JP2009210645A - Encoding device, decoding device, encoding method, decoding method, program, and recording medium - Google Patents

Encoding device, decoding device, encoding method, decoding method, program, and recording medium Download PDF

Info

Publication number
JP2009210645A
JP2009210645A JP2008051150A JP2008051150A JP2009210645A JP 2009210645 A JP2009210645 A JP 2009210645A JP 2008051150 A JP2008051150 A JP 2008051150A JP 2008051150 A JP2008051150 A JP 2008051150A JP 2009210645 A JP2009210645 A JP 2009210645A
Authority
JP
Japan
Prior art keywords
linear
signal sequence
sequence
prediction
correspondence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008051150A
Other languages
Japanese (ja)
Other versions
JP5013293B2 (en
Inventor
Takehiro Moriya
健弘 守谷
Noboru Harada
登 原田
Masaru Kamamoto
優 鎌本
Yutaka Hori
豊 堀
Shigeki Sagayama
茂樹 嵯峨山
Junki Ono
順貴 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
University of Tokyo NUC
Original Assignee
Nippon Telegraph and Telephone Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, University of Tokyo NUC filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008051150A priority Critical patent/JP5013293B2/en
Publication of JP2009210645A publication Critical patent/JP2009210645A/en
Application granted granted Critical
Publication of JP5013293B2 publication Critical patent/JP5013293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce an encoding amount by achieving high encoding efficiency to signal strings. <P>SOLUTION: The encoding device is a device for encoding the signal strings compressing amplitude, and includes a multi-stage linear prediction means. The encoding device performs reversible linear correspondence processing to input signal strings to make a close linear relationship with the signal strings before compression with at least any one linear prediction means. The encoding device obtains prediction coefficients by performing linear prediction to the signal strings subjected to linear correspondence processing. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、対数近似圧伸PCMなどの圧縮された信号列の符号化装置、復号化装置、符号化方法、復号化方法、プログラム、記録媒体に関する。   The present invention relates to a coding apparatus, a decoding apparatus, a coding method, a decoding method, a program, and a recording medium for a compressed signal sequence such as logarithmic approximate companding PCM.

音声、画像などの情報を圧縮する方法として歪の無い可逆の符号化が知られている。また、波形をそのまま線形PCM信号として記録した場合には各種の圧縮符号化が考案されている(非特許文献1)。   As a method for compressing information such as sound and image, lossless encoding without distortion is known. In addition, when a waveform is recorded as a linear PCM signal as it is, various compression encodings have been devised (Non-Patent Document 1).

一方、電話の長距離伝送やVoIP用の音声伝送には、振幅をそのままの数値とする線形PCMではなく、振幅を対数に近似させた対数近似圧伸PCM(非特許文献2)などが使われている。また、代表的な対数近似圧伸PCM(非特許文献2)であるG.711の符号を、線形な数値(unsigned 8bit value)にマッピングして符号化する技術もある(非特許文献3)。そして、非特許文献3のような符号化技術には、線形予測係数を求める処理を含むものがある。   On the other hand, for long-distance transmission of telephones and voice transmission for VoIP, logarithmic approximate companding PCM (Non-patent Document 2) in which the amplitude is approximated to a logarithm is used instead of the linear PCM with the amplitude as it is. ing. In addition, G. is a typical logarithmic approximate companding PCM (Non-patent Document 2). There is also a technique for mapping the code of 711 to a linear numerical value (unsigned 8-bit value) (Non-Patent Document 3). Some encoding techniques such as those described in Non-Patent Document 3 include processing for obtaining a linear prediction coefficient.

一般的に線形予測係数を求める処理は、以下のような処理である。n番目の時刻の入力信号をx(n)とする。P次の線形予測では、x(n)をP個の予測係数α(ただし、pは1以上P以下の整数)とx(n−1),…,x(n−P)で予測する。具体的には、n番目の時刻の入力信号の予測値x^(n)と予測値の誤差(予測誤差)e(n)は、次式のように求められる。 In general, processing for obtaining a linear prediction coefficient is as follows. The input signal at the nth time is assumed to be x (n). In the P-th order linear prediction, x (n) is predicted with P prediction coefficients α p (where p is an integer not less than 1 and not more than P) and x (n−1),..., X (n−P). . Specifically, the predicted value x ^ (n) of the input signal at the nth time and the error (prediction error) e (n) between the predicted values are obtained as follows.

Figure 2009210645
そして、符号化装置から復号化装置に、予測係数αと予測誤差e(n)の情報(予測係数αと予測誤差e(n)を符号化した符号)を送る。復号化装置では、次式のように信号x(n)を再生する。
Figure 2009210645
Then, the decoding apparatus from the encoding device, and sends the information of the prediction coefficient alpha p prediction error e (n) (code prediction coefficient alpha p prediction error e (n) coded). In the decoding device, the signal x (n) is reproduced as in the following equation.

Figure 2009210645
このように、入力信号x(n)を直接符号化するのではなく、線形予測した上で予測誤差e(n)を符号化する方が、符号化の対象となる信号の振幅を小さくできるので符号量を少なくできる。
Mat Hans, “Lossless Compression of Digital Audio”, IEEE SIGNAL PROCESSING MAGAZINE, July 2001, pp.21-32. ITU-T Recommendation G.711, “Pulse Code Modulation (PCM) of Voice Frequencies”. Florin Ghido, and Ioan Tabus, “ACCOUNTING FOR COMPANDING NONLINEARITIES IN LOSSLESS AUDIO COMPRESSION”, in ICASSP 2007 Proceedings, pp.I-261-I-264 IEEE, 2007.
Figure 2009210645
Thus, rather than directly encoding the input signal x (n), encoding the prediction error e (n) after performing linear prediction can reduce the amplitude of the signal to be encoded. The amount of code can be reduced.
Mat Hans, “Lossless Compression of Digital Audio”, IEEE SIGNAL PROCESSING MAGAZINE, July 2001, pp.21-32. ITU-T Recommendation G.711, “Pulse Code Modulation (PCM) of Voice Frequencies”. Florin Ghido, and Ioan Tabus, “ACCOUNTING FOR COMPANDING NONLINEARITIES IN LOSSLESS AUDIO COMPRESSION”, in ICASSP 2007 Proceedings, pp.I-261-I-264 IEEE, 2007.

一般の電話に代わってVoIPシステムが普及してくると、VoIP用の音声伝送のために求められる伝送容量は増大する。たとえば、非特許文献2のITU−T G.711の場合であれば、1回線に対して64kbit/s×2の伝送容量が必要だが、回線数が増えれば求められる伝送容量も増大する。したがって、対数近似圧伸PCMなどの圧縮された信号列を圧縮符号化する技術(符号量を低減できる技術)が求められる。圧縮とは、元の信号の大小関係(大きさ)を番号系列で示すことを意味している。元の信号の大小関係(大きさ)を示す番号系列とは、大小関係を維持したまま、あるいは大小関係を反転して、均等間隔に付された数である。また、元の信号の大小関係(大きさ)を示す番号系列には、1つの元の信号の大きさ(例えば“0”)に対して2つの異なる番号を付与する場合も含まれる。図1は、第2信号列の振幅の例を示す図である。横軸は線形PCMの場合の値であり、縦軸は対数近似圧伸PCMの場合の対応する値である。図2は、8ビットのμ則の具体的な形式を示す図である。正負を示す1ビット(極性)、指数(傾き)を示す3ビット(指数部)、線形符号での増分を示す4ビット(線形部)から構成されている。この形式の対数近似圧伸PCMの場合、−127から127までの数値を表現できる。これは、線形PCMの−8158から8158までに相当する(図1)。なお、本明細書内で用いる「信号」とは、例えば図2に示されたような「ビット列」を意味しており、「信号列」とはこのような信号が複数個並んだ系列(例えば、160個の信号が並んだ系列)を指す。   When a VoIP system becomes widespread instead of a general telephone, the transmission capacity required for voice transmission for VoIP increases. For example, ITU-T G. In the case of 711, a transmission capacity of 64 kbit / s × 2 is required for one line, but the required transmission capacity increases as the number of lines increases. Therefore, a technique (a technique capable of reducing the code amount) of compressing and encoding a compressed signal sequence such as logarithmic approximate companding PCM is required. Compression means that the magnitude relationship (magnitude) of the original signal is indicated by a number sequence. The number series indicating the magnitude relation (magnitude) of the original signal is a number given at equal intervals while maintaining the magnitude relation or inverting the magnitude relation. In addition, the number series indicating the magnitude relationship (magnitude) of the original signal includes a case where two different numbers are assigned to the magnitude (eg, “0”) of one original signal. FIG. 1 is a diagram illustrating an example of the amplitude of the second signal sequence. The horizontal axis is a value in the case of linear PCM, and the vertical axis is a corresponding value in the case of logarithmic approximate companding PCM. FIG. 2 is a diagram showing a specific form of the 8-bit μ-rule. It consists of 1 bit (polarity) indicating positive / negative, 3 bits (exponent part) indicating exponent (slope), and 4 bits (linear part) indicating increment in a linear code. In the case of this type of logarithmic approximate companding PCM, numerical values from −127 to 127 can be expressed. This corresponds to linear PCM from -8158 to 8158 (FIG. 1). The “signal” used in the present specification means, for example, a “bit string” as shown in FIG. 2, and the “signal string” is a series of a plurality of such signals (for example, , A series of 160 signals).

対数近似圧伸PCMなどの圧縮された入力信号列を圧縮符号化する技術として、以下のような符号化装置と復号化装置が考えられる。図3に、入力信号列を符号化する符号化装置の機能構成例を示す。また、図4に、この符号化装置の処理フロー例を示す。符号化装置1100は、線形予測部1110、量子化部1120、予測値算出部1130、減算部1140、係数符号化部1150、残差符号化部1160を備える。入力信号列は、フレーム単位に分割した信号列X={x(1),x(2),…,x(N)}とする。なお、Nは1フレームのサンプル数である。   As a technique for compressing and encoding a compressed input signal sequence such as logarithmic approximate companding PCM, the following encoding device and decoding device can be considered. FIG. 3 shows a functional configuration example of an encoding apparatus that encodes an input signal sequence. FIG. 4 shows an example of the processing flow of this encoding apparatus. The encoding apparatus 1100 includes a linear prediction unit 1110, a quantization unit 1120, a predicted value calculation unit 1130, a subtraction unit 1140, a coefficient encoding unit 1150, and a residual encoding unit 1160. The input signal sequence is a signal sequence X = {x (1), x (2),..., X (N)} divided into frame units. N is the number of samples in one frame.

符号化装置1100に、フレーム単位に分割された入力信号列Xが入力されると、線形予測部1110は、フレーム単位に分割された入力信号列Xから予測係数K={k(1),k(2),…,k(P)}を求める(S1110)。なお、Pは予測次数である。量子化部1120は、予測係数Kを量子化して量子化予測係数K’={k’(1),k’(2),…,k’(P)}を求める(S1120)。予測値算出部1130は、入力信号列Xと量子化予測係数K’を用いて、次式のように予測値列Y={y(1),y(2),…,y(N)}を求める(S1130)。   When the input signal sequence X divided into frames is input to the encoding apparatus 1100, the linear prediction unit 1110 uses the prediction coefficient K = {k (1), k from the input signal sequence X divided into frames. (2),..., K (P)} are obtained (S1110). Note that P is the predicted order. The quantization unit 1120 quantizes the prediction coefficient K to obtain quantization prediction coefficients K ′ = {k ′ (1), k ′ (2),..., K ′ (P)} (S1120). The predicted value calculation unit 1130 uses the input signal sequence X and the quantized prediction coefficient K ′ to predict the predicted value sequence Y = {y (1), y (2),..., Y (N)} as in the following equation. Is obtained (S1130).

Figure 2009210645
ただし、nは1以上N以下の整数である。減算部1140は、入力信号列Xと予測値列Yとの差(予測残差列)E={e(1),e(2),…,e(N)}を求める(S1140)。係数符号化部1150は、量子化予測係数K’を符号化し、予測係数符号Cを出力する(S1150)。残差符号化部1160は、予測残差列Eを符号化し、予測残差符号Cを出力する(S1160)。
Figure 2009210645
However, n is an integer of 1 or more and N or less. The subtraction unit 1140 obtains a difference (prediction residual sequence) E = {e (1), e (2),..., E (N)} between the input signal sequence X and the predicted value sequence Y (S1140). The coefficient encoding unit 1150 encodes the quantized prediction coefficient K ′ and outputs a prediction coefficient code C k (S1150). Residual coding unit 1160 encodes the prediction residual sequence E, and outputs a prediction residual code C e (S1160).

図5に、受信した符号を出力信号列(符号化装置に入力された入力信号列)に復号化する復号化装置の機能構成例を示す。また、図6に、この復号化装置の処理フロー例を示す。復号化装置1600は、残差復号化部1610、係数復号化部1620、予測値算出部1630、加算部1640を備える。残差復号化部1610は、予測残差符号Cと復号化して予測残差列Eを求める(S1610)。係数復号化部1620は、予測係数符号Cを復号化して量子化予測係数K’を求める(S1620)。予測値算出部1630は、復号化された第2信号列Xと量子化予測係数K’を用いて、次式のように出力予測値列Yを求める(S1630)。 FIG. 5 shows a functional configuration example of a decoding device that decodes a received code into an output signal sequence (an input signal sequence input to the encoding device). FIG. 6 shows an example of the processing flow of this decoding apparatus. The decoding apparatus 1600 includes a residual decoding unit 1610, a coefficient decoding unit 1620, a predicted value calculation unit 1630, and an addition unit 1640. Residual decoding unit 1610 obtains a prediction residual sequence E decodes the prediction residual code C e (S1610). The coefficient decoding unit 1620 decodes the prediction coefficient code C k to obtain a quantized prediction coefficient K ′ (S1620). The predicted value calculation unit 1630 obtains an output predicted value sequence Y as shown in the following equation using the decoded second signal sequence X and the quantized prediction coefficient K ′ (S1630).

Figure 2009210645
加算部1640は、出力予測値列Yと予測残差列Eとを加算して出力信号列X(符号化装置に入力された入力信号列)を求める(S1640)。このような構成により、圧縮された信号列を可逆圧縮できる。しかし、G.711などの圧縮された信号列を、上述のように可逆圧縮しても圧縮効率が十分高いとは言えない。一般的に、線形な信号列は効率よく予測できる。しかし、線形な信号列は、もともと振幅を表すためのビット数が多くなるので符号量も多くなってしまう。一方、圧縮された信号列をそのまま数値とみなせば、振幅を表すためのビット数を少なくできる。しかし、波形自体が不自然なので、予測効率が悪くなる。
Figure 2009210645
The adder 1640 adds the output prediction value sequence Y and the prediction residual sequence E to obtain an output signal sequence X (an input signal sequence input to the encoding device) (S1640). With such a configuration, the compressed signal sequence can be reversibly compressed. However, G. Even if a compressed signal sequence such as 711 is reversibly compressed as described above, it cannot be said that the compression efficiency is sufficiently high. In general, a linear signal sequence can be predicted efficiently. However, since the linear signal sequence originally has a large number of bits for representing the amplitude, the code amount also increases. On the other hand, if the compressed signal sequence is regarded as a numerical value as it is, the number of bits for representing the amplitude can be reduced. However, since the waveform itself is unnatural, the prediction efficiency deteriorates.

本発明は、このような状況に鑑みてなされたものであり、信号列に対して高い符号化効率を実現し、符号量を削減することを目的とする。また、特に圧縮された信号列に対して、有効に符号量を削減することを目的とする。   The present invention has been made in view of such a situation, and an object of the present invention is to realize high coding efficiency and reduce the amount of codes for a signal sequence. It is another object of the present invention to effectively reduce the code amount particularly for a compressed signal sequence.

本発明の符号化装置は、振幅が圧縮された入力信号列(以下、「第1入力信号列」という)を符号化する符号化装置である。また、本発明の復号化装置は、入力された第1係数符号、第2係数符号、予測誤差符号を、第1出力信号列(符号化装置に入力された入力信号列)に復号化する復号化装置である。圧縮とは、元の信号を、元の信号の大小関係(大きさ)を示す番号系列中の元の信号の大きさに対応する番号で示すことを意味している。元の信号の大小関係(大きさ)を示す番号系列とは、元の信号の大小関係を維持したままの、あるいは大小関係を反転した、均等間隔の番号の系列である。例えば、1,2,3,…でもよいし、2,4,6,…のようにしてもよい。また、元の信号の大小関係(大きさ)を示す番号系列には、1つの元の信号の大きさ(例えば“0”)に対応する番号として複数の異なる番号が含まれている場合もある。この場合は、圧縮の際には、元の信号の大きさに対応する番号のいずれか1つの番号が付与される。なお、本発明における上記番号系列は、大小関係が元の信号の大小関係と完全に線形な番号系列ではないものとする。すなわち、元の信号が線形PCMである場合は除かれる。   The encoding device of the present invention is an encoding device that encodes an input signal sequence (hereinafter referred to as a “first input signal sequence”) whose amplitude is compressed. In addition, the decoding device of the present invention decodes the input first coefficient code, second coefficient code, and prediction error code into a first output signal sequence (input signal sequence input to the encoding device). Device. Compression means that the original signal is indicated by a number corresponding to the magnitude of the original signal in the number sequence indicating the magnitude relationship (magnitude) of the original signal. The number series indicating the magnitude relation (magnitude) of the original signal is a series of numbers with equal intervals while maintaining the magnitude relation of the original signal or inverting the magnitude relation. For example, 1, 2, 3,..., 2, 4, 6,. In addition, the number series indicating the magnitude relationship (magnitude) of the original signal may include a plurality of different numbers as numbers corresponding to the magnitude of one original signal (for example, “0”). . In this case, at the time of compression, any one number corresponding to the size of the original signal is given. Note that the number sequence in the present invention is not a number sequence whose magnitude relationship is completely linear with the magnitude relationship of the original signal. That is, it is excluded if the original signal is linear PCM.

本発明の符号化装置は、振幅が圧縮された信号列を符号化する装置であって、多段の線形予測手段を有している。そして、少なくともいずれかの線形予測手段で、入力された信号列の各信号に対して、圧縮前の信号列の各信号と線形な関係に近づける可逆な線形対応処理を行う。そして、線形対応処理が施された信号列に対して線形予測を行い、予測係数を求める。   The encoding apparatus of the present invention is an apparatus for encoding a signal sequence whose amplitude is compressed, and has multi-stage linear prediction means. Then, at least one of the linear prediction means performs a reversible linear correspondence process that approximates each signal of the input signal sequence to a linear relationship with each signal of the signal sequence before compression. Then, linear prediction is performed on the signal sequence that has been subjected to linear correspondence processing to obtain a prediction coefficient.

請求項1記載の符号化装置(請求項11記載の符号化方法)は、第1線形対応部、第1線形予測部、第1量子化部、第1予測値算出部、第1線形逆対応部、第1減算部、第2線形予測部、第2量子化部、第2予測値算出部、第2減算部、符号化部を備える。第1線形対応部は、第1入力信号列X={x(1),x(2),…,x(N)}の各信号を、圧縮前の信号列の各信号と線形な関係に近づける可逆な第1線形対応処理f()によって、第1線形対応信号列Y={y(1),y(2),…,y(N)}に変換する。第1線形予測部は、記第1線形対応信号列Yを用いて第1予測係数Α={α(1),α(2),…,α(Pα)}を求める。第1量子化部は、第1予測係数Αを量子化して第1量子化予測係数Α’={α’(1),α’(2),…,α’(Pα)}を求める。第1予測値算出部は、第1量子化予測係数Α’を用いて、第1線形対応予測値列Y’={y’(1),y’(2),…,y’(N)}を求める。第1線形逆対応部は、第1線形対応予測値列Y’に対して、第1線形対応処理と逆の変換f−1()を行って第1入力予測値列X’={x’(1),x’(2),…,x’(N)}を求める。第1減算部は、第1入力信号列Xと第1入力予測値列X’との差を、第2入力信号列Z={z(1),z(2),…,z(N)}として求める。 The encoding device according to claim 1 (the encoding method according to claim 11) includes a first linear correspondence unit, a first linear prediction unit, a first quantization unit, a first predicted value calculation unit, and a first linear inverse correspondence. Unit, a first subtraction unit, a second linear prediction unit, a second quantization unit, a second predicted value calculation unit, a second subtraction unit, and an encoding unit. The first linear correspondence unit causes each signal of the first input signal sequence X = {x (1), x (2),..., X (N)} to have a linear relationship with each signal of the signal sequence before compression. The first linear correspondence signal sequence Y = {y (1), y (2),..., Y (N)} is converted by the reversible first linear correspondence processing f () approaching. The first linear prediction unit obtains a first prediction coefficient Α = {α (1), α (2),..., Α (P α )} using the first linear correspondence signal sequence Y. The first quantization unit quantizes the first prediction coefficient Α to obtain a first quantization prediction coefficient Α ′ = {α ′ (1), α ′ (2),..., Α ′ (P α )}. The first predicted value calculation unit uses the first quantized prediction coefficient Α ′ and uses the first linear corresponding predicted value sequence Y ′ = {y ′ (1), y ′ (2),..., Y ′ (N). }. The first linear inverse correspondence unit performs a conversion f −1 () opposite to the first linear correspondence processing on the first linear correspondence predicted value sequence Y ′, and performs the first input predicted value sequence X ′ = {x ′. (1), x ′ (2),..., X ′ (N)} are obtained. The first subtraction unit calculates the difference between the first input signal sequence X and the first input predicted value sequence X ′ as the second input signal sequence Z = {z (1), z (2),..., Z (N). }.

