JP2009216024A - Intake device of internal combustion engine - Google Patents

Intake device of internal combustion engine Download PDF

Info

Publication number
JP2009216024A
JP2009216024A JP2008062148A JP2008062148A JP2009216024A JP 2009216024 A JP2009216024 A JP 2009216024A JP 2008062148 A JP2008062148 A JP 2008062148A JP 2008062148 A JP2008062148 A JP 2008062148A JP 2009216024 A JP2009216024 A JP 2009216024A
Authority
JP
Japan
Prior art keywords
intake
flow path
changing member
bag
path changing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008062148A
Other languages
Japanese (ja)
Inventor
Hisato Hirooka
久人 広岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008062148A priority Critical patent/JP2009216024A/en
Publication of JP2009216024A publication Critical patent/JP2009216024A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intake device of an internal combustion engine capable of properly changing a cross sectional area of an intake passage, eliminating the risk of a sudden flow of gas from the inside of the intake passage into a cylinder. <P>SOLUTION: An expandable/shrinkable bag 3 as a flow passage changing member, a pump 5 for supplying compressed air into the bag 3, and a pressure control valve 4 for changing the pressure inside the bag 3 are provided in an intake device 1 so that a cross sectional area of a flow passage 2b of an intake port 2 is changed in the state of fixing to one part 2a of the inner wall surface of the intake port 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、吸気通路の断面積を変化させることが可能な内燃機関の吸気装置に関する。   The present invention relates to an intake device for an internal combustion engine capable of changing a cross-sectional area of an intake passage.

内燃機関の吸気通路内に可動板、隔壁板等の可動部材を設け、その可動部材を駆動して吸気通路の断面積を変化させることにより、タンブル流といった特定の吸気流を筒内に生じさせる状態と、可動部材による通気抵抗を低減して吸気量の増大に対応させた状態とを切り替え可能とした吸気装置が知られている(例えば特許文献1及び2参照)。その他に、本発明に関連する先行技術文献として特許文献3が存在する。   A movable member such as a movable plate or a partition plate is provided in the intake passage of the internal combustion engine, and a specific intake flow such as a tumble flow is generated in the cylinder by driving the movable member to change the cross-sectional area of the intake passage. There is known an intake device that can switch between a state and a state in which a ventilation resistance by a movable member is reduced to correspond to an increase in intake air amount (see, for example, Patent Documents 1 and 2). In addition, there is Patent Document 3 as a prior art document related to the present invention.

特開平8−121178号公報JP-A-8-121178 特開2004−11442号公報JP 2004-11442 A 特開2005−180247号公報JP 2005-180247 A

上述した吸気装置を有する内燃機関では、冷間始動時の非同期噴射制御によって燃料噴射弁からポート内に噴射された燃料が可動部材の袋小路状の内部空間に回り込み、その燃料が暖機完了まで滞留することがある。この場合、暖機完了後に、断面積を増加させるべく可動部材を駆動すると、可動部材の内部空間に残留した燃料が急激に筒内に流入する。また、広範囲の運転領域で吸気通路にEGRガスを導入する内燃機関の場合には、過渡運転時にて可動部材の内部空間に一時的に高濃度のEGRガスが残留することがある。この場合も、断面積を増加させるべく可動部材を駆動すると、可動部材の内部空間に残留したEGRガスが急激に筒内に流入する。可動部材内のガス類(ここでは燃焼に影響を与えるガスであって、燃料噴霧、EGRガス等を含む。)の残留量の予測は困難なため、その急激な流入により空燃比制御が乱れるといった不都合が生じるおそれがある。   In the internal combustion engine having the above-described intake device, the fuel injected into the port from the fuel injection valve by the asynchronous injection control at the cold start flows into the bag-like inner space of the movable member, and the fuel stays until the warm-up is completed. There are things to do. In this case, after the warm-up is completed, when the movable member is driven to increase the cross-sectional area, the fuel remaining in the internal space of the movable member suddenly flows into the cylinder. In the case of an internal combustion engine that introduces EGR gas into the intake passage in a wide range of operation, high-concentration EGR gas may temporarily remain in the internal space of the movable member during transient operation. Also in this case, when the movable member is driven to increase the cross-sectional area, the EGR gas remaining in the internal space of the movable member suddenly flows into the cylinder. Since it is difficult to predict the residual amount of gases in the movable member (here, gases that affect combustion, including fuel spray, EGR gas, etc.), the air-fuel ratio control is disturbed by the rapid inflow. Inconvenience may occur.

