiment, and the detailed description is abbreviate | omitted. The positive displacement fluid machine 10 according to the reference form 2 handles an incompressible fluid as in the first reference form described above. 8 is a cross-sectional view on the suction chamber 33 side in Reference Embodiment 2. As apparent from FIG. 8, in the reference form 2, the communication hole 59 formed in the vane portion 51 in the reference form 1 is omitted. As apparent from FIGS. 8 and 10, instead of the communication hole 59, each suction chamber 33 has a drive shaft at a portion where the suction chamber 33 formed by the cylinder 30 and the main working chamber 40 are closest to each other. A check valve 44 that passes fluid from the suction chamber 33 side to the main working chamber 40 side and prevents backflow is disposed at a position near the rotational direction D of 15. For this reason, although an increase in cost is unavoidable as compared with the reference embodiment 1, in the above-described reference embodiment 1, the main working chambers 40a, 40b, 40c, 40d, and the like are connected via the communication holes 59 formed in the vane portion 51. Compared to the case where fluid is sucked into each of 40e and 40f, the main operation of the fluid sucked from the suction port 29 and stored in the suction chamber 33 via the check passage 44 is short-circuited via the check valve 44. The fluid is taken into each of the chambers 40a, 40b, 40c, 40d, 40e, and 40f, and the suction efficiency is improved. FIG. 9 is a cross-sectional view of the discharge chamber 36 side in Reference Embodiment 2. In the reference form 2, the communication hole 59 formed in the vane portion 51 is omitted. As is apparent from FIGS. 9 and 10, instead of the communication hole 59, each discharge chamber 36 has a drive shaft at a portion where the discharge chamber 36 formed by the cylinder 30 and the main working chamber 40 are closest to each other. A check valve 47 that passes a fluid from the main working chamber 40 side to the discharge chamber 36 side and prevents backflow is disposed at a position near the rotation direction D of 15. For this reason, although an increase in cost is unavoidable as compared with the configuration of the reference form 1, in the above-described reference form 1, the main working chambers 40a, 40b, 40c, Compared to the case of the first embodiment in which fluid is discharged from each of 40d, 40e, and 40f to the discharge chamber 36, the main working chambers 40a, 40b, 40c, 40d, 40e, and 40f are connected via check valves 37, respectively. The discharge efficiency is improved by discharging into the discharge chamber 36 through the short-circuited flow passage.

