JP2009210263A - Angle measuring device - Google Patents

Angle measuring device Download PDF

Info

Publication number
JP2009210263A
JP2009210263A JP2008050284A JP2008050284A JP2009210263A JP 2009210263 A JP2009210263 A JP 2009210263A JP 2008050284 A JP2008050284 A JP 2008050284A JP 2008050284 A JP2008050284 A JP 2008050284A JP 2009210263 A JP2009210263 A JP 2009210263A
Authority
JP
Japan
Prior art keywords
measuring device
sensor
angle
angle measuring
reception characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008050284A
Other languages
Japanese (ja)
Other versions
JP5063416B2 (en
Inventor
Rokuzo Hara
六蔵 原
Atsushi Okamura
敦 岡村
Hisakazu Maniwa
久和 真庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008050284A priority Critical patent/JP5063416B2/en
Publication of JP2009210263A publication Critical patent/JP2009210263A/en
Application granted granted Critical
Publication of JP5063416B2 publication Critical patent/JP5063416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an angle measuring device capable of improving angle measurement accuracy by using one-time VESPA (Virtual ESPRIT Algorithm) processing or one-time ESPRIT processing, and reducing an operation amount. <P>SOLUTION: A plurality of incoming signals are received by a plurality of sensor elements (1), and the first reception characteristic difference between sensors corresponding to each incoming signal is estimated from mutual statistic between each sensor output signal based on one-time VESPA processing (3) or one-time ESPRIT processing, and an incident angle of the incoming signal is estimated based on the estimated first reception characteristic difference. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、到来する信号の入射角度を測定する測角装置に関する。   The present invention relates to an angle measuring device that measures an incident angle of an incoming signal.

移動体通信やレーダ、ソナー等では、到来する信号が1つの場合であれば、2つのセンサの受信特性差から信号の入射角度を推定できる。しかしながら、この方式では、複数の信号が到来する場合には対応できない。これに対して、VESPA(Virtual ESPRIT Algorithm)と呼ばれる測角方式を用いることにより、受信特性が既知な2つのセンサ(ガイディングセンサと呼称)の受信特性差から、複数の信号の入射角度を推定することができる測角装置がある(例えば、非特許文献1参照)。   In mobile communication, radar, sonar, and the like, if there is one incoming signal, the incident angle of the signal can be estimated from the reception characteristic difference between the two sensors. However, this method cannot handle a case where a plurality of signals arrive. On the other hand, by using an angle measurement method called VESPA (Virtual ESPRIT Algorithm), the incident angles of a plurality of signals are estimated from the reception characteristic difference between two sensors (referred to as guiding sensors) whose reception characteristics are known. There is an angle measuring device that can be used (for example, see Non-Patent Document 1).

VESPAを用いる測角方式において、測角精度を向上させるためには、ガイディングセンサの間隔を大きくすることがある。しかしながら、ガイディングセンサ間隔が半波長を超えると、測角結果に角度アンビギュイティが発生する。そこで、センサ間隔が半波長より大きいガイディングセンサやセンサ間隔が半波長未満のガイディングセンサなどを用いてVESPA処理を2回以上行うことにより、角度アンビギュイティを排除した高精度な測角方式が示されている(例えば、特許文献1参照)。   In the angle measurement method using VESPA, in order to improve the angle measurement accuracy, the interval between the guiding sensors may be increased. However, if the guiding sensor interval exceeds a half wavelength, angular ambiguity occurs in the angle measurement result. Therefore, a highly accurate angle measurement method that eliminates angular ambiguity by performing a VESPA process twice or more using a guiding sensor with a sensor interval larger than a half wavelength or a guiding sensor with a sensor interval less than a half wavelength. (For example, refer to Patent Document 1).

特開2003-222666号公報JP 2003-222666 A M. Dogan and J. Mendel、 "Application of Cumulants to Array Processing Part I : Aperture Extension and Array Calibration、" IEEE Trans. Signal Processing、 vol.43、 no.5、 pp.1200-1216、 May 1995.M. Dogan and J. Mendel, "Application of Cumulants to Array Processing Part I: Aperture Extension and Array Calibration," IEEE Trans. Signal Processing, vol.43, no.5, pp.1200-1216, May 1995.

しかしながら、従来技術には次のような課題がある。
特許文献1の測角装置では、VESPA処理を2回以上実行する必要があり、VESPA処理を行う回数だけ演算量が大きくなり、計算負荷が重くなるという課題があった。
However, the prior art has the following problems.
In the angle measuring device of Patent Document 1, it is necessary to execute the VESPA process twice or more, and there is a problem that the amount of calculation increases by the number of times of performing the VESPA process, and the calculation load becomes heavy.

本発明は上述のような課題を解決するためになされたもので、1回のVESPA処理または1回のESPRIT処理を用いて、測角精度を向上させるとともに、演算量の削減を図ることのできる測角装置を得ることを目的とする。   The present invention has been made in order to solve the above-described problems. By using one VESPA process or one ESPRIT process, the angle measurement accuracy can be improved and the amount of calculation can be reduced. The purpose is to obtain an angle measuring device.

本発明に係る測角装置は、複数の到来信号を複数のセンサ素子で受信し、1回のVESPA処理または1回のESPRIT処理に基づいて、各センサ出力信号間の相互統計量から各到来信号に対応するセンサ間の第1の受信特性差を推定し、推定した第1の受信特性差に基づいて前記到来信号の入射角度を推定するものである。   The angle measuring device according to the present invention receives a plurality of incoming signals by a plurality of sensor elements, and based on one VESPA process or one ESPRIT process, each incoming signal is calculated from the mutual statistics between the sensor output signals. The first reception characteristic difference between the sensors corresponding to is estimated, and the incident angle of the incoming signal is estimated based on the estimated first reception characteristic difference.

本発明によれば、到来信号それぞれの入射角度θに対応するアレーモードベクトルの推定値に基づいて、入射角度推定値θを算出することにより、1回のVESPA処理または1回のESPRIT処理を用いて、測角精度を向上させるとともに、演算量の削減を図ることのできる測角装置を得ることができる。   According to the present invention, by calculating the incident angle estimated value θ based on the estimated value of the array mode vector corresponding to the incident angle θ of each incoming signal, one VESPA process or one ESPRIT process is used. Thus, it is possible to obtain an angle measuring device capable of improving the angle measuring accuracy and reducing the amount of calculation.