そこで、本発明は、吸気通路内のガス類が筒内に急激に流入するおそれを排除しつつ、吸気通路の断面積を適宜に変化させることが可能な内燃機関の吸気装置を提供することを目的とする。   Therefore, the present invention provides an intake device for an internal combustion engine capable of appropriately changing the cross-sectional area of the intake passage while eliminating the possibility that gases in the intake passage suddenly flow into the cylinder. Objective.

本発明に係る内燃機関の吸気装置は、吸気通路の内壁面の一部に固定された状態で該吸気通路の流路断面積が変化するように膨張及び収縮が可能な袋状の流路変更部材と、前記流路変更部材の内部に流体を供給する流体供給手段と、前記流路変更部材の内部の圧力を変化させる圧力調整手段とを備えている(請求項1)。   An intake device for an internal combustion engine according to the present invention is a bag-like flow path change that can be expanded and contracted so that the flow path cross-sectional area of the intake path changes while being fixed to a part of the inner wall surface of the intake path. A fluid supply means for supplying a fluid to the inside of the flow path changing member; and a pressure adjusting means for changing the pressure inside the flow path changing member.

本発明の吸気装置においては、流路変更部材を膨張又は収縮させることにより、吸気通路内の流路断面積を変化させることができる。袋状の流路変更部材の内部空間が吸気通路内の吸気が流れる領域と完全に仕切られ、吸気通路内に袋小路状の空間が生じないため、吸気通路内に燃料、EGRガス等が導入されても、それらが流路変更部材の内部空間に回り込んで残留せず、吸気弁が開く毎にそれらのガス類が吸気に押し出されて筒内に流入する。従って、燃料、あるいはEGRガス等のガス類が吸気通路内に蓄積されて流路断面積の増加時にそれらのガス類が筒内に筒内に急激に流入するおそれもない。流路変更部材を収縮させることにより、その流路変更部材が吸気の流れに与える抵抗を十分に低減し、吸気量の増大に容易に対応することができる。   In the intake device of the present invention, the flow passage cross-sectional area in the intake passage can be changed by expanding or contracting the flow passage changing member. The internal space of the bag-shaped flow path changing member is completely partitioned from the area where the intake air in the intake passage flows, and no bag-like space is formed in the intake passage, so fuel, EGR gas, etc. are introduced into the intake passage. However, they do not remain in the internal space of the flow path changing member, and each time the intake valve is opened, those gases are pushed out into the intake air and flow into the cylinder. Therefore, there is no possibility that gases such as fuel or EGR gas are accumulated in the intake passage and the gases suddenly flow into the cylinder when the flow passage cross-sectional area increases. By contracting the flow path changing member, it is possible to sufficiently reduce the resistance that the flow path changing member gives to the flow of intake air and easily cope with an increase in the intake air amount.

本発明の一形態において、前記流路変更部材が膨張したときに、該流路変更部材の吸気流れ方向における下流側の端部が前記吸気通路の終端部に臨む位置にあってもよい(請求項2)。この形態によれば、流路変更部材を膨張させることにより、吸気通路の終端部付近まで流路を狭めて筒内に特定の吸気流を確実に生じさせることができる。   In one aspect of the present invention, when the flow path changing member expands, the downstream end of the flow path changing member in the intake flow direction may be located at a position facing the terminal end of the intake passage. Item 2). According to this aspect, by expanding the flow path changing member, the flow path can be narrowed to the vicinity of the end portion of the intake passage, and a specific intake flow can be reliably generated in the cylinder.

本発明の一形態において、前記内燃機関の要求空気量に応じて前記流路変更部材の内部の圧力が変化するように前記圧力調整手段の動作を制御する圧力制御手段をさらに備えてもよい(請求項3)。この形態によれば、要求空気量に応じて流路変更部材が膨張又は収縮して流路断面積が変化する。これにより、内燃機関の負荷に対して流路断面積を適正化することができる。   In one embodiment of the present invention, the apparatus may further include a pressure control unit that controls an operation of the pressure adjusting unit so that a pressure inside the flow path changing member changes according to a required air amount of the internal combustion engine. Claim 3). According to this embodiment, the flow path changing member expands or contracts according to the required air amount, and the flow path cross-sectional area changes. Thereby, a flow-path cross-sectional area can be optimized with respect to the load of an internal combustion engine.