(参考形態3)
次に、図11ないし図18を参照して参考形態3による容積型流体機械10を説明する。参考形態3による容積型流体機械10は、上述の参考形態1および参考形態2と異なり非圧縮性流体である例えば作動油などを用いた油圧ポンプおよび油圧モータなどの容積型流体機械に適する。図11に示すものは、本発明の参考形態3による容積型流体機械10の縦断面図である。仮想線で示す吸入口29に連通させて形成される吸入室33と、仮想線で示す吐出口39に連通される吐出室36とを区画する隔壁35が仮想線で示めされている。シリンダ30には仮想線で示し後述する吸入室に連なる連通孔72,73,74および吐出室に連通される連通孔77,78,79が形成されている。図11にみられるように、参考形態3では駆動軸15と一体に回転するように円板70が駆動軸15に、スプライン或いは焼き嵌めなどの適宜な手段により固着されている。一方、駆動軸15の他方の端部近傍には円板70に備えるスプール71と180°位相させてスプール76を備える円板75が駆動軸15と一体に回転するようにスプライン或いは焼き嵌めなどの適宜な手段により固着されている。図12に示すように、上述の参考形態1および2にみられた側室46および傾斜面54は省略され、参考形態3におけるベーン部51の半径外側の端部およびベーン溝50の閉口部はベーン溝50に対して直角に形成されている。そして隔壁35の形状および構成は上述の参考形態1および2と同様である。図13に示すように円板70には円弧状の溝からなる回転式の開閉弁、すなわちスプール71が形成されている。図11および図13にみられるようにスプール71に並行させて形成される円板70の側面と、連通孔72,73,74が形成されるシリンダ30の側面とに気密性を高かめるための摺接面81が形成されている。なお、これらの摺接面81に例えばオーリングなどのシール部材を介装してもよい。図14にみられる吸入口29から吸い込まれる流体は、連通溝32を介して各吸入室33に導かれ満たされている。図15に示すものは容積型流体機械10の吸入室33側の横断面図である。吸入室33側に位置するシリンダ30に形成される連通孔72の端部は吸入室33に開口している。連通孔73の端部は主作動室40に開口している。連通孔74の端部は副作動室45に開口している。そしてこれらの他方の端部は仮想線で示すスプール71が描く旋回円の軌跡内に開口されている。図16に示すものは容積型流体機械10の吐出室36側の横断面図である。吐出室36側に位置するシリンダ30に形成される連通孔77の端部は吐出室36に開口している。連通孔78の端部は主作動室40に開口している。連通孔79の端部は副作動室45に開口している。そしてこれらの他方の端部は仮想線で示すスプール76が描く旋回円の軌跡内に開口している。図17に示すように円板75には円弧状の溝からなる回転式の開閉弁、すなわちスプール76が形成されている。図11および図17にみられるようにスプール76に並行させて形成される円板75の側面と、連通孔77,78,79が形成されるシリンダ30の側面とに気密性を高かめるための摺接面82が形成されている。なお、これらの摺接面に例えばオーリングなどのシール部材を介装してもよい。図18にみられるように、その容積を縮小中のそれぞれの主作動室40および副作動室45に蓄えられた流体は吐出室36へ押し出され連通溝38を介して吐出口39に導かれ機外へ排出される。 図19に示すものは、主作動室40eおよび40dと副作動室45eの近傍を拡大して示すものである。参考形態3のように、非圧縮性の作動流体による容積型流体機械10の場合には、上述の圧縮性流体を取り扱う参考形態1および2と異なり、容積を縮小中の各作動室には等しい圧力が作用している。
(参考形態4)
(Reference form 3)
Next, with reference to FIG. 11 thru | or 18, the positive displacement fluid machine 10 by the reference form 3 is demonstrated. The positive displacement fluid machine 10 according to the reference embodiment 3 is suitable for a positive displacement fluid machine such as a hydraulic pump and a hydraulic motor using, for example, hydraulic oil which is an incompressible fluid, unlike the reference embodiment 1 and the reference embodiment 2 described above. FIG. 11 is a longitudinal sectional view of the positive displacement fluid machine 10 according to the third embodiment of the present invention. A partition wall 35 that divides a suction chamber 33 formed so as to communicate with the suction port 29 indicated by a virtual line and a discharge chamber 36 connected to the discharge port 39 indicated by a virtual line is indicated by a virtual line. The cylinder 30 is formed with communication holes 72, 73, 74 indicated by phantom lines and communicating with a suction chamber, which will be described later, and communication holes 77, 78, 79 communicating with the discharge chamber. As shown in FIG. 11, in Reference Mode 3, the disc 70 is fixed to the drive shaft 15 by appropriate means such as spline or shrink fitting so as to rotate integrally with the drive shaft 15. On the other hand, in the vicinity of the other end of the drive shaft 15, a spline or shrink fit is used so that the disc 75 provided with the spool 76 is rotated 180 ° in phase with the spool 71 provided on the disc 70. It is fixed by appropriate means. As shown in FIG. 12, the side chamber 46 and the inclined surface 54 seen in the above-described reference embodiments 1 and 2 are omitted, and the end portion on the radially outer side of the vane portion 51 and the closing portion of the vane groove 50 in the reference embodiment 3 are vane. It is formed at right angles to the groove 50. The shape and configuration of the partition wall 35 are the same as those in the first and second embodiments. As shown in FIG. 13, the disk 70 is formed with a rotary on-off valve, that is, a spool 71 formed of an arcuate groove. As shown in FIGS. 11 and 13, the airtightness of the side surface of the disk 70 formed in parallel with the spool 71 and the side surface of the cylinder 30 in which the communication holes 72, 73, 74 are formed are increased. A sliding contact surface 81 is formed. Note that a sealing member such as an O-ring may be interposed on these sliding contact surfaces 81. The fluid sucked from the suction port 29 shown in FIG. 14 is guided and filled into the suction chambers 33 through the communication grooves 32. FIG. 15 is a cross-sectional view of the positive displacement fluid machine 10 on the suction chamber 33 side. The end of the communication hole 72 formed in the cylinder 30 located on the suction chamber 33 side opens into the suction chamber 33. The end of the communication hole 73 opens into the main working chamber 40. The end of the communication hole 74 opens into the sub working chamber 45. These other ends are opened in a trajectory of a turning circle drawn by a spool 71 indicated by a virtual line. FIG. 16 is a transverse cross-sectional view of the positive displacement fluid machine 10 on the discharge chamber 36 side. An end of a communication hole 77 formed in the cylinder 30 located on the discharge chamber 36 side opens into the discharge chamber 36. The end of the communication hole 78 opens into the main working chamber 40. The end of the communication hole 79 opens into the sub working chamber 45. These other ends are open in the trajectory of the turning circle drawn by the spool 76 indicated by the phantom line. As shown in FIG. 17, the disc 75 is formed with a rotary on-off valve, that is, a spool 76 formed of an arc-shaped groove. As shown in FIGS. 11 and 17, the side surface of the disk 75 formed in parallel with the spool 76 and the side surface of the cylinder 30 in which the communication holes 77, 78, 79 are formed are provided with high airtightness. A sliding contact surface 82 is formed. Note that, for example, a sealing member such as an O-ring may be interposed on these sliding surfaces. As shown in FIG. 18, the fluid stored in the main working chamber 40 and the sub working chamber 45 whose volume is being reduced is pushed out to the discharge chamber 36 and led to the discharge port 39 through the communication groove 38. It is discharged outside. FIG. 19 shows an enlarged view of the vicinity of the main working chambers 40e and 40d and the sub working chamber 45e. In the case of the positive displacement fluid machine 10 using the incompressible working fluid as in the reference form 3, unlike the reference forms 1 and 2 that handle the compressible fluid, the volume is equal to each working chamber whose volume is being reduced. Pressure is acting.
(Reference form 4)

図20は本発明の参考形態4の容積型流体機械の断面図、図21は図20のM−M線に沿う断面図、図22は図20のN−N線に沿う断面図、図23は図20のO−O線に沿う断面図である。図24(a)ないし(d)は図20のP−P線に沿う断面図で、駆動軸15の回転に伴う作動状態の変化を駆動軸15の回転角90°毎に示すものである。なお、参考形態1ないし3と同一若しくは均等な部材には同一の符号を付している。 20 is a cross-sectional view of a positive displacement fluid machine according to a fourth embodiment of the present invention, FIG. 21 is a cross-sectional view taken along line MM in FIG. 20, FIG. 22 is a cross-sectional view taken along line NN in FIG. FIG. 21 is a sectional view taken along line OO in FIG. 20. FIGS. 24A to 24D are cross-sectional views taken along the line P-P in FIG. 20, and show changes in the operating state accompanying rotation of the drive shaft 15 at every 90 ° rotation angle of the drive shaft 15. In addition, the same code | symbol is attached | subjected to the same or equivalent member as the reference forms 1 thru | or 3.

ベーン部51や揺動ベーン56の構成は、第一圧力室60、第二圧力室62、導通孔65、66を有する点など上記参考形態1乃至3のもの(図4、図5、図19参照)と基本的に同じであるが、揺動ベーン56の摺接面57をケーシング11の内周面110に接触させるものとしているため、前記揺動ベーン56の摺接面57が、ケーシング11の内周面110と略同心の凸形円弧状に形成されている点において異なる。このような構成とすることにより、揺動ベーン56がロータ22の公転に追随して揺動する際の、揺動ベーン56の摺接面57とケーシング11の内周面110との流体密性が向上する。 The configurations of the vane portion 51 and the swing vane 56 are the same as those in the first to third embodiments, such as the first pressure chamber 60, the second pressure chamber 62, and the conduction holes 65 and 66 (FIGS. 4, 5, and 19). Basically, the sliding contact surface 57 of the swinging vane 56 is brought into contact with the inner peripheral surface 110 of the casing 11, so that the sliding contact surface 57 of the swinging vane 56 is the casing 11. This is different in that it is formed in a convex arc shape that is substantially concentric with the inner peripheral surface 110. With this configuration, the fluid tightness between the sliding contact surface 57 of the swing vane 56 and the inner peripheral surface 110 of the casing 11 when the swing vane 56 swings following the revolution of the rotor 22. Will improve.