以下、本発明の測角装置の好適な実施の形態につき図面を用いて説明する。   Hereinafter, preferred embodiments of the angle measuring device of the present invention will be described with reference to the drawings.

実施の形態1.
本発明は、センサ間隔が半波長より大きいガイディングセンサを用いるVESPA処理において、センサ間隔が小さい測角処理も実施することにより、高精度かつ角度アンビギュイティを生じない測角装置を提供するものである。VESPA処理では、非特許文献1のように、ガイディングセンサを用いた測角処理を行うだけでなく、到来信号それぞれの入射角度θに対応するアレーモードベクトルa(θ)を推定することも可能である。
Embodiment 1 FIG.
The present invention provides a highly accurate angle measuring device that does not produce angular ambiguity by performing angle measuring processing with a small sensor interval in VESPA processing using a guiding sensor with a sensor interval larger than a half wavelength. It is. In VESPA processing, as in Non-Patent Document 1, it is possible not only to perform angle measurement processing using a guiding sensor but also to estimate an array mode vector a (θ) corresponding to the incident angle θ of each incoming signal. It is.

本発明では、推定したアレーモードベクトルa(θ)のうち、素子アンテナ放射パターンが既知なセンサに対応する要素を用いることで、センサ間隔が小さい測角処理も実行する。すなわち、各センサ出力信号間の相互統計量から各到来信号に対応するセンサ間の受信特性差を推定することで、センサ間隔が小さい測角処理も実行する。   In the present invention, by using an element corresponding to a sensor with a known element antenna radiation pattern in the estimated array mode vector a (θ), angle measurement processing with a small sensor interval is also executed. That is, angle measurement processing with a small sensor interval is also performed by estimating the reception characteristic difference between sensors corresponding to each incoming signal from the mutual statistics between the sensor output signals.

ガイディングセンサが半波長より大きい場合には、VESPA処理による入射角度推定結果は、高精度であるが、そのままでは、角度アンビギュイティが発生し、一意に決定できない。しかしながら、アレーモードベクトルa(θ)から推定した別の入射角度推定結果を参照することにより、角度アンビギュイティを排除することができる。   When the guiding sensor is larger than the half wavelength, the incident angle estimation result by the VESPA process is highly accurate, but if it is not changed, the angle ambiguity is generated and cannot be determined uniquely. However, the angle ambiguity can be eliminated by referring to another incident angle estimation result estimated from the array mode vector a (θ).

この結果、1回のVESPA処理で、特許文献1に示されたものと同様の高精度の測角処理を可能にするとともに、角度アンビギュイティが生じない測角処理が可能となる。すなわち、特許文献1が提供する測角装置が2回以上のVESPA処理を必要とするのに対して、本発明が提供する測角装置は、1回のVESPA処理で済むため、高精度を保ったまま演算量の低減が可能となる。   As a result, a highly accurate angle measurement process similar to that disclosed in Patent Document 1 can be performed with one VESPA process, and an angle measurement process that does not cause angular ambiguity can be performed. That is, while the angle measuring device provided by Patent Document 1 requires two or more VESPA processes, the angle measuring apparatus provided by the present invention only requires one VESPA process, so that high accuracy is maintained. The amount of computation can be reduced as it is.

まず始めに、非特許文献1に示されたVESPA処理方式について説明する。VESPA処理では、例えば、L(Lは、2以上の整数)個の無指向性センサのうち#iセンサと#jセンサをガイディングセンサに選択したとすると、時刻tにおける受信データベクトルr(t)を用いて、下式(1)のような行列Vを算出する。   First, the VESPA processing method disclosed in Non-Patent Document 1 will be described. In the VESPA process, for example, if the #i sensor and the #j sensor are selected as guiding sensors among L (L is an integer of 2 or more) omnidirectional sensors, the received data vector r (t ) To calculate a matrix V as shown in the following equation (1).

Figure 2009210263
Figure 2009210263

ここで、r(t)はベクトルr(t)の#i要素、*は複素共役、Hは複素共役転置、Γは入射信号の4次キュムラントによる対角行列、Kは入射信号数、s(t)は時刻tにおける#k入射信号の複素振幅、a(θ)はベクトルa(θ)の#i要素、pは#i素子の座標ベクトル、Tは転置、q(θ)は入射角度θに対応する単位座標ベクトル、λは信号波長、n(t)は時刻tにおける雑音ベクトルをそれぞれ示している。 Here, r i (t) is the #i element of the vector r (t), * is a complex conjugate, H is a complex conjugate transpose, Γ is a diagonal matrix of the fourth-order cumulant of the incident signal, K is the number of incident signals, s k (t) is the complex amplitude of the #k incident signal at time t, a i (θ) is the #i element of the vector a (θ), p i is the coordinate vector of the #i element, T is the transpose, q (θ) Represents a unit coordinate vector corresponding to the incident angle θ, λ represents a signal wavelength, and n (t) represents a noise vector at time t.

特に、上式(10)は、入射角度θに対応する#iセンサと#jセンサの間の受信特性差φi、j、kとアレーモードベクトルa(θ)との関係を表している。受信特性差φi、j、kから入射角度θへの変換処理は、上式(10)の逆算により実施されるものであり、ベクトル(p−p)の大きさが信号波長λの半分より大きくなると、角度アンビギュイティを生じる。 In particular, the above equation (10) represents the relationship between the reception characteristic difference phi i, j between #i sensor and #j sensor corresponding to the incident angle theta k, k an array mode vector a (theta) . The conversion process from the reception characteristic difference φ i, j, k to the incident angle θ k is performed by the inverse calculation of the above equation (10), and the magnitude of the vector (p j −p i ) is the signal wavelength λ. An angle ambiguity is produced when it becomes larger than half of the angle.

そこで、次に、本発明による、この角度アンビギュイティの改善策を以下に説明する。
行列Vを特異値分解すると、下式(11)(12)が得られる。
Then, next, the improvement measure of this angle ambiguity by this invention is demonstrated below.
When the matrix V is subjected to singular value decomposition, the following equations (11) and (12) are obtained.