本発明の吸気装置の一形態においては、前記吸気通路の終端部に向かって燃料を噴射する燃料噴射弁が、前記吸気通路の前記流路変更部材によっては塞がれない領域に設けられてもよい(請求項4)。あるいは、EGRガスを導入するためEGR管の終端部が、前記吸気通路の前記流路変更部材によっては塞がれない領域に接続されてもよい(請求項5)。これらの形態によれば、吸気通路に燃料、あるいはEGRガスを導入しても、吸気弁が開く毎にそれらのガス類を吸気通路に残留させることなく筒内に流入させることができる。   In one form of the intake device of the present invention, a fuel injection valve that injects fuel toward the end portion of the intake passage may be provided in a region that is not blocked by the flow path changing member of the intake passage. Good (Claim 4). Alternatively, the end portion of the EGR pipe for introducing EGR gas may be connected to a region of the intake passage that is not blocked by the flow path changing member (Claim 5). According to these embodiments, even if fuel or EGR gas is introduced into the intake passage, each time the intake valve is opened, these gases can be introduced into the cylinder without remaining in the intake passage.

以上に説明したように、本発明の内燃機関の吸気装置においては、吸気通路の内壁面の一部に固定された流路変更部材を膨張又は収縮させることにより、吸気通路の流路断面積を適宜に変化させることが可能である。吸気弁が開く毎に吸気通路内のガス類を筒内に流入させることができるので、流路断面積の増加時にそれらのガス類が筒内に筒内に急激に流入するおそれを排除することができる。しかも、流路変更部材を収縮させた場合には、その流路変更部材が吸気の流れに与える抵抗を十分に低減することが可能であり、吸気量の増大に容易に対応することができる。   As described above, in the intake device for an internal combustion engine according to the present invention, the flow passage changing member fixed to a part of the inner wall surface of the intake passage is expanded or contracted, thereby reducing the flow passage cross-sectional area of the intake passage. It is possible to change appropriately. Each time the intake valve opens, the gases in the intake passage can flow into the cylinder, eliminating the risk of these gases suddenly flowing into the cylinder when the flow path cross-sectional area increases. Can do. Moreover, when the flow path changing member is contracted, it is possible to sufficiently reduce the resistance that the flow path changing member gives to the flow of intake air, and it is possible to easily cope with an increase in the intake air amount.

図1は本発明の一形態に係る吸気装置が適用された内燃機関の吸気系の要部を示す縦断面図である。なお、図1は、内燃機関のシリンダ軸線が上下方向に向けられ、かつシリンダヘッドが燃焼室の上方に位置している状態で描かれている。図示の吸気装置1においては、内燃機関の吸気通路の一部である吸気ポート2の内部に、膨張収縮が可能な袋状の流路変更部材としてのバッグ3が設けられている。図1は、バッグ3が膨らんだ状態を示している。バッグ3は、吸気ポート2内における吸気の流れ方向に延ばされた形状を有し、その下面3aの少なくとも一部は吸気ポート2の内壁面の一部である下面2aに固定されている。バッグ3は、その膨張状態において吸気ポート2の略下半分の空間を埋め、かつその上面3b側に吸気の流路2bが残るような大きさを有している。   FIG. 1 is a longitudinal sectional view showing a main part of an intake system of an internal combustion engine to which an intake device according to an embodiment of the present invention is applied. FIG. 1 is drawn with the cylinder axis of the internal combustion engine oriented in the vertical direction and the cylinder head positioned above the combustion chamber. In the illustrated intake apparatus 1, a bag 3 as a bag-shaped flow path changing member capable of expansion and contraction is provided inside an intake port 2 which is a part of an intake passage of an internal combustion engine. FIG. 1 shows a state where the bag 3 is inflated. The bag 3 has a shape extending in the intake air flow direction in the intake port 2, and at least a part of the lower surface 3 a is fixed to the lower surface 2 a that is a part of the inner wall surface of the intake port 2. The bag 3 is sized so as to fill a substantially lower half space of the intake port 2 in the inflated state and leave the intake flow path 2b on the upper surface 3b side.