以下、参考形態4を図20ないし図24に基づいて説明する。ロータ22には、図21に示すように、駆動軸15の回転向きDに沿って120°の等間隔に3つのベーン溝部50が形成されている。各ベーン溝50には、径方向に出没可能なベーン部51が収納されると共に、ベーン部51の先端部に配設された揺動ベーン56をケーシング11の内周面110側に付勢する円錐ばね52が収納されている。また、ロータ22には、軽量化を図るため、複数の中空部68が設けられている。 Hereinafter, Reference Embodiment 4 will be described with reference to FIGS. As shown in FIG. 21, the rotor 22 has three vane groove portions 50 formed at equal intervals of 120 ° along the rotational direction D of the drive shaft 15. Each vane groove 50 accommodates a vane portion 51 that can be protruded and retracted in the radial direction, and urges a swing vane 56 disposed at a tip portion of the vane portion 51 toward the inner peripheral surface 110 side of the casing 11. A conical spring 52 is accommodated. The rotor 22 is provided with a plurality of hollow portions 68 in order to reduce the weight.

そして、揺動ベーン56の円弧状の先端部(摺接面57)がケーシング11の内周面110に接しており、3つのベーン部51により、主作動室は第1〜第3主作動室40a、40b、40cに区画されている。また、各ベーン溝50の閉口部側(背圧室)、すなわちベーン部51によりベーン溝50内に形成される空間は、第1〜第3副作動室45a、45b、45cとして利用される。   The arcuate tip (sliding contact surface 57) of the swing vane 56 is in contact with the inner peripheral surface 110 of the casing 11, and the main working chamber is made up of the first to third main working chambers by the three vanes 51. It is divided into 40a, 40b, and 40c. Further, the closed portion side (back pressure chamber) of each vane groove 50, that is, the space formed in the vane groove 50 by the vane portion 51 is used as the first to third auxiliary working chambers 45a, 45b, and 45c.

駆動軸15の一端(吸入口29側)には、図20に示されるように、ケーシング11の一端側の開口部を塞ぐようにフロントプレート120がボルト止めされると共に、円盤状の円板70が、駆動軸15と一体回転するように、スプライン或いは焼き嵌めなどの適宜な手段により固着されている As shown in FIG. 20, the front plate 120 is bolted to one end of the drive shaft 15 (on the suction port 29 side) so as to close the opening on one end side of the casing 11, and the disk-shaped disk 70. Are fixed by appropriate means such as spline or shrink fitting so as to rotate integrally with the drive shaft 15 .

駆動軸15の他端(吐出口39側)には、ケーシング11の他端側の開口部を塞ぐようにリアプレート130がボルト止めされている。リアプレート130には、図23に示されるように、主作動室吸入分配孔710と連通可能な主作動室吐出孔711および副作動室吸入分配孔720と連通可能な副作動室吐出孔721が形成されている A rear plate 130 is bolted to the other end of the drive shaft 15 (on the discharge port 39 side) so as to close the opening on the other end side of the casing 11. As shown in FIG. 23, the rear plate 130 has a main working chamber discharge hole 711 that can communicate with the main working chamber suction distribution hole 710 and a sub working chamber discharge hole 721 that can communicate with the sub working chamber suction distribution hole 720. Is formed .

また、図20および図23に示すように、ロータ22におけるリアプレート130側の面には円柱状の3つのピン90が装着されており、これらのピン90は駆動軸15の回転向きDに沿って120°の等間隔に配置されている。また、リアプレート130におけるロータ22側の面には、ピン90の突出部が挿入される円柱状の3つのピン係合穴91が形成されている。   As shown in FIGS. 20 and 23, three cylindrical pins 90 are mounted on the surface of the rotor 22 on the rear plate 130 side, and these pins 90 follow the rotational direction D of the drive shaft 15. Are arranged at equal intervals of 120 °. Further, on the surface of the rear plate 130 on the rotor 22 side, three cylindrical pin engagement holes 91 into which the protruding portions of the pins 90 are inserted are formed.

そして、ピン係合穴91によってピン90の移動範囲が規定されると共に、ロータ22の自転が防止される。従って、ピン係合穴91とピン90が、ロータ22の自転を規制する自転防止機構として作用する。これにより、揺動ベーン56の摺接面57の周速を抑えることができる。なお、ピン係合穴91とピン90は、駆動軸15の回転に伴うロータ22の公転運動を妨げないように、その寸法や相対位置等が設定されている。   The pin engagement hole 91 defines the movement range of the pin 90 and prevents the rotor 22 from rotating. Therefore, the pin engagement hole 91 and the pin 90 act as a rotation prevention mechanism that restricts the rotation of the rotor 22. Thereby, the peripheral speed of the sliding contact surface 57 of the rocking vane 56 can be suppressed. The pin engagement hole 91 and the pin 90 are set in dimensions, relative positions, and the like so as not to hinder the revolving motion of the rotor 22 accompanying the rotation of the drive shaft 15.