第2線形予測部は、第2入力信号列Zを用いて第2予測係数Β={β(1),β(2),…,β(Pβ)}を求める。第2量子化部は、第2予測係数Βを量子化して第2量子化予測係数Β’={β’(1),β’(2),…,β’(Pβ)}を求める。第2予測値算出部は、第2量子化予測係数Β’を用いて、第2入力予測値列Z’={z’(1),z’(2),…,z’(N)}を求める。第2減算部は、第2入力信号列Zと第2入力予測値列Z’との差を、予測残差列E={e(1),e(2),…,e(N)}として求める。符号化部は、第1量子化予測係数Α’と第2量子化予測係数Β’と予測残差列Eを符号化し、第1係数符号Cαと第2係数符号Cβと予測残差符号Cを出力する。 The second linear prediction unit obtains the second prediction coefficient Β = {β (1), β (2),..., Β (P β )} using the second input signal sequence Z. The second quantization unit quantizes the second prediction coefficient Β to obtain a second quantization prediction coefficient Β ′ = {β ′ (1), β ′ (2),..., Β ′ (P β )}. The second predicted value calculation unit uses the second quantized prediction coefficient Β ′, and uses the second input predicted value sequence Z ′ = {z ′ (1), z ′ (2),..., Z ′ (N)}. Ask for. The second subtracting unit calculates a difference between the second input signal sequence Z and the second input predicted value sequence Z ′ as a prediction residual sequence E = {e (1), e (2),..., E (N)}. Asking. The encoding unit encodes the first quantized prediction coefficient Α ′, the second quantized prediction coefficient Β ′, and the prediction residual sequence E, and includes a first coefficient code C α , a second coefficient code C β, and a prediction residual code. and it outputs the C e.

請求項6記載の復号化装置(請求項16記載の復号化方法)は、請求項1記載の符号化装置(請求項11記載の符号化方法)で符号化した符号を復号化する装置である。この復号化装置は、復号化部、第2予測値算出部、第2加算部、第1線形対応部、第1予測値算出部、第1線形逆対応部、第1加算部を備える。   A decoding device according to claim 6 (decoding method according to claim 16) is a device that decodes the code encoded by the encoding device according to claim 1 (encoding method according to claim 11). . The decoding apparatus includes a decoding unit, a second predicted value calculating unit, a second adding unit, a first linear corresponding unit, a first predicted value calculating unit, a first linear inverse corresponding unit, and a first adding unit.

復号化部は、第1係数符号Cαから第1量子化予測係数Α’を、第2係数符号Cβから第2量子化予測係数Β’を、予測残差符号Cから予測残差列Eを求める。第2予測値算出部は、復号化された第2出力信号列Z(符号化装置の第2入力信号列に相当)と第2量子化予測係数Β’を用いて、第2出力予測値列Z’(符号化装置の第2入力予測値列に相当)を求める。第2加算部は、第2出力予測値列Z’と予測残差列Eとを加算して第2出力信号列Zを求める。 The decoding unit converts the first quantized prediction coefficient Α ′ from the first coefficient code C α, the second quantized prediction coefficient Β ′ from the second coefficient code C β, and the prediction residual sequence from the prediction residual code C e. E is determined. The second predicted value calculation unit uses the decoded second output signal sequence Z (corresponding to the second input signal sequence of the encoding device) and the second quantized prediction coefficient Β ′ to generate a second output predicted value sequence. Z ′ (corresponding to the second input predicted value sequence of the encoding device) is obtained. The second addition unit adds the second output predicted value sequence Z ′ and the prediction residual sequence E to obtain the second output signal sequence Z.

第1線形対応部は、復号化された第1出力信号列X(符号化装置の第1入力信号列に相当)の各信号を、圧縮前の信号列の各信号と線形な関係に近づける可逆な第1線形対応処理f()によって、第1線形対応信号列Yに変換する。第1予測値算出部は、第1線形対応信号列Yと第1量子化予測係数Α’を用いて、第1線形対応予測値列Y’を求める。第1線形逆対応部は、第1線形対応予測値列Y’に対して、第1線形対応処理と逆の変換f−1()を行って第1出力予測値列X’(符号化装置の第1入力予測値列に相当)を求める。第1加算部は、第1出力予測値列X’と第2出力信号列Zとを加算して第1出力信号列Xを求める。 The first linear correspondence unit reversibly brings each signal of the decoded first output signal sequence X (corresponding to the first input signal sequence of the encoding device) into a linear relationship with each signal of the signal sequence before compression. The first linear correspondence signal sequence Y is converted by the first linear correspondence processing f (). The first predicted value calculation unit obtains a first linear corresponding predicted value sequence Y ′ using the first linear corresponding signal sequence Y and the first quantized prediction coefficient Α ′. The first linear inverse correspondence unit performs a conversion f −1 () opposite to the first linear correspondence processing on the first linear correspondence predicted value sequence Y ′ to generate a first output predicted value sequence X ′ (encoding device). Corresponding to the first input predicted value sequence). The first adder adds the first output predicted value sequence X ′ and the second output signal sequence Z to obtain the first output signal sequence X.

請求項2記載の符号化装置(請求項12記載の符号化方法)は、第1入力信号に対する予測誤差(第2入力信号)を、第1線形対応予測誤差列W(第1線形対応予測値列Y’と第1線形対応信号列Yとの差)に対して、第1線形対応処理と逆の変換f−1()を行う点が、請求項1記載の符号化装置(請求項11記載の符号化方法)と異なるが、その他は同じである。請求項7記載の復号化装置(請求項17記載の復号化方法)は、請求項2記載の符号化装置(請求項12記載の符号化方法)で符号化した符号を復号化する装置である。 The encoding apparatus according to claim 2 (encoding method according to claim 12) is configured to convert a prediction error (second input signal) for the first input signal into a first linear correspondence prediction error sequence W (first linear correspondence prediction value). The encoding apparatus according to claim 1, wherein a transformation f −1 () opposite to the first linear correspondence processing is performed on the difference between the sequence Y ′ and the first linear correspondence signal sequence Y). The encoding method is different from the description, but the others are the same. A decoding device according to claim 7 (decoding method according to claim 17) is a device for decoding the code encoded by the encoding device according to claim 2 (encoding method according to claim 12). .

請求項3記載の符号化装置(請求項13記載の符号化方法)は、第2予測値算出部の入力と出力が、前記第1入力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第2線形対応処理g()によって変換された信号列(第2線形対応信号列Vと第2線形対応予測値列V’)であることが、請求項1記載の符号化装置(請求項11記載の符号化方法)と異なるが、その他は同じである。請求項8記載の復号化装置(請求項18記載の復号化方法)は、請求項3記載の符号化装置(請求項13記載の符号化方法)で符号化した符号を復号化する装置である。   The encoding device according to claim 3 (encoding method according to claim 13) is configured such that the input and output of the second predicted value calculation unit are signals of the signal sequence before compression of the signals of the first input signal sequence. The signal sequence (the second linear correspondence signal sequence V and the second linear correspondence predicted value sequence V ′) converted by the reversible second linear correspondence processing g () that approximates a linear relationship with This is different from the encoding apparatus (encoding method according to claim 11), but the others are the same. The decoding apparatus according to claim 8 (decoding method according to claim 18) is an apparatus for decoding the code encoded by the encoding apparatus according to claim 3 (encoding method according to claim 13). .

請求項4記載の符号化装置(請求項14記載の符号化方法)は、第2予測値算出部の入力と出力が、前記第1入力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第2線形対応処理g()によって変換された信号列(第2線形対応信号列Vと第2線形対応予測値列V’)であることが、請求項2記載の符号化装置(請求項12記載の符号化方法)と異なるが、その他は同じである。請求項9記載の復号化装置(請求項19記載の復号化方法)は、請求項4記載の符号化装置(請求項14記載の符号化方法)で符号化した符号を復号化する装置である。   The encoding device according to claim 4 (encoding method according to claim 14) is configured such that the input and output of the second predicted value calculation unit are signals of the signal sequence before compression of the signals of the first input signal sequence. The signal sequence (the second linear correspondence signal sequence V and the second linear correspondence prediction value sequence V ′) converted by the reversible second linear correspondence processing g () that approximates a linear relationship with This is different from the encoding apparatus (encoding method according to claim 12), but the other is the same. A decoding device according to claim 9 (decoding method according to claim 19) is a device that decodes the code encoded by the encoding device according to claim 4 (encoding method according to claim 14). .

請求項5記載の符号化装置(請求項15記載の符号化方法)は、1段目の線形予測で、圧縮された第1入力信号列を対象として線形予測することが、請求項3または4記載の符号化装置(請求項13または14記載の符号化方法)と異なる。請求項10記載の復号化装置(請求項20記載の復号化方法)は、請求項5記載の符号化装置(請求項15記載の符号化方法)で符号化した符号を復号化する装置である。   5. The encoding device according to claim 5 (the encoding method according to claim 15) performs linear prediction on the compressed first input signal sequence by linear prediction at the first stage. This is different from the encoding apparatus described in the above (encoding method according to claim 13 or 14). A decoding apparatus according to claim 10 (decoding method according to claim 20) is an apparatus for decoding the code encoded by the encoding apparatus according to claim 5 (encoding method according to claim 15). .

なお、「元の信号列と線形な関係に近づける処理」とは、圧縮された信号列と元の信号列と線形な関係の信号列との中間的な信号列にする処理であり、元の信号列と線形な関係の信号列にする処理は含まない。具体的には、以下のような処理である。線形な関係とは、元の信号列の1つのサンプル値の振幅をsとするときに、
|1−H(γs)/γH(s)|≒0
ただし、γは任意の実数
を満足する関数H()によって変換された信号列を意味している。なお、この式では離散化に伴う誤差は無視している。圧縮された入力信号列の1つのサンプル値の振幅xと元の信号列の1つのサンプル値の振幅sとの関係がx=G(s)の場合、任意のγに対しては
|1−G(γs)/γG(s)|≒0
を満足しない。「線形な関係に近づける処理」とは、この処理を関数f()とすると、任意のγに対して、
|1−f(γx)/γf(x)|<|1−G(γs)/γG(s)|
であり、かつ、すべてのγに対しては
|1−f(γx)/γf(x)|≒0
は満足しない。関数f()の具体例としては、入力信号列と元の信号列と線形な信号列との重みつき加算を行う処理がある。
Note that the “process that approximates a linear relationship with the original signal sequence” is a process that makes the signal sequence intermediate between the compressed signal sequence and the signal sequence that has a linear relationship with the original signal sequence, It does not include processing for making a signal sequence linearly related to the signal sequence. Specifically, the processing is as follows. The linear relationship means that when the amplitude of one sample value of the original signal sequence is s,
| 1-H (γs) / γH (s) | ≈0
However, γ means a signal sequence converted by a function H () satisfying an arbitrary real number. In this equation, errors due to discretization are ignored. If the relationship between the amplitude x of one sample value of the compressed input signal sequence and the amplitude s of one sample value of the original signal sequence is x = G (s), for any γ, | 1− G (γs) / γG (s) | ≈0
Not satisfied. “Processing close to a linear relationship” means that if this processing is a function f (), for an arbitrary γ,
| 1-f (γx) / γf (x) | <| 1-G (γs) / γG (s) |
And for all γ: | 1-f (γx) / γf (x) | ≈0
Is not satisfied. As a specific example of the function f (), there is a process of performing weighted addition of an input signal sequence, an original signal sequence, and a linear signal sequence.

本発明の符号化装置と復号化装置によれば、線形または線形に近い信号に変換した後での予測と、振幅が圧縮されたままの信号での予測または別の変換で線形または線形に近い信号に変換した後での予測を組み合わせるので、予測残差の振幅を小さくし、符号量を少なくできる。   According to the encoding device and the decoding device of the present invention, prediction after conversion to a linear or near-linear signal, prediction with a signal whose amplitude is still compressed, or another conversion is close to linear or linear. Since the prediction after conversion into a signal is combined, the amplitude of the prediction residual can be reduced and the code amount can be reduced.

[第1実施形態]
図7に、第1実施形態の符号化装置の機能構成例を示す。また、図8に第1実施形態の符号化装置の処理フローを示す。符号化装置100は、第1線形対応部105、第1線形予測部110、第1量子化部120、第1予測値算出部130、第1線形逆対応部135、第1減算部140、第2線形予測部160、第2量子化部170、第2予測値算出部180、第2減算部190、第1係数符号化部145、第2係数符号化部195、残差符号化部199を備える。
[First Embodiment]
FIG. 7 shows a functional configuration example of the encoding apparatus according to the first embodiment. FIG. 8 shows a processing flow of the encoding apparatus according to the first embodiment. The encoding apparatus 100 includes a first linear correspondence unit 105, a first linear prediction unit 110, a first quantization unit 120, a first predicted value calculation unit 130, a first linear inverse correspondence unit 135, a first subtraction unit 140, A bilinear prediction unit 160, a second quantization unit 170, a second predicted value calculation unit 180, a second subtraction unit 190, a first coefficient encoding unit 145, a second coefficient encoding unit 195, and a residual encoding unit 199. Prepare.

第1線形対応部105は、符号化装置100への入力前に既に圧縮済の信号である第1入力信号列X={x(1),x(2),…,x(N)}を、圧縮前の信号列と線形な関係に近づける可逆な第1線形対応処理f()によって、第1線形対応信号列Y={y(1),y(2),…,y(N)}に変換する(S105)。つまり、n=1,…,Nに対して
y(n)=f(x(n))
を行う。また、「元の信号列と線形な関係に近づける処理」とは、圧縮された信号列と元の信号列と線形な関係の信号列との中間的な信号列にする処理であり、元の信号列と線形な関係の信号列にする処理は含まない。
The first linear correspondence unit 105 generates a first input signal sequence X = {x (1), x (2),..., X (N)} that is a signal that has already been compressed before input to the encoding device 100. The first linear correspondence signal sequence Y = {y (1), y (2),..., Y (N)} by the reversible first linear correspondence processing f () that approximates a linear relationship with the signal sequence before compression. (S105). That is, for n = 1,..., N, y (n) = f (x (n))
I do. In addition, “a process that brings a linear relationship with an original signal sequence” is a process that makes an intermediate signal sequence between a compressed signal sequence and a signal sequence that has a linear relationship with the original signal sequence, It does not include processing for making a signal sequence linearly related to the signal sequence.

第1線形予測部110は、第1線形対応信号列Yを用いてPα次の第1予測係数Α={α(1),α(2),…,α(Pα)}を求める(S110)。第1量子化部120は、第1予測係数Αを量子化して第1量子化予測係数Α’={α’(1),α’(2),…,α’(Pα)}を求める(S120)。第1予測値算出部130は、第1量子化予測係数Α’を用いて、n=1,…,Nに対して
y’(n)=α’(1)y(n−1)+…+α’(Pα)y(n−Pα
の計算を行い、第1線形対応予測値列Y’={y’(1),y’(2),…,y’(N)}を求める(S130)。第1線形逆対応部135は、第1線形対応予測値列Y’に対して、第1線形対応処理と逆の変換f−1()を行って第1入力予測値列X’={x’(1),x’(2),…,x’(N)}を求める(S135)。つまり、n=1,…,Nに対して
x’(n)=f−1(y(n))
を行う。第1減算部140は、第1入力信号列Xと第1入力予測値列X’との差を、n=1,…,Nに対して
z(n)=x(n)−x’(n)
のように求め、第2入力信号列Z={z(1),z(2),…,z(N)}とする(S140)。なお、第2入力信号列Zは、1段目の線形係数を求める処理(ステップS105〜S140)での残差信号列に相当する。
The first linear prediction unit 110 uses the first linear correspondence signal sequence Y to obtain a P α- order first prediction coefficient Α = {α (1), α (2),..., Α (P α )} ( S110). The first quantization unit 120 quantizes the first prediction coefficient Α to obtain the first quantization prediction coefficient Α ′ = {α ′ (1), α ′ (2),..., Α ′ (P α )}. (S120). The first predicted value calculation unit 130 uses the first quantized prediction coefficient Α ′ for y = 1,..., N, y ′ (n) = α ′ (1) y (n−1) +. + Α ′ (P α ) y (n−P α )
To obtain a first linear correspondence predicted value sequence Y ′ = {y ′ (1), y ′ (2),..., Y ′ (N)} (S130). The first linear inverse correspondence unit 135 performs a conversion f −1 () opposite to the first linear correspondence processing on the first linear correspondence predicted value sequence Y ′ to obtain a first input predicted value sequence X ′ = {x '(1), x' (2), ..., x '(N)} is obtained (S135). That is, for n = 1,..., N, x ′ (n) = f −1 (y (n))
I do. The first subtraction unit 140 determines the difference between the first input signal sequence X and the first input predicted value sequence X ′ for n = 1,..., N, z (n) = x (n) −x ′ ( n)
And the second input signal sequence Z = {z (1), z (2),..., Z (N)} (S140). The second input signal sequence Z corresponds to the residual signal sequence in the process of obtaining the first-stage linear coefficient (steps S105 to S140).

第2線形予測部160は、第2入力信号列Zを用いて、Pβ次の第2予測係数Β={β(1),β(2),…,β(Pβ)}を求める(S160)。第2量子化部170は、第2予測係数Βを量子化して第2量子化予測係数Β’={β’(1),β’(2),…,β’(Pβ)}を求める(S170)。第2予測値算出部180は、第2量子化予測係数Β’を用いて、n=1,…,Nに対して
z’(n)=β’(1)z(n−1)+…+β’(Pβ)z(n−Pβ
の計算を行い、第2入力予測値列Z’={z’(1),z’(2),…,z’(N)}を求める(S180)。第2減算部190は、第2入力信号列Zと第2入力予測値列Z’との差を、予測残差列E={e(1),e(2),…,e(N)}として求める(S190)。つまり、n=1,…,Nに対して
e(n)=z(n)−z’(n)
の計算を行う。
The second linear prediction unit 160 uses the second input signal sequence Z to obtain a P β- order second prediction coefficient Β = {β (1), β (2),..., Β (P β )} ( S160). The second quantization unit 170 quantizes the second prediction coefficient Β to obtain the second quantization prediction coefficient Β ′ = {β ′ (1), β ′ (2),..., Β ′ (P β )}. (S170). The second predicted value calculation unit 180 uses the second quantized prediction coefficient Β ′ for n = 1,..., N and z ′ (n) = β ′ (1) z (n−1) +. + Β ′ (P β ) z (n−P β )
To obtain the second input predicted value sequence Z ′ = {z ′ (1), z ′ (2),..., Z ′ (N)} (S180). The second subtracting unit 190 calculates a difference between the second input signal sequence Z and the second input predicted value sequence Z ′ as a prediction residual sequence E = {e (1), e (2),..., E (N). } (S190). That is, for n = 1,..., N, e (n) = z (n) −z ′ (n)
Perform the calculation.

第1係数符号化部145は、第1量子化予測係数Α’を符号化し、第1係数符号Cαを出力する(S145)。第2係数符号化部195は、第2量子化予測係数Β’を符号化し、第2係数符号Cβを出力する(S195)。残差符号化部199は、予測残差列Eを符号化し、予測残差符号Cを出力する(S199)。なお、第1係数符号化部145、第2係数符号化部195、残差符号化部199をまとめて1つの符号化部としてもよい。また、第1量子化予測係数Α’と第2量子化予測係数Β’の両方を示す情報として、1つの係数符号を出力してもよい。 The first coefficient encoding unit 145 encodes the first quantized prediction coefficient Α ′ and outputs the first coefficient code C α (S145). The second coefficient encoding unit 195 encodes the second quantized prediction coefficient Β ′ and outputs the second coefficient code C β (S195). Residual coding unit 199 encodes the prediction residual sequence E, and outputs a prediction residual code C e (S199). The first coefficient encoding unit 145, the second coefficient encoding unit 195, and the residual encoding unit 199 may be combined into one encoding unit. Also, one coefficient code may be output as information indicating both the first quantization prediction coefficient Α ′ and the second quantization prediction coefficient Α ′.