バッグ3の下面3aの中央には吸排気口3cが設けられている。吸排気口3cは吸気ポート2外に引き出され、その先端部には調圧弁4を介してポンプ5が接続されている。調圧弁4は、ポンプ5から供給される流体をバッグ3の内部に送り込み、あるいはバッグ3の内部から流体を排出させてバッグ3の内部の圧力を調整する。これにより、本発明の圧力調整手段として機能する。ポンプ5は、高圧の流体(ここでは一例として圧縮空気)を調圧弁4に送り込むことにより、本発明の流体供給手段として機能する。ポンプ5は、内燃機関のクランク軸、車軸等の回転部品から動力を取り込んで作動するものでもよいし、内燃機関が搭載された車両の電源を利用して作動するものでもよい。ポンプ5と調圧弁4との間に圧力蓄積が可能なタンクを設けてもよい。   An intake / exhaust port 3 c is provided at the center of the lower surface 3 a of the bag 3. The intake / exhaust port 3 c is drawn out of the intake port 2, and a pump 5 is connected to a tip portion of the intake / exhaust port 3 c via a pressure regulating valve 4. The pressure regulating valve 4 sends the fluid supplied from the pump 5 into the bag 3 or discharges the fluid from the bag 3 to adjust the pressure inside the bag 3. Thereby, it functions as a pressure adjusting means of the present invention. The pump 5 functions as a fluid supply means of the present invention by sending a high-pressure fluid (here, compressed air as an example) to the pressure regulating valve 4. The pump 5 may be operated by taking in power from rotating parts such as a crankshaft and an axle of the internal combustion engine, or may be operated using a power source of a vehicle on which the internal combustion engine is mounted. A tank capable of accumulating pressure may be provided between the pump 5 and the pressure regulating valve 4.

吸気ポート2の終端部(吸気通路の終端部に相当。)2dには吸気弁6の弁軸6aが通されている。バッグ3は、その膨張状態において、吸気ポート2内の吸気流れ方向下流側の端部が、弁軸6aよりも吸気の流れ方向上流側(図1では右側)に幾らか後退した位置で終端部2dに臨むように設けられている。なお、吸気ポート2はシリンダヘッドの内部に設けられるが、図1に示したバッグ3は、その一部がインテークマニホールドの分岐管内に位置するものであってもよい。また、内燃機関には気筒数に応じて複数の吸気ポートが設けられているが、他の吸気ポートに関しても図1と同様の構成の吸気装置が適用される。   A valve shaft 6a of the intake valve 6 is passed through the end portion (corresponding to the end portion of the intake passage) 2d of the intake port 2. In the inflated state, the bag 3 has an end portion at a position where the downstream end of the intake port 2 in the intake flow direction is somewhat retracted from the valve shaft 6a to the upstream in the intake flow direction (right side in FIG. 1). It is provided to face 2d. Although the intake port 2 is provided inside the cylinder head, a part of the bag 3 shown in FIG. 1 may be located in the branch pipe of the intake manifold. Further, although the internal combustion engine is provided with a plurality of intake ports according to the number of cylinders, an intake device having the same configuration as in FIG. 1 is applied to other intake ports.

吸気ポート2の上部の流路2b、すなわち、バッグ3によっては塞がれない領域にはポート噴射用の燃料噴射弁8が設けられている。燃料噴射弁8は、吸気ポート2の終端部7に向かって燃料を噴射する。吸気ポート2の流路2bには、EGR管9の終端部9aがさらに接続されている。内燃機関の排気通路から戻されるEGRガスは、EGRデリバリ10を経由してEGR管9から流路2bに導入される。   A fuel injection valve 8 for port injection is provided in the flow path 2 b above the intake port 2, that is, in a region that is not blocked by the bag 3. The fuel injection valve 8 injects fuel toward the end portion 7 of the intake port 2. The end portion 9 a of the EGR pipe 9 is further connected to the flow path 2 b of the intake port 2. EGR gas returned from the exhaust passage of the internal combustion engine is introduced into the flow path 2b from the EGR pipe 9 via the EGR delivery 10.

調圧弁4及びポンプ5の動作はエンジンコントロールユニット(以下、ECUと表記する。)20にて制御される。ECU20は、内燃機関の機関回転数、負荷といった情報に基づいて燃料噴射弁8からの燃料噴射量等を制御することにより、内燃機関を目標とする運転状態に制御するコンピュータユニットである。ECU20による調圧弁4等の制御については後述する。   The operations of the pressure regulating valve 4 and the pump 5 are controlled by an engine control unit (hereinafter referred to as ECU) 20. The ECU 20 is a computer unit that controls the internal combustion engine to a target operating state by controlling the fuel injection amount from the fuel injection valve 8 based on information such as the engine speed and load of the internal combustion engine. Control of the pressure regulating valve 4 and the like by the ECU 20 will be described later.