上記構成において、駆動軸15の回転に伴って、ロータ22は駆動軸20の回転軸線15cを中心にして公転し、ロータ22の公転運動により、図24(a)→図24(b)→図24(c)→図24(d)の順にロータ22の位置が変化し、第1〜第3主作動室40a、40b、40cおよび第1〜第3副作動室45a、45b、45cの容積は、120°の位相差をもって拡大、縮小を繰り返す。   In the above configuration, as the drive shaft 15 rotates, the rotor 22 revolves around the rotation axis 15c of the drive shaft 20, and due to the revolving motion of the rotor 22, FIG. 24 (a) → FIG. 24 (b) → FIG. The position of the rotor 22 changes in the order of 24 (c) → FIG. 24 (d), and the volumes of the first to third main working chambers 40a, 40b, 40c and the first to third sub working chambers 45a, 45b, 45c are as follows. , Repeats enlargement and reduction with a phase difference of 120 °.

ここで、円板70の主作動室吸入分配孔710および副作動室吸入分配孔720は、第1〜第3主作動室40a、40b、40cおよび第1〜第3副作動室45a、45b、45cのうち容積が拡大中の作動室に順次連通するため、例えば主作動室40aおよび副作動室45bの容積が拡大していく間は、吸入口29からの流体が主作動室40aおよび副作動室45bに吸い込まれる。   Here, the main working chamber suction distribution holes 710 and the sub working chamber suction distribution holes 720 of the disc 70 are respectively arranged in the first to third main working chambers 40a, 40b, 40c and the first to third sub working chambers 45a, 45b, 45c sequentially communicates with the working chamber whose volume is expanding. For example, while the volumes of the main working chamber 40a and the sub working chamber 45b are expanded, the fluid from the suction port 29 is supplied to the main working chamber 40a and the sub working chamber 45b. It is sucked into the chamber 45b.

次いで、主作動室40aおよび副作動室45bの容積が縮小する間、主作動室40aおよび副作動室45bに吸入した流体は、主作動室吐出孔711および副作動室吐出孔721、それぞれに配設された逆止弁80を介して吐出口39に導かれて機外に排出される。   Next, while the volumes of the main working chamber 40a and the sub working chamber 45b are reduced, the fluid sucked into the main working chamber 40a and the sub working chamber 45b is distributed to the main working chamber discharge hole 711 and the sub working chamber discharge hole 721, respectively. It is guided to the discharge port 39 through the check valve 80 provided and discharged outside the apparatus.

図25は本発明の実施例の容積型流体機械の断面図、図26は実施例の容積型流体機械の流体の流れを示した斜視図、図27は図25のW−W線に沿う断面図、図28は図25のT−T線に沿う断面図、図29は図25のV−V線に沿う断面図、図30は図25のU−U線に沿う断面図、図31は図25のQ−Q線に沿う断面図、図32は図25のR−R線に沿う断面図、図33は図25のS−S線に沿う断面図である。なお、参考形態1ないし4と同一若しくは均等な部材には同一の符号を付している。 Figure 25 is positive-displacement fluid machine of a cross-sectional view of an embodiment of the present invention, FIG 26 is a perspective view showing the flow of displacement fluid machine of the fluid embodiment, FIG. 27 is taken along the line W-W in FIG. 25 cross-section FIG. 28 is a sectional view taken along line TT in FIG. 25, FIG. 29 is a sectional view taken along line V-V in FIG. 25, FIG. 30 is a sectional view taken along line U-U in FIG. 25 is a sectional view taken along line Q-Q in FIG. 25, FIG. 32 is a sectional view taken along line RR in FIG. 25, and FIG. 33 is a sectional view taken along line SS in FIG. In addition, the same code | symbol is attached | subjected to the same or equivalent member as the reference forms 1 thru | or 4 .

実施例の容積型流体機械は、非圧縮性流体の作動油を媒体とする油圧ポンプや油圧モータなどに適している。上記参考形態4では、ロータ22に3つのベーン溝50を設けて3つのベーン部51を収納していたのに対し、実施例では、図31に示すように、ロータ22に駆動軸15の回転向きDに沿って約51°の間隔に7つのベーン溝50が形成され、それぞれのベーン溝50にベーン部51が径方向に出没可能に収納されている。このようにベーン部を増設することにより流体の脈動を低減し、各ベーン部に対する負荷を分散させることができる。その他、ベーン部51や揺動ベーン56などの構成および作用は、参考形態1ないし4のものと共通している(図4、図5、図19参照)。また、参考形態4では、流体の流通路に逆止弁80を配置していたのに対し、本実施形態では、逆止弁を省略して、吸入側と吐出側を双方向に連通可能としている。 The positive displacement fluid machine of the embodiment is suitable for a hydraulic pump, a hydraulic motor, or the like using hydraulic fluid of an incompressible fluid as a medium. In the fourth embodiment , the rotor 22 is provided with the three vane grooves 50 to store the three vane portions 51. In the embodiment , as shown in FIG. 31, the rotor 22 rotates the drive shaft 15 as shown in FIG. Seven vane grooves 50 are formed at intervals of about 51 ° along the direction D, and the vane portions 51 are accommodated in the respective vane grooves 50 so as to be protruded and retracted in the radial direction. By adding the vane portions in this manner, fluid pulsation can be reduced and the load on each vane portion can be distributed. In addition, the configurations and operations of the vane portion 51 and the swing vane 56 are the same as those in the first to fourth embodiments (see FIGS. 4, 5, and 19). In the fourth embodiment , the check valve 80 is disposed in the fluid flow passage. In the present embodiment, the check valve is omitted and the suction side and the discharge side can be communicated in both directions. Yes.

以下、本実施形態を図25ないし図33に基づいて説明する。駆動軸15には、図26および図27に示すように、吸入側連通路150と吐出側連通路151が設けられており、吸入口29から吸入された流体が、吸入側連通路150を通って主作動室40および副作動室45に導かれ、次いで吐出側連通路151を通って吐出口39から排出される。   Hereinafter, the present embodiment will be described with reference to FIGS. As shown in FIGS. 26 and 27, the drive shaft 15 is provided with a suction side communication path 150 and a discharge side communication path 151, and the fluid sucked from the suction port 29 passes through the suction side communication path 150. Then, it is guided to the main working chamber 40 and the sub working chamber 45 and then discharged from the discharge port 39 through the discharge side communication passage 151.