Figure 2009210263
Figure 2009210263

ここで、左特異ベクトルuのうち、信号部分空間に対応するベクトルを並べた行列Uを、下式(13)のように2つのL×K行列U、Uに分割する。 Here, among the left singular vectors u l , a matrix U s in which vectors corresponding to the signal subspace are arranged is divided into two L × K matrices U X and U Y as shown in the following equation (13).

Figure 2009210263
Figure 2009210263

アレーモード行列Aは、信号部分空間Uの線形結合によって、下式(14a)〜(14c)のように表現できる。 Array mode matrix A by a linear combination of the signal subspace U S, can be expressed by the following equation (14a) ~ (14c).

Figure 2009210263
Figure 2009210263

上式(14a)〜(14c)から正則な行列Tと行列Φi、jを決定できる。その後、VESPA処理では、非特許文献1のように、行列Φi、jから#i−#j素子間の受信位相差推定値φ(〜)i、j、kが推定できる。さらに、上式(14b)からアレーモード行列の推定値であるA( ̄)が推定できる(例えば、非特許文献であるE. Gonen、J. M. Mendel、“Applications of cumulants to array processing. IV. Direction finding in coherent signals case、”IEEE Trans. Signal Processing、vol.45、no.9、pp.2265-2276、Sep 1997.参照)。 The regular matrix T and the matrix Φ i, j can be determined from the above equations (14a) to (14c). Thereafter, in the VESPA process, as in Non-Patent Document 1, it is possible to estimate the reception phase difference estimated value φ (˜) i, j, k between the # i- # j elements from the matrix Φ i, j . Furthermore, A ( ̄), which is an estimated value of the array mode matrix, can be estimated from the above equation (14b) (for example, non-patent literature E. Gonen, JM Mendel, “Applications of cumulants to array processing. IV. Direction finding”). in coherent signals case, "IEEE Trans. Signal Processing, vol. 45, no. 9, pp. 2265-2276, Sep 1997.").

ここで、(〜)は、()の前に記載された符号の上に〜が付された推定値を意味し、センサ間隔が半波長より大きいガイディングセンサを用いるVESPA処理による推定値を意味している。また、( ̄)は、()の前に記載された符号の上に ̄が付された推定値を意味し、センサ間隔が半波長未満のガイディングセンサを用いるVESPA処理による推定値あるいはアレーモードベクトルに基づく推定値を意味している。   Here, (˜) means an estimated value with “˜” attached to the sign described before (), and means an estimated value by VESPA using a guiding sensor whose sensor interval is larger than a half wavelength. is doing. Further, ( ̄) means an estimated value in which  ̄ is added on the code described before (), and an estimated value or array mode by a VESPA process using a guiding sensor whose sensor interval is less than half wavelength. Means an estimate based on a vector.

本発明では、このように推定した行列A( ̄)、すなわち、アレーモードベクトルa( ̄)(θ)(k=1、・・・、K)を推定し、さらに、任意の#l−#m素子間の受信位相差推定値φ( ̄)l、m、kを下式(15)のように得る。 In the present invention, the matrix A ( ̄) estimated in this way, that is, the array mode vector a ( ̄) (θ k ) (k = 1,..., K) is estimated, and an arbitrary # l− The reception phase difference estimated value φ ( ̄) l, m, k between #m elements is obtained by the following equation (15).

Figure 2009210263
Figure 2009210263

ここで、a( ̄)(θ)は、ベクトルa( ̄)(θ)の#l要素である。a( ̄)(θ)とa( ̄)(θ)の関係から、入射角度推定値θ( ̄)を得る。例えば、下式(16)(17)で示されるような場合を考える。 Here, a l ( ̄) (θ k ) is the #l element of the vector a ( ̄) (θ k ). from the relationship of a l (¯) (θ k ) and a m (¯) (θ k ), obtained incident angle estimate theta k a (¯). For example, consider a case represented by the following equations (16) and (17).

Figure 2009210263
Figure 2009210263

このような場合、入射角度推定値θ( ̄)は、上式(15)の受信位相差推定値φ( ̄)l、m、kから、下式(18)を用いて求められる。 In such a case, the incident angle estimated value θ ( ̄) k is obtained from the received phase difference estimated value φ ( ̄) l, m, k of the above equation (15) using the following equation (18).

Figure 2009210263
Figure 2009210263

ここで、Im[Z]は複素数Zの虚数部を得る演算処理であり、ln()は自然対数関数である。   Here, Im [Z] is an arithmetic process for obtaining the imaginary part of the complex number Z, and ln () is a natural logarithmic function.

上式(18)により、受信位相差推定値φ(〜)l、m、kから第k波の入射角度推定値θ(〜)を算出できる。ここで、図1に示すようなセンサ配置を考える。図1は、本発明の実施の形態1における各センサの配置を示した説明図であり、#が付されたアルファベットは、それぞれのセンサ番号を意味している。 By the above equation (18), it is possible to calculate the incident angle estimated value θ (˜) k of the k-th wave from the received phase difference estimated value φ (˜) l, m, k . Here, a sensor arrangement as shown in FIG. 1 is considered. FIG. 1 is an explanatory diagram showing the arrangement of each sensor according to Embodiment 1 of the present invention, and the alphabets marked with # mean the respective sensor numbers.

この図1における#iセンサと#jセンサからなるガイディングセンサのように、その2つのセンサ素子の間隔‖p−p‖が半波長を超えると、受信位相差推定値φ(〜)l、m、kを角度値へ変換する際にアンビギュイティが発生する。この結果、複数の入射角度の推定候補値θ(〜)1、k〜θ(〜)Q、kが得られる。 As in the guiding sensor composed of the #i sensor and the #j sensor in FIG. 1, when the interval ‖p j −p iの between the two sensor elements exceeds a half wavelength, the received phase difference estimated value φ (˜) Ambiguity occurs when l, m, and k are converted into angle values. As a result, estimated candidate values θ (˜) 1, k˜θ (˜) Q, k for a plurality of incident angles are obtained.