次に、図2〜図4を参照して吸気装置1の動作を説明する。図2は、内燃機関の冷間始動時において、バッグ3を膨張させた状態で燃料噴射弁8から吸気ポート2内に燃料30が非同期噴射されたときの燃料の挙動を示している。非同期噴射された燃料は吸気弁6が開くまで吸気ポート2の終端部2d付近で拡散する。また、図3に示すように、バッグ3を膨張させ、かつ吸気弁6が閉じている状態でEGR管9から流路2bにEGRガス31が導入された場合、そのEGRガス31は吸気弁6が開くまで吸気ポート2の終端部2d付近で拡散する。   Next, the operation of the intake device 1 will be described with reference to FIGS. FIG. 2 shows the behavior of the fuel when the fuel 30 is injected asynchronously from the fuel injection valve 8 into the intake port 2 with the bag 3 inflated during a cold start of the internal combustion engine. The fuel injected asynchronously diffuses in the vicinity of the end portion 2d of the intake port 2 until the intake valve 6 is opened. As shown in FIG. 3, when the EGR gas 31 is introduced from the EGR pipe 9 into the flow path 2 b with the bag 3 inflated and the intake valve 6 closed, the EGR gas 31 is introduced into the intake valve 6. Diffuses in the vicinity of the end portion 2d of the intake port 2 until is opened.

一方、図4に示したように吸気弁6が開かれると、流路2bを経由して吸気Aがシリンダ13内に導入される。このとき、吸気ポート2の終端部2dに残されていた燃料30やEGRガス31は、吸気Aに押し出されてシリンダ13内に流入する。図4の状態では、吸気ポート2の下半分の空間がバッグ3にて埋められているので、吸気Aがシリンダ13の中心寄りに偏って流入し、それによりシリンダ13内には比較的強いタンブル流が形成される。また、バッグ3の内部圧力を調整して流路2bの断面積を変化させることにより、吸入空気量(吸気量)を連続的に変化させることができる。例えば、図4に破線で示すようにバッグ3を縮めることにより吸気量を増加させることができる。バッグ3をほぼ完全に畳んだ場合には、バッグ3が吸気の流れに与える抵抗が十分に小さく、仕切板等が吸気ポート2内に残る従来例に比して、吸気量の増大に容易に対応することができる。   On the other hand, when the intake valve 6 is opened as shown in FIG. 4, the intake air A is introduced into the cylinder 13 via the flow path 2b. At this time, the fuel 30 and the EGR gas 31 remaining in the end portion 2d of the intake port 2 are pushed out into the intake air A and flow into the cylinder 13. In the state of FIG. 4, since the lower half space of the intake port 2 is filled with the bag 3, the intake air A flows in a direction biased toward the center of the cylinder 13, thereby relatively strong tumble in the cylinder 13. A flow is formed. Further, by adjusting the internal pressure of the bag 3 to change the cross-sectional area of the flow path 2b, the intake air amount (intake amount) can be continuously changed. For example, the intake amount can be increased by contracting the bag 3 as shown by the broken line in FIG. When the bag 3 is almost completely folded, the resistance that the bag 3 gives to the flow of intake air is sufficiently small, and it is easier to increase the intake amount than in the conventional example in which the partition plate or the like remains in the intake port 2. Can respond.

上述した構成によれば、バッグ3を膨張させて流路2bの断面積を減少させた場合でも、従来の可動部材の内部空間のような袋小路状の空間が吸気ポート2の内部に生じない。このため、吸気弁6が開かれているにも拘わらず、吸気ポート2の内部に燃料30やEGRガス31が残留するおそれを排除することができる。つまり、吸気弁6が開く毎に、吸気ポート2内の燃料30やEGRガス31がほぼ完全にシリンダ13内に流入する。このため、吸気ポート2の内部に残留ガスが蓄積され、バッグ3を畳んで流路2bの断面積を増加させたときにその残留ガスがシリンダ13内に急激に流入して空燃比制御が乱れるといった不都合が生じるおそれを排除することができる。   According to the configuration described above, even when the bag 3 is inflated to reduce the cross-sectional area of the flow path 2 b, a bag path-like space like the internal space of the conventional movable member does not occur inside the intake port 2. For this reason, it is possible to eliminate the possibility that the fuel 30 and the EGR gas 31 remain in the intake port 2 even though the intake valve 6 is opened. That is, every time the intake valve 6 is opened, the fuel 30 and the EGR gas 31 in the intake port 2 almost completely flow into the cylinder 13. For this reason, residual gas is accumulated in the intake port 2, and when the bag 3 is folded to increase the cross-sectional area of the flow path 2b, the residual gas suddenly flows into the cylinder 13 and the air-fuel ratio control is disturbed. It is possible to eliminate the possibility of such inconvenience.