吸入口29は、図28に示すように、リアプレート130に正面視左に向かって開口して設けられ、吸入側開口部150aを介して駆動軸15に設けられた吸入側連通路150と連通する。駆動軸15周りには吸入側円形溝152が形成されているため、回転する回転軸15の位置に関わらず、吸入口29と吸入側連通路150は常に連通状態にあり、流体が流入可能となっている。   As shown in FIG. 28, the suction port 29 is provided in the rear plate 130 so as to open toward the left in a front view, and communicates with a suction-side communication passage 150 provided in the drive shaft 15 via a suction-side opening 150a. To do. Since the suction-side circular groove 152 is formed around the drive shaft 15, the suction port 29 and the suction-side communication path 150 are always in communication with each other regardless of the position of the rotating rotation shaft 15, and fluid can flow in. It has become.

吐出口39は、図29に示すように、リアプレート130に正面視右に向かって開口して設けられ、吐出側開口部151aを介して駆動軸15に設けられた吐出側連通路151と連通する。駆動軸15周りには吐出側円形溝153が形成されているので、回転する回転軸15の位置に関わらず、吐出口39と吐出側連通路151は常に連通状態にあり、流体が排出可能となっている。   As shown in FIG. 29, the discharge port 39 is provided in the rear plate 130 so as to open toward the right in front view, and communicates with a discharge side communication path 151 provided in the drive shaft 15 via a discharge side opening 151a. To do. Since the discharge-side circular groove 153 is formed around the drive shaft 15, the discharge port 39 and the discharge-side communication path 151 are always in communication regardless of the position of the rotating rotary shaft 15, and fluid can be discharged. It has become.

図25および図30に示すように、リアプレート130とフロントプレート120には、それぞれ7つのピン係合穴91が形成されており、ロータ22の両端面にそれぞれ装着された7つのピン90が対応するピン係合穴91に挿入されることによりロータ22の自転が防止される。   As shown in FIGS. 25 and 30, the rear plate 130 and the front plate 120 are each formed with seven pin engagement holes 91, and the seven pins 90 respectively attached to the both end faces of the rotor 22 correspond to each other. The rotation of the rotor 22 is prevented by being inserted into the pin engaging hole 91 to be rotated.

ロータ22には、図32および図33に示すように、複数の主作動室連通孔220および副作動室連通孔221が設けられている。主作動室連通孔220の外周端は主作動室40に連通し、副作動室連通孔221の外周端は副作動室45に連通している。また、主作動室連通孔220および副作動室連通孔221の内周端は、回転軸15の回転に応じて、後述する吸入側分配室154に連通するか(図32)、あるいは吐出側分配室155に連通する(図33)。   As shown in FIGS. 32 and 33, the rotor 22 is provided with a plurality of main working chamber communication holes 220 and sub working chamber communication holes 221. The outer peripheral end of the main working chamber communication hole 220 communicates with the main working chamber 40, and the outer peripheral end of the sub working chamber communication hole 221 communicates with the sub working chamber 45. In addition, the inner peripheral ends of the main working chamber communication hole 220 and the sub working chamber communication hole 221 communicate with a suction side distribution chamber 154 (FIG. 32) or a discharge side distribution according to the rotation of the rotating shaft 15. It communicates with the chamber 155 (FIG. 33).

偏心部20を有する軸部15には、図25に示すように、ロータ22の中心部よりリアプレート130寄りの位置に、吸入側分配室154が設けられている。吸入側分配室154は、図26および図32に示すように、軸部15を切り欠いて形成される。   As shown in FIG. 25, the shaft portion 15 having the eccentric portion 20 is provided with a suction-side distribution chamber 154 at a position closer to the rear plate 130 than the center portion of the rotor 22. As shown in FIGS. 26 and 32, the suction side distribution chamber 154 is formed by cutting out the shaft portion 15.

また、偏心部20を有する軸部15には、図25に示すように、ロータ22の中心部よりフロントプレート120寄りの位置に、吐出側分配室155が設けられている。吐出側分配室155も、図26および図33に示すように、軸部15を切り欠いて形成される。   Further, as shown in FIG. 25, the shaft portion 15 having the eccentric portion 20 is provided with a discharge-side distribution chamber 155 at a position closer to the front plate 120 than the center portion of the rotor 22. The discharge side distribution chamber 155 is also formed by notching the shaft portion 15 as shown in FIGS.

上記構成において、駆動軸15の回転に伴って、ロータ22は駆動軸20の回転軸線15cを中心にして公転する。そして、ロータ22の公転運動に伴い、主作動室40および副作動室45の容積は拡大と縮小を繰り返す。   In the above configuration, the rotor 22 revolves around the rotation axis 15 c of the drive shaft 20 as the drive shaft 15 rotates. As the rotor 22 revolves, the volumes of the main working chamber 40 and the sub working chamber 45 repeatedly expand and contract.

主作動室40および副作動室45がその容積を拡大させる際には、主作動室連通孔220および副作動室連通孔221が回転軸15の吸入側分配室154に連通されることとなり(図32)、吸入口29から流体が吸入される。   When the volumes of the main working chamber 40 and the sub working chamber 45 are enlarged, the main working chamber communication hole 220 and the sub working chamber communication hole 221 are communicated with the suction side distribution chamber 154 of the rotary shaft 15 (see FIG. 32) The fluid is sucked from the suction port 29.

これとは逆に、主作動室40および副作動室45がその容積を縮小させる際には、主作動室連通孔220および副作動室連通孔221が回転軸15の吐出側分配室155に連通されることとなり(図33)、主作動室40および副作動室45内の流体が吐出側連通路151を介して吐出口39から排出される。   On the contrary, when the main working chamber 40 and the sub working chamber 45 reduce their volumes, the main working chamber communication hole 220 and the sub working chamber communication hole 221 communicate with the discharge side distribution chamber 155 of the rotary shaft 15. Thus, the fluid in the main working chamber 40 and the sub working chamber 45 is discharged from the discharge port 39 through the discharge side communication passage 151.