図9に、第1実施形態の復号化装置の機能構成例を示す。また、図10に、第1実施形態の復号化装置の処理フローを示す。復号化装置600は、符号化装置100で符号化した符号を復号化する装置である。復号化装置600は、第1係数復号化部620、第2係数復号化部670、残差復号化部699、第2予測値算出部680、第2加算部690、第1線形対応部625、第1予測値算出部630、第1線形逆対応部635、第1加算部640を備える。   FIG. 9 shows an example of a functional configuration of the decoding apparatus according to the first embodiment. FIG. 10 shows a processing flow of the decoding apparatus according to the first embodiment. The decoding device 600 is a device that decodes the code encoded by the encoding device 100. The decoding apparatus 600 includes a first coefficient decoding unit 620, a second coefficient decoding unit 670, a residual decoding unit 699, a second predicted value calculation unit 680, a second addition unit 690, a first linear correspondence unit 625, A first predicted value calculation unit 630, a first linear inverse correspondence unit 635, and a first addition unit 640 are provided.

第1係数復号化部620は、第1係数符号Cαから第1量子化予測係数Α’を求める(S620)。第2係数復号化部670は、第2係数符号Cβから第2量子化予測係数Β’を求める(S670)。残差復号化部699は、予測残差符号Cから予測残差列Eを求める(S699)。なお、第1係数復号化部620、第2係数復号化部670、残差復号化部699をまとめて1つの復号化部としてもよい。また、第1量子化予測係数Α’と第2量子化予測係数Β’の両方を示す1つの係数符号から、第1量子化予測係数Α’と第2量子化予測係数Β’を求めてもよい。 The first coefficient decoding unit 620 obtains a first quantized prediction coefficient Α ′ from the first coefficient code C α (S620). The second coefficient decoding unit 670 obtains a second quantized prediction coefficient Β ′ from the second coefficient code C β (S670). Residual decoding unit 699 obtains a prediction residual sequence E from the prediction residual code C e (S699). The first coefficient decoding unit 620, the second coefficient decoding unit 670, and the residual decoding unit 699 may be combined into one decoding unit. Further, even if the first quantization prediction coefficient Α ′ and the second quantization prediction coefficient 求 め ′ are obtained from one coefficient code indicating both the first quantization prediction coefficient と ′ and the second quantization prediction coefficient Β ′. Good.

第2予測値算出部680は、復号化された第2出力信号列Z(符号化装置の第2入力信号列に相当)と第2量子化予測係数Β’を用いて、n=1,…,Nに対して
z’(n)=β’(1)z(n−1)+…+β’(Pβ)z(n−Pβ
の計算を行い、第2出力予測値列Z’(符号化装置の第2入力予測値列に相当)を求める(S680)。第2加算部690は、第2出力予測値列Z’と予測残差列Eとを加算して第2出力信号列Zを求める(S690)。つまり、n=1,…,Nに対して
z(n)=z’(n)+e(n)
を計算する。
The second predicted value calculation unit 680 uses the decoded second output signal sequence Z (corresponding to the second input signal sequence of the encoding device) and the second quantized prediction coefficient Β ′, n = 1,. , N z ′ (n) = β ′ (1) z (n−1) +... + Β ′ (P β ) z (n−P β )
The second output predicted value sequence Z ′ (corresponding to the second input predicted value sequence of the encoding device) is obtained (S680). The second addition unit 690 adds the second output predicted value sequence Z ′ and the prediction residual sequence E to obtain the second output signal sequence Z (S690). That is, for n = 1,..., N, z (n) = z ′ (n) + e (n)
Calculate

第1線形対応部625は、復号化された第1出力信号列X(符号化装置の第1入力信号列に相当)を、圧縮前の信号列と線形な関係に近づける可逆な第1線形対応処理f()を、
y(n)=f(x(n)) ただし、n=1,…,N
のように行って、第1線形対応信号列Yに変換する(S625)。第1予測値算出部630は、すでに求められている第1線形対応信号列Yと第1量子化予測係数Α’を用いて、n=1,…,Nに対して
y’(n)=α’(1)y(n−1)+…+α’(Pα)y(n−Pα
の計算を行い、第1線形対応予測値列Y’を求める(S630)。第1線形逆対応部635は、第1線形対応予測値列Y’に対して、第1線形対応処理と逆の変換f−1()を
x’(n)=f−1(y(n)) ただし、n=1,…,N
のように行って第1出力予測値列X’(符号化装置の第1入力予測値列に相当)を求める(S635)。第1加算部640は、第1出力予測値列X’と第2出力信号列Zとを加算して第1出力信号列Xを求める(S640)。つまり、n=1,…,Nに対して
x(n)=x’(n)+z(n)
を計算する。
The first linear correspondence unit 625 is a reversible first linear correspondence that brings the decoded first output signal sequence X (corresponding to the first input signal sequence of the encoding device) into a linear relationship with the signal sequence before compression. Process f ()
y (n) = f (x (n)) where n = 1,..., N
Thus, the first linear correspondence signal sequence Y is converted (S625). The first predicted value calculation unit 630 uses the already obtained first linear correspondence signal sequence Y and the first quantized prediction coefficient 求 め ′, and y ′ (n) = α ′ (1) y (n−1) +... + α ′ (P α ) y (n−P α )
The first linear correspondence predicted value sequence Y ′ is obtained (S630). The first linear inverse correspondence unit 635 performs a transformation f −1 () opposite to the first linear correspondence processing on the first linear correspondence predicted value sequence Y ′, x ′ (n) = f −1 (y (n )) However, n = 1, ..., N
The first output predicted value sequence X ′ (corresponding to the first input predicted value sequence of the encoding device) is obtained (S635). The first adding unit 640 adds the first output predicted value sequence X ′ and the second output signal sequence Z to obtain the first output signal sequence X (S640). That is, for n = 1,..., N, x (n) = x ′ (n) + z (n)
Calculate

符号化装置100と復号化装置600によれば、線形または線形に近い信号に変換した後での予測と、振幅が圧縮されたままの信号での予測を組み合わせるので、予測残差の振幅を小さくし、符号量を少なくできる。   According to the encoding device 100 and the decoding device 600, since the prediction after conversion into a linear or nearly linear signal and the prediction with a signal whose amplitude is compressed are combined, the amplitude of the prediction residual is reduced. In addition, the code amount can be reduced.

[第2実施形態]
第2実施形態の符号化装置は、第1入力信号に対する予測誤差を求める処理が、第1線形対応処理f()によって変換された状態である第1線形対応予測誤差列W(第1線形対応予測値列Y’と第1線形対応信号列Yとの差)として求める処理と、第1線形対応予測誤差列に対して第1線形対応処理と逆の変換f−1()を行う処理とで構成される点が、第1実施形態の符号化装置と異なる。
[Second Embodiment]
The encoding apparatus according to the second embodiment includes a first linear correspondence prediction error sequence W (first linear correspondence) in which a process for obtaining a prediction error for the first input signal is converted by the first linear correspondence processing f (). A process for obtaining a difference between the predicted value sequence Y ′ and the first linear correspondence signal sequence Y), and a process for performing a conversion f −1 () opposite to the first linear correspondence process on the first linear correspondence prediction error sequence. Is different from the encoding device of the first embodiment.

図11に、第2実施形態の符号化装置の機能構成例を示す。また、図12に第2実施形態の符号化装置の処理フローを示す。符号化装置200は、第1線形対応部205、第1線形予測部110、第1量子化部120、第1予測値算出部130、第1減算部240、第1線形逆対応部235、第2線形予測部160、第2量子化部170、第2予測値算出部180、第2減算部190、第1係数符号化部145、第2係数符号化部195、残差符号化部199を備える。   FIG. 11 shows a functional configuration example of the encoding apparatus according to the second embodiment. FIG. 12 shows a processing flow of the encoding apparatus according to the second embodiment. The encoding apparatus 200 includes a first linear correspondence unit 205, a first linear prediction unit 110, a first quantization unit 120, a first predicted value calculation unit 130, a first subtraction unit 240, a first linear inverse correspondence unit 235, a first A bilinear prediction unit 160, a second quantization unit 170, a second predicted value calculation unit 180, a second subtraction unit 190, a first coefficient encoding unit 145, a second coefficient encoding unit 195, and a residual encoding unit 199. Prepare.

第1線形対応部205は、符号化装置200への入力前に既に圧縮済の信号である第1入力信号列Xを、圧縮前の信号列と線形な関係に近づける可逆な第1線形対応処理f()によって、第1線形対応信号列Yに変換する(S205)。つまり、n=1,…,Nに対して
y(n)=f(x(n))
の計算を行う。第1線形予測部110は、第1線形対応信号列Yを用いてPα次の第1予測係数Αを求める(S110)。第1量子化部120は、第1予測係数Αを量子化して第1量子化予測係数Α’を求める(S120)。第1予測値算出部130は、第1量子化予測係数Α’を用いて、第1線形対応予測値列Y’を求める(S130)。第1減算部240は、第1線形対応信号列Yと第1線形対応予測値列Y’との差を、第1線形対応予測誤差列W={w(1),w(2),…,w(N)}として求める(S240)。つまり、n=1,…,Nに対して
w(n)=y(n)−y’(n)
の計算を行う。第1線形逆対応部235は、第1線形対応予測誤差列Wに対して、第1線形対応処理と逆の変換f−1()を行って、第2入力信号列Zを求める(S235)。つまり、n=1,…,Nに対して
z(n)=f−1(w(n))
の計算を行う。第2線形予測部160は、第2入力信号列を用いて第2予測係数を求める(S160)。第2量子化部170は、第2予測係数Βを量子化して第2量子化予測係数Β’を求める(S170)。第2予測値算出部180は、第2量子化予測係数Β’を用いて、第2入力予測値列Z’を求める(S180)。第2減算部190は、第2入力信号列Zと第2入力予測値列Z’との差を求め、予測残差列Eとする(S190)。第1係数符号化部145は、第1量子化予測係数Α’を符号化し、第1係数符号Cαを出力する(S145)。第2係数符号化部195は、第2量子化予測係数Β’を符号化し、第2係数符号Cβを出力する(S195)。残差符号化部199は、予測残差列Eを符号化し、予測残差符号Cを出力する(S199)。
The first linear correspondence unit 205 is a reversible first linear correspondence process that brings the first input signal sequence X, which is a signal that has already been compressed before input to the encoding device 200, into a linear relationship with the signal sequence before compression. The first linear correspondence signal string Y is converted by f () (S205). That is, for n = 1,..., N, y (n) = f (x (n))
Perform the calculation. The first linear prediction unit 110 obtains a P α -th first prediction coefficient α using the first linear correspondence signal sequence Y (S110). The first quantization unit 120 quantizes the first prediction coefficient Α to obtain a first quantized prediction coefficient Α ′ (S120). The first predicted value calculation unit 130 obtains a first linear correspondence predicted value sequence Y ′ using the first quantized prediction coefficient Α ′ (S130). The first subtraction unit 240 calculates a difference between the first linear correspondence signal sequence Y and the first linear correspondence prediction value sequence Y ′ as a first linear correspondence prediction error sequence W = {w (1), w (2),. , W (N)} (S240). That is, for n = 1,..., N, w (n) = y (n) −y ′ (n)
Perform the calculation. The first linear inverse correspondence unit 235 performs a conversion f −1 () inverse to the first linear correspondence processing on the first linear correspondence prediction error sequence W to obtain the second input signal sequence Z (S235). . That is, for n = 1,..., N, z (n) = f −1 (w (n))
Perform the calculation. The second linear prediction unit 160 obtains a second prediction coefficient using the second input signal sequence (S160). The second quantization unit 170 quantizes the second prediction coefficient Β to obtain a second quantized prediction coefficient Β ′ (S170). The second predicted value calculation unit 180 obtains a second input predicted value sequence Z ′ using the second quantized prediction coefficient Β ′ (S180). The second subtracting unit 190 obtains a difference between the second input signal sequence Z and the second input predicted value sequence Z ′ and sets it as a prediction residual sequence E (S190). The first coefficient encoding unit 145 encodes the first quantized prediction coefficient Α ′ and outputs the first coefficient code C α (S145). The second coefficient encoding unit 195 encodes the second quantized prediction coefficient Β ′ and outputs the second coefficient code C β (S195). Residual coding unit 199 encodes the prediction residual sequence E, and outputs a prediction residual code C e (S199).

図13に、第2実施形態の復号化装置の機能構成例を示す。また、図14に、第2実施形態の復号化装置の処理フローを示す。復号化装置700は、符号化装置200が符号化した符号を、符号化装置200に入力された信号列に復号化する復号化装置である。復号化装置700は、第1係数復号化部620、第2係数復号化部670、残差復号化部699、第2予測値算出部680、第2加算部690、第1線形対応部725、第1予測値算出部630、第1加算部740、第1線形逆対応部735を備える。   FIG. 13 shows a functional configuration example of the decoding apparatus according to the second embodiment. FIG. 14 shows a processing flow of the decoding apparatus according to the second embodiment. The decoding device 700 is a decoding device that decodes the code encoded by the encoding device 200 into a signal sequence input to the encoding device 200. The decoding apparatus 700 includes a first coefficient decoding unit 620, a second coefficient decoding unit 670, a residual decoding unit 699, a second predicted value calculation unit 680, a second addition unit 690, a first linear correspondence unit 725, A first predicted value calculation unit 630, a first addition unit 740, and a first linear inverse correspondence unit 735 are provided.

第1係数復号化部620は、第1係数符号Cαから第1量子化予測係数Α’を求める(S620)。第2係数復号化部670は、第2係数符号Cβから第2量子化予測係数Β’を求める(S670)。残差復号化部699は、予測残差符号Cから予測残差列Eを求める(S699)。第2予測値算出部680は、復号化された第2出力信号列Z(符号化装置の第2入力信号列に相当)と第2量子化予測係数Β’を用いて、第2出力予測値列Z’(符号化装置の第2入力予測値列に相当)を求める(S680)。第2加算部690は、第2出力予測値列Z’と予測残差列Eとを加算して第2出力信号列Zを求める(S690)。 The first coefficient decoding unit 620 obtains a first quantized prediction coefficient Α ′ from the first coefficient code C α (S620). The second coefficient decoding unit 670 obtains a second quantized prediction coefficient Β ′ from the second coefficient code C β (S670). Residual decoding unit 699 obtains a prediction residual sequence E from the prediction residual code C e (S699). The second predicted value calculation unit 680 uses the decoded second output signal sequence Z (corresponding to the second input signal sequence of the encoding device) and the second quantized prediction coefficient Β ′ to generate a second output predicted value. A sequence Z ′ (corresponding to the second input predicted value sequence of the encoding device) is obtained (S680). The second addition unit 690 adds the second output predicted value sequence Z ′ and the prediction residual sequence E to obtain the second output signal sequence Z (S690).

第1線形対応部725は、第2出力信号列Zを、圧縮前の信号列と線形な関係に近づける可逆な第1線形対応処理f()によって、第1線形対応予測誤差列に変換する(S725)。つまり、
w(n)=f(z(n)) ただし、n=1,…,N
である。第1予測値算出部630は、第1線形対応信号列と第1量子化予測係数を用いて、第1線形対応予測値列を求める(S630)。第1加算部740は、第1線形対応予測値列Y’と第1線形対応予測誤差列Wとを、y(n)=y’(n)+w(n)のように加算して第1線形対応信号列Yを求める(S740)。第1線形逆対応部735は、第1線形対応予信号列に対して、第1線形対応処理と逆の変換f−1()を行って第1出力信号列X(符号化装置の第1入力信号列に相当)を求める(S735)。つまり、
x(n)=f−1(y(n)) ただし、n=1,…,N
を計算する。
The first linear correspondence unit 725 converts the second output signal sequence Z into a first linear correspondence prediction error sequence by a reversible first linear correspondence processing f () that approximates a linear relationship with the signal sequence before compression ( S725). That means
w (n) = f (z (n)) where n = 1,..., N
It is. The first prediction value calculation unit 630 obtains a first linear correspondence prediction value sequence using the first linear correspondence signal sequence and the first quantized prediction coefficient (S630). The first addition unit 740 adds the first linear correspondence predicted value sequence Y ′ and the first linear correspondence prediction error sequence W as y (n) = y ′ (n) + w (n) to obtain the first. A linear correspondence signal sequence Y is obtained (S740). The first linear inverse correspondence unit 735 performs a transformation f −1 () opposite to the first linear correspondence processing on the first linear correspondence pre-signal sequence, and performs the first output signal sequence X (first encoding device). (Corresponding to the input signal string) is obtained (S735). That means
x (n) = f −1 (y (n)) where n = 1,..., N
Calculate

符号化装置200と復号化装置700によれば、線形または線形に近い信号に変換した後での予測と、振幅が圧縮されたままの信号での予測を組み合わせるので、予測残差の振幅を小さくし、符号量を少なくできる。   According to the encoding device 200 and the decoding device 700, since the prediction after conversion into a linear or nearly linear signal and the prediction with a signal whose amplitude is compressed are combined, the amplitude of the prediction residual is reduced. In addition, the code amount can be reduced.

[第3実施形態]
第3実施形態の符号化装置は、第2線形予測部および第2予測値算出部に入力される信号列と第2予測値算出部から出力される信号列とが、第1入力信号列の各信号を圧縮前の信号列と線形な関係に近づける可逆な第2線形対応処理g()によって変換された信号列(第2線形対応信号列Vと第2線形対応予測値列V’)であることが、第1実施形態の符号化装置と異なる。
[Third Embodiment]
In the encoding device of the third embodiment, the signal sequence input to the second linear prediction unit and the second prediction value calculation unit and the signal sequence output from the second prediction value calculation unit are the first input signal sequence. A signal sequence (a second linear correspondence signal sequence V and a second linear correspondence prediction value sequence V ′) converted by a reversible second linear correspondence processing g () that approximates a linear relationship with the signal sequence before compression. It is different from the encoding device of the first embodiment.

図15に、第3実施形態の符号化装置の機能構成例を示す。また、図16に、第3実施形態の符号化装置の処理フローを示す。符号化装置300は、第1線形対応部105、第1線形予測部110、第1量子化部120、第1予測値算出部130、第1線形逆対応部135、第1減算部140、第2線形対応部355、第2線形予測部360、第2量子化部370、第2予測値算出部380、第2線形逆対応部385、第2減算部190、第1係数符号化部145、第2係数符号化部195、残差符号化部199を備える。   FIG. 15 shows a functional configuration example of the encoding apparatus according to the third embodiment. FIG. 16 shows a processing flow of the encoding apparatus according to the third embodiment. The encoding apparatus 300 includes a first linear correspondence unit 105, a first linear prediction unit 110, a first quantization unit 120, a first predicted value calculation unit 130, a first linear inverse correspondence unit 135, a first subtraction unit 140, A second linear correspondence unit 355, a second linear prediction unit 360, a second quantization unit 370, a second predicted value calculation unit 380, a second linear inverse correspondence unit 385, a second subtraction unit 190, a first coefficient encoding unit 145, A second coefficient encoding unit 195 and a residual encoding unit 199 are provided.

第1線形対応部105は、符号化装置300への入力前に既に圧縮済の信号である第1入力信号列Xを、圧縮前の信号列と線形な関係に近づける可逆な第1線形対応処理f()によって、第1線形対応信号列Yに変換する(S105)。第1線形予測部110は、記第1線形対応信号列Yを用いてPα次の第1予測係数Αを求める(S110)。第1量子化部120は、第1予測係数Αを量子化して第1量子化予測係数Α’を求める(S120)。第1予測値算出部130は、第1量子化予測係数Α’を用いて、第1線形対応予測値列Y’を求める(S130)。第1線形逆対応部135は、第1線形対応予測値列Y’に対して、第1線形対応処理と逆の変換f−1()を行って第1入力予測値列X’を求める(S135)。第1減算部140は、第1入力信号列Xと第1入力予測値列X’との差を、第2入力信号列Zとして求める(S140)。 The first linear correspondence unit 105 is a reversible first linear correspondence process that brings the first input signal sequence X, which is a signal that has already been compressed before input to the encoding device 300, into a linear relationship with the signal sequence before compression. The first linear correspondence signal string Y is converted by f () (S105). The first linear prediction unit 110 obtains a P α- order first prediction coefficient α using the first linear correspondence signal sequence Y (S110). The first quantization unit 120 quantizes the first prediction coefficient Α to obtain a first quantized prediction coefficient Α ′ (S120). The first predicted value calculation unit 130 obtains a first linear correspondence predicted value sequence Y ′ using the first quantized prediction coefficient Α ′ (S130). The first linear inverse correspondence unit 135 performs a transformation f −1 () opposite to the first linear correspondence processing on the first linear correspondence predicted value sequence Y ′ to obtain a first input predicted value sequence X ′ ( S135). The first subtraction unit 140 obtains the difference between the first input signal sequence X and the first input predicted value sequence X ′ as the second input signal sequence Z (S140).

第2線形対応部355は、第2入力信号列Zを、第1入力信号列の各信号を圧縮前の信号列と線形な関係に近づける可逆な第2線形対応処理g()によって、第2線形対応信号列V={v(1),v(2),…,v(N)}に変換する(S355)。つまり、
v(n)=g(z(n)) ただし、n=1,…,N
の計算を行う。また、g()≠f()である。第2線形予測部360は、第2線形対応信号列Vを用いて、Pβ次の第2予測係数Β={β(1),β(2),…,β(Pβ)}を求める(S360)。第2量子化部370は、第2予測係数Βを量子化して第2量子化予測係数Β’={β’(1),β’(2),…,β’(Pβ)}を求める(S370)。第2予測値算出部380は、第2量子化予測係数Β’を用いて、n=1,…,Nに対して
v’(n)=β’(1)v(n−1)+…+β’(Pβ)v(n−Pβ
の計算を行って、第2線形対応予測値列V’={v’(1),v’(2),…,v’(N)}を求める。第2線形逆対応部385は、第2線形対応予測値列V’に対して、第2線形対応処理と逆の変換g−1()を行って第2入力予測値列Z’を求める(S385)。つまり、
z’(n)=g−1(v’(n)) ただし、n=1,…,N
を計算を行う。第2減算部190は、第2入力信号列Zと第2入力予測値列Z’との差を予測残差列E={e(1),e(2),…,e(N)}とする(S190)。第1係数符号化部145は、第1量子化予測係数Α’を符号化し、第1係数符号Cαを出力する(S145)。第2係数符号化部195は、第2量子化予測係数Β’を符号化し、第2係数符号Cβを出力する(S195)。残差符号化部199は、予測残差列Eを符号化し、予測残差符号Cを出力する(S199)。
The second linear correspondence unit 355 performs the second input signal sequence Z by the reversible second linear correspondence processing g () that brings each signal of the first input signal sequence close to a linear relationship with the signal sequence before compression. The linear correspondence signal sequence V = {v (1), v (2),..., V (N)} is converted (S355). That means
v (n) = g (z (n)) where n = 1,..., N
Perform the calculation. Also, g () ≠ f (). The second linear prediction unit 360 uses the second linear correspondence signal sequence V to obtain a P β- order second prediction coefficient Β = {β (1), β (2),..., Β (P β )}. (S360). The second quantization unit 370 quantizes the second prediction coefficient Β to obtain the second quantization prediction coefficient Β ′ = {β ′ (1), β ′ (2),..., Β ′ (P β )}. (S370). The second predicted value calculation unit 380 uses the second quantized prediction coefficient Β ′ for n = 1,..., N and v ′ (n) = β ′ (1) v (n−1) +. + Β ′ (P β ) v (n−P β )
To obtain a second linear correspondence predicted value sequence V ′ = {v ′ (1), v ′ (2),..., V ′ (N)}. The second linear inverse correspondence unit 385 performs a transformation g −1 () opposite to the second linear correspondence processing on the second linear correspondence predicted value sequence V ′ to obtain a second input predicted value sequence Z ′ ( S385). That means
z ′ (n) = g −1 (v ′ (n)) where n = 1,..., N
Calculate. The second subtracting unit 190 calculates the difference between the second input signal sequence Z and the second input predicted value sequence Z ′ as a prediction residual sequence E = {e (1), e (2),..., E (N)}. (S190). The first coefficient encoding unit 145 encodes the first quantized prediction coefficient Α ′ and outputs the first coefficient code C α (S145). The second coefficient encoding unit 195 encodes the second quantized prediction coefficient Β ′ and outputs the second coefficient code C β (S195). Residual coding unit 199 encodes the prediction residual sequence E, and outputs a prediction residual code C e (S199).

図17に、第3実施形態の復号化装置の機能構成例を示す。また、図18に、第3実施形態の復号化装置の処理フローを示す。復号化装置800は、第1係数復号化部620、第2係数復号化部670、残差復号化部699、第2線形対応部875、第2予測値算出部880、第2線形逆対応部885、第2加算部690、第1線形対応部625、第1予測値算出部630、第1線形逆対応部635、第1加算部640を備える。   FIG. 17 illustrates a functional configuration example of the decoding device according to the third embodiment. FIG. 18 shows a processing flow of the decoding apparatus according to the third embodiment. The decoding apparatus 800 includes a first coefficient decoding unit 620, a second coefficient decoding unit 670, a residual decoding unit 699, a second linear correspondence unit 875, a second predicted value calculation unit 880, and a second linear inverse correspondence unit. 885, a second addition unit 690, a first linear correspondence unit 625, a first predicted value calculation unit 630, a first linear inverse correspondence unit 635, and a first addition unit 640.

第1係数復号化部620は、第1係数符号Cαから第1量子化予測係数Α’を求める(S620)。第2係数復号化部670は、第2係数符号Cβから第2量子化予測係数Β’を求める(S670)。残差復号化部699は、予測残差符号Cから予測残差列Eを求める(S699)。第2線形対応部875は、復号化された第2出力信号列Z(符号化装置の第2入力信号列に相当)を、第1出力信号列(符号化装置の第1入力信号列に相当)を圧縮前の信号列と線形な関係に近づける可逆な第2線形対応処理g()によって、第2線形対応信号列Vに変換する(S875)。つまり、
v(n)=g(z(n)) ただし、n=1,…,N
の計算を行う。第2予測値算出部880は、第2線形対応信号列Vと第2量子化予測係数Β’を用いて、n=1,…,Nに対して
v’(n)=β’(1)v(n−1)+…+β’(Pβ)v(n−Pβ
の計算を行って、第2線形対応予測値列V’を求める(S880)。第2線形逆対応部885は、第2線形対応予測値列V’に対して、第2線形対応処理と逆の変換g−1()を行って第2出力予測値列Z’(符号化装置の第2入力予測値列に相当)を求める(S885)。つまり、
z’(n)=g−1(v’(n)) ただし、n=1,…,N
の計算を行う。第2加算部690は、第2出力予測値列Z’と予測残差列Eとを加算して第2出力信号列Zを求める(S690)。
The first coefficient decoding unit 620 obtains a first quantized prediction coefficient Α ′ from the first coefficient code C α (S620). The second coefficient decoding unit 670 obtains a second quantized prediction coefficient Β ′ from the second coefficient code C β (S670). Residual decoding unit 699 obtains a prediction residual sequence E from the prediction residual code C e (S699). The second linear correspondence unit 875 converts the decoded second output signal sequence Z (corresponding to the second input signal sequence of the encoding device) to the first output signal sequence (corresponding to the first input signal sequence of the encoding device). ) Is converted to a second linear correspondence signal sequence V by a reversible second linear correspondence processing g () that approximates a linear relationship with the signal sequence before compression (S875). That means
v (n) = g (z (n)) where n = 1,..., N
Perform the calculation. The second predicted value calculation unit 880 uses the second linear correspondence signal sequence V and the second quantized prediction coefficient Β ′, and v ′ (n) = β ′ (1) for n = 1,. v (n−1) +... + β ′ (P β ) v (n−P β )
Is calculated to obtain a second linear correspondence predicted value sequence V ′ (S880). The second linear inverse correspondence unit 885 performs a conversion g −1 () opposite to the second linear correspondence processing on the second linear correspondence predicted value sequence V ′ to generate a second output predicted value sequence Z ′ (encoding). (Corresponding to the second input predicted value sequence of the apparatus) is obtained (S885). That means
z ′ (n) = g −1 (v ′ (n)) where n = 1,..., N
Perform the calculation. The second addition unit 690 adds the second output predicted value sequence Z ′ and the prediction residual sequence E to obtain the second output signal sequence Z (S690).

第1線形対応部625は、復号化された第1出力信号列X(符号化装置の第1入力信号列に相当)を、圧縮前の信号列と線形な関係に近づける可逆な第1線形対応処理f()によって、第1線形対応信号列Yに変換する(S625)。第1予測値算出部630は、すでに求められている第1線形対応信号列Yと第1量子化予測係数Α’を用いて、第1線形対応予測値列Y’を求める(S630)。第1線形逆対応部635は、第1線形対応予測値列Y’に対して、第1線形対応処理と逆の変換f−1()を行って第1出力予測値列X’を求める(S635)。第1加算部640は、第1出力予測値列X’と第2出力信号列Zとを加算して第1出力信号列Xを求める(S640)。 The first linear correspondence unit 625 is a reversible first linear correspondence that brings the decoded first output signal sequence X (corresponding to the first input signal sequence of the encoding device) into a linear relationship with the signal sequence before compression. The first linear correspondence signal sequence Y is converted by the process f () (S625). The first predicted value calculation unit 630 obtains a first linear correspondence predicted value sequence Y ′ by using the first linear correspondence signal sequence Y and the first quantized prediction coefficient Α ′ that have already been obtained (S630). The first linear inverse correspondence unit 635 performs a transformation f −1 () opposite to the first linear correspondence processing on the first linear correspondence predicted value sequence Y ′ to obtain a first output predicted value sequence X ′ ( S635). The first adding unit 640 adds the first output predicted value sequence X ′ and the second output signal sequence Z to obtain the first output signal sequence X (S640).

符号化装置300と復号化装置800によれば、線形または線形に近い信号に変換した後での予測と、別の変換で線形または線形に近い信号に変換した後での予測を組み合わせるので、予測残差の振幅を小さくし、符号量を少なくできる。   According to the encoding device 300 and the decoding device 800, prediction after conversion to a linear or near-linear signal and prediction after conversion to a linear or near-linear signal by another conversion are combined. The residual amplitude can be reduced, and the amount of codes can be reduced.

[第4実施形態]
第4実施形態の符号化装置は、第2線形予測部および第2予測値算出部に入力される信号列と第2予測値計算部から出力される信号列とが、第1入力信号列を圧縮前の信号列と線形な関係に近づける可逆な第2線形対応処理g()によって変換された信号列(第2線形対応信号列Vと第2線形対応予測値列V’)であることが、第2実施形態の符号化装置と異なる。
[Fourth Embodiment]
In the encoding device of the fourth embodiment, the signal sequence input to the second linear prediction unit and the second prediction value calculation unit and the signal sequence output from the second prediction value calculation unit are the first input signal sequence. It is a signal sequence (second linear correspondence signal sequence V and second linear correspondence predicted value sequence V ′) converted by a reversible second linear correspondence processing g () that approximates a linear relationship with the signal sequence before compression. This is different from the encoding device of the second embodiment.

図19に、第4実施形態の符号化装置の機能構成例を示す。また、図20に、第4実施形態の符号化装置の処理フローを示す。符号化装置400は、第1線形対応部205、第1線形予測部110、第1量子化部120、第1予測値算出部130、第1減算部240、第1線形逆対応部235、第2線形対応部355、第2線形予測部360、第2量子化部370、第2予測値算出部380、第2線形逆対応部385、第2減算部190、第1係数符号化部145、第2係数符号化部195、残差符号化部199を備える。   FIG. 19 shows a functional configuration example of the encoding apparatus according to the fourth embodiment. FIG. 20 shows a processing flow of the encoding apparatus according to the fourth embodiment. The encoding apparatus 400 includes a first linear correspondence unit 205, a first linear prediction unit 110, a first quantization unit 120, a first predicted value calculation unit 130, a first subtraction unit 240, a first linear inverse correspondence unit 235, a first A second linear correspondence unit 355, a second linear prediction unit 360, a second quantization unit 370, a second predicted value calculation unit 380, a second linear inverse correspondence unit 385, a second subtraction unit 190, a first coefficient encoding unit 145, A second coefficient encoding unit 195 and a residual encoding unit 199 are provided.

第1線形対応部205は、符号化装置400への入力前に既に圧縮済の信号である第1入力信号列Xを、圧縮前の信号列と線形な関係に近づける可逆な第1線形対応処理f()によって、第1線形対応信号列Yに変換する(S205)。第1線形予測部110は、第1線形対応信号列Yを用いて第1予測係数Αを求める(S110)。第1量子化部120は、第1予測係数Αを量子化して第1量子化予測係数Α’を求める(S120)。第1予測値算出部130は、第1量子化予測係数Α’を用いて、第1線形対応予測値列Y’を求める(S130)。第1減算部240は、第1線形対応信号列Yと第1線形対応予測値列Y’との差を第1線形対応予測誤差列Wとして求める(S240)。第1線形逆対応部235は、第1線形対応予測誤差列Wに対して、第1線形対応処理と逆の変換f−1()を行って第2入力信号列Zを求める(S235)。 The first linear correspondence unit 205 is a reversible first linear correspondence process that brings the first input signal sequence X, which is a signal that has already been compressed before input to the encoding device 400, into a linear relationship with the signal sequence before compression. The first linear correspondence signal string Y is converted by f () (S205). The first linear prediction unit 110 obtains a first prediction coefficient 用 い using the first linear correspondence signal sequence Y (S110). The first quantization unit 120 quantizes the first prediction coefficient Α to obtain a first quantized prediction coefficient Α ′ (S120). The first predicted value calculation unit 130 obtains a first linear correspondence predicted value sequence Y ′ using the first quantized prediction coefficient Α ′ (S130). The first subtraction unit 240 obtains a difference between the first linear correspondence signal sequence Y and the first linear correspondence prediction value sequence Y ′ as a first linear correspondence prediction error sequence W (S240). The first linear inverse correspondence unit 235 performs a transformation f −1 () inverse to the first linear correspondence processing on the first linear correspondence prediction error sequence W to obtain the second input signal sequence Z (S235).

第2線形対応部355は、第2入力信号列Zを、第1入力信号列を圧縮前の信号列と線形な関係に近づける可逆な第2線形対応処理g()によって、第2線形対応信号列Vに変換する(S355)。第2線形予測部360は、第2線形対応信号列Vを用いて第2予測係数Βを求める(S360)。第2量子化部370は、第2予測係数Βを量子化して第2量子化予測係数Β’を求める(S370)。第2予測値算出部380は、第2量子化予測係数B’を用いて、第2線形対応予測値列V’を求める(S380)。第2線形逆対応部385は、第2線形対応予測値列V’に対して、第2線形対応処理と逆の変換g−1()を行って第2入力予測値列Z’を求める(S385)。第2減算部190は、第2入力信号列Zと前記第2入力予測値列Z’との差を求め、予測残差列Eを求める(S190)。第1係数符号化部145は、第1量子化予測係数Α’を符号化する(S145)。第2係数符号化部195は、第2量子化予測係数Β’を符号化する(S195)。残差符号化部199は、予測残差列Eを符号化する(S199)。 The second linear correspondence unit 355 performs the second linear correspondence signal by performing a reversible second linear correspondence processing g () that brings the second input signal sequence Z closer to a linear relationship with the signal sequence before compression. Conversion to column V (S355). The second linear prediction unit 360 obtains a second prediction coefficient 用 い using the second linear correspondence signal sequence V (S360). The second quantization unit 370 quantizes the second prediction coefficient Β to obtain a second quantized prediction coefficient Β ′ (S370). The second predicted value calculation unit 380 obtains a second linear corresponding predicted value sequence V ′ using the second quantized prediction coefficient B ′ (S380). The second linear inverse correspondence unit 385 performs a transformation g −1 () opposite to the second linear correspondence processing on the second linear correspondence predicted value sequence V ′ to obtain a second input predicted value sequence Z ′ ( S385). The second subtracting unit 190 obtains a difference between the second input signal sequence Z and the second input predicted value sequence Z ′ to obtain a prediction residual sequence E (S190). The first coefficient encoding unit 145 encodes the first quantized prediction coefficient Α ′ (S145). The second coefficient encoding unit 195 encodes the second quantized prediction coefficient Β ′ (S195). The residual encoding unit 199 encodes the prediction residual sequence E (S199).

図21に、第4実施形態の復号化装置の機能構成例を示す。また、図22に、第4実施形態の復号化装置の処理フローを示す。復号化装置900は、第1係数復号化部620、第2係数復号化部670、残差復号化部699、第2線形対応部875、第2予測値算出部880、第2線形逆対応部885、第2加算部690、第1線形対応部725、第1予測値算出部630、第1加算部740、第1線形逆対応部735を備える。   FIG. 21 illustrates a functional configuration example of the decoding device according to the fourth embodiment. FIG. 22 shows a processing flow of the decoding apparatus according to the fourth embodiment. The decoding apparatus 900 includes a first coefficient decoding unit 620, a second coefficient decoding unit 670, a residual decoding unit 699, a second linear correspondence unit 875, a second predicted value calculation unit 880, and a second linear inverse correspondence unit. 885, a second addition unit 690, a first linear correspondence unit 725, a first predicted value calculation unit 630, a first addition unit 740, and a first linear inverse correspondence unit 735.

第1係数復号化部620は、第1係数符号Cαから第1量子化予測係数Α’を求める(S620)。第2係数復号化部670は、第2係数符号Cβから第2量子化予測係数Β’を求める(S670)。残差復号化部699は、予測残差符号Cから予測残差列Eを求める(S699)。第2線形対応部875は、復号化された第2出力信号列Z(符号化装置の第2入力信号列に相当)を、第1出力信号列(符号化装置の第1入力信号列に相当)を圧縮前の信号列と線形な関係に近づける可逆な第2線形対応処理g()によって、第2線形対応信号列Vに変換する(S875)。第2予測値算出部880は、第2線形対応信号列Vと第2量子化予測係数Β’を用いて、第2線形対応予測値列V’を求める(S880)。第2線形逆対応部885は、第2線形対応予測値列V’に対して、第2線形対応処理と逆の変換g−1()を行って第2出力予測値列Z’(符号化装置の第2入力予測値列に相当)を求める(S885)。第2加算部690は、第2出力予測値列Z’と予測残差列Eとを加算して第2出力信号列Zを求める(S690)。第1線形対応部725は、第2出力信号列Zを、圧縮前の信号列と線形な関係に近づける可逆な第1線形対応処理f()によって、第1線形対応予測誤差列Wに変換する(S725)。第1予測値算出部630は、第1線形対応信号列Yと第1量子化予測係数Α’を用いて、第1線形対応予測値列Y’を求める(S630)。第1加算部740は、第1線形対応予測値列Y’と第1線形対応予測誤差列Wとを加算して第1線形対応信号列Yを求める(S740)。第1線形逆対応部735は、第1線形対応信号列Yに対して、第1線形対応処理と逆の変換f−1()を行って第1出力信号列X(符号化装置の第1入力信号列に相当)を求める(S735)。 The first coefficient decoding unit 620 obtains a first quantized prediction coefficient Α ′ from the first coefficient code C α (S620). The second coefficient decoding unit 670 obtains a second quantized prediction coefficient Β ′ from the second coefficient code C β (S670). Residual decoding unit 699 obtains a prediction residual sequence E from the prediction residual code C e (S699). The second linear correspondence unit 875 converts the decoded second output signal sequence Z (corresponding to the second input signal sequence of the encoding device) to the first output signal sequence (corresponding to the first input signal sequence of the encoding device). ) Is converted to a second linear correspondence signal sequence V by a reversible second linear correspondence processing g () that approximates a linear relationship with the signal sequence before compression (S875). The second predicted value calculation unit 880 obtains a second linear corresponding predicted value sequence V ′ using the second linear corresponding signal sequence V and the second quantized prediction coefficient Β ′ (S880). The second linear inverse correspondence unit 885 performs a conversion g −1 () opposite to the second linear correspondence processing on the second linear correspondence predicted value sequence V ′ to generate a second output predicted value sequence Z ′ (encoding). (Corresponding to the second input predicted value sequence of the apparatus) is obtained (S885). The second addition unit 690 adds the second output predicted value sequence Z ′ and the prediction residual sequence E to obtain the second output signal sequence Z (S690). The first linear correspondence unit 725 converts the second output signal sequence Z into a first linear correspondence prediction error sequence W by a reversible first linear correspondence processing f () that approximates a linear relationship with the signal sequence before compression. (S725). The first predicted value calculation unit 630 obtains a first linear correspondence predicted value sequence Y ′ using the first linear correspondence signal sequence Y and the first quantized prediction coefficient Α ′ (S630). The first addition unit 740 adds the first linear correspondence predicted value sequence Y ′ and the first linear correspondence prediction error sequence W to obtain the first linear correspondence signal sequence Y (S740). The first linear inverse correspondence unit 735 performs a transformation f −1 () opposite to the first linear correspondence processing on the first linear correspondence signal sequence Y to perform the first output signal sequence X (first encoding device). (Corresponding to the input signal string) is obtained (S735).

符号化装置400と復号化装置900によれば、線形または線形に近い信号に変換した後での予測と、別の変換で線形または線形に近い信号に変換した後での予測を組み合わせるので、予測残差の振幅を小さくし、符号量を少なくできる。   According to the encoding device 400 and the decoding device 900, since prediction after conversion to a linear or near-linear signal is combined with prediction after conversion to a signal that is close to linear or linear by another conversion, prediction The residual amplitude can be reduced, and the amount of codes can be reduced.

[第5実施形態]
第5実施形態の符号化装置は、1段目の線形予測で、圧縮された第1入力信号列を対象として線形予測することが、第3実施形態や第4実施形態の符号化装置と異なる。
[Fifth Embodiment]
The encoding apparatus of the fifth embodiment differs from the encoding apparatus of the third embodiment or the fourth embodiment in that the first stage linear prediction performs linear prediction on the compressed first input signal sequence. .

図23に、第5実施形態の符号化装置の機能構成例を示す。また、図24に、第5実施形態の符号化装置の処理フローを示す。符号化装置500は、第1線形予測部510、第1量子化部520、第1予測値算出部530、第1減算部140、第2線形対応部355、第2線形予測部360、第2量子化部370、第2予測値算出部380、第2線形逆対応部385、第2減算部190、第1係数符号化部145、第2係数符号化部195、残差符号化部199を備える。   FIG. 23 illustrates a functional configuration example of the encoding device according to the fifth embodiment. FIG. 24 shows a processing flow of the encoding apparatus according to the fifth embodiment. The encoding apparatus 500 includes a first linear prediction unit 510, a first quantization unit 520, a first predicted value calculation unit 530, a first subtraction unit 140, a second linear correspondence unit 355, a second linear prediction unit 360, a second A quantization unit 370, a second predicted value calculation unit 380, a second linear inverse correspondence unit 385, a second subtraction unit 190, a first coefficient encoding unit 145, a second coefficient encoding unit 195, and a residual encoding unit 199 Prepare.

第1線形予測部510は、第1入力信号列Xを用いて第1予測係数Αを求める(S510)。第1量子化部520は、第1予測係数Αを量子化して第1量子化予測係数Α’を求める(S520)。第1予測値算出部530は、第1量子化予測係数Α’を用いて、第1入力予測値列X’を求める(S530)。第1減算部140は、第1入力信号列Xと第1入力予測値列X’との差を第2入力信号列Zとして求める(S140)。   The first linear prediction unit 510 obtains a first prediction coefficient Α using the first input signal sequence X (S510). The first quantization unit 520 quantizes the first prediction coefficient Α to obtain a first quantized prediction coefficient Α ′ (S520). The first predicted value calculation unit 530 obtains a first input predicted value sequence X ′ using the first quantized prediction coefficient Α ′ (S530). The first subtraction unit 140 obtains a difference between the first input signal sequence X and the first input predicted value sequence X ′ as the second input signal sequence Z (S140).

第2線形対応部355は、第2入力信号列Zを、第1入力信号列を圧縮前の信号列と線形な関係に近づける可逆な第2線形対応処理g()によって、第2線形対応信号列Vに変換する(S355)。第2線形予測部360は、第2線形対応信号列Vを用いて第2予測係数Βを求める(S360)。第2量子化部370は、第2予測係数Βを量子化して第2量子化予測係数Β’を求める(S370)。第2予測値算出部380は、第2量子化予測係数B’を用いて、第2線形対応予測値列V’を求める(S380)。第2線形逆対応部385は、第2線形対応予測値列V’に対して、第2線形対応処理と逆の変換g−1()を行って第2入力予測値列Z’を求める(S385)。第2減算部190は、第2入力信号列Zと前記第2入力予測値列Z’との差を求め、予測残差列Eを求める(S190)。第1係数符号化部145は、第1量子化予測係数Α’を符号化する(S145)。第2係数符号化部195は、第2量子化予測係数Β’を符号化する(S195)。残差符号化部199は、予測残差列Eを符号化する(S199)。 The second linear correspondence unit 355 performs the second linear correspondence signal by performing a reversible second linear correspondence processing g () that brings the second input signal sequence Z closer to a linear relationship with the signal sequence before compression. Conversion to column V (S355). The second linear prediction unit 360 obtains a second prediction coefficient 用 い using the second linear correspondence signal sequence V (S360). The second quantization unit 370 quantizes the second prediction coefficient Β to obtain a second quantized prediction coefficient Β ′ (S370). The second predicted value calculation unit 380 obtains a second linear corresponding predicted value sequence V ′ using the second quantized prediction coefficient B ′ (S380). The second linear inverse correspondence unit 385 performs a transformation g −1 () opposite to the second linear correspondence processing on the second linear correspondence predicted value sequence V ′ to obtain a second input predicted value sequence Z ′ ( S385). The second subtracting unit 190 obtains a difference between the second input signal sequence Z and the second input predicted value sequence Z ′ to obtain a prediction residual sequence E (S190). The first coefficient encoding unit 145 encodes the first quantized prediction coefficient Α ′ (S145). The second coefficient encoding unit 195 encodes the second quantized prediction coefficient Β ′ (S195). The residual encoding unit 199 encodes the prediction residual sequence E (S199).

図25に、第5実施形態の復号化装置の機能構成例を示す。また、図26に、第5実施形態の復号化装置の処理フローを示す。復号化装置1000は、第1係数復号化部620、第2係数復号化部670、残差復号化部699、第2線形対応部875、第2予測値算出部880、第2線形逆対応部885、第2加算部690、第1予測値算出部1030、第1加算部640を備える。   FIG. 25 illustrates a functional configuration example of the decoding device according to the fifth embodiment. FIG. 26 shows a processing flow of the decoding apparatus according to the fifth embodiment. The decoding apparatus 1000 includes a first coefficient decoding unit 620, a second coefficient decoding unit 670, a residual decoding unit 699, a second linear correspondence unit 875, a second predicted value calculation unit 880, and a second linear inverse correspondence unit. 885, a second addition unit 690, a first predicted value calculation unit 1030, and a first addition unit 640.

第1係数復号化部620は、第1係数符号Cαから第1量子化予測係数Α’を求める(S620)。第2係数復号化部670は、第2係数符号Cβから第2量子化予測係数Β’を求める(S670)。残差復号化部699は、予測残差符号Cから予測残差列Eを求める(S699)。第2線形対応部875は、復号化された第2出力信号列Z(符号化装置の第2入力信号列に相当)を、第1出力信号列(符号化装置の第1入力信号列に相当)を圧縮前の信号列と線形な関係に近づける可逆な第2線形対応処理g()によって、第2線形対応信号列Vに変換する(S875)。第2予測値算出部880は、第2線形対応信号列Vと第2量子化予測係数Β’を用いて、第2線形対応予測値列V’を求める(S880)。第2線形逆対応部885は、第2線形対応予測値列V’に対して、第2線形対応処理と逆の変換g−1()を行って第2出力予測値列Z’(符号化装置の第2入力予測値列に相当)を求める(S885)。第2加算部690は、第2出力予測値列Z’と予測残差列Eとを加算して第2出力信号列Zを求める(S690)。第1予測値算出部1030は、第1出力信号列X(符号化装置の第1入力信号列に相当)と第1量子化予測係数Α’を用いて、第1出力予測値列X’(符号化装置の第1入力予測値列に相当)を求める(S1030)。第1加算部640は、第1出力予測値列X’と第2出力信号列Zとを加算して第1出力信号列Xを求める(S640)。 The first coefficient decoding unit 620 obtains a first quantized prediction coefficient Α ′ from the first coefficient code C α (S620). The second coefficient decoding unit 670 obtains a second quantized prediction coefficient Β ′ from the second coefficient code C β (S670). Residual decoding unit 699 obtains a prediction residual sequence E from the prediction residual code C e (S699). The second linear correspondence unit 875 converts the decoded second output signal sequence Z (corresponding to the second input signal sequence of the encoding device) to the first output signal sequence (corresponding to the first input signal sequence of the encoding device). ) Is converted to a second linear correspondence signal sequence V by a reversible second linear correspondence processing g () that approximates a linear relationship with the signal sequence before compression (S875). The second predicted value calculation unit 880 obtains a second linear corresponding predicted value sequence V ′ using the second linear corresponding signal sequence V and the second quantized prediction coefficient Β ′ (S880). The second linear inverse correspondence unit 885 performs a conversion g −1 () opposite to the second linear correspondence processing on the second linear correspondence predicted value sequence V ′ to generate a second output predicted value sequence Z ′ (encoding). (Corresponding to the second input predicted value sequence of the apparatus) is obtained (S885). The second addition unit 690 adds the second output predicted value sequence Z ′ and the prediction residual sequence E to obtain the second output signal sequence Z (S690). The first predicted value calculation unit 1030 uses the first output signal sequence X (corresponding to the first input signal sequence of the encoding device) and the first quantized prediction coefficient Α ′ to generate a first output predicted value sequence X ′ ( (Corresponding to the first input predicted value sequence of the encoding device) is obtained (S1030). The first adding unit 640 adds the first output predicted value sequence X ′ and the second output signal sequence Z to obtain the first output signal sequence X (S640).

符号化装置500と復号化装置1000によれば、圧縮した信号での予測と、線形または線形に近い信号に変換した後での予測を組み合わせるので、予測残差の振幅を小さくし、符号量を少なくできる。   According to the encoding device 500 and the decoding device 1000, since prediction with a compressed signal and prediction after conversion to a linear or nearly linear signal are combined, the amplitude of the prediction residual is reduced, and the code amount is reduced. Less.

[具体例]
図27に、線形な関係に近づける処理(線形対応処理)f()として入力信号列Xと元の信号列と線形な信号列S={s(1),s(2),…,s(N)}との重みつき加算(uを重みとしてX+uS)を行った場合の8ビットのμ則の形式(図2)の例を示す。なお、図27では極性が正の場合のみを示している。また、μ則の指数部(セグメント)と線形部(レベル)は、一般的な感覚とは“1”と“0”とが反転しており、μ則では“11111111”が正の最小の数値を示し、“10000000”が正の最大の数値を示すことに注意されたい。図中の「元の信号の大小関係を示す番号」の列が、非特許文献2(G.711)のμ則の具体例を示す表(Table 2a)の第8列に相当し、「元の信号の量子化値」の列が第7列に相当する。図27(A)は指数部(セグメント)が“111”の例を示しており、レベルが1増えるごとに、元の信号の大小関係を示す番号はu、元の信号の量子化値は2増えている。図27(B)は指数部(セグメント)が“110” の例を示しており、レベルが1増えるごとに、元の信号の大小関係を示す番号はu、元の信号の量子化値は4増えている。図27(C)は指数部(セグメント)が“001” の例を示しており、レベルが1増えるごとに、元の信号の大小関係を示す番号はu、元の信号の量子化値は128増えている。図27(D)は指数部(セグメント)が“000” の例を示しており、レベルが1増えるごとに、元の信号の大小関係を示す番号はu、元の信号の量子化値は256増えている。なお、中間数値とは、処理f()を行った後の値を指している。入力信号列Xと元の信号列と線形な信号列Sとの重みつき加算(uを重みとしてX+uS)によって、線形な関係に近づけることができる(重み付加算の結果、線形特性と圧伸特性の中間状態となる)。なお、線形対応処理g()の重みを、f()の重みと異なる値とすれば、容易にg()≠f()にできる。
[Concrete example]
In FIG. 27, as processing (linear correspondence processing) f () that approximates a linear relationship, the input signal sequence X, the original signal sequence, and the linear signal sequence S = {s (1), s (2),. N)} and an example of an 8-bit μ-law format (FIG. 2) when weighted addition (X + uS with u as a weight) is performed. FIG. 27 shows only the case where the polarity is positive. In addition, in the exponent part (segment) and linear part (level) of the μ rule, “1” and “0” are reversed from the general sense, and “11111111” is the smallest positive value in the μ rule. Note that “10000000” indicates the maximum positive number. The column “number indicating the magnitude relationship of the original signal” in the figure corresponds to the eighth column of the table (Table 2a) showing a specific example of the μ rule of Non-Patent Document 2 (G.711). The column of “quantized values of the signal” corresponds to the seventh column. FIG. 27A shows an example in which the exponent part (segment) is “111”. As the level increases by 1, the number indicating the magnitude relationship of the original signal is u, and the quantized value of the original signal is 2 is increasing. FIG. 27B shows an example in which the exponent part (segment) is “110”. As the level increases by 1, the number indicating the magnitude relationship of the original signal is u, and the quantized value of the original signal is 4 is increasing. FIG. 27C shows an example in which the exponent part (segment) is “001”. As the level increases by 1, the number indicating the magnitude relation of the original signal is u, and the quantized value of the original signal is 128. is increasing. FIG. 27D shows an example in which the exponent (segment) is “000”. Each time the level increases by 1, the number indicating the magnitude relationship of the original signal is u, and the quantized value of the original signal is 256. is increasing. The intermediate numerical value indicates a value after performing the processing f (). The weighted addition of the input signal sequence X, the original signal sequence, and the linear signal sequence S (X + uS with u as the weight) can be approximated to a linear relationship (as a result of the weighted addition, linear characteristics and companding characteristics). Intermediate state). If the weight of the linear correspondence processing g () is set to a value different from the weight of f (), g () ≠ f () can be easily obtained.

図28に、コンピュータの機能構成例を示す。本発明の符号化方法、復号化方法は、コンピュータ2000の記録部2020に、本発明の各構成部としてコンピュータ2000を動作させるプログラムを読み込ませ、制御部2010、入力部2030、出力部2040などを動作させることで、コンピュータに実行させることができる。また、コンピュータに読み込ませる方法としては、プログラムをコンピュータ読み取り可能な記録媒体に記録しておき、記録媒体からコンピュータに読み込ませる方法、サーバ等に記録されたプログラムを、電気通信回線等を通じてコンピュータに読み込ませる方法などがある。   FIG. 28 shows a functional configuration example of a computer. In the encoding method and decoding method of the present invention, the recording unit 2020 of the computer 2000 reads a program for operating the computer 2000 as each component of the present invention, and the control unit 2010, the input unit 2030, the output unit 2040, etc. By operating, it can be executed by a computer. In addition, as a method of causing the computer to read, the program is recorded on a computer-readable recording medium, and the program recorded on the server or the like is read into the computer through a telecommunication line or the like. There is a method to make it.

圧伸された信号列の振幅の例を示す図。The figure which shows the example of the amplitude of the signal train which was drawn. 8ビットのμ則の具体的な形式を示す図。The figure which shows the specific format of 8-bit micro rule. 従来の符号化装置の機能構成例を示す図。The figure which shows the function structural example of the conventional encoding apparatus. 従来の符号化装置の処理フローの例を示す図。The figure which shows the example of the processing flow of the conventional encoding apparatus. 従来の復号化装置の機能構成例を示す図。The figure which shows the function structural example of the conventional decoding apparatus. 従来の復号化装置の処理フローの例を示す図。The figure which shows the example of the processing flow of the conventional decoding apparatus. 第1実施形態の符号化装置の機能構成例を示す図。The figure which shows the function structural example of the encoding apparatus of 1st Embodiment. 第1実施形態の符号化装置の処理フローを示す図。The figure which shows the processing flow of the encoding apparatus of 1st Embodiment. 第1実施形態の復号化装置の機能構成例を示す図。The figure which shows the function structural example of the decoding apparatus of 1st Embodiment. 第1実施形態の復号化装置の処理フローを示す図。The figure which shows the processing flow of the decoding apparatus of 1st Embodiment. 第2実施形態の符号化装置の機能構成例を示す図。The figure which shows the function structural example of the encoding apparatus of 2nd Embodiment. 第2実施形態の符号化装置の処理フローを示す図。The figure which shows the processing flow of the encoding apparatus of 2nd Embodiment. 第2実施形態の復号化装置の機能構成例を示す図。The figure which shows the function structural example of the decoding apparatus of 2nd Embodiment. 第2実施形態の復号化装置の処理フローを示す図。The figure which shows the processing flow of the decoding apparatus of 2nd Embodiment. 第3実施形態の符号化装置の機能構成例を示す図。The figure which shows the function structural example of the encoding apparatus of 3rd Embodiment. 第3実施形態の符号化装置の処理フローを示す図。The figure which shows the processing flow of the encoding apparatus of 3rd Embodiment. 第3実施形態の復号化装置の機能構成例を示す図。The figure which shows the function structural example of the decoding apparatus of 3rd Embodiment. 第3実施形態の復号化装置の処理フローを示す図。The figure which shows the processing flow of the decoding apparatus of 3rd Embodiment. 第4実施形態の符号化装置の機能構成例を示す図。The figure which shows the function structural example of the encoding apparatus of 4th Embodiment. 第4実施形態の符号化装置の処理フローを示す図。The figure which shows the processing flow of the encoding apparatus of 4th Embodiment. 第4実施形態の復号化装置の機能構成例を示す図。The figure which shows the function structural example of the decoding apparatus of 4th Embodiment. 第4実施形態の復号化装置の処理フローを示す図。The figure which shows the processing flow of the decoding apparatus of 4th Embodiment. 第5実施形態の符号化装置の機能構成例を示す図。The figure which shows the function structural example of the encoding apparatus of 5th Embodiment. 第5実施形態の符号化装置の処理フローを示す図。The figure which shows the processing flow of the encoding apparatus of 5th Embodiment. 第5実施形態の復号化装置の機能構成例を示す図。The figure which shows the function structural example of the decoding apparatus of 5th Embodiment. 第5実施形態の復号化装置の処理フローを示す図。The figure which shows the processing flow of the decoding apparatus of 5th Embodiment. 線形な関係に近づける処理f()として入力信号列の振幅xと元の信号列の振幅sと線形な信号列との重みつき加算を行った場合の指数部が“111”と“110”の例を示す図。As a process f () that approximates a linear relationship, the exponent part is “111” and “110” when weighted addition of the amplitude x of the input signal sequence, the amplitude s of the original signal sequence, and the linear signal sequence is performed. The figure which shows an example. 線形な関係に近づける処理f()として入力信号列の振幅xと元の信号列の振幅sと線形な信号列との重みつき加算を行った場合の指数部が“001”と“000”の例を示す図。As a process f () that approximates a linear relationship, the exponent part is “001” and “000” when weighted addition of the amplitude x of the input signal sequence, the amplitude s of the original signal sequence, and the linear signal sequence is performed. The figure which shows an example. コンピュータの機能構成例を示す図。The figure which shows the function structural example of a computer.

符号の説明Explanation of symbols

100、200、300、400、500、1100 符号化装置
105、205 第1線形対応部 110、510 第1線形予測部
120、520 第1量子化部 130、530 第1予測値算出部
135、235 第1線形逆対応部 140、240 第1減算部
145 第1係数符号化部 160、360 第2線形予測部
170、370 第2量子化部 180、380 第2予測値算出部
190 第2減算部 195 第2係数符号化部
199 残差符号化部 355 第2線形対応部
385 第2線形逆対応部
600、700、800、900、1600 復号化装置
620 係数復号化部 625 線形対応部
630、1030 予測値算出部 635 線形逆対応部
640 加算部 670 係数復号化部
680 予測値算出部 690 加算部
699 残差復号化部 725 線形対応部
735 線形逆対応部 740 加算部
875 線形対応部 880 予測値算出部
885 線形逆対応部 1110 線形予測部
1120 量子化部 1130 予測値算出部
1140 減算部 1150 係数符号化部
1160 残差符号化部 1610 残差復号化部
1620 係数復号化部 1630 予測値算出部
1640 加算部
100, 200, 300, 400, 500, 1100 Encoding device 105, 205 First linear correspondence unit 110, 510 First linear prediction unit 120, 520 First quantization unit 130, 530 First prediction value calculation unit 135, 235 First linear inverse correspondence unit 140, 240 First subtraction unit 145 First coefficient encoding unit 160, 360 Second linear prediction unit 170, 370 Second quantization unit 180, 380 Second predicted value calculation unit 190 Second subtraction unit 195 Second coefficient coding unit 199 Residual coding unit 355 Second linear correspondence unit 385 Second linear inverse correspondence unit 600, 700, 800, 900, 1600 Decoding device 620 Coefficient decoding unit 625 Linear correspondence unit 630, 1030 Prediction value calculation unit 635 Linear inverse correspondence unit 640 Addition unit 670 Coefficient decoding unit 680 Prediction value calculation unit 690 Addition unit 699 Residual decoding unit 72 Linear correspondence unit 735 Linear inverse correspondence unit 740 Addition unit 875 Linear correspondence unit 880 Predicted value calculation unit 885 Linear inverse correspondence unit 1110 Linear prediction unit 1120 Quantization unit 1130 Prediction value calculation unit 1140 Subtraction unit 1150 Coefficient encoding unit 1160 Residual code 1616 Residual decoding unit 1620 Coefficient decoding unit 1630 Predicted value calculation unit 1640 Addition unit

Claims (22)

振幅が圧縮された入力信号列(以下、「第1入力信号列」という)を符号化する符号化装置であって、
前記第1入力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第1線形対応処理によって、前記第1入力信号列を第1線形対応信号列に変換する第1線形対応部と、
前記第1線形対応信号列を用いて第1予測係数を求める第1線形予測部と、
前記第1予測係数を量子化して第1量子化予測係数を求める第1量子化部と、
前記第1線形対応信号列について、前記第1量子化予測係数を用いて予測を行い、第1線形対応予測値列を求める第1予測値算出部と、
前記第1線形対応予測値列に対して、前記第1線形対応処理と逆の変換を行って第1入力予測値列を求める第1線形逆対応部と、
前記第1入力信号列と前記第1入力予測値列との差を第2入力信号列として求める第1減算部と、
前記第2入力信号列を用いて第2予測係数を求める第2線形予測部と、
前記第2予測係数を量子化して第2量子化予測係数を求める第2量子化部と、
前記第2入力信号列について、前記第2量子化予測係数を用いて予測を行い、第2入力予測値列を求める第2予測値算出部と、
前記第2入力信号列と前記第2入力予測値列との差を予測残差列として求める第2減算部と、
前記第1量子化予測係数と前記第2量子化予測係数と前記予測残差列を符号化する符号化部と、
を備える符号化装置。
An encoding device that encodes an input signal sequence whose amplitude is compressed (hereinafter referred to as a “first input signal sequence”),
The first input signal sequence is converted into a first linear correspondence signal sequence by a reversible first linear correspondence processing that brings each signal of the first input signal sequence close to a linear relationship with each signal of the signal sequence before compression. One linear counterpart,
A first linear prediction unit that obtains a first prediction coefficient using the first linear correspondence signal sequence;
A first quantization unit that quantizes the first prediction coefficient to obtain a first quantization prediction coefficient;
A first prediction value calculation unit that performs prediction using the first quantized prediction coefficient for the first linear correspondence signal sequence and obtains a first linear correspondence prediction value sequence;
A first linear inverse corresponding unit that obtains a first input predicted value sequence by performing a reverse conversion to the first linear corresponding process on the first linear corresponding predicted value sequence;
A first subtraction unit for obtaining a difference between the first input signal sequence and the first input predicted value sequence as a second input signal sequence;
A second linear prediction unit for obtaining a second prediction coefficient using the second input signal sequence;
A second quantization unit that quantizes the second prediction coefficient to obtain a second quantization prediction coefficient;
A second predicted value calculation unit that performs prediction using the second quantized prediction coefficient for the second input signal sequence, and obtains a second input predicted value sequence;
A second subtraction unit for obtaining a difference between the second input signal sequence and the second input predicted value sequence as a prediction residual sequence;
An encoding unit for encoding the first quantized prediction coefficient, the second quantized prediction coefficient, and the prediction residual sequence;
An encoding device comprising:
振幅が圧縮された入力信号列(以下、「第1入力信号列」という)を符号化する符号化装置であって、
前記第1入力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第1線形対応処理によって、前記第1入力信号列を第1線形対応信号列に変換する第1線形対応部と、
前記第1線形対応信号列を用いて第1予測係数を求める第1線形予測部と、
前記第1予測係数を量子化して第1量子化予測係数を求める第1量子化部と、
前記第1線形対応信号列について、前記第1量子化予測係数を用いて予測を行い、第1線形対応予測値列を求める第1予測値算出部と、
前記第1線形対応信号列と前記第1線形対応予測値列との差を第1線形対応予測誤差列として求める第1減算部と、
前記第1線形対応予測誤差列に対して、前記第1線形対応処理と逆の変換を行って第2入力信号列を求める第1線形逆対応部と、
前記第2入力信号列を用いて第2予測係数を求める第2線形予測部と、
前記第2予測係数を量子化して第2量子化予測係数を求める第2量子化部と、
前記第2入力信号列について、前記第2量子化予測係数を用いて予測を行い、第2入力予測値列を求める第2予測値算出部と、
前記第2入力信号列と前記第2入力予測値列との差を予測残差列として求める第2減算部と、
前記第1量子化予測係数と前記第2量子化予測係数と前記予測残差列を符号化する符号化部と、
を備える符号化装置。
An encoding device that encodes an input signal sequence whose amplitude is compressed (hereinafter referred to as a “first input signal sequence”),
The first input signal sequence is converted into a first linear correspondence signal sequence by a reversible first linear correspondence processing that brings each signal of the first input signal sequence close to a linear relationship with each signal of the signal sequence before compression. One linear counterpart,
A first linear prediction unit that obtains a first prediction coefficient using the first linear correspondence signal sequence;
A first quantization unit that quantizes the first prediction coefficient to obtain a first quantization prediction coefficient;
A first prediction value calculation unit that performs prediction using the first quantized prediction coefficient for the first linear correspondence signal sequence and obtains a first linear correspondence prediction value sequence;
A first subtraction unit that obtains a difference between the first linear correspondence signal sequence and the first linear correspondence prediction value sequence as a first linear correspondence prediction error sequence;
A first linear inverse correspondence unit that obtains a second input signal sequence by performing an inverse conversion to the first linear correspondence process on the first linear correspondence prediction error sequence;
A second linear prediction unit for obtaining a second prediction coefficient using the second input signal sequence;
A second quantization unit that quantizes the second prediction coefficient to obtain a second quantization prediction coefficient;
A second predicted value calculation unit that performs prediction using the second quantized prediction coefficient for the second input signal sequence, and obtains a second input predicted value sequence;
A second subtraction unit for obtaining a difference between the second input signal sequence and the second input predicted value sequence as a prediction residual sequence;
An encoding unit for encoding the first quantized prediction coefficient, the second quantized prediction coefficient, and the prediction residual sequence;
An encoding device comprising:
振幅が圧縮された入力信号列(以下、「第1入力信号列」という)を符号化する符号化装置であって、
前記第1入力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第1線形対応処理によって、前記第1入力信号列を第1線形対応信号列に変換する第1線形対応部と、
前記第1線形対応信号列を用いて第1予測係数を求める第1線形予測部と、
前記第1予測係数を量子化して第1量子化予測係数を求める第1量子化部と、
前記第1線形対応信号列について、前記第1量子化予測係数を用いて予測を行い、第1線形対応予測値列を求める第1予測値算出部と、
前記第1線形対応予測値列に対して、前記第1線形対応処理と逆の変換を行って第1入力予測値列を求める第1線形逆対応部と、
前記第1入力信号列と前記第1入力予測値列との差を第2入力信号列として求める第1減算部と、
前記第1入力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第2線形対応処理によって、前記第2入力信号列を第2線形対応信号列に変換する第2線形対応部と、
前記第2線形対応信号列を用いて第2予測係数を求める第2線形予測部と、
前記第2予測係数を量子化して第2量子化予測係数を求める第2量子化部と、
前記第2線形対応信号列について、前記第2量子化予測係数を用いて予測を行い、第2線形対応予測値列を求める第2予測値算出部と、
前記第2線形対応予測値列に対して、前記第2線形対応処理と逆の変換を行って第2入力予測値列を求める第2線形逆対応部と、
前記第2入力信号列と前記第2入力予測値列との差を予測残差列として求める第2減算部と、
前記第1量子化予測係数と前記第2量子化予測係数と前記予測残差列を符号化する符号化部と、
を備える符号化装置。
An encoding device that encodes an input signal sequence whose amplitude is compressed (hereinafter referred to as a “first input signal sequence”),
The first input signal sequence is converted into a first linear correspondence signal sequence by a reversible first linear correspondence processing that brings each signal of the first input signal sequence close to a linear relationship with each signal of the signal sequence before compression. One linear counterpart,
A first linear prediction unit that obtains a first prediction coefficient using the first linear correspondence signal sequence;
A first quantization unit that quantizes the first prediction coefficient to obtain a first quantization prediction coefficient;
A first prediction value calculation unit that performs prediction using the first quantized prediction coefficient for the first linear correspondence signal sequence and obtains a first linear correspondence prediction value sequence;
A first linear inverse corresponding unit that obtains a first input predicted value sequence by performing a reverse conversion to the first linear corresponding process on the first linear corresponding predicted value sequence;
A first subtraction unit for obtaining a difference between the first input signal sequence and the first input predicted value sequence as a second input signal sequence;
The second input signal sequence is converted into a second linear correspondence signal sequence by a reversible second linear correspondence processing that brings each signal of the first input signal sequence close to a linear relationship with each signal of the signal sequence before compression. Two linear counterparts;
A second linear prediction unit for obtaining a second prediction coefficient using the second linear correspondence signal sequence;
A second quantization unit that quantizes the second prediction coefficient to obtain a second quantization prediction coefficient;
A second prediction value calculation unit that performs prediction using the second quantized prediction coefficient for the second linear correspondence signal sequence, and obtains a second linear correspondence prediction value sequence;
A second linear inverse correspondence unit that obtains a second input predicted value sequence by performing a reverse conversion to the second linear correspondence process on the second linear corresponding predicted value sequence;
A second subtraction unit for obtaining a difference between the second input signal sequence and the second input predicted value sequence as a prediction residual sequence;
An encoding unit for encoding the first quantized prediction coefficient, the second quantized prediction coefficient, and the prediction residual sequence;
An encoding device comprising:
振幅が圧縮された入力信号列(以下、「第1入力信号列」という)を符号化する符号化装置であって、
前記第1入力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第1線形対応処理によって、前記第1入力信号列を第1線形対応信号列に変換する第1線形対応部と、
前記第1線形対応信号列を用いて第1予測係数を求める第1線形予測部と、
前記第1予測係数を量子化して第1量子化予測係数を求める第1量子化部と、
前記第1線形対応について、前記第1量子化予測係数を用いて予測を行い、第1線形対応予測値列を求める第1予測値算出部と、
前記第1線形対応信号列と前記第1線形対応予測値列との差を第1線形対応予測誤差列として求める第1減算部と、
前記第1線形対応予測誤差列に対して、前記第1線形対応処理と逆の変換を行って第2入力信号列を求める第1線形逆対応部と、
前記第1入力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第2線形対応処理によって、前記第2入力信号列を第2線形対応信号列に変換する第2線形対応部と、
前記第2線形対応信号列を用いて第2予測係数を求める第2線形予測部と、
前記第2予測係数を量子化して第2量子化予測係数を求める第2量子化部と、
前記第2線形対応信号列について、前記第2量子化予測係数を用いて予測を行い、第2線形対応予測値列を求める第2予測値算出部と、
前記第2線形対応予測値列に対して、前記第2線形対応処理と逆の変換を行って第2入力予測値列を求める第2線形逆対応部と、
前記第2入力信号列と前記第2入力予測値列との差を予測残差列として求める第2減算部と、
前記第1量子化予測係数と前記第2量子化予測係数と前記予測残差列を符号化する符号化部と、
を備える符号化装置。
An encoding device that encodes an input signal sequence whose amplitude is compressed (hereinafter referred to as a “first input signal sequence”),
The first input signal sequence is converted into a first linear correspondence signal sequence by a reversible first linear correspondence processing that brings each signal of the first input signal sequence close to a linear relationship with each signal of the signal sequence before compression. One linear counterpart,
A first linear prediction unit that obtains a first prediction coefficient using the first linear correspondence signal sequence;
A first quantization unit that quantizes the first prediction coefficient to obtain a first quantization prediction coefficient;
For the first linear correspondence, a first prediction value calculation unit that performs prediction using the first quantized prediction coefficient and obtains a first linear correspondence prediction value sequence;
A first subtraction unit that obtains a difference between the first linear correspondence signal sequence and the first linear correspondence prediction value sequence as a first linear correspondence prediction error sequence;
A first linear inverse correspondence unit that obtains a second input signal sequence by performing an inverse conversion to the first linear correspondence process on the first linear correspondence prediction error sequence;
The second input signal sequence is converted into a second linear correspondence signal sequence by a reversible second linear correspondence processing that brings each signal of the first input signal sequence close to a linear relationship with each signal of the signal sequence before compression. Two linear counterparts;
A second linear prediction unit for obtaining a second prediction coefficient using the second linear correspondence signal sequence;
A second quantization unit that quantizes the second prediction coefficient to obtain a second quantization prediction coefficient;
A second prediction value calculation unit that performs prediction using the second quantized prediction coefficient for the second linear correspondence signal sequence, and obtains a second linear correspondence prediction value sequence;
A second linear inverse correspondence unit that obtains a second input predicted value sequence by performing a reverse conversion to the second linear correspondence process on the second linear corresponding predicted value sequence;
A second subtraction unit for obtaining a difference between the second input signal sequence and the second input predicted value sequence as a prediction residual sequence;
An encoding unit for encoding the first quantized prediction coefficient, the second quantized prediction coefficient, and the prediction residual sequence;
An encoding device comprising:
振幅が圧縮された入力信号列(以下、「第1入力信号列」という)を符号化する符号化装置であって、
前記第1入力信号列を用いて第1予測係数を求める第1線形予測部と、
前記第1予測係数を量子化して第1量子化予測係数を求める第1量子化部と、
前記第1入力信号列について、前記第1量子化予測係数を用いて予測を行い、第1入力予測値列を求める第1予測値算出部と、
前記第1入力信号列と前記第1入力予測値列との差を第2入力信号列として求める第1減算部と、
前記第1入力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第2線形対応処理によって、前記第2入力信号列を第2線形対応信号列に変換する第2線形対応部と、
前記第2線形対応信号列を用いて第2予測係数を求める第2線形予測部と、
前記第2予測係数を量子化して第2量子化予測係数を求める第2量子化部と、
前記第2線形対応信号列について、前記第2量子化予測係数を用いて予測を行い、第2線形対応予測値列を求める第2予測値算出部と、
前記第2線形対応予測値列に対して、前記第2線形対応処理と逆の変換を行って第2入力予測値列を求める第2線形逆対応部と、
前記第2入力信号列と前記第2入力予測値列との差を予測残差列として求める第2減算部と、
前記第1量子化予測係数と前記第2量子化予測係数と前記予測残差列を符号化する符号化部と、
を備える符号化装置。
An encoding device that encodes an input signal sequence whose amplitude is compressed (hereinafter referred to as a “first input signal sequence”),
A first linear prediction unit that obtains a first prediction coefficient using the first input signal sequence;
A first quantization unit that quantizes the first prediction coefficient to obtain a first quantization prediction coefficient;
A first predicted value calculation unit that performs prediction using the first quantized prediction coefficient for the first input signal sequence and obtains a first input predicted value sequence;
A first subtraction unit for obtaining a difference between the first input signal sequence and the first input predicted value sequence as a second input signal sequence;
The second input signal sequence is converted into a second linear correspondence signal sequence by a reversible second linear correspondence processing that brings each signal of the first input signal sequence close to a linear relationship with each signal of the signal sequence before compression. Two linear counterparts;
A second linear prediction unit for obtaining a second prediction coefficient using the second linear correspondence signal sequence;
A second quantization unit that quantizes the second prediction coefficient to obtain a second quantization prediction coefficient;
A second prediction value calculation unit that performs prediction using the second quantized prediction coefficient for the second linear correspondence signal sequence, and obtains a second linear correspondence prediction value sequence;
A second linear inverse correspondence unit that obtains a second input predicted value sequence by performing a reverse conversion to the second linear correspondence process on the second linear corresponding predicted value sequence;
A second subtraction unit for obtaining a difference between the second input signal sequence and the second input predicted value sequence as a prediction residual sequence;
An encoding unit for encoding the first quantized prediction coefficient, the second quantized prediction coefficient, and the prediction residual sequence;
An encoding device comprising:
振幅が圧縮された出力信号列(以下、「第1出力信号列」という)に復号化する復号化装置であって、
第1量子化予測係数と第2量子化予測係数と予測残差列を求める復号化部と、
復号化済の第2出力信号列と前記第2量子化予測係数を用いて、第2出力信号列について予測を行い、第2出力予測値列を求める第2予測値算出部と、
前記第2出力予測値列と前記予測残差列とを加算して第2出力信号列を求める第2加算部と、
前記第1出力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第1線形対応処理によって、復号化された第1出力信号列を第1線形対応信号列に変換する第1線形対応部と、
前記第1線形対応信号列と前記第1量子化予測係数を用いて、第1線形対応信号列について予測を行い、第1線形対応予測値列を求める第1予測値算出部と、
前記第1線形対応予測値列に対して、前記第1線形対応処理と逆の変換を行って第1出力予測値列を求める第1線形逆対応部と、
前記第1出力予測値列と前記第2出力信号列とを加算して第1出力信号列を求める第1加算部と、
を備える復号化装置。
A decoding device that decodes an output signal sequence whose amplitude is compressed (hereinafter referred to as “first output signal sequence”),
A decoding unit for obtaining a first quantized prediction coefficient, a second quantized prediction coefficient, and a prediction residual sequence;
Using the decoded second output signal sequence and the second quantized prediction coefficient, predicting the second output signal sequence and obtaining a second output predicted value sequence;
A second addition unit that obtains a second output signal sequence by adding the second output predicted value sequence and the prediction residual sequence;
The first output signal sequence decoded is converted into a first linear correspondence signal sequence by a reversible first linear correspondence processing that brings each signal of the first output signal sequence close to a linear relationship with each signal of the signal sequence before compression. A first linear counterpart to convert;
Using the first linear correspondence signal sequence and the first quantized prediction coefficient, a first prediction value calculation unit that performs prediction on the first linear correspondence signal sequence and obtains a first linear correspondence prediction value sequence;
A first linear inverse correspondence unit that performs a reverse conversion to the first linear correspondence processing on the first linear correspondence prediction value sequence to obtain a first output prediction value sequence;
A first addition unit that obtains a first output signal sequence by adding the first output predicted value sequence and the second output signal sequence;
A decoding device comprising:
振幅が圧縮された出力信号列(以下、「第1出力信号列」という)に復号化する復号化装置であって、
第1量子化予測係数と第2量子化予測係数と予測残差列を求める復号化部と、
復号済の第2出力信号列と前記第2量子化予測係数を用いて、第2出力信号列について予測を行い、第2出力予測値列を求める第2予測値算出部と、
前記第2出力予測値列と前記予測残差列とを加算して第2出力信号列を求める第2加算部と、
前記第1出力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第1線形対応処理によって、前記第2出力信号列を第1線形対応予測誤差列に変換する第1線形対応部と、
前記第1線形対応信号列と前記第1量子化予測係数を用いて、第1線形対応信号列について予測を行い、第1線形対応予測値列を求める第1予測値算出部と、
前記第1線形対応予測値列と前記第1線形対応予測誤差列とを加算して第1線形対応信号列を求める第1加算部と、
前記第1線形対応信号列に対して、前記第1線形対応処理と逆の変換を行って第1出力信号列を求める第1線形逆対応部と、
を備える復号化装置。
A decoding device that decodes an output signal sequence whose amplitude is compressed (hereinafter referred to as “first output signal sequence”),
A decoding unit for obtaining a first quantized prediction coefficient, a second quantized prediction coefficient, and a prediction residual sequence;
Using the decoded second output signal sequence and the second quantized prediction coefficient, predicting the second output signal sequence and obtaining a second output predicted value sequence;
A second addition unit that obtains a second output signal sequence by adding the second output predicted value sequence and the prediction residual sequence;
The second output signal sequence is converted into a first linear correspondence prediction error sequence by a reversible first linear correspondence process that brings each signal of the first output signal sequence close to a linear relationship with each signal of the signal sequence before compression. A first linear counterpart;
Using the first linear correspondence signal sequence and the first quantized prediction coefficient, a first prediction value calculation unit that performs prediction on the first linear correspondence signal sequence and obtains a first linear correspondence prediction value sequence;
A first addition unit that obtains a first linear correspondence signal sequence by adding the first linear correspondence prediction value sequence and the first linear correspondence prediction error sequence;
A first linear inverse correspondence unit that obtains a first output signal sequence by performing a reverse conversion to the first linear correspondence process on the first linear correspondence signal sequence;
A decoding device comprising:
振幅が圧縮された出力信号列(以下、「第1出力信号列」という)に復号化する復号化装置であって、
第1量子化予測係数と第2量子化予測係数と予測残差列を求める復号化部と、
前記第1出力信号列の各信号を前記第1出力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第2線形対応処理によって、復号化された第2出力信号列を第2線形対応信号列に変換する第2線形対応部と、
前記第2線形対応信号列と前記第2量子化予測係数を用いて、第2線形対応信号列について予測を行い、第2線形対応予測値列を求める第2予測値算出部と、
前記第2線形対応予測値列に対して、前記第2線形対応処理と逆の変換を行って第2出力予測値列を求める第2線形逆対応部と、
前記第2出力予測値列と前記予測残差列とを加算して第2出力信号列を求める第2加算部と、
前記第1出力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第1線形対応処理によって、復号化された第1出力信号列を第1線形対応信号列に変換する第1線形対応部と、
前記第1線形対応信号列と前記第1量子化予測係数を用いて、第1線形対応信号列について予測を行い、第1線形対応予測値列を求める第1予測値算出部と、
前記第1線形対応予測値列に対して、前記第1線形対応処理と逆の変換を行って第1出力予測値列を求める第1線形逆対応部と、
前記第1出力予測値列と前記第2出力信号列とを加算して第1出力信号列を求める第1加算部と、
を備える復号化装置。
A decoding device that decodes an output signal sequence whose amplitude is compressed (hereinafter referred to as “first output signal sequence”),
A decoding unit for obtaining a first quantized prediction coefficient, a second quantized prediction coefficient, and a prediction residual sequence;
The second output decoded by the reversible second linear correspondence processing that brings each signal of the first output signal sequence close to a linear relationship with each signal of the signal sequence before compression. A second linear correspondence unit that converts the signal sequence into a second linear correspondence signal sequence;
Using the second linear correspondence signal sequence and the second quantized prediction coefficient, predicting a second linear correspondence signal sequence to obtain a second linear correspondence prediction value sequence;
A second linear inverse correspondence unit that obtains a second output predicted value sequence by performing a reverse conversion to the second linear correspondence process on the second linear corresponding predicted value sequence;
A second addition unit that obtains a second output signal sequence by adding the second output predicted value sequence and the prediction residual sequence;
The first output signal sequence decoded is converted into a first linear correspondence signal sequence by a reversible first linear correspondence processing that brings each signal of the first output signal sequence close to a linear relationship with each signal of the signal sequence before compression. A first linear counterpart to convert;
Using the first linear correspondence signal sequence and the first quantized prediction coefficient, a first prediction value calculation unit that performs prediction on the first linear correspondence signal sequence and obtains a first linear correspondence prediction value sequence;
A first linear inverse correspondence unit that performs a reverse conversion to the first linear correspondence processing on the first linear correspondence prediction value sequence to obtain a first output prediction value sequence;
A first addition unit that obtains a first output signal sequence by adding the first output predicted value sequence and the second output signal sequence;
A decoding device comprising:
振幅が圧縮された出力信号列(以下、「第1出力信号列」という)に復号化する復号化装置であって、
第1量子化予測係数と第2量子化予測係数と予測残差列を求める復号化部と、
前記第1出力信号列の各信号を前記第1出力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第2線形対応処理によって、復号化された第2出力信号列を第2線形対応信号列に変換する第2線形対応部と、
前記第2線形対応信号列と前記第2量子化予測係数を用いて、第2線形対応信号列について予測を行い、第2線形対応予測値列を求める第2予測値算出部と、
前記第2線形対応予測値列に対して、前記第2線形対応処理と逆の変換を行って第2出力予測値列を求める第2線形逆対応部と、
前記第2出力予測値列と前記予測残差列とを加算して第2出力信号列を求める第2加算部と、
前記第1出力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第1線形対応処理によって、前記第2出力信号列を第1線形対応予測誤差列に変換する第1線形対応部と、
前記第1線形対応信号列と前記第1量子化予測係数を用いて、第1線形対応信号列について予測を行い、第1線形対応予測値列を求める第1予測値算出部と、
前記第1線形対応予測値列と前記第1線形対応予測誤差列とを加算して第1線形対応信号列を求める第1加算部と、
前記第1線形対応信号列に対して、前記第1線形対応処理と逆の変換を行って第1出力信号列を求める第1線形逆対応部と、
を備える復号化装置。
A decoding device that decodes an output signal sequence whose amplitude is compressed (hereinafter referred to as “first output signal sequence”),
A decoding unit for obtaining a first quantized prediction coefficient, a second quantized prediction coefficient, and a prediction residual sequence;
The second output decoded by the reversible second linear correspondence processing that brings each signal of the first output signal sequence close to a linear relationship with each signal of the signal sequence before compression. A second linear correspondence unit that converts the signal sequence into a second linear correspondence signal sequence;
Using the second linear correspondence signal sequence and the second quantized prediction coefficient, predicting a second linear correspondence signal sequence to obtain a second linear correspondence prediction value sequence;
A second linear inverse correspondence unit that obtains a second output predicted value sequence by performing a reverse conversion to the second linear correspondence process on the second linear corresponding predicted value sequence;
A second addition unit that obtains a second output signal sequence by adding the second output predicted value sequence and the prediction residual sequence;
The second output signal sequence is converted into a first linear correspondence prediction error sequence by a reversible first linear correspondence process that brings each signal of the first output signal sequence close to a linear relationship with each signal of the signal sequence before compression. A first linear counterpart;
Using the first linear correspondence signal sequence and the first quantized prediction coefficient, a first prediction value calculation unit that performs prediction on the first linear correspondence signal sequence and obtains a first linear correspondence prediction value sequence;
A first addition unit that obtains a first linear correspondence signal sequence by adding the first linear correspondence prediction value sequence and the first linear correspondence prediction error sequence;
A first linear inverse correspondence unit that obtains a first output signal sequence by performing a reverse conversion to the first linear correspondence process on the first linear correspondence signal sequence;
A decoding device comprising:
振幅が圧縮された出力信号列(以下、「第1出力信号列」という)に復号化する復号化装置であって、
第1量子化予測係数と第2量子化予測係数と予測残差列を求める復号化部と、
前記第1出力信号列の各信号を前記第1出力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第2線形対応処理によって、復号化された第2出力信号列を第2線形対応信号列に変換する第2線形対応部と、
前記第2線形対応信号列と前記第2量子化予測係数を用いて、第2線形対応信号列について予測を行い、第2線形対応予測値列を求める第2予測値算出部と、
前記第2線形対応予測値列に対して、前記第2線形対応処理と逆の変換を行って第2出力予測値列を求める第2線形逆対応部と、
前記第2出力予測値列と前記予測残差列とを加算して第2出力信号列を求める第2加算部と、
復号化された第1出力信号列と前記第1量子化予測係数を用いて、第1出力信号列について予測を行い、第1出力予測値列を求める第1予測値算出部と、
前記第1出力予測値列と前記第2出力信号列とを加算して第1出力信号列を求める第1加算部と、
を備える復号化装置。
A decoding device that decodes an output signal sequence whose amplitude is compressed (hereinafter referred to as “first output signal sequence”),
A decoding unit for obtaining a first quantized prediction coefficient, a second quantized prediction coefficient, and a prediction residual sequence;
The second output decoded by the reversible second linear correspondence processing that brings each signal of the first output signal sequence close to a linear relationship with each signal of the signal sequence before compression. A second linear correspondence unit that converts the signal sequence into a second linear correspondence signal sequence;
Using the second linear correspondence signal sequence and the second quantized prediction coefficient, predicting a second linear correspondence signal sequence to obtain a second linear correspondence prediction value sequence;
A second linear inverse correspondence unit that obtains a second output predicted value sequence by performing a reverse conversion to the second linear correspondence process on the second linear corresponding predicted value sequence;
A second addition unit that obtains a second output signal sequence by adding the second output predicted value sequence and the prediction residual sequence;
Using the decoded first output signal sequence and the first quantized prediction coefficient, predicting the first output signal sequence to obtain a first output predicted value sequence;
A first addition unit that obtains a first output signal sequence by adding the first output predicted value sequence and the second output signal sequence;
A decoding device comprising:
振幅が圧縮された入力信号列(以下、「第1入力信号列」という)を符号化する符号化方法であって、
前記第1入力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第1線形対応処理によって、前記第1入力信号列を第1線形対応信号列に変換する第1線形対応ステップと、
前記第1線形対応信号列を用いて第1予測係数を求める第1線形予測ステップと、
前記第1予測係数を量子化して第1量子化予測係数を求める第1量子化ステップと、
前記第1線形対応信号列について、前記第1量子化予測係数を用いて予測を行い、第1線形対応予測値列を求める第1予測値算出ステップと、
前記第1線形対応予測値列に対して、前記第1線形対応処理と逆の変換を行って第1入力予測値列を求める第1線形逆対応ステップと、
前記第1入力信号列と前記第1入力予測値列との差を第2入力信号列として求める第1減算ステップと、
前記第2入力信号列を用いて第2予測係数を求める第2線形予測ステップと、
前記第2予測係数を量子化して第2量子化予測係数を求める第2量子化ステップと、
前記第2入力信号列について、前記第2量子化予測係数を用いて予測を行い、第2入力予測値列を求める第2予測値算出ステップと、
前記第2入力信号列と前記第2入力予測値列との差を予測残差列として求める第2減算ステップと、
前記第1量子化予測係数と前記第2量子化予測係数と前記予測残差列を符号化する符号化ステップと、
を有する符号化方法。
An encoding method for encoding an input signal sequence whose amplitude is compressed (hereinafter referred to as “first input signal sequence”),
The first input signal sequence is converted into a first linear correspondence signal sequence by a reversible first linear correspondence processing that brings each signal of the first input signal sequence close to a linear relationship with each signal of the signal sequence before compression. One linear correspondence step;
A first linear prediction step of obtaining a first prediction coefficient using the first linear correspondence signal sequence;
A first quantization step of quantizing the first prediction coefficient to obtain a first quantized prediction coefficient;
A first predicted value calculating step of performing prediction using the first quantized prediction coefficient for the first linear corresponding signal sequence to obtain a first linear corresponding predicted value sequence;
A first linear inverse correspondence step for obtaining a first input predicted value sequence by performing a reverse conversion to the first linear correspondence processing on the first linear corresponding predicted value sequence;
A first subtraction step for obtaining a difference between the first input signal sequence and the first input predicted value sequence as a second input signal sequence;
A second linear prediction step of obtaining a second prediction coefficient using the second input signal sequence;
A second quantization step of obtaining a second quantized prediction coefficient by quantizing the second prediction coefficient;
A second predicted value calculating step of performing prediction using the second quantized prediction coefficient for the second input signal sequence to obtain a second input predicted value sequence;
A second subtraction step for obtaining a difference between the second input signal sequence and the second input predicted value sequence as a prediction residual sequence;
An encoding step for encoding the first quantized prediction coefficient, the second quantized prediction coefficient, and the prediction residual sequence;
An encoding method comprising:
振幅が圧縮された入力信号列(以下、「第1入力信号列」という)を符号化する符号化方法であって、
前記第1入力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第1線形対応処理によって、前記第1入力信号列を第1線形対応信号列に変換する第1線形対応ステップと、
前記第1線形対応信号列を用いて第1予測係数を求める第1線形予測ステップと、
前記第1予測係数を量子化して第1量子化予測係数を求める第1量子化ステップと、
前記第1線形対応信号列について、前記第1量子化予測係数を用いて予測を行い、第1線形対応予測値列を求める第1予測値算出ステップと、
前記第1線形対応信号列と前記第1線形対応予測値列との差を第1線形対応予測誤差列として求める第1減算ステップと、
前記第1線形対応予測誤差列に対して、前記第1線形対応処理と逆の変換を行って第2入力信号列を求める第1線形逆対応ステップと、
前記第2入力信号列を用いて第2予測係数を求める第2線形予測ステップと、
前記第2予測係数を量子化して第2量子化予測係数を求める第2量子化ステップと、
前記第2入力信号列について、前記第2量子化予測係数を用いて予測を行い、第2入力予測値列を求める第2予測値算出ステップと、
前記第2入力信号列と前記第2入力予測値列との差を予測残差列として求める第2減算ステップと、
前記第1量子化予測係数と前記第2量子化予測係数と前記予測残差列を符号化する符号化ステップと、
を有する符号化方法。
An encoding method for encoding an input signal sequence whose amplitude is compressed (hereinafter referred to as “first input signal sequence”),
The first input signal sequence is converted into a first linear correspondence signal sequence by a reversible first linear correspondence processing that brings each signal of the first input signal sequence close to a linear relationship with each signal of the signal sequence before compression. One linear correspondence step;
A first linear prediction step of obtaining a first prediction coefficient using the first linear correspondence signal sequence;
A first quantization step of quantizing the first prediction coefficient to obtain a first quantized prediction coefficient;
A first predicted value calculating step of performing prediction using the first quantized prediction coefficient for the first linear corresponding signal sequence to obtain a first linear corresponding predicted value sequence;
A first subtraction step for obtaining a difference between the first linear correspondence signal sequence and the first linear correspondence prediction value sequence as a first linear correspondence prediction error sequence;
A first linear inverse correspondence step for obtaining a second input signal sequence by performing a reverse conversion to the first linear correspondence process on the first linear correspondence prediction error sequence;
A second linear prediction step of obtaining a second prediction coefficient using the second input signal sequence;
A second quantization step of obtaining a second quantized prediction coefficient by quantizing the second prediction coefficient;
A second predicted value calculating step of performing prediction using the second quantized prediction coefficient for the second input signal sequence to obtain a second input predicted value sequence;
A second subtraction step for obtaining a difference between the second input signal sequence and the second input predicted value sequence as a prediction residual sequence;
An encoding step for encoding the first quantized prediction coefficient, the second quantized prediction coefficient, and the prediction residual sequence;
An encoding method comprising:
振幅が圧縮された入力信号列(以下、「第1入力信号列」という)を符号化する符号化方法であって、
前記第1入力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第1線形対応処理によって、前記第1入力信号列を第1線形対応信号列に変換する第1線形対応ステップと、
前記第1線形対応信号列を用いて第1予測係数を求める第1線形予測ステップと、
前記第1予測係数を量子化して第1量子化予測係数を求める第1量子化ステップと、
前記第1線形対応信号列について、前記第1量子化予測係数を用いて予測を行い、第1線形対応予測値列を求める第1予測値算出ステップと、
前記第1線形対応予測値列に対して、前記第1線形対応処理と逆の変換を行って第1入力予測値列を求める第1線形逆対応ステップと、
前記第1入力信号列と前記第1入力予測値列との差を第2入力信号列として求める第1減算ステップと、
前記第1入力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第2線形対応処理によって、前記第2入力信号列を第2線形対応信号列に変換する第2線形対応ステップと、
前記第2線形対応信号列を用いて第2予測係数を求める第2線形予測ステップと、
前記第2予測係数を量子化して第2量子化予測係数を求める第2量子化ステップと、
前記第2線形対応信号列について、前記第2量子化予測係数を用いて予測を行い、第2線形対応予測値列を求める第2予測値算出ステップと、
前記第2線形対応予測値列に対して、前記第2線形対応処理と逆の変換を行って第2入力予測値列を求める第2線形逆対応ステップと、
前記第2入力信号列と前記第2入力予測値列との差を予測残差列として求める第2減算ステップと、
前記第1量子化予測係数と前記第2量子化予測係数と前記予測残差列を符号化する符号化ステップと、
を有する符号化方法。
An encoding method for encoding an input signal sequence whose amplitude is compressed (hereinafter referred to as “first input signal sequence”),
The first input signal sequence is converted into a first linear correspondence signal sequence by a reversible first linear correspondence processing that brings each signal of the first input signal sequence close to a linear relationship with each signal of the signal sequence before compression. One linear correspondence step;
A first linear prediction step of obtaining a first prediction coefficient using the first linear correspondence signal sequence;
A first quantization step of quantizing the first prediction coefficient to obtain a first quantized prediction coefficient;
A first predicted value calculating step of performing prediction using the first quantized prediction coefficient for the first linear corresponding signal sequence to obtain a first linear corresponding predicted value sequence;
A first linear inverse correspondence step for obtaining a first input predicted value sequence by performing a reverse conversion to the first linear correspondence processing on the first linear corresponding predicted value sequence;
A first subtraction step for obtaining a difference between the first input signal sequence and the first input predicted value sequence as a second input signal sequence;
The second input signal sequence is converted into a second linear correspondence signal sequence by a reversible second linear correspondence processing that brings each signal of the first input signal sequence close to a linear relationship with each signal of the signal sequence before compression. Two linear correspondence steps;
A second linear prediction step of obtaining a second prediction coefficient using the second linear correspondence signal sequence;
A second quantization step of obtaining a second quantized prediction coefficient by quantizing the second prediction coefficient;
A second predicted value calculating step of performing prediction using the second quantized prediction coefficient for the second linear corresponding signal sequence to obtain a second linear corresponding predicted value sequence;
A second linear inverse correspondence step for obtaining a second input predicted value sequence by performing a reverse conversion to the second linear correspondence process on the second linear corresponding predicted value sequence;
A second subtraction step for obtaining a difference between the second input signal sequence and the second input predicted value sequence as a prediction residual sequence;
An encoding step for encoding the first quantized prediction coefficient, the second quantized prediction coefficient, and the prediction residual sequence;
An encoding method comprising:
振幅が圧縮された入力信号列(以下、「第1入力信号列」という)を符号化する符号化方法であって、
前記第1入力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第1線形対応処理によって、前記第1入力信号列を第1線形対応信号列に変換する第1線形対応ステップと、
前記第1線形対応信号列を用いて第1予測係数を求める第1線形予測ステップと、
前記第1予測係数を量子化して第1量子化予測係数を求める第1量子化ステップと、
第1線形対応信号列について、前記第1量子化予測係数を用いて予測を行い、第1線形対応予測値列を求める第1予測値算出ステップと、
前記第1線形対応信号列と前記第1線形対応予測値列との差を第1線形対応予測誤差列として求める第1減算ステップと、
前記第1線形対応予測誤差列に対して、前記第1線形対応処理と逆の変換を行って第2入力信号列を求める第1線形逆対応ステップと、
前記第1入力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第2線形対応処理によって、前記第2入力信号列を第2線形対応信号列に変換する第2線形対応ステップと、
前記第2線形対応信号列を用いて第2予測係数を求める第2線形予測ステップと、
前記第2予測係数を量子化して第2量子化予測係数を求める第2量子化ステップと、
第2線形対応信号列について、前記第2量子化予測係数を用いて予測を行い、第2線形対応予測値列を求める第2予測値算出ステップと、
前記第2線形対応予測値列に対して、前記第2線形対応処理と逆の変換を行って第2入力予測値列を求める第2線形逆対応ステップと、
前記第2入力信号列と前記第2入力予測値列との差を予測残差列として求める第2減算ステップと、
前記第1量子化予測係数と前記第2量子化予測係数と前記予測残差列を符号化する符号化ステップと、
有する符号化方法。
An encoding method for encoding an input signal sequence whose amplitude is compressed (hereinafter referred to as “first input signal sequence”),
The first input signal sequence is converted into a first linear correspondence signal sequence by a reversible first linear correspondence processing that brings each signal of the first input signal sequence close to a linear relationship with each signal of the signal sequence before compression. One linear correspondence step;
A first linear prediction step of obtaining a first prediction coefficient using the first linear correspondence signal sequence;
A first quantization step of quantizing the first prediction coefficient to obtain a first quantized prediction coefficient;
A first predicted value calculation step of performing prediction using the first quantized prediction coefficient for a first linear corresponding signal sequence to obtain a first linear corresponding predicted value sequence;
A first subtraction step for obtaining a difference between the first linear correspondence signal sequence and the first linear correspondence prediction value sequence as a first linear correspondence prediction error sequence;
A first linear inverse correspondence step for obtaining a second input signal sequence by performing a reverse conversion to the first linear correspondence process on the first linear correspondence prediction error sequence;
The second input signal sequence is converted into a second linear correspondence signal sequence by a reversible second linear correspondence processing that brings each signal of the first input signal sequence close to a linear relationship with each signal of the signal sequence before compression. Two linear correspondence steps;
A second linear prediction step of obtaining a second prediction coefficient using the second linear correspondence signal sequence;
A second quantization step of obtaining a second quantized prediction coefficient by quantizing the second prediction coefficient;
A second predicted value calculation step of performing prediction using the second quantized prediction coefficient for a second linear corresponding signal sequence to obtain a second linear corresponding predicted value sequence;
A second linear inverse correspondence step for obtaining a second input predicted value sequence by performing a reverse conversion to the second linear correspondence process on the second linear corresponding predicted value sequence;
A second subtraction step for obtaining a difference between the second input signal sequence and the second input predicted value sequence as a prediction residual sequence;
An encoding step for encoding the first quantized prediction coefficient, the second quantized prediction coefficient, and the prediction residual sequence;
An encoding method.
振幅が圧縮された入力信号列(以下、「第1入力信号列」という)を符号化する符号化方法であって、
前記第1入力信号列を用いて第1予測係数を求める第1線形予測ステップと、
前記第1予測係数を量子化して第1量子化予測係数を求める第1量子化ステップと、
前記第1入力信号列について、前記第1量子化予測係数を用いて予測を行い、第1入力予測値列を求める第1予測値算出ステップと、
前記第1入力信号列と前記第1入力予測値列との差を第2入力信号列として求める第1減算ステップと、
前記第1入力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第2線形対応処理によって、前記第2入力信号列を第2線形対応信号列に変換する第2線形対応ステップと、
前記第2線形対応信号列を用いて第2予測係数を求める第2線形予測ステップと、
前記第2予測係数を量子化して第2量子化予測係数を求める第2量子化ステップと、
前記第2線形対応信号列について、前記第2量子化予測係数を用いて予測を行い、第2線形対応予測値列を求める第2予測値算出ステップと、
前記第2線形対応予測値列に対して、前記第2線形対応処理と逆の変換を行って第2入力予測値列を求める第2線形逆対応ステップと、
前記第2入力信号列と前記第2入力予測値列との差を予測残差列として求める第2減算ステップと、
前記第1量子化予測係数と前記第2量子化予測係数と前記予測残差列を符号化する符号化ステップと、
を有する符号化方法。
An encoding method for encoding an input signal sequence whose amplitude is compressed (hereinafter referred to as “first input signal sequence”),
A first linear prediction step of obtaining a first prediction coefficient using the first input signal sequence;
A first quantization step of quantizing the first prediction coefficient to obtain a first quantized prediction coefficient;
A first predicted value calculation step of performing prediction using the first quantized prediction coefficient for the first input signal sequence to obtain a first input predicted value sequence;
A first subtraction step for obtaining a difference between the first input signal sequence and the first input predicted value sequence as a second input signal sequence;
The second input signal sequence is converted into a second linear correspondence signal sequence by a reversible second linear correspondence processing that brings each signal of the first input signal sequence close to a linear relationship with each signal of the signal sequence before compression. Two linear correspondence steps;
A second linear prediction step of obtaining a second prediction coefficient using the second linear correspondence signal sequence;
A second quantization step of obtaining a second quantized prediction coefficient by quantizing the second prediction coefficient;
A second predicted value calculating step of performing prediction using the second quantized prediction coefficient for the second linear corresponding signal sequence to obtain a second linear corresponding predicted value sequence;
A second linear inverse correspondence step for obtaining a second input predicted value sequence by performing a reverse conversion to the second linear correspondence process on the second linear corresponding predicted value sequence;
A second subtraction step for obtaining a difference between the second input signal sequence and the second input predicted value sequence as a prediction residual sequence;
An encoding step for encoding the first quantized prediction coefficient, the second quantized prediction coefficient, and the prediction residual sequence;
An encoding method comprising:
振幅が圧縮された出力信号列(以下、「第1出力信号列」という)に復号化する復号化方法であって、
第1量子化予測係数と第2量子化予測係数と予測残差列を求める復号化ステップと、
復号化済の第2出力信号列と前記第2量子化予測係数を用いて、第2出力信号列について予測を行い、第2出力予測値列を求める第2予測値算出ステップと、
前記第2出力予測値列と前記予測残差列とを加算して第2出力信号列を求める第2加算ステップと、
前記第1出力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第1線形対応処理によって、復号化された第1出力信号列を第1線形対応信号列に変換する第1線形対応ステップと、
前記第1線形対応信号列と前記第1量子化予測係数を用いて、第1線形対応信号列について予測を行い、第1線形対応予測値列を求める第1予測値算出ステップと、
前記第1線形対応予測値列に対して、前記第1線形対応処理と逆の変換を行って第1出力予測値列を求める第1線形逆対応ステップと、
前記第1出力予測値列と前記第2出力信号列とを加算して第1出力信号列を求める第1加算ステップと、
を有する復号化方法。
A decoding method for decoding an output signal sequence whose amplitude is compressed (hereinafter referred to as “first output signal sequence”),
A decoding step for obtaining a first quantized prediction coefficient, a second quantized prediction coefficient, and a prediction residual sequence;
Using the decoded second output signal sequence and the second quantized prediction coefficient, predicting the second output signal sequence to obtain a second output predicted value sequence;
A second addition step of obtaining a second output signal sequence by adding the second output predicted value sequence and the prediction residual sequence;
The first output signal sequence decoded is converted into a first linear correspondence signal sequence by a reversible first linear correspondence processing that brings each signal of the first output signal sequence close to a linear relationship with each signal of the signal sequence before compression. A first linear correspondence step to convert;
Using the first linear correspondence signal sequence and the first quantized prediction coefficient, predicting a first linear correspondence signal sequence to obtain a first linear correspondence prediction value sequence;
A first linear inverse correspondence step for obtaining a first output predicted value sequence by performing a reverse conversion to the first linear correspondence process on the first linear corresponding predicted value sequence;
A first addition step of obtaining a first output signal sequence by adding the first output predicted value sequence and the second output signal sequence;
A decoding method comprising:
振幅が圧縮された出力信号列(以下、「第1出力信号列」という)に復号化する復号化方法であって、
第1量子化予測係数と第2量子化予測係数と予測残差列を求める復号化ステップと、
復号化済の第2出力信号列と前記第2量子化予測係数を用いて、第2出力信号列について予測を行い、第2出力予測値列を求める第2予測値算出ステップと、
前記第2出力予測値列と前記予測残差列とを加算して第2出力信号列を求める第2加算ステップと、
前記第1出力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第1線形対応処理によって、前記第2出力信号列を第1線形対応予測誤差列に変換する第1線形対応ステップと、
前記第1線形対応信号列と前記第1量子化予測係数を用いて、第1線形対応信号列について予測を行い、第1線形対応予測値列を求める第1予測値算出ステップと、
前記第1線形対応予測値列と前記第1線形対応予測誤差列とを加算して第1線形対応信号列を求める第1加算ステップと、
前記第1線形対応信号列に対して、前記第1線形対応処理と逆の変換を行って第1出力信号列を求める第1線形逆対応ステップと、
を有する復号化方法。
A decoding method for decoding an output signal sequence whose amplitude is compressed (hereinafter referred to as “first output signal sequence”),
A decoding step for obtaining a first quantized prediction coefficient, a second quantized prediction coefficient, and a prediction residual sequence;
Using the decoded second output signal sequence and the second quantized prediction coefficient, predicting the second output signal sequence to obtain a second output predicted value sequence;
A second addition step of obtaining a second output signal sequence by adding the second output predicted value sequence and the prediction residual sequence;
The second output signal sequence is converted into a first linear correspondence prediction error sequence by a reversible first linear correspondence process that brings each signal of the first output signal sequence close to a linear relationship with each signal of the signal sequence before compression. A first linear correspondence step;
Using the first linear correspondence signal sequence and the first quantized prediction coefficient, predicting a first linear correspondence signal sequence to obtain a first linear correspondence prediction value sequence;
A first addition step of obtaining the first linear correspondence signal sequence by adding the first linear correspondence prediction value sequence and the first linear correspondence prediction error sequence;
A first linear inverse correspondence step for obtaining a first output signal sequence by performing a reverse conversion to the first linear correspondence process on the first linear correspondence signal sequence;
A decoding method comprising:
振幅が圧縮された出力信号列(以下、「第1出力信号列」という)に復号化する復号化方法であって、
第1量子化予測係数と第2量子化予測係数と予測残差列を求める復号化ステップと、
前記第1出力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第2線形対応処理によって、復号化された第2出力信号列を第2線形対応信号列に変換する第2線形対応ステップと、
前記第2線形対応信号列と前記第2量子化予測係数を用いて、第2線形対応信号列について予測を行い、第2線形対応予測値列を求める第2予測値算出ステップと、
前記第2線形対応予測値列に対して、前記第2線形対応処理と逆の変換を行って第2出力予測値列を求める第2線形逆対応ステップと、
前記第2出力予測値列と前記予測残差列とを加算して第2出力信号列を求める第2加算ステップと、
前記第1出力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第1線形対応処理によって、復号化された第1出力信号列を第1線形対応信号列に変換する第1線形対応ステップと、
前記第1線形対応信号列と前記第1量子化予測係数を用いて、第1線形対応信号列について予測を行い、第1線形対応予測値列を求める第1予測値算出ステップと、
前記第1線形対応予測値列に対して、前記第1線形対応処理と逆の変換を行って第1出力予測値列を求める第1線形逆対応ステップと、
前記第1出力予測値列と前記第2出力信号列とを加算して第1出力信号列を求める第1加算ステップと、
を有する復号化方法。
A decoding method for decoding an output signal sequence whose amplitude is compressed (hereinafter referred to as “first output signal sequence”),
A decoding step for obtaining a first quantized prediction coefficient, a second quantized prediction coefficient, and a prediction residual sequence;
The decoded second output signal sequence is converted into a second linear correspondence signal sequence by a reversible second linear correspondence process that brings each signal of the first output signal sequence close to a linear relationship with each signal of the signal sequence before compression. A second linear correspondence step to convert;
Using the second linear correspondence signal sequence and the second quantized prediction coefficient, predicting a second linear correspondence signal sequence to obtain a second linear correspondence prediction value sequence;
A second linear inverse correspondence step for obtaining a second output predicted value sequence by performing a reverse conversion to the second linear correspondence process on the second linear corresponding predicted value sequence;
A second addition step of obtaining a second output signal sequence by adding the second output predicted value sequence and the prediction residual sequence;
The first output signal sequence decoded is converted into a first linear correspondence signal sequence by a reversible first linear correspondence processing that brings each signal of the first output signal sequence close to a linear relationship with each signal of the signal sequence before compression. A first linear correspondence step to convert;
Using the first linear correspondence signal sequence and the first quantized prediction coefficient, predicting a first linear correspondence signal sequence to obtain a first linear correspondence prediction value sequence;
A first linear inverse correspondence step for obtaining a first output predicted value sequence by performing a reverse conversion to the first linear correspondence process on the first linear corresponding predicted value sequence;
A first addition step of obtaining a first output signal sequence by adding the first output predicted value sequence and the second output signal sequence;
A decoding method comprising:
振幅が圧縮された出力信号列(以下、「第1出力信号列」という)に復号化する復号化方法であって、
第1量子化予測係数と第2量子化予測係数と予測残差列を求める復号化ステップと、
前記第1出力信号列の各信号を前記第1出力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第2線形対応処理によって、復号化された第2出力信号列を第2線形対応信号列に変換する第2線形対応ステップと、
前記第2線形対応信号列と前記第2量子化予測係数を用いて、第2線形対応信号列について予測を行い、第2線形対応予測値列を求める第2予測値算出ステップと、
前記第2線形対応予測値列に対して、前記第2線形対応処理と逆の変換を行って第2出力予測値列を求める第2線形逆対応ステップと、
前記第2出力予測値列と前記予測残差列とを加算して第2出力信号列を求める第2加算ステップと、
前記第1出力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第1線形対応処理によって、前記第2出力信号列を第1線形対応予測誤差列に変換する第1線形対応ステップと、
前記第1線形対応信号列と前記第1量子化予測係数を用いて、第1線形対応予測値列について予測を行い、第1線形対応予測値列を求める第1予測値算出ステップと、
前記第1線形対応予測値列と前記第1線形対応予測誤差列とを加算して第1線形対応信号列を求める第1加算ステップと、
前記第1線形対応信号列に対して、前記第1線形対応処理と逆の変換を行って第1出力信号列を求める第1線形逆対応ステップと、
を有する復号化方法。
A decoding method for decoding an output signal sequence whose amplitude is compressed (hereinafter referred to as “first output signal sequence”),
A decoding step for obtaining a first quantized prediction coefficient, a second quantized prediction coefficient, and a prediction residual sequence;
The second output decoded by the reversible second linear correspondence processing that brings each signal of the first output signal sequence close to a linear relationship with each signal of the signal sequence before compression. A second linear correspondence step of converting the signal sequence into a second linear correspondence signal sequence;
Using the second linear correspondence signal sequence and the second quantized prediction coefficient, predicting a second linear correspondence signal sequence to obtain a second linear correspondence prediction value sequence;
A second linear inverse correspondence step for obtaining a second output predicted value sequence by performing a reverse conversion to the second linear correspondence process on the second linear corresponding predicted value sequence;
A second addition step of obtaining a second output signal sequence by adding the second output predicted value sequence and the prediction residual sequence;
The second output signal sequence is converted into a first linear correspondence prediction error sequence by a reversible first linear correspondence process that brings each signal of the first output signal sequence close to a linear relationship with each signal of the signal sequence before compression. A first linear correspondence step;
Using the first linear correspondence signal sequence and the first quantized prediction coefficient, predicting a first linear correspondence prediction value sequence to obtain a first linear correspondence prediction value sequence;
A first addition step of obtaining the first linear correspondence signal sequence by adding the first linear correspondence prediction value sequence and the first linear correspondence prediction error sequence;
A first linear inverse correspondence step for obtaining a first output signal sequence by performing a reverse conversion to the first linear correspondence process on the first linear correspondence signal sequence;
A decoding method comprising:
振幅が圧縮された出力信号列(以下、「第1出力信号列」という)に復号化する復号化方法であって、
第1量子化予測係数と第2量子化予測係数と予測残差列を求める復号化ステップと、
前記第1出力信号列の各信号を圧縮前の信号列の各信号と線形な関係に近づける可逆な第2線形対応処理によって、復号化された第2出力信号列を第2線形対応信号列に変換する第2線形対応ステップと、
前記第2線形対応信号列と前記第2量子化予測係数を用いて、第2線形対応信号列について予測を行い、第2線形対応予測値列を求める第2予測値算出ステップと、
前記第2線形対応予測値列に対して、前記第2線形対応処理と逆の変換を行って第2出力予測値列を求める第2線形逆対応ステップと、
前記第2出力予測値列と前記予測残差列とを加算して第2出力信号列を求める第2加算ステップと、
復号化された第1出力信号列と前記第1量子化予測係数を用いて、第1出力信号列について予測を行い、第1出力予測値列を求める第1予測値算出ステップと、
前記第1出力予測値列と前記第2出力信号列とを加算して第1出力信号列を求める第1加算ステップと、
を有する復号化方法。
A decoding method for decoding an output signal sequence whose amplitude is compressed (hereinafter referred to as “first output signal sequence”),
A decoding step for obtaining a first quantized prediction coefficient, a second quantized prediction coefficient, and a prediction residual sequence;
The decoded second output signal sequence is converted into a second linear correspondence signal sequence by a reversible second linear correspondence process that brings each signal of the first output signal sequence close to a linear relationship with each signal of the signal sequence before compression. A second linear correspondence step to convert;
Using the second linear correspondence signal sequence and the second quantized prediction coefficient, predicting a second linear correspondence signal sequence to obtain a second linear correspondence prediction value sequence;
A second linear inverse correspondence step for obtaining a second output predicted value sequence by performing a reverse conversion to the second linear correspondence process on the second linear corresponding predicted value sequence;
A second addition step of obtaining a second output signal sequence by adding the second output predicted value sequence and the prediction residual sequence;
Using the decoded first output signal sequence and the first quantized prediction coefficient, predicting the first output signal sequence to obtain a first output predicted value sequence;
A first addition step of obtaining a first output signal sequence by adding the first output predicted value sequence and the second output signal sequence;
A decoding method comprising:
請求項1から10のいずれかに記載された装置の各構成部をコンピュータにより実現するプログラム。   The program which implement | achieves each structure part of the apparatus as described in any one of Claim 1 to 10 with a computer. 請求項21記載のプログラムを記録した、コンピュータ読み取り可能な記録媒体。   A computer-readable recording medium on which the program according to claim 21 is recorded.
JP2008051150A 2008-02-29 2008-02-29 Encoding device, decoding device, encoding method, decoding method, program, recording medium Active JP5013293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008051150A JP5013293B2 (en) 2008-02-29 2008-02-29 Encoding device, decoding device, encoding method, decoding method, program, recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008051150A JP5013293B2 (en) 2008-02-29 2008-02-29 Encoding device, decoding device, encoding method, decoding method, program, recording medium

Publications (2)

Publication Number Publication Date
JP2009210645A true JP2009210645A (en) 2009-09-17
JP5013293B2 JP5013293B2 (en) 2012-08-29

Family

ID=41183895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008051150A Active JP5013293B2 (en) 2008-02-29 2008-02-29 Encoding device, decoding device, encoding method, decoding method, program, recording medium

Country Status (1)

Country Link
JP (1) JP5013293B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166734A1 (en) * 2014-05-01 2015-11-05 日本電信電話株式会社 Encoding device, decoding device, encoding and decoding methods, and encoding and decoding programs
WO2015166733A1 (en) * 2014-05-01 2015-11-05 日本電信電話株式会社 Encoding device, decoding device, encoding and decoding methods, and encoding and decoding programs

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106789812B (en) * 2016-12-13 2020-03-27 中山大学 OFDM time domain signal quantization method based on partial transmission sequence

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05303399A (en) * 1992-04-27 1993-11-16 Olympus Optical Co Ltd Audio time axis companding device
JPH06250697A (en) * 1993-02-26 1994-09-09 Fujitsu Ltd Method and device for voice coding and decoding
JPH09258795A (en) * 1996-03-25 1997-10-03 Nippon Telegr & Teleph Corp <Ntt> Digital filter and sound coding/decoding device
JP2001027899A (en) * 1999-05-11 2001-01-30 Nippon Telegr & Teleph Corp <Ntt> Acoustic signal coding method, device therefor, acoustic signal decoding method, device thereof and program recording medium for them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05303399A (en) * 1992-04-27 1993-11-16 Olympus Optical Co Ltd Audio time axis companding device
JPH06250697A (en) * 1993-02-26 1994-09-09 Fujitsu Ltd Method and device for voice coding and decoding
JPH09258795A (en) * 1996-03-25 1997-10-03 Nippon Telegr & Teleph Corp <Ntt> Digital filter and sound coding/decoding device
JP2001027899A (en) * 1999-05-11 2001-01-30 Nippon Telegr & Teleph Corp <Ntt> Acoustic signal coding method, device therefor, acoustic signal decoding method, device thereof and program recording medium for them

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F.GHIDO, I.TABUS: ""Accounting for Companding Nonlinearities in Lossless Audio Compression"", PROC. OF ICASSP 2007, vol. Vol.I(2007-04), JPN6011066910, pages 261 - 264, ISSN: 0002223467 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166734A1 (en) * 2014-05-01 2015-11-05 日本電信電話株式会社 Encoding device, decoding device, encoding and decoding methods, and encoding and decoding programs
WO2015166733A1 (en) * 2014-05-01 2015-11-05 日本電信電話株式会社 Encoding device, decoding device, encoding and decoding methods, and encoding and decoding programs
JPWO2015166734A1 (en) * 2014-05-01 2017-04-20 日本電信電話株式会社 Encoding device, decoding device, method thereof, program, and recording medium
JPWO2015166733A1 (en) * 2014-05-01 2017-04-20 日本電信電話株式会社 Encoding device, decoding device, method thereof, program, and recording medium
JP2018077502A (en) * 2014-05-01 2018-05-17 日本電信電話株式会社 Decoding device, method thereof, program, and recording medium

Also Published As

Publication number Publication date
JP5013293B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP4825916B2 (en) Encoding method, decoding method, apparatus using these methods, program, and recording medium
JP5486597B2 (en) Encoding method, encoding apparatus, encoding program, and recording medium
JP5264901B2 (en) Hierarchical coding of digital audio signals
JP5337235B2 (en) Encoding method, decoding method, encoding device, decoding device, program, and recording medium
US20100324914A1 (en) Adaptive Encoding of a Digital Signal with One or More Missing Values
JP4598877B2 (en) Encoding method, apparatus using the method, program, and recording medium
KR20110043684A (en) Method, system, and apparatus for compression or decompression of digital signals
JP5013293B2 (en) Encoding device, decoding device, encoding method, decoding method, program, recording medium
JP5006774B2 (en) Encoding method, decoding method, apparatus using these methods, program, and recording medium
KR100629997B1 (en) encoding method of audio signal
JP5236005B2 (en) Encoding method, encoding apparatus, decoding method, decoding apparatus, program, and recording medium
JP4091506B2 (en) Two-stage audio image encoding method, apparatus and program thereof, and recording medium recording the program
JP5006773B2 (en) Encoding method, decoding method, apparatus using these methods, program, and recording medium
JP4098679B2 (en) Floating-point format signal sequence linear prediction analysis method, apparatus, program, and recording medium
JP2009210644A (en) Linear prediction coefficient calculator, linear prediction coefficient calculation method, linear prediction coefficient calculation program, and storage medium
JP5006772B2 (en) Encoding method, apparatus using the method, program, and recording medium
JP2004246038A (en) Speech or musical sound signal encoding method, decoding method, encoding device, decoding device, encoding program, and decoding program
JP4964114B2 (en) Encoding device, decoding device, encoding method, decoding method, encoding program, decoding program, and recording medium
KR101421256B1 (en) Apparatus and method for encoding/decoding using bandwidth extension in portable terminal
JP3144213B2 (en) Speech parameter analyzer and speech coder
JP4971965B2 (en) Encoding device, decoding device, encoding method, decoding method, encoding program, decoding program, and recording medium
JP3028885B2 (en) Vector quantizer
JP4787889B2 (en) Encoding method, encoding apparatus, decoding method, decoding apparatus, program, and recording medium
JP2637965B2 (en) Voice encoding / decoding method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5013293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250