次に、ECU20によるバッグ3の圧力調整手順について説明する。ECU20は、内燃機関の運転状態を制御するために各種のルーチンを実行するが、その一つとして図5の流路断面積制御ルーチンを所定の周期で繰り返し実行する。流路断面積制御ルーチンは、吸気ポート2の流路2bの断面積を内燃機関の運転状態に応じて制御するための処理である。図5の流路断面積制御ルーチンを開始すると、ECU20はまずステップS1で内燃機関の運転状態を判別する。運転状態は、公知の内燃機関の制御と同様に、機関回転数、アクセルペダルの開度といった情報に基づいて判別してよい。続くステップS2にて、ECU20は運転状態に応じた要求空気量、すなわち内燃機関を目標とする運転状態に制御するために必要な吸気量を演算する。その演算手法も公知の内燃機関の運転制御と同様に行えばよい。次のステップS3にて、ECU20は要求空気量に応じたバッグ3内の目標圧力を決定する。この場合、要求空気量が大きいほどバッグ3の目標圧力は低下する。なお、ステップS3の処理を実行するためには、要求空気量とバッグ3内の圧力との関係を対応付けたマップを予めベンチ適合試験等で作成してECU20のROMに格納し、そのマップを参照して要求空気量に対応する圧力を目標圧力として取得すればよい。なお、吸気圧力がバッグ3の膨張率に与える影響が無視できない場合には、ステップS3で吸気圧力を考慮して目標圧力を決定してもよい。例えば、吸気圧が低いほど目標圧力を相対的に小さい値に補正してもよい。   Next, a procedure for adjusting the pressure of the bag 3 by the ECU 20 will be described. The ECU 20 executes various routines for controlling the operating state of the internal combustion engine. As one of them, the ECU 20 repeatedly executes the flow path cross-sectional area control routine of FIG. 5 at a predetermined cycle. The flow path cross-sectional area control routine is a process for controlling the cross-sectional area of the flow path 2b of the intake port 2 in accordance with the operating state of the internal combustion engine. When the flow path cross-sectional area control routine of FIG. 5 is started, the ECU 20 first determines the operating state of the internal combustion engine in step S1. The operating state may be determined based on information such as the engine speed and the opening degree of the accelerator pedal, similarly to the control of the known internal combustion engine. In the subsequent step S2, the ECU 20 calculates a required air amount corresponding to the operating state, that is, an intake air amount necessary for controlling the internal combustion engine to the target operating state. The calculation method may be performed in the same manner as the operation control of a known internal combustion engine. In the next step S3, the ECU 20 determines a target pressure in the bag 3 corresponding to the required air amount. In this case, the target pressure of the bag 3 decreases as the required air amount increases. In order to execute the process of step S3, a map that associates the relationship between the required air amount and the pressure in the bag 3 is created in advance by a bench fit test or the like, stored in the ROM of the ECU 20, and the map is stored. The pressure corresponding to the required air amount may be acquired as a target pressure by referring to it. If the influence of the intake pressure on the expansion rate of the bag 3 cannot be ignored, the target pressure may be determined in consideration of the intake pressure in step S3. For example, the target pressure may be corrected to a relatively small value as the intake pressure is lower.

続くステップS4にて、ECU20は、バッグ3の圧力がステップS3で決定した目標圧力となるように調圧弁4の設定値を変更する。この場合において、制御前の調圧弁4の設定値が目標圧力よりも高い値であれば、調圧弁4の設定値を低下させてバッグ3から空気を排出させればよい。一方、制御前の調圧弁4の設定値が目標圧力よりも低い値にあるときは、調圧弁4の設定値を上昇させるとともにポンプ5を駆動してバッグ3内に空気を送り込む必要がある。ステップS4にて圧力を調整した後、ECU20は今回のルーチンを終了する。以上のルーチンを実行することにより、ECU20は圧力制御手段として機能する。   In subsequent step S4, the ECU 20 changes the set value of the pressure regulating valve 4 so that the pressure of the bag 3 becomes the target pressure determined in step S3. In this case, if the set value of the pressure regulating valve 4 before the control is a value higher than the target pressure, the set value of the pressure regulating valve 4 may be lowered to discharge air from the bag 3. On the other hand, when the set value of the pressure regulating valve 4 before the control is lower than the target pressure, it is necessary to raise the set value of the pressure regulating valve 4 and drive the pump 5 to send air into the bag 3. After adjusting the pressure in step S4, the ECU 20 ends the current routine. By executing the above routine, the ECU 20 functions as pressure control means.