本実施形態のように、非圧縮性流体の作動油を媒体とする油圧ポンプや油圧モータの場合、各主作動室には等圧の圧力が作用する。このため、従来のベーン形式の容積型流体機械では、圧縮工程において、図31に示すように、各主作動室40に面するベーン部51の受圧面積の大きい方(F1)から小さい方(F2)に向けて圧力が加わり、ベーン部51がベーン溝50の構成壁に押し付けられた状態で摺動することになる。したがって、ベーン部51のベーン溝50に対する摺動抵抗が増大し、機械効率と耐久性が低下するという問題を有していた。   In the case of a hydraulic pump or hydraulic motor using hydraulic fluid of an incompressible fluid as a medium as in the present embodiment, an equal pressure acts on each main working chamber. For this reason, in the conventional vane type positive displacement fluid machine, as shown in FIG. 31, in the compression process, the vane portion 51 facing each main working chamber 40 has a larger pressure receiving area (F1) than a smaller one (F2). ), And the vane portion 51 slides while being pressed against the constituent wall of the vane groove 50. Therefore, the sliding resistance of the vane portion 51 with respect to the vane groove 50 is increased, and the mechanical efficiency and durability are deteriorated.

これに対し、実施例においては、副作動室45内の流体が、導通孔65を介して、第一圧力室60に導かれた後、さらに導通孔66を介して第二圧力室62に導かれることにより、ベーン部51の先端部に付設された揺動ベーン56とケーシング11の内周面110との間に形成される第二圧力室62に、副作動室45の流体圧力を作用させる。これにより揺動ベーン56の揺動角に従って発生する好適な向きの対向付勢力(F3)がベーン部51に作用するため、摺動抵抗が軽減され、耐久性と機械効率の向上が図れる。 On the other hand, in the embodiment , the fluid in the sub working chamber 45 is guided to the first pressure chamber 60 through the conduction hole 65 and then guided to the second pressure chamber 62 through the conduction hole 66. As a result, the fluid pressure of the sub working chamber 45 is applied to the second pressure chamber 62 formed between the swing vane 56 attached to the tip of the vane portion 51 and the inner peripheral surface 110 of the casing 11. . As a result, the opposing biasing force (F3) in a suitable direction generated according to the swing angle of the swing vane 56 acts on the vane portion 51, so that sliding resistance is reduced and durability and mechanical efficiency can be improved.

また、実施例のように、作動油などの非圧縮性流体を用いる場合、ケーシング11の内周面110とロータ22の外周面24とが非接触状態にあっても、主作動室として機能する。これにより、ケーシング11の内周面110とロータ22の外周面(摺接面)24との摩擦が無くなるため、さらに機械効率と耐久性の向上が図れると共に、圧縮性流体を用いる場合と比較して、製造に伴う加工精度を下げることができるため、製造コストの低減が図れる。 Also, as in the embodiment, the case of using an incompressible fluid such as hydraulic oil, and the outer peripheral surface 24 of the inner peripheral surface 110 and the rotor 22 of the casing 11 be in a non-contact state, functions as a main working chamber . As a result, friction between the inner peripheral surface 110 of the casing 11 and the outer peripheral surface (sliding contact surface) 24 of the rotor 22 is eliminated, so that mechanical efficiency and durability can be further improved, and compared with the case where a compressive fluid is used. Thus, since the processing accuracy associated with the manufacturing can be reduced, the manufacturing cost can be reduced.

10 容積型流体機械
11 ケーシング
15 駆動軸
15c 駆動軸の中心線
22 ロータ
24 外周面(摺接面)
29 吸入口
30 シリンダ
31 内周面
33 吸入室
35 隔壁
36 吐出室
39 吐出口
40 主作動室
45 副作動室
50 ベーン溝
51 ベーン部
56 揺動ベーン
60 第一圧力室
62 第二圧力室
70 円板
75 円板
90 ピン
91 係合穴
710 主作動室吸入分配孔
711 主作動室吐出孔
720 副作動室吸入分配孔
721 副作動室吐出孔
150 吸入側連通路
151 吐出側連通路
152 吸入側円形溝
153 吐出側円形溝
154 吸入側分配室
155 吐出側分配室
220 主作動室連通孔
221 副作動室連通孔
DESCRIPTION OF SYMBOLS 10 Positive displacement fluid machine 11 Casing 15 Drive shaft 15c Drive shaft centerline 22 Rotor 24 Outer peripheral surface (sliding contact surface)
29 Suction port 30 Cylinder 31 Inner peripheral surface 33 Suction chamber 35 Partition wall 36 Discharge chamber 39 Discharge port 40 Main working chamber 45 Sub working chamber 50 Vane groove 51 Vane portion 56 Oscillating vane 60 First pressure chamber 62 Second pressure chamber 70 yen Plate 75 Disc 90 Pin 91 Engagement hole
710 Main working chamber suction distribution hole
711 Main chamber discharge hole
720 Sub working chamber suction distribution hole
721 Sub working chamber discharge hole
150 Suction side communication passage
151 Discharge side communication passage
152 Suction side circular groove
153 Discharge side circular groove
154 Suction side distribution chamber
155 Discharge side distribution chamber
220 Main working chamber communication hole
221 Sub working chamber communication hole

Claims (9)