そこで、推定候補値θ(〜)1、k〜θ(〜)Q、kの間のアンビギュイティを解決するために、受信位相が既知かつセンサ間隔‖p−p‖が半波長未満となる#lセンサと#mセンサを選択する。そして、上式(18)を用いて、受信位相差推定値φ( ̄)l、m、kから角度アンビギュイティが生じない入射角度推定参照値θ( ̄)を算出する。 Therefore, the estimated candidate value θ (~) 1, k ~θ (~) Q, in order to solve the ambiguity between the k, the reception phase known and sensor spacing ‖p m -p l ‖ less than half a wavelength #L sensor and #m sensor are selected. Then, using the above equation (18), an incident angle estimation reference value θ ( ̄) k that does not cause an angle ambiguity is calculated from the received phase difference estimated value φ ( ̄) l, m, k .

先に求めた推定候補値θ(〜)1、k〜θ(〜)Q、kの中から、推定参照値θ( ̄)に最も近い角度値を選出し、最終的な入射角度推定値θ(^)として出力する。ここで、θ(^)は、θの上に^が付された推定値を意味し、最終的な入射角度推定値を意味している。このような一連の演算処理を施すことにより、本実施の形態1における測角装置は、高精度かつ角度アンビギュイティを生じない測角処理が実現できる。 The angle value closest to the estimated reference value θ ( ̄) k is selected from the estimated candidate values θ (˜) 1, k˜θ (˜) Q, k obtained previously, and the final incident angle estimated value Output as θ (^) k . Here, θ (^) means an estimated value in which ^ is added on θ, and means a final incident angle estimated value. By performing such a series of arithmetic processing, the angle measuring device according to the first embodiment can realize angle measuring processing with high accuracy and no angular ambiguity.

次に、本実施の形態1における測角装置の具体的な構成について説明する。図2は、本発明の実施の形態1における測角装置の構成図である。図2の測角装置は、L個(Lは、2以上の整数)のセンサ1(1)〜1(L)、観測データベクトル生成部2、VESPA処理部3、角度変換処理部4a、4b、ペアリング処理部5、測角結果出力部6、アレーモードベクトル推定処理部7、および受信位相差算出処理部8で構成される。   Next, a specific configuration of the angle measuring device according to the first embodiment will be described. FIG. 2 is a configuration diagram of the angle measuring device according to the first embodiment of the present invention. The angle measuring device of FIG. 2 includes L (L is an integer of 2 or more) sensors 1 (1) to 1 (L), an observation data vector generation unit 2, a VESPA processing unit 3, and angle conversion processing units 4a and 4b. , A pairing processing unit 5, an angle measurement result output unit 6, an array mode vector estimation processing unit 7, and a reception phase difference calculation processing unit 8.

ここで、L個のセンサ1(1)〜1(L)のうち、センサ1(1)とセンサ1(2)は、センサ間隔が信号波長の半分より小さいものとし、センサ1(1)とセンサ1(L)は、センサ間隔が信号波長の半分より大きいものとする。また、センサ1(1)〜1(L)それぞれにおける観測データr(t)〜r(t)は、観測データベクトル生成部2でベクトルr(t)として生成される。 Here, of the L sensors 1 (1) to 1 (L), the sensor 1 (1) and the sensor 1 (2) have a sensor interval smaller than half of the signal wavelength, and the sensor 1 (1) Sensor 1 (L) has a sensor interval larger than half of the signal wavelength. Observation data r 1 (t) to r L (t) in each of the sensors 1 (1) to 1 (L) is generated as a vector r (t) by the observation data vector generation unit 2.

VESPA処理部3は、センサ1(1)とセンサ1(L)がガイディングセンサであり、観測データr(t)およびr(t)と観測データベクトルr(t)を入力値として、上式(1)の行列VによるVESPA処理を行う。VESPA処理部3は、上式(10)で表されるガイディングセンサ間の受信位相差φを求め、受信位相差推定値φ(〜)を出力する。さらに、VESPA処理部3は、上式(13)の行列U、および上式(14)から決定できる行列Tを出力する。 In the VESPA processing unit 3, the sensors 1 (1) and 1 (L) are guiding sensors, and the observation data r 1 (t) and r L (t) and the observation data vector r (t) are used as input values. The VESPA process is performed using the matrix V in the above equation (1). The VESPA processing unit 3 obtains the reception phase difference φ between the guiding sensors expressed by the above equation (10), and outputs the reception phase difference estimated value φ (˜). Furthermore, the VESPA processing unit 3 outputs a matrix U S of the above equation (13) and a matrix T that can be determined from the above equation (14).

アレーモードベクトル推定処理部7は、式(14a)〜(14c)に基づいて、行列Uと行列Tから行列A( ̄)を推定する。次に、受信位相差算出処理部8は、上式(15)に基づいて、センサ1(1)とセンサ1(2)の受信位相差φ( ̄)を、行列A( ̄)から算出する。角度変換処理部4aは、上式(18)のように受信位相差φ( ̄)を角度θ( ̄)へ変換する。一方、角度変換処理部4bは、上式(10)に基づいて、受信位相差φ(〜)を角度θ(〜)に変換する。 Array mode vector estimation processor 7, based on equation (14a) ~ (14c), to estimate the matrix A (¯) from the matrix U S and the matrix T. Next, the reception phase difference calculation processing unit 8 calculates the reception phase difference φ ( ̄) between the sensor 1 (1) and the sensor 1 (2) from the matrix A ( ̄) based on the above equation (15). . The angle conversion processing unit 4a converts the reception phase difference φ ( ̄) into an angle θ ( ̄) as shown in the above equation (18). On the other hand, the angle conversion processing unit 4b converts the reception phase difference φ (˜) into the angle θ (˜) based on the above equation (10).

ただし、センサ1(1)とセンサ1(L)のセンサ間隔が信号波長λの半分より大きいため、上式(10)に基づく変換では、角度アンビギュイティが生じることとなる。そこで、角度変換処理部4bは、複数のQ個(Qは、2以上K以下の整数)の角度θ(〜)〜θ(〜)を出力する。 However, since the sensor interval between the sensor 1 (1) and the sensor 1 (L) is larger than half of the signal wavelength λ, the angle ambiguity is generated in the conversion based on the above equation (10). Therefore, the angle conversion processing unit 4b outputs a plurality of Q (Q is an integer of 2 or more and K or less) angles θ (˜) 1 to θ (˜) Q.

ペアリング処理部5は、複数のQ個の角度θ(〜)〜θ(〜)から角度θ( ̄)に最も近い1つを選択して、入射角度推定値θ(^)を決定する。さらに、測角結果出力部6は、ペアリング処理部5で決定された入射角度推定値θ(^)を出力する。 The pairing processing unit 5 selects one closest to the angle θ ( ̄) from a plurality of Q angles θ (˜) 1 to θ (˜) Q, and determines the incident angle estimated value θ (^). To do. Further, the angle measurement result output unit 6 outputs the incident angle estimated value θ (^) determined by the pairing processing unit 5.

ここで、本実施の形態1における測角装置の構成が、従来の測角装置と異なる点について図面を用いて説明する。図6は、特許文献1に基づく従来の測角装置の構成図である。図6の従来の測角装置は、L個のセンサ1(1)〜1(L)、観測データベクトル生成部2、VESPA処理部3a、3b、角度変換処理部4a、4b、ペアリング処理部5、および測角結果出力部6で構成される。   Here, the difference between the configuration of the angle measuring device in the first embodiment and the conventional angle measuring device will be described with reference to the drawings. FIG. 6 is a configuration diagram of a conventional angle measuring device based on Patent Document 1. In FIG. The conventional angle measuring device of FIG. 6 includes L sensors 1 (1) to 1 (L), an observation data vector generation unit 2, VESPA processing units 3a and 3b, angle conversion processing units 4a and 4b, and a pairing processing unit. 5 and an angle measurement result output unit 6.

ここで、L個のセンサ1(1)〜1(L)のうち、センサ1(1)とセンサ1(2)は、センサ間隔が信号波長の半分より小さいものとし、センサ1(1)とセンサ1(L)は、センサ間隔が信号波長の半分より大きいものとする。従来の測角装置において、センサ1(1)とセンサ1(2)の受信位相差φ( ̄)を推定する場合には、VESPA処理部3aが、観測データr(t)およびr(t)と観測データベクトルr(t)を入力値として、上式(1)の行列VによるVESPA処理を行う。 Here, of the L sensors 1 (1) to 1 (L), the sensor 1 (1) and the sensor 1 (2) have a sensor interval smaller than half of the signal wavelength, and the sensor 1 (1) Sensor 1 (L) has a sensor interval larger than half of the signal wavelength. In the conventional angle measuring device, when the reception phase difference φ ( ̄) between the sensor 1 (1) and the sensor 1 (2) is estimated, the VESPA processing unit 3a uses the observation data r 1 (t) and r 2 ( t) and the observed data vector r (t) are used as input values, and VESPA processing is performed using the matrix V in the above equation (1).

すなわち、センサ間隔が信号波長の半分より小さいものに対しても、センサ間隔が信号波長の半分より大きいものと同様の処理を施しており、VESPA処理を2回実行する必要があった。この結果、従来の測角装置は、VESPA処理を行う回数が増加する分だけ演算量が増大し、演算規模が大きく処理負荷の重いものとなっていた。   In other words, even when the sensor interval is smaller than half the signal wavelength, the same processing as that for the sensor interval larger than the signal wavelength is performed, and it is necessary to execute the VESPA process twice. As a result, in the conventional angle measuring device, the amount of calculation increases as the number of times of performing the VESPA process increases, and the calculation scale is large and the processing load is heavy.

これに対して、本実施の形態1における図1の構成を有する測角装置は、VESPA処理が1回で済むため、演算規模が小さく、高速な演算処理を実現できる。   On the other hand, the angle measuring apparatus having the configuration of FIG. 1 according to the first embodiment requires only one VESPA process, so that the calculation scale is small and high-speed calculation processing can be realized.

入射信号が複数の場合には、複数の受信位相差φ( ̄)〜φ( ̄)と受信位相差φ(〜)〜φ(〜)を得ることができる。特許文献1における図6の従来の測角装置は、同一の信号に対応する受信位相差φ( ̄)と受信位相差φ(〜)を、ペアリング処理部5の実施前に組み合わせることができなかった。 When there are a plurality of incident signals, a plurality of reception phase differences φ ( ̄) 1 to φ ( ̄) K and reception phase differences φ (˜) 1 to φ (˜) K can be obtained. The conventional angle measuring device of FIG. 6 in Patent Document 1 combines the reception phase difference φ ( ̄) k and the reception phase difference φ (˜) k corresponding to the same signal before the pairing processing unit 5 is implemented. I could not.

これに対して、本実施の形態1における図2の測角装置は、同一の信号に対応する受信位相差φ( ̄)と受信位相差φ(〜)を、上式(14)に基づいて、ペアリング処理部5の実施前に組み合わせることができる。この結果、アレーモード行列A( ̄)の推定精度が向上し、最終的に得られる入射角度推定値θ(^)の精度を向上させることができる。 On the other hand, in the angle measuring device of FIG. 2 in the first embodiment, the reception phase difference φ ( ̄) k and the reception phase difference φ (˜) k corresponding to the same signal are expressed by the above equation (14). Based on this, it can be combined before the pairing processing unit 5 is implemented. As a result, the estimation accuracy of the array mode matrix A ( ̄) is improved, and the accuracy of the finally obtained incident angle estimation value θ (^) can be improved.

特に、受信特性が既知なセンサのうち、間隔が最大のセンサ対をVESPA処理に用いることにより、測定精度を高めることができる。さらに、ガイディングセンサ間隔が半波長を超えることにより発生する角度アンビギュイティに対して、VESPA処理で推定されるアレーモードベクトルa(θ)のうち、素子アンテナ放射パターンが既知なセンサに対応する要素を用いることで、センサ間隔が小さい測角処理も実行できる。   In particular, it is possible to improve measurement accuracy by using a sensor pair having a maximum interval among sensors with known reception characteristics for VESPA processing. Furthermore, with respect to the angular ambiguity generated when the guiding sensor interval exceeds half wavelength, among the array mode vectors a (θ) estimated by the VESPA processing, the element antenna radiation pattern corresponds to a known sensor. By using elements, angle measurement processing with a small sensor interval can also be executed.

このように、VESPA処理により求まった推定値と、VESPA処理で推定されるアレーモードベクトルa(θ)に基づいて求まった推定値とを用いて、最終的な入射角度推定値を求めることができる。この結果、1回のVESPA処理を行うことで、測角精度の向上と、演算量の削減の両立を図ることができる。   In this way, the final incident angle estimated value can be obtained using the estimated value obtained by the VESPA process and the estimated value obtained based on the array mode vector a (θ) estimated by the VESPA process. . As a result, by performing one VESPA process, it is possible to improve both the angle measurement accuracy and reduce the amount of calculation.

また、受信特性が同一のセンサを、VESPA処理を行うためのガイディングセンサとすることで、さらなる測角精度の向上を図ることができる。   Further, by using a sensor having the same reception characteristics as a guiding sensor for performing VESPA processing, it is possible to further improve the angle measurement accuracy.

以上のように、実施の形態1によれば、到来信号それぞれの入射角度θに対応するアレーモードベクトルa(θ)の推定値に基づいて、入射角度推定値θ( ̄)を算出することにより、VESPA処理が1回で済むとともに、角度アンビギュイティの問題を解決することができる。この結果、測角精度を向上させるとともに、演算量の削減を図ることのできる測角装置を得ることができる。   As described above, according to the first embodiment, the incident angle estimated value θ (θ) is calculated based on the estimated value of the array mode vector a (θ) corresponding to the incident angle θ of each incoming signal. The VESPA process can be completed only once, and the problem of angle ambiguity can be solved. As a result, an angle measuring device capable of improving the angle measuring accuracy and reducing the amount of calculation can be obtained.

なお、実施の形態1では、無指向性センサを仮定してセンサ間の受信位相差を推定して測角処理を行う場合について説明した。しかしながら、本実施の形態1における測角装置は、これに限定されない。各センサの素子アンテナ放射パターンに利得差が存在する場合にも、上式(18)と同様に推定値φ( ̄)l、m、kの位相差から入射角度推定値θ( ̄)を得ることが可能である。 In the first embodiment, the case where the angle measurement process is performed by assuming the omnidirectional sensor and estimating the reception phase difference between the sensors has been described. However, the angle measuring device in Embodiment 1 is not limited to this. Even when there is a gain difference in the element antenna radiation pattern of each sensor, the incident angle estimated value θ ( ̄) k is calculated from the phase difference of the estimated values φ ( ̄) l, m, k similarly to the above equation (18). It is possible to obtain.

実施の形態2.
図3は、本発明の実施の形態2における測角装置の構成図である。先の実施の形態1では、先の図2に示すように、VESPA処理部3により、センサ1(1)とセンサ1(L)の受信位相差φ(〜)を得ていた。これに対して、本実施の形態2では、図3に示すように、受信位相差算出処理部8bを用いて、上式(15)に基づいて行列A( ̄)から受信位相差φ(〜)を算出している。
Embodiment 2. FIG.
FIG. 3 is a configuration diagram of the angle measuring device according to the second embodiment of the present invention. In the first embodiment, the reception phase difference φ (˜) between the sensor 1 (1) and the sensor 1 (L) is obtained by the VESPA processing unit 3 as shown in FIG. On the other hand, in the second embodiment, as shown in FIG. 3, the reception phase difference calculation processing unit 8b is used to calculate the reception phase difference φ (˜) from the matrix A ( ̄) based on the above equation (15). ).

このように、図3の構成を有する本実施の形態2の測角装置は、仮にVESPA処理部3で用いるガイディングセンサの受信位相が未知であっても、受信位相差算出処理部8a、8bで、受信位相が既知のセンサ間の受信位相差を算出することができる。   As described above, the angle measuring device according to the second embodiment having the configuration shown in FIG. 3 has the reception phase difference calculation processing units 8a and 8b even if the reception phase of the guiding sensor used in the VESPA processing unit 3 is unknown. Thus, the reception phase difference between sensors with known reception phases can be calculated.

以上のように、実施の形態2によれば、到来信号それぞれの入射角度θに対応するアレーモードベクトルa(θ)の推定値に基づいて、入射角度推定値θ( ̄)および入射角度推定値θ(〜)を算出することにより、VESPA処理が1回で済む。この結果、先の実施の形態1と同様に、測角精度を向上させるとともに、演算量の削減を図ることのできる測角装置を得ることができる。   As described above, according to the second embodiment, the incident angle estimated value θ (モ ー ド) and the incident angle estimated value are based on the estimated value of the array mode vector a (θ) corresponding to the incident angle θ of each incoming signal. By calculating θ (˜), the VESPA process can be performed only once. As a result, similarly to the first embodiment, it is possible to obtain an angle measuring device capable of improving the angle measuring accuracy and reducing the amount of calculation.

実施の形態3.
先の実施の形態1、2では、VESPA処理を1回行うことによる測角装置について説明した。これに対して、本実施の形態3では、VESPA処理に代えてESPRIT処理を1回行うことによる測角装置について説明する。
Embodiment 3 FIG.
In the first and second embodiments, the angle measuring device by performing the VESPA process once has been described. On the other hand, in this Embodiment 3, the angle measuring device by performing ESPRIT processing once instead of VESPA processing is demonstrated.

センサ1(1)〜1(L)において、受信位相と設置位置の条件によっては、VESPA処理をESPRIT処理に置き換えることができる。VESPA処理は、ESPRIT処理に基づくものであり、条件が満たされれば、ESPRIT処理に戻せる。このような条件は、例えば、受信位相が無指向性のセンサ1(1)〜センサ1(L)が直線上に等間隔で設置されるような場合である。   In the sensors 1 (1) to 1 (L), the VESPA process can be replaced with the ESPRIT process depending on the conditions of the reception phase and the installation position. The VESPA process is based on the ESPRIT process, and can be returned to the ESPRIT process if the condition is satisfied. Such a condition is, for example, a case where the sensors 1 (1) to 1 (L) having a non-directional reception phase are installed on a straight line at equal intervals.

図4は、本発明の実施の形態3における測角装置の構成図であり、先の実施の形態1における図2のVESPA処理部3をESPRIT処理部9に置き換えたものである。また、図5は、本発明の実施の形態3における測角装置の別の構成図であり、先の実施の形態2における図3のVESPA処理部3をESPRIT処理部9に置き換えたものである。   FIG. 4 is a configuration diagram of the angle measuring device according to the third embodiment of the present invention, in which the VESPA processing unit 3 in FIG. 2 in the previous first embodiment is replaced with an ESPRIT processing unit 9. FIG. 5 is another configuration diagram of the angle measuring device according to the third embodiment of the present invention, in which the VESPA processing unit 3 in FIG. 3 in the previous second embodiment is replaced with an ESPRIT processing unit 9. .

以上のように、実施の形態3によれば、VESPA処理をESPRIT処理に置き換えることによっても、先の実施の形態1、2と同様の効果を得ることができる。   As described above, according to the third embodiment, the same effect as in the first and second embodiments can be obtained by replacing the VESPA process with the ESPRIT process.

なお、上述の実施の形態1〜3では、受信特性差として位相差を用いる場合について説明したが、センサ素子が指向性センサの場合には、受信特性差として受信電力差を用いることによっても測角処理を行うことができる。一般的に、測角処理は、受信位相差と受信電力差を併用して行われるが、上述したVESPA処理およびESPRIT処理では、受信位相差のみを用いて測角方式が十分に実施可能となる。ただし、複数の指向性センサがそれぞれ異なる方位に向けて設置されている場合には、受信電力差による測角処理も可能となる。   In the first to third embodiments, the case where the phase difference is used as the reception characteristic difference has been described. However, when the sensor element is a directional sensor, the measurement is also performed by using the reception power difference as the reception characteristic difference. Corner processing can be performed. In general, the angle measurement process is performed using both the reception phase difference and the reception power difference. However, in the VESPA process and ESPRIT process described above, the angle measurement method can be sufficiently implemented using only the reception phase difference. . However, when a plurality of directivity sensors are installed in different directions, angle measurement processing based on the received power difference is also possible.

本発明の実施の形態1における各センサの配置を示した説明図である。It is explanatory drawing which showed arrangement | positioning of each sensor in Embodiment 1 of this invention. 本発明の実施の形態1における測角装置の構成図である。It is a block diagram of the angle measuring device in Embodiment 1 of this invention. 本発明の実施の形態2における測角装置の構成図である。It is a block diagram of the angle measuring apparatus in Embodiment 2 of this invention. 本発明の実施の形態3における測角装置の構成図である。It is a block diagram of the angle measuring apparatus in Embodiment 3 of this invention. 本発明の実施の形態3における測角装置の別の構成図である。It is another block diagram of the angle measuring device in Embodiment 3 of this invention. 特許文献1に基づく従来の測角装置の構成図である。It is a block diagram of the conventional angle measuring device based on patent document 1. FIG.

符号の説明Explanation of symbols

1 センサ、2 観測データベクトル生成部、3 VESPA処理部、4a、4b 角度変換処理部、5 ペアリング処理部、6 測角結果出力部、7 アレーモードベクトル推定処理部、8、8a、8b 受信位相差算出処理部、9 ESPRIT処理部。   1 sensor, 2 observation data vector generation unit, 3 VESPA processing unit, 4a, 4b angle conversion processing unit, 5 pairing processing unit, 6 angle measurement result output unit, 7 array mode vector estimation processing unit, 8, 8a, 8b reception Phase difference calculation processing unit, 9 ESPRIT processing unit.

Claims (9)

複数の到来信号を複数のセンサ素子で受信し、1回のVESPA処理または1回のESPRIT処理に基づいて、各センサ出力信号間の相互統計量から各到来信号に対応するセンサ間の第1の受信特性差を推定し、推定した第1の受信特性差に基づいて前記到来信号の入射角度を推定することを特徴とする測角装置。   A plurality of incoming signals are received by a plurality of sensor elements, and based on a single VESPA process or a single ESPRIT process, a first statistic between sensors corresponding to each incoming signal is obtained from a cross-statistic between each sensor output signal. An angle measuring device characterized by estimating a reception characteristic difference and estimating an incident angle of the incoming signal based on the estimated first reception characteristic difference. 請求項1に記載の測角装置において、
前記第1の受信特性差として、間隔が異なる複数のセンサ対の受信特性差をそれぞれ算出し、それぞれの受信特性差を組み合わせて前記到来信号の入射角度を推定することを特徴とする測角装置。
The angle measuring device according to claim 1,
As the first reception characteristic difference, a reception characteristic difference between a plurality of sensor pairs having different intervals is calculated, and an incident angle of the incoming signal is estimated by combining the respective reception characteristic differences. .
請求項2に記載の測角装置において、
センサ間隔が半波長よりも広いセンサ対に対して算出された受信特性差に基づいて複数の入射角度の候補を算出し、センサ間隔が半波長よりも狭いセンサ対に対して算出された受信特性差を参照して前記複数の入射角度の候補の中から最適な候補を選択することで前記到来信号の入射角度を推定することを特徴とする測角装置。
The angle measuring device according to claim 2,
Multiple reception angle candidates are calculated based on the reception characteristic difference calculated for a sensor pair with a sensor interval wider than half wavelength, and the reception characteristic is calculated for a sensor pair with sensor interval narrower than half wavelength. An angle measuring device that estimates an incident angle of the incoming signal by selecting an optimal candidate from the plurality of incident angle candidates with reference to a difference.
請求項1に記載の測角装置において、
前記1回の1回のVESPA処理または前記1回のESPRIT処理に基づいてガイディングセンサ間の第2の受信特性差を算出し、前記第1の受信特性差と前記第2の受信特性差とを組み合わせることにより、前記到来信号の入射角度を推定することを特徴とする測角装置。
The angle measuring device according to claim 1,
A second reception characteristic difference between guiding sensors is calculated based on the one VESPA process or the one ESPRIT process, and the first reception characteristic difference and the second reception characteristic difference are calculated. The angle measuring device is characterized by estimating the incident angle of the incoming signal by combining.
請求項4に記載の測角装置において、
前記ガイディングセンサとして、受信特性が既知なセンサのうち、間隔が最大のセンサ対を用いることを特徴とする測角装置。
The angle measuring device according to claim 4,
An angle measuring device using a pair of sensors having a maximum interval among sensors having a known reception characteristic as the guiding sensor.
請求項4または5に記載の測角装置において、
前記ガイディングセンサとして、受信特性が同一のセンサを用いることを特徴とする測角装置。
The angle measuring device according to claim 4 or 5,
An angle measuring device using a sensor having the same reception characteristic as the guiding sensor.
請求項4ないし6のいずれか1項に記載の測角装置において、
前記ガイディングセンサ対の間隔は、半波長を超えることを特徴とする測角装置。
The angle measuring device according to any one of claims 4 to 6,
An angle measuring device characterized in that an interval between the guiding sensor pair exceeds a half wavelength.
請求項4ないし7のいずれか1項に記載の測角装置において、
前記VESPA処理または前記ESPRIT処理により推定された前記第2の受信特性差から複数の入射角度の候補を算出し、前記第1の受信特性差を参照して前記複数の入射角度の候補の中から最適な候補を選択することで前記到来信号の入射角度を推定することを特徴とする測角装置。
The angle measuring device according to any one of claims 4 to 7,
A plurality of incident angle candidates are calculated from the second reception characteristic difference estimated by the VESPA process or the ESPRIT process, and the first reception characteristic difference is referred to and selected from the plurality of incident angle candidates. An angle measuring device characterized by estimating an incident angle of the incoming signal by selecting an optimal candidate.
請求項1ないし8のいずれか1項に記載の測角装置において、
受信特性差として位相差を用いることを特徴とする測角装置。
The angle measuring device according to any one of claims 1 to 8,
An angle measuring device using a phase difference as a reception characteristic difference.
JP2008050284A 2008-02-29 2008-02-29 Angle measuring device Active JP5063416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008050284A JP5063416B2 (en) 2008-02-29 2008-02-29 Angle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008050284A JP5063416B2 (en) 2008-02-29 2008-02-29 Angle measuring device

Publications (2)

Publication Number Publication Date
JP2009210263A true JP2009210263A (en) 2009-09-17
JP5063416B2 JP5063416B2 (en) 2012-10-31

Family

ID=41183588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008050284A Active JP5063416B2 (en) 2008-02-29 2008-02-29 Angle measuring device

Country Status (1)

Country Link
JP (1) JP5063416B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142628A (en) * 2015-02-02 2016-08-08 三菱電機株式会社 Arrival direction estimation device and arrival direction estimation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208187A1 (en) * 2015-06-24 2016-12-29 互応化学工業株式会社 Solder resist composition, coating, coated printed wiring board, coating manufacturing method, and coated printed wiring board manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116562A (en) * 1982-12-24 1984-07-05 Oki Electric Ind Co Ltd Estimating system of signal incident angle
JPS62289781A (en) * 1986-04-18 1987-12-16 ソーン イーエムアイ エレクトロニクス リミテッド Radio direction measuring method and device
JPH07140221A (en) * 1993-11-18 1995-06-02 Mitsubishi Electric Corp Angle measuring system
US5459668A (en) * 1993-06-04 1995-10-17 University Of Southern California Method and apparatus for signal analysis employing a virtual cross-correlation computer
JP2003222666A (en) * 2002-01-31 2003-08-08 Mitsubishi Electric Corp Angle measuring device, angle measuring method and program
JP2004150842A (en) * 2002-10-29 2004-05-27 Mitsubishi Electric Corp Angle measuring method and its apparatus
JP2006329671A (en) * 2005-05-23 2006-12-07 Mitsubishi Electric Corp Incident angle deducing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116562A (en) * 1982-12-24 1984-07-05 Oki Electric Ind Co Ltd Estimating system of signal incident angle
JPS62289781A (en) * 1986-04-18 1987-12-16 ソーン イーエムアイ エレクトロニクス リミテッド Radio direction measuring method and device
US5459668A (en) * 1993-06-04 1995-10-17 University Of Southern California Method and apparatus for signal analysis employing a virtual cross-correlation computer
JPH07140221A (en) * 1993-11-18 1995-06-02 Mitsubishi Electric Corp Angle measuring system
JP2003222666A (en) * 2002-01-31 2003-08-08 Mitsubishi Electric Corp Angle measuring device, angle measuring method and program
JP2004150842A (en) * 2002-10-29 2004-05-27 Mitsubishi Electric Corp Angle measuring method and its apparatus
JP2006329671A (en) * 2005-05-23 2006-12-07 Mitsubishi Electric Corp Incident angle deducing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142628A (en) * 2015-02-02 2016-08-08 三菱電機株式会社 Arrival direction estimation device and arrival direction estimation method

Also Published As

Publication number Publication date
JP5063416B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
Yin et al. Direction-of-arrival estimation using a sparse representation of array covariance vectors
Wang et al. Direction finding algorithms based on joint iterative subspace optimization
Dai et al. Extended DOA-matrix method for DOA estimation via two parallel linear arrays
CA3041907A1 (en) Direction of arrival estimation
Yan et al. Fast DOA estimation based on a split subspace decomposition on the array covariance matrix
WO2006067857A1 (en) Arrival direction estimating device and program
Zhang et al. Performance analysis for finite sample MVDR beamformer with forward backward processing
JP2010096575A (en) Signal wave arrival angle measuring device
JP2017036990A (en) Arrival direction estimation device
Liang Joint azimuth and elevation direction finding using cumulant
JP4757629B2 (en) Arrival direction estimation device
JP5022943B2 (en) Direction measuring device
Wang et al. Robust sparse array design for adaptive beamforming against DOA mismatch
CN111352063A (en) Two-dimensional direction finding estimation method based on polynomial root finding in uniform area array
Zheng et al. Direction-of-arrival estimation of coherent signals under direction-dependent mutual coupling
JP5063416B2 (en) Angle measuring device
KR20190001170A (en) The method and apparatus for estimating the direction of arrival of a signal
CN112733333A (en) Two-dimensional direction finding estimation method based on polynomial root finding in co-prime area array
Filik et al. A fast and automatically paired 2-D direction-of-arrival estimation with and without estimating the mutual coupling coefficients
Cai et al. Forward/backward spatial reconstruction method for directions of arrival estimation of uncorrelated and coherent signals
Mohammed High-resolution direction of arrival estimation method based on sparse arrays with minimum number of elements
Choi Simple direction finding of noncircular signals using the centro-Hermitian property
JP2003222666A (en) Angle measuring device, angle measuring method and program
JP4016803B2 (en) Angle measuring method and apparatus
Obimo et al. Performance Evaluation of 1D DoA Estimation for DECOM and UCLA Using MUSIC Algorithm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Ref document number: 5063416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250