図6は、内燃機関の要求空気量とタンブル比との関係を示すグラフであって、図中の実線は本形態の吸気装置1の場合を示し、図中の破線は吸気ポート2内に従来の固定型の仕切板を有する吸気装置の場合を示している。図6から明らかなように、本形態では要求空気量が増加するほどバッグ3の圧力が小さく制御されて吸気量が増加し、その吸気量の増加に伴ってタンブル比も増大する。従来例でも同様の関係ではあるが、要求空気量が増加するに従って吸気ポート内の仕切板等が抵抗となり、本形態に比して空気量が早期に頭打ちとなる。その結果、タンブル比の上限も従来例では小さい。一方、本形態の吸気装置1によれば、バッグ3を収縮させた場合の空気抵抗が従来例よりも小さいため、要求空気量の上限が拡大し、それによりタンブル比の上限も従来例と比してより大きくなる。   FIG. 6 is a graph showing the relationship between the required air amount of the internal combustion engine and the tumble ratio. The solid line in the figure shows the case of the intake device 1 of the present embodiment, and the broken line in the figure shows the conventional intake port 2 in the intake port 2. This shows a case of an intake device having a fixed partition plate. As is apparent from FIG. 6, in this embodiment, as the required air amount increases, the pressure of the bag 3 is controlled to be small, the intake air amount increases, and the tumble ratio increases as the intake air amount increases. Although the relationship is the same in the conventional example, as the required air amount increases, the partition plate in the intake port becomes a resistance, and the air amount reaches a peak earlier than in this embodiment. As a result, the upper limit of the tumble ratio is also small in the conventional example. On the other hand, according to the intake device 1 of the present embodiment, the air resistance when the bag 3 is contracted is smaller than that of the conventional example, so that the upper limit of the required air amount is expanded, and the upper limit of the tumble ratio is also compared with that of the conventional example. And get bigger.

本発明は上述した形態に限定されることなく、種々の形態にて実施することができる。例えば、上記の形態ではタンブル流の形成を目的として吸気ポート2の下半分の領域をバッグ3にて埋めるようにしたが、バッグ3を吸気ポートの左右いずれか一方の空間に配置してスワール流を制御するようにしてもよい。バッグ3の内部に供給する流体は、空気に限ることなく、水等の流体でもよい。   This invention is not limited to the form mentioned above, It can implement with a various form. For example, in the above embodiment, the lower half area of the intake port 2 is filled with the bag 3 for the purpose of forming a tumble flow. However, the bag 3 is arranged in either the left or right space of the intake port to provide a swirl flow. May be controlled. The fluid supplied to the inside of the bag 3 is not limited to air but may be a fluid such as water.

本発明の一形態に係る吸気装置が適用された吸気系の要部を示す縦断面図。The longitudinal section showing the important section of the intake system to which the intake device concerning one form of the present invention was applied. 燃料噴射弁から吸気ポート内に非同期噴射された燃料の挙動を示す図。The figure which shows the behavior of the fuel injected asynchronously in the intake port from the fuel injection valve. 吸気ポート内に導入されたEGRガスの挙動を示す図。The figure which shows the behavior of EGR gas introduce | transduced in the intake port. 図2又は図3の状態から吸気弁が開弁したときの吸気の流れを示す図。The figure which shows the flow of intake air when an intake valve opens from the state of FIG. 2 or FIG. 図1のECUが実行する流路断面積制御ルーチンを示すフローチャート。The flowchart which shows the flow-path cross-sectional area control routine which ECU of FIG. 1 performs. 内燃機関の要求空気量とタンブル比との関係を示す図。The figure which shows the relationship between the request | requirement air amount of an internal combustion engine, and a tumble ratio.

符号の説明Explanation of symbols

1 吸気装置
2 吸気ポート
2b 吸気ポート内の流路
2d 吸気ポートの終端部
3 バッグ(流路変更部材)
4 調圧弁(圧力調整手段)
5 ポンプ(流体供給手段)
6 吸気弁
8 燃料噴射弁
9 EGR管
10 EGRデリバリ
13 シリンダ
20 エンジンコントロールユニット(圧力制御手段)
30 燃料
31 EGRガス
DESCRIPTION OF SYMBOLS 1 Intake device 2 Intake port 2b Flow path in intake port 2d Terminal part of intake port 3 Bag (flow path changing member)
4 Pressure regulating valve (pressure adjusting means)
5 Pump (fluid supply means)
6 Intake valve 8 Fuel injection valve 9 EGR pipe 10 EGR delivery 13 Cylinder 20 Engine control unit (pressure control means)
30 Fuel 31 EGR gas

Claims (5)