駆動軸(15)に備える偏心部(20)と、
前記偏心部(20)の外周側に配置される軸受(23)と、
前記軸受(23)の外周側に装着され、前記駆動軸(15)の回転に伴って前記駆動軸(15)周りを公転する円筒状のロータ(22)と、
前記駆動軸(15)と同心状に配置され、前記ロータ(22)を収容するケーシング(11)と、
前記ケーシング(11)の内周面(110)とロータ(22)の外周面(24)との間に形成される主作動室(40)と、
ロータ(22)に形成されたベーン溝(50)に収容されて出没可能に設けられ、前記ロータ(22)の外周側に形成される主作動室(40)を低圧側と高圧側とに区画するベーン部(51)を備え、
前記ロータ(22)の公転に伴う前記主作動室(40)の容積の変化により、吸入口(29)から吸入した流体を吐出口(39)から吐出する容積型流体機械において、
前記ベーン部(51)が、前記主作動室(40)側の端部に前記ロータ(22)の公転に応じて揺動可能な揺動ベーン(56)を有していることを特徴とする容積型流体機械。
An eccentric part (20) provided in the drive shaft (15);
A bearing (23) disposed on the outer peripheral side of the eccentric part (20);
A cylindrical rotor (22) mounted on the outer peripheral side of the bearing (23) and revolving around the drive shaft (15) as the drive shaft (15) rotates;
A casing (11) disposed concentrically with the drive shaft (15) and containing the rotor (22);
A main working chamber (40) formed between an inner peripheral surface (110) of the casing (11) and an outer peripheral surface (24) of the rotor (22);
The main working chamber (40) formed on the outer peripheral side of the rotor (22) is provided in a vane groove (50) formed in the rotor (22) so as to be able to appear and retract, and is divided into a low pressure side and a high pressure side. A vane portion (51)
In the positive displacement fluid machine for discharging the fluid sucked from the suction port (29) from the discharge port (39) by the change in the volume of the main working chamber (40) accompanying the revolution of the rotor (22),
The vane portion (51) has an oscillating vane (56) that can oscillate according to the revolution of the rotor (22) at the end on the main working chamber (40) side. Positive displacement fluid machine.
前記揺動ベーン(56)の摺接面(57)が、前記ケーシング(11)の内周面(110)と略同心の凸形円弧状に形成されている請求項記載の容積型流体機械。 The sliding contact surface of the swing vane (56) (57), said casing (11) inner peripheral surface (110) and the displacement type fluid machine according to claim 1 which is formed in a substantially concentric convex arcuate . 前記ケーシング(11)には両端部を閉塞するようにフロントプレート(120)及びリアプレート(130)が固定され、
前記ロータ(22)におけるリアプレート(130)側の面にピン(90)が装着されており、また、リアプレート(130)におけるロータ(22)側の面に、前記ピン(90)の突出部が挿入されるピン係合穴(91)が形成され、ピン係合穴(91)によってピン(90)の移動範囲が規定され、ロータ(22)の自転が防止される請求項1または2記載の容積型流体機械。
A front plate (120) and a rear plate (130) are fixed to the casing (11) so as to close both ends,
A pin (90) is mounted on the surface of the rotor (22) on the rear plate (130) side, and a protrusion of the pin (90) on the surface of the rear plate (130) on the rotor (22) side. A pin engaging hole (91) into which a rotor is inserted is defined, a range of movement of the pin (90) is defined by the pin engaging hole (91), and rotation of the rotor (22) is prevented. positive displacement fluid machine.
前記ベーン部(51)が収容されるベーン溝(50)内の奥部を副作動室(45)とし、副作動室(45)内の流体圧力が背圧としてベーン部(51)に作用するように構成しており、
前記揺動ベーン(56)が、前記ケーシング(11)側の端部に、前記ケーシング(11)の内周面(110)により塞がれて前記主作動室(40)から遮断された圧力室(62)を有し、
前記ベーン部(51)および揺動ベーン(56)には、副作動室(45)内の流体を前記圧力室(62)内に導入する導通孔(65、66)が設けられている請求項1乃至3のいずれか記載の容積型流体機械。
The inner part of the vane groove (50) in which the vane part (51) is accommodated is a sub working chamber (45), and the fluid pressure in the sub working chamber (45) acts on the vane part (51) as a back pressure. Configured as
The pressure chamber in which the oscillating vane (56) is blocked by the inner peripheral surface (110) of the casing (11) at the end on the casing (11) side and is blocked from the main working chamber (40). (62)
The said vane part (51) and the rocking | fluctuation vane (56) are provided with the conduction | electrical_connection hole (65, 66) which introduces the fluid in a sub working chamber (45) into the said pressure chamber (62). 4. The positive displacement fluid machine according to any one of 1 to 3.
前記揺動ベーン(56)が、前記副作動室(45)内の流体圧力と、前記ベーン部(51)を前記ケーシング(11)の内周面(110)側に付勢するばね(52)の付勢力とによって、前記ケーシング(11)の内周面(110)に押圧されながら前記ロータ(22)の公転に伴い揺動して、前記揺動ベーン(56)の摺接面(57)がケーシング(11)の内周面(110)への接触を保持する請求項4記載の容積型流体機械。 The swing vane (56) biases the fluid pressure in the auxiliary working chamber (45) and the vane portion (51) toward the inner peripheral surface (110) of the casing (11). And the slidable contact surface (57) of the oscillating vane (56) by oscillating with the revolution of the rotor (22) while being pressed against the inner peripheral surface (110) of the casing (11). The positive displacement fluid machine according to claim 4, wherein the holding means maintains contact with the inner peripheral surface (110) of the casing (11) . 前記駆動軸(15)の一端には、円板(70)が駆動軸(15)に固着され、この円板(70)には、主作動室(40)と連通可能な主作動室吸入分配孔(710)および副作動室(45)と連通可能な副作動室吸入分配孔(720)が形成されている請求項4または5記載の容積型流体機械。 A disc (70) is fixed to the drive shaft (15) at one end of the drive shaft (15), and the main working chamber suction distribution capable of communicating with the main working chamber (40) is connected to the disc (70). The positive displacement fluid machine according to claim 4 or 5, wherein a sub working chamber suction distribution hole (720) capable of communicating with the hole (710) and the sub working chamber (45) is formed . 前記リアプレート(130)には、主作動室吐出孔(711)および副作動室吐出孔(721)が形成され、
主作動室吐出孔(711)および副作動室吐出孔(721)にはそれぞれ、吐出口(39)側へと流体を通過させてその逆流を防止する逆止弁(80)が設けられた請求項6記載の容積型流体機械。
The rear plate (130) has a main working chamber discharge hole (711) and a sub working chamber discharge hole (721),
Each of the main working chamber discharge hole (711) and the sub working chamber discharge hole (721) is provided with a check valve (80) for allowing fluid to pass to the discharge port (39) side and preventing its backflow. Item 7. The positive displacement fluid machine according to Item 6.
駆動軸(15)には、吸入側連通路(150)と吐出側連通路(151)が設けられており、吸入口(29)から吸入された流体が、吸入側連通路(150)を通って主作動室(40)および副作動室(45)に導かれ、次いで吐出側連通路(151)を通って吐出口(39)から排出される請求項1乃至7記載の容積型流体機械。 The drive shaft (15) is provided with a suction side communication path (150) and a discharge side communication path (151), and the fluid sucked from the suction port (29) passes through the suction side communication path (150). The positive displacement fluid machine according to any one of claims 1 to 7, wherein the positive displacement fluid machine is guided to the main working chamber (40) and the sub working chamber (45) and then discharged from the discharge port (39) through the discharge side communication passage (151) . 軸部(15)の、ロータ(22)の中心部よりそれぞれリアプレート(130)寄りの位置に、軸部(15)を切り欠いて吸入側分配室(154)が形成され、
軸部(15)の、ロータ(22)の中心部よりそれぞれフロントプレート(120)寄りの位置に、軸部(15)を切り欠いて吐出側分配室(155)が形成され、
ロータ(22)には、外周端がそれぞれ主作動室(40)および副作動室(45)に連通した主作動室連通孔(220)および副作動室連通孔(221)が設けられ、
回転軸(15)の回転に応じて、
主作動室(40)および副作動室(45)がその容積を拡大させる際には、主作動室連通孔(220)および副作動室連通孔(221)の内周端が回転軸(15)の吸入側分配室(154)に連通されて吸入口(29)から流体が吸入され、
主作動室(40)および副作動室(45)がその容積を縮小させる際には、主作動室連通孔(220)および副作動室連通孔(221)の内周端が回転軸(15)の吐出側分配室(155)に連通されて主作動室(40)および副作動室(45)内の流体が吐出側連通路(151)を介して吐出口(39)から排出される請求項8記載の容積型流体機械。
A suction side distribution chamber (154) is formed by cutting out the shaft (15) at a position closer to the rear plate (130) than the center of the rotor (22) of the shaft (15),
A discharge side distribution chamber (155) is formed by notching the shaft portion (15) at a position closer to the front plate (120) than the center portion of the rotor (22) of the shaft portion (15),
The rotor (22) is provided with a main working chamber communication hole (220) and a sub working chamber communication hole (221) whose outer peripheral ends communicate with the main working chamber (40) and the sub working chamber (45), respectively.
Depending on the rotation of the rotating shaft (15),
When the main working chamber (40) and the sub working chamber (45) expand their volumes, the inner peripheral ends of the main working chamber communication hole (220) and the sub working chamber communication hole (221) are the rotation shafts (15). The fluid is sucked from the suction port (29) in communication with the suction side distribution chamber (154) of
When the volumes of the main working chamber (40) and the sub working chamber (45) are reduced, the inner peripheral ends of the main working chamber communication hole (220) and the sub working chamber communication hole (221) are the rotation shafts (15). The fluid in the main working chamber (40) and the sub working chamber (45) is discharged from the discharge port (39) through the discharge side communication passage (151). 9. The positive displacement fluid machine according to 8.
JP2009034075A 2008-02-15 2009-02-17 Positive displacement fluid machinery Expired - Fee Related JP4348715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009034075A JP4348715B2 (en) 2008-02-15 2009-02-17 Positive displacement fluid machinery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008035177 2008-02-15
JP2009034075A JP4348715B2 (en) 2008-02-15 2009-02-17 Positive displacement fluid machinery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008157804 Division 2008-06-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009131670A Division JP2009228679A (en) 2008-02-15 2009-05-31 Positive displacement fluid machine