吸気通路の内壁面の一部に固定された状態で該吸気通路の流路断面積が変化するように膨張及び収縮が可能な袋状の流路変更部材と、前記流路変更部材の内部に流体を供給する流体供給手段と、前記流路変更部材の内部の圧力を変化させる圧力調整手段と、を備えた内燃機関の吸気装置。   A bag-like flow path changing member that can be expanded and contracted so that the flow passage cross-sectional area of the intake passage changes while being fixed to a part of the inner wall surface of the intake passage, and inside the flow path changing member An intake device for an internal combustion engine, comprising: a fluid supply means for supplying fluid; and a pressure adjusting means for changing the pressure inside the flow path changing member. 前記流路変更部材が膨張したときに、該流路変更部材の吸気流れ方向における下流側の端部が前記吸気通路の終端部に臨む位置にある請求項1に記載の吸気装置。   2. The intake device according to claim 1, wherein when the flow path changing member expands, the downstream end of the flow path changing member in the intake flow direction faces the terminal end of the intake passage. 前記内燃機関の要求空気量に応じて前記流路変更部材の内部の圧力が変化するように前記圧力調整手段の動作を制御する圧力制御手段をさらに備えた請求項1又は2に記載の吸気装置。   The intake device according to claim 1, further comprising a pressure control unit that controls an operation of the pressure adjusting unit so that a pressure inside the flow path changing member changes according to a required air amount of the internal combustion engine. . 前記吸気通路の終端部に向かって燃料を噴射する燃料噴射弁が、前記吸気通路の前記流路変更部材によっては塞がれない領域に設けられている請求項1〜3のいずれか一項に記載の吸気装置。   The fuel injection valve for injecting fuel toward the end portion of the intake passage is provided in a region that is not blocked by the flow path changing member of the intake passage. The inhaler described. EGRガスを導入するためEGR管の終端部が、前記吸気通路の前記流路変更部材によっては塞がれない領域に接続されている請求項1〜4のいずれか一項に記載の吸気装置。   The intake device according to any one of claims 1 to 4, wherein an end portion of an EGR pipe for introducing EGR gas is connected to a region of the intake passage that is not blocked by the flow path changing member.
JP2008062148A 2008-03-12 2008-03-12 Intake device of internal combustion engine Pending JP2009216024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008062148A JP2009216024A (en) 2008-03-12 2008-03-12 Intake device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062148A JP2009216024A (en) 2008-03-12 2008-03-12 Intake device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009216024A true JP2009216024A (en) 2009-09-24

Family

ID=41188125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062148A Pending JP2009216024A (en) 2008-03-12 2008-03-12 Intake device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009216024A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015021A (en) * 2015-07-02 2017-01-19 三菱自動車工業株式会社 Internal combustion engine
CN112302835A (en) * 2020-11-11 2021-02-02 江西昌河汽车有限责任公司 Integrated carbon tank

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015021A (en) * 2015-07-02 2017-01-19 三菱自動車工業株式会社 Internal combustion engine
CN112302835A (en) * 2020-11-11 2021-02-02 江西昌河汽车有限责任公司 Integrated carbon tank

Similar Documents

Publication Publication Date Title
KR100843800B1 (en) Method for controlling action of fuel injector and fuel injector
JP5737262B2 (en) Control device for internal combustion engine
JP4415987B2 (en) Internal combustion engine fuel supply device
JP4725564B2 (en) Fuel injection device for internal combustion engine and fuel injection valve thereof
JP2009216024A (en) Intake device of internal combustion engine
JP2001107805A (en) Fuel injection system of internal combustion engine
JP2012229674A (en) Internal combustion engine fuel supply apparatus
JP2010203348A (en) Fuel injection device for internal combustion engine
JP4337689B2 (en) Control device for internal combustion engine
JP6197775B2 (en) Abnormality judgment device for weight reduction valve
JP2009216027A (en) Intake device of internal combustion engine
JP2006329016A (en) Intake device for internal combustion engine
JP5181890B2 (en) Control device for internal combustion engine
US9708956B1 (en) Emission control system and reductant injector
KR100748479B1 (en) Fuel injection system for big engine of natural gas car
JP6098658B2 (en) Evaporative fuel control device for internal combustion engine
JP2006336500A (en) Control device for internal combustion engine
JP2009275610A (en) Fuel injection control device for internal combustion engine
WO2021065426A1 (en) Internal combustion engine
JP7180571B2 (en) Internal combustion engine and its control method
JP2010121586A (en) Fuel injection control device
WO2014087596A1 (en) Fuel supply device
JP6580412B2 (en) Engine control device
JP2008138688A (en) Fuel supply device for internal combustion engine
JP2008019735A (en) Fuel adding valve and fuel adding device