Publications (2)

Publication Number Publication Date
JP2009216088A true JP2009216088A (en) 2009-09-24
JP4348715B2 JP4348715B2 (en) 2009-10-21

Family

ID=41188177

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009034075A Expired - Fee Related JP4348715B2 (en) 2008-02-15 2009-02-17 Positive displacement fluid machinery
JP2009131670A Pending JP2009228679A (en) 2008-02-15 2009-05-31 Positive displacement fluid machine

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009131670A Pending JP2009228679A (en) 2008-02-15 2009-05-31 Positive displacement fluid machine

Country Status (1)

Country Link
JP (2) JP4348715B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013520605A (en) * 2010-02-26 2013-06-06 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Vibrating slide machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013520605A (en) * 2010-02-26 2013-06-06 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Vibrating slide machine

Also Published As

Publication number Publication date
JP2009228679A (en) 2009-10-08
JP4348715B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP5366856B2 (en) Vane rotary type fluid apparatus and compressor
JP4407771B2 (en) Rotary fluid machine
EP1486677A1 (en) Rotary compressor
JP5724785B2 (en) Compressor
JP6302428B2 (en) Cylinder rotary compressor
CN212155151U (en) Rotary compressor
JP4348715B2 (en) Positive displacement fluid machinery
JP5653304B2 (en) Rolling piston compressor
JPH02201086A (en) Fluid compressor
JP4547978B2 (en) Fluid machinery
US5141423A (en) Axial flow fluid compressor with oil supply passage through rotor
US4925378A (en) Rotary vane compressor with valve controlled pressure biased sealing means
JPH07180656A (en) Displacement type pump
CN111379700A (en) Compressor with a compressor housing having a plurality of compressor blades
US11143028B2 (en) Composite piston machine combining rotary oscillating and pendular movements
JP7047792B2 (en) Compressor
KR102547592B1 (en) Vane rotary compressor
JP4572995B1 (en) Positive displacement fluid device
JP3744533B2 (en) Rotary compressor
WO2020166290A1 (en) Compressor
WO2023018382A1 (en) Radial piston rotary machine
JPH07127583A (en) Scroll type fluid machine
JP2020122451A (en) Compressor
JPH04314987A (en) Fluid compressor
JP2010275963A (en) Vane pump

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090302

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees