JP2009209913A - Exhaust heat recovery device - Google Patents

Exhaust heat recovery device Download PDF

Info

Publication number
JP2009209913A
JP2009209913A JP2008093020A JP2008093020A JP2009209913A JP 2009209913 A JP2009209913 A JP 2009209913A JP 2008093020 A JP2008093020 A JP 2008093020A JP 2008093020 A JP2008093020 A JP 2008093020A JP 2009209913 A JP2009209913 A JP 2009209913A
Authority
JP
Japan
Prior art keywords
exhaust gas
heat recovery
valve
valve element
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008093020A
Other languages
Japanese (ja)
Inventor
Shuichi Hase
周一 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sango Co Ltd
Original Assignee
Sango Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sango Co Ltd filed Critical Sango Co Ltd
Priority to JP2008093020A priority Critical patent/JP2009209913A/en
Publication of JP2009209913A publication Critical patent/JP2009209913A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make both compatible in not blocking up a bypass passage by a valve element even if a flow rate of exhaust gas increases when the medium temperature is a predetermined value or less and in surely preventing overheat of a medium by blocking up a heat exchange passage by the valve element when heat recovery is not required, in an exhaust heat recovery device for switching the heat exchange passage and the bypass passage by exhaust gas dynamic pressure acting on the valve element. <P>SOLUTION: The first valve element and the second valve element energized in the relative separation direction by an energizing body, are journaled in the rear of the bypass passage, and the first valve element is rotatingly driven by an actuator for expandably operating when the medium temperature becomes the predetermined value or more, and the second valve element is driven by the first valve element via the energizing body. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関を搭載した車両などの排気系に設けられ、排気熱を媒体に回収し暖機などに利用するための排気熱回収装置に関する。  The present invention relates to an exhaust heat recovery device that is provided in an exhaust system of a vehicle or the like equipped with an internal combustion engine and recovers exhaust heat to a medium and uses it for warming up.

従来、この種の排気熱回収装置としては、内燃機関の運転状態と媒体(冷却水など)の温度に応じて弁体を開閉させ、排気ガスの流路を熱交換経路とそれを迂回するバイパス経路とに切替制御するものが知られている。これらのうち、切替制御を弁体に付与される排気ガス動圧に依存する方式があるが、排気ガスの流量が少なく動圧が小さい時にはバイパス経路が閉塞されてしまうので、流路抵抗の大きな熱交換経路の排気ガス流だけでは、内燃機関の出力要求に追従できない場合があった。このような問題を解決するため、特許文献1に記載の排気熱回収装置は、排気ガス流量が増大し所定値以上になった際には、媒体の温度に拘わらずバイパス経路も強制的に開いて、排気ガスの流通抵抗を小さくするようにされている。  Conventionally, as this type of exhaust heat recovery apparatus, a valve body is opened and closed according to the operating state of an internal combustion engine and the temperature of a medium (cooling water or the like), and a bypass that bypasses the heat exchange path and the exhaust gas flow path A device that performs switching control to a route is known. Among these, there is a method that relies on the exhaust gas dynamic pressure applied to the valve body for switching control, but when the exhaust gas flow rate is small and the dynamic pressure is small, the bypass path is blocked, so the flow resistance is large. In some cases, the exhaust gas flow in the heat exchange path alone cannot follow the output demand of the internal combustion engine. In order to solve such a problem, the exhaust heat recovery device described in Patent Document 1 forcibly opens the bypass path regardless of the temperature of the medium when the exhaust gas flow rate increases to a predetermined value or more. Thus, the exhaust gas flow resistance is reduced.

国際特許公開WO2006/090725A1号公報International Patent Publication WO2006 / 090725A1

しかしながら、弁体がバイパス経路を閉塞していない状態(バイパス経路開状態)において、弁体が熱交換経路を完全に閉塞できないので、排気ガスの熱交換経路への導通を完全に止められず、特に排気ガスの大流量時(大入熱時)には、媒体の過熱が懸念された。  However, in a state in which the valve body does not close the bypass path (bypass path open state), the valve body cannot completely close the heat exchange path, so the conduction of the exhaust gas to the heat exchange path cannot be completely stopped, In particular, there was concern about overheating of the medium when the exhaust gas flow rate was large (at the time of large heat input).

そこで、本発明は、媒体温度が所定値以下のときに排気ガス流量が増えても弁体がバイパス経路を閉塞しないことと、熱回収不要時には弁体が熱交換経路を閉塞し媒体の過熱を確実に防ぐことを両立する排気熱回収装置を提供することを課題とする。  Therefore, the present invention provides that the valve body does not block the bypass path even if the exhaust gas flow rate increases when the medium temperature is below a predetermined value, and that when the heat recovery is unnecessary, the valve body blocks the heat exchange path and overheats the medium. It is an object of the present invention to provide an exhaust heat recovery device that can be reliably prevented.

上記課題を解決するために、本発明は、請求項1記載のように、排気ガスと媒体との熱交換を行なう熱交換器を内装する熱交換経路と、排気ガスが熱交換器を迂回するバイパス経路と、両経路の前後に分岐部および合流部とを備える排気熱回収装置において、熱交換経路を閉塞可能な第1の弁体が合流部内に軸支され、前記第1の弁体と相対離反方向へ付勢体で付勢されバイパス経路を閉塞可能な第2の弁体が前記合流部内に前記第1の弁体と同軸に軸支され、前記第1の弁体は媒体の温度によって伸縮作動するアクチュエータにて回転駆動され、前記第2の弁体は前記付勢体を介して前記第1の弁体に従動することとした。  In order to solve the above-described problems, the present invention provides a heat exchange path that houses a heat exchanger that performs heat exchange between exhaust gas and a medium, and exhaust gas bypasses the heat exchanger. In an exhaust heat recovery apparatus including a bypass path and a branching section and a merging section before and after both paths, a first valve body capable of closing a heat exchange path is pivotally supported in the merging section, and the first valve body A second valve body that is urged by an urging body in a relative separation direction and can close the bypass path is pivotally supported in the merging portion coaxially with the first valve body, and the first valve body is a temperature of the medium. And the second valve body is driven by the first valve body via the biasing body.

本発明の排気熱回収装置によれば、媒体温度が所定値以下のときに排気ガス流量が増えても弁体がバイパス経路を閉塞しないことと、熱回収不要時には弁体が熱交換経路を閉塞し媒体の過熱を確実に防ぐことを、両立できる。  According to the exhaust heat recovery apparatus of the present invention, the valve body does not close the bypass path even if the exhaust gas flow rate increases when the medium temperature is equal to or lower than the predetermined value, and the valve body closes the heat exchange path when heat recovery is unnecessary. Therefore, it is possible to reliably prevent overheating of the medium.

以下、図面を参照して本発明に係る望ましい実施形態について説明する。本実施形態の製品は、例えば自動車の排気管に付設する排気熱回収装置に限らず、広く工業用や家庭用の各種燃焼装置に付設する排気熱回収装置として供される。また、本実施形態は金属の溶接組立て構造を想定しているが、これに限らず鋳造や鍛造による一体成形構造でも構わない。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. The product of the present embodiment is not limited to an exhaust heat recovery device attached to an exhaust pipe of an automobile, for example, and is widely used as an exhaust heat recovery device attached to various industrial and household combustion devices. Moreover, although this embodiment assumes the metal welding assembly structure, it is not restricted to this, The integral molding structure by casting or forging may be sufficient.

図1は、本発明の第1の実施形態による排気熱回収装置1の外形状を示し、図の左側が排気ガス上流、右側が下流である。図示しない上流排気ガス部品から伝達された排気ガスは流入部2内に流入し、分岐部4にて熱交換経路6及び/又はバイパス経路7を通過して合流部5に流入し、流出部3を通過して、図示しない下流排気ガス部品へ流入するように構成されている。熱交換経路6には媒体入口8と媒体出口9が設けられ、後述する熱交換器23と連通している。なお、分岐部4及び合流部5はこの通りの形状である必要はなく、分岐部4は排気ガスの分流機能、合流部5は排気ガスの合流機能を有していれば、形状は任意である。  FIG. 1 shows the outer shape of the exhaust heat recovery apparatus 1 according to the first embodiment of the present invention, where the left side of the figure is the exhaust gas upstream side and the right side is the downstream side. Exhaust gas transmitted from an upstream exhaust gas component (not shown) flows into the inflow part 2, passes through the heat exchange path 6 and / or bypass path 7 at the branch part 4, flows into the junction part 5, and flows out part 3. And flows into a downstream exhaust gas component (not shown). A medium inlet 8 and a medium outlet 9 are provided in the heat exchange path 6 and communicate with a heat exchanger 23 described later. The branching section 4 and the merging section 5 do not have to be in this shape, and the branching section 4 may have any shape as long as the branching section 4 has an exhaust gas diversion function and the merging section 5 has an exhaust gas merging function. is there.

熱交換経路6の外面には温度駆動型のアクチュエータ10がマウントされるとともに、アクチュエータ10は媒体出口9と連通し、媒体を内部に導通している。そして、アクチュエータ10から延出するロッド11がクランク12の一端に回動自在に連結され、クランク12の他端は弁軸13を回動可能に固定されている。温度駆動型のアクチュエータ10としては、内蔵するワックスに媒体温度が作用することにより伸縮運動する、所謂サーモエレメント式を用いることが好ましい。  A temperature-driven actuator 10 is mounted on the outer surface of the heat exchange path 6, and the actuator 10 communicates with the medium outlet 9 to conduct the medium inside. A rod 11 extending from the actuator 10 is rotatably connected to one end of the crank 12, and the other end of the crank 12 is fixed to the valve shaft 13 so as to be rotatable. As the temperature-driven actuator 10, it is preferable to use a so-called thermo-element type that expands and contracts when the medium temperature acts on the built-in wax.

図2は、本発明の第1の実施形態による排気熱回収装置1の横断面を示し、特に積極的な熱回収状態を示す。熱交換経路6内には複数の相互に連通するウオータージャケット21と排気ガス通路22とが交互に配設され、両者で熱交換器23を形成する。すなわち、排気熱回収装置1内に熱交換器23が内装されている。図2最上側のウオータージャケット21には媒体入口8と媒体出口9がそれぞれ連通しており、媒体入口8から流入した媒体が複数のウオータージャケット21内を流れる過程で排気ガスと熱交換し、入熱された媒体が媒体出口9から流出する。  FIG. 2 shows a cross section of the exhaust heat recovery apparatus 1 according to the first embodiment of the present invention, and shows a particularly aggressive heat recovery state. In the heat exchange path 6, a plurality of mutually communicating water jackets 21 and exhaust gas passages 22 are alternately arranged to form a heat exchanger 23. That is, the heat exchanger 23 is built in the exhaust heat recovery apparatus 1. The medium inlet 8 and the medium outlet 9 communicate with the water jacket 21 at the uppermost side in FIG. The heated medium flows out from the medium outlet 9.

片持ちバタイフライバルブである第1バルブ24と第2バルブ25が、共通の弁軸13にて合流部5に軸支されているが、第1バルブ24は弁軸13に固定され、第2バルブ25は弁軸13に対して回動自在に嵌装されている。すなわち、第1バルブ24は弁軸13の回動に従い回転駆動されるが、第2バルブ25は弁軸13からは直接的に駆動力を受けない。そして、合流部5内にはゼンマイ状のリターンスプリング26が弁軸13と同軸状にセットされ、第1バルブ24と第2バルブ25に係止して、両バルブを相互に離反させるように(開くように)付勢している。  A first valve 24 and a second valve 25 that are cantilever butterfly valves are pivotally supported on the merging portion 5 by a common valve shaft 13, but the first valve 24 is fixed to the valve shaft 13, The valve 25 is rotatably fitted to the valve shaft 13. That is, the first valve 24 is rotationally driven according to the rotation of the valve shaft 13, but the second valve 25 does not receive a driving force directly from the valve shaft 13. A spring-like return spring 26 is set coaxially with the valve shaft 13 in the merging portion 5 and is locked to the first valve 24 and the second valve 25 so that the two valves are separated from each other ( Energized to open).

なお、リターンスプリング26は合流部5に固定されていない。また、第1バルブ24と第2バルブ25の離反角度(相対開き角度)がある最大角度で止まるように、リターンスプリング26は調整されている。本実施形態においては、図2における離反角度(相対開き角度)が最大状態であり、これ以上は開かない。離反角度(開き角度)の設定は、リターンスプリング26によらず、何らかの係止手段を弁体や弁軸に設けても構わない。更に、リターンスプリング26はゼンマイ状ではなく、コイルスプリングや板バネを第1バルブ24と第2バルブ25の間に直接設置しても構わない。  The return spring 26 is not fixed to the merging portion 5. Further, the return spring 26 is adjusted so that the first valve 24 and the second valve 25 are stopped at a certain maximum angle (relative opening angle). In the present embodiment, the separation angle (relative opening angle) in FIG. 2 is the maximum state, and no further opening is performed. The setting of the separation angle (opening angle) is not limited to the return spring 26, and some locking means may be provided on the valve body or the valve shaft. Furthermore, the return spring 26 is not a spring, and a coil spring or a leaf spring may be directly installed between the first valve 24 and the second valve 25.

図2は、機関暖機時(冷間時)などの積極的に排気ガスの熱を回収したい状態を示す。すなわち、第2バルブ25がバイパス経路7を構成するバイパス通路28の後端を閉塞し、排気ガスのほぼ全量が熱交換経路6内の熱交換器23を通過する状態である。第2バルブ25がこのような位置(図2で鉛直)にあるためには、リターンスプリング26の付勢力によって第2バルブ25がバイパス通路28後端に押し付けられるような第1バルブ24の位置(開度)が求められるが、そのような第1バルブ24の位置(開度)となるべく、媒体低温時におけるアクチュエータ10のロッド11展伸状態が予めセットされている。このように、排気ガスの全量が熱交換器23を通過することによって、消音器(マフラー)に相当する消音効果も得られる。  FIG. 2 shows a state where it is desired to positively recover the exhaust gas heat, such as when the engine is warming up (during cold). That is, the second valve 25 is in a state where the rear end of the bypass passage 28 constituting the bypass passage 7 is closed, and almost all of the exhaust gas passes through the heat exchanger 23 in the heat exchange passage 6. In order for the second valve 25 to be in such a position (vertical in FIG. 2), the position of the first valve 24 (the second valve 25 is pressed against the rear end of the bypass passage 28 by the urging force of the return spring 26 ( The opening state of the rod 11 of the actuator 10 when the medium is low is set in advance so that the position (opening degree) of the first valve 24 is obtained. As described above, when the entire amount of the exhaust gas passes through the heat exchanger 23, a silencing effect corresponding to a silencer (muffler) is also obtained.

もちろん、媒体温度が所定値以下のときに排気ガス流量が増えても、第2バルブ25が排気ガス動圧を受けリターンスプリング26の付勢力に抗して必要量だけ開き、バイパス経路を閉塞しない。したがって、排気ガス流量が増大し所定値以上になっても、媒体の温度に拘わらずバイパス経路も強制的に開いて、排気ガスの流通抵抗が小さくなる。なお、サーモエレメント式アクチュエータ10としては、内蔵するワックス29(2点鎖線で示す)が最も縮小している状態であり、内蔵するリターンスプリング30(2点鎖線で示す)の付勢力によってロッド11が図2上方へ押されている状態である。  Of course, even if the exhaust gas flow rate increases when the medium temperature is equal to or lower than the predetermined value, the second valve 25 receives the exhaust gas dynamic pressure and opens the necessary amount against the urging force of the return spring 26 and does not block the bypass path. . Therefore, even if the exhaust gas flow rate increases to a predetermined value or more, the bypass path is forcibly opened regardless of the medium temperature, and the exhaust gas flow resistance decreases. The thermoelement actuator 10 is in a state where the built-in wax 29 (shown by a two-dot chain line) is most contracted, and the rod 11 is moved by the biasing force of the built-in return spring 30 (shown by a two-dot chain line). FIG. 2 shows a state in which it is pushed upward.

図3は、機関暖機後で熱回収を要しない状態であって、かつ、バイパス通路28を通過する排気ガスが適度に絞られる状態を示す。自動車の内燃機関用排気系においては、絞りによってある程度の消音効果を期待する緩加速時等が該当する。この場合において熱回収は不要なので、熱交換経路6を閉塞し排気ガス流通を遮断する位置に第1バルブ24がセットされる。これは、媒体温度上昇によってアクチュエータ10のワックス29が膨張し、リターンスプリング30の付勢力に抗してロッド11を図2下方へ押し、クランク12及び弁軸13の回動を介して第1バルブ24を弁座27へ押し付けることにより、熱交換経路6が完全に閉塞される。したがって、必要以上の熱回収による媒体の過熱を、確実に防ぐことができる。そして、熱交換器23を通過しないことにとよって失う消音効果は、後述の第2バルブ25による絞りによって補うことができる。  FIG. 3 shows a state where heat recovery is not required after the engine is warmed up, and the exhaust gas passing through the bypass passage 28 is appropriately throttled. In an exhaust system for an internal combustion engine of an automobile, this corresponds to a time of slow acceleration in which a certain amount of noise reduction effect is expected by the throttle. In this case, since heat recovery is unnecessary, the first valve 24 is set at a position where the heat exchange path 6 is closed and the exhaust gas flow is shut off. This is because the wax 29 of the actuator 10 expands due to an increase in the medium temperature, pushes the rod 11 downward in FIG. 2 against the biasing force of the return spring 30, and the first valve through the rotation of the crank 12 and the valve shaft 13. By pressing 24 against the valve seat 27, the heat exchange path 6 is completely closed. Therefore, overheating of the medium due to heat recovery more than necessary can be surely prevented. And the silencing effect lost by not passing through the heat exchanger 23 can be compensated for by the restriction by the second valve 25 described later.

この状態において、第2バルブ25は第1バルブに従動し(図2位置から)移動するが、リターンスプリング26の付勢力によって第2バルブ25が離反しようとする(相互に開こうとする)力と、排気ガスの動圧とが均衡する位置(図3の位置)に収束する。これは、図2における最大離反角度(相対開き角度)よりも、動圧受圧分だけ狭くなった状態であり、この時の排気ガス流量に対し背圧要件や絞りによる消音要件を斟酌し、バイパス通路28を通過する排気ガスが最適に絞られる開度となるように、リターンスプリング26の付勢力を調整しておくと好適である。  In this state, the second valve 25 follows the first valve and moves (from the position shown in FIG. 2), but the second valve 25 tends to separate (try to open each other) by the urging force of the return spring 26. And the exhaust gas dynamic pressure converges to a position (position of FIG. 3) at which it balances. This is a state that is narrower than the maximum separation angle (relative opening angle) in FIG. 2 by the dynamic pressure receiving pressure. By taking into account the back pressure requirement and the silencing requirement by the throttle for the exhaust gas flow rate at this time, bypass It is preferable to adjust the biasing force of the return spring 26 so that the exhaust gas passing through the passage 28 has an opening that is optimally throttled.

図4は、機関暖機後の熱回収を要しない状態であって、かつ、バイパス通路28が全開(絞り無し)の状態を示す。自動車の内燃機関用排気系においては、排気ガス流量を最小限にし機関の最大出力を求める急加速時等が該当する。この場合も熱回収は不要であるので、図3と同様、熱交換経路6を閉塞する位置に第1バルブ24がセットされ、媒体の過熱は確実に防止される。  FIG. 4 shows a state in which heat recovery after engine warm-up is not required and the bypass passage 28 is fully open (no throttling). In an exhaust system for an internal combustion engine of an automobile, a rapid acceleration or the like for obtaining a maximum engine output by minimizing an exhaust gas flow rate is applicable. In this case as well, since heat recovery is unnecessary, the first valve 24 is set at a position where the heat exchange path 6 is closed, as in FIG. 3, and the medium is reliably prevented from overheating.

この状態において、第2バルブ25は図3の状態よりも更に大きな排気ガス動圧を受け、リターンスプリング26の付勢力と均衡する位置、すなわち図4の位置に収束する。この状態も図3の状態と同様、この時の排気ガス流量に対し背圧要件や消音要件を斟酌し、バイパス通路28が最適断面積(最大流路面積)となるように、リターンスプリング26の付勢力を調整しておく。  In this state, the second valve 25 receives a larger exhaust gas dynamic pressure than that in the state of FIG. 3, and converges to a position that balances with the urging force of the return spring 26, that is, the position of FIG. In this state, similarly to the state of FIG. 3, the back pressure requirement and the silencing requirement are considered with respect to the exhaust gas flow rate at this time, and the return spring 26 is set so that the bypass passage 28 has an optimum sectional area (maximum flow passage area). Adjust the biasing force.

図5は、機関暖機後の熱回収を要しない状態であって、かつ、バイパス通路28の断面積を積極的に絞る状態を示す。自動車の内燃機関用排気系においては、減速時等の排気ガス少流量時に、図3の緩加速時よりも更にバイパス通路28の流路断面積を小さくして、大きな消音効果を期待する場合である。この場合においても熱回収は不要であるので、熱交換経路6を閉塞する位置に依然第1バルブ24がセットされたままであり、媒体の過熱は確実に防止される。  FIG. 5 shows a state in which heat recovery after engine warm-up is not required and the sectional area of the bypass passage 28 is actively reduced. In an exhaust system for an internal combustion engine of an automobile, when the exhaust gas flow rate is low, such as when decelerating, the flow passage cross-sectional area of the bypass passage 28 is further reduced compared with the case of slow acceleration in FIG. is there. In this case as well, heat recovery is unnecessary, so the first valve 24 is still set at a position where the heat exchange path 6 is closed, and overheating of the medium is reliably prevented.

この状態において、第2バルブ25は図3の状態よりも小さい排気ガス動圧を受け、リターンスプリング26の付勢力と均衡する位置、すなわち図5の位置に収束している。この状態も図3や図4の状態と同様、この時の排気ガス流量に対し背圧要件や消音要件を斟酌し、バイパス通路28が最適断面積(最大流路面積)となるように、リターンスプリング26の付勢力を調整しておく。例えば、減速時の消音効果を優先するのであれば、バイパス通路28の流路断面積を75%〜90%程度絞るよう調整しておくと効果的である。  In this state, the second valve 25 receives an exhaust gas dynamic pressure smaller than that in the state of FIG. 3 and converges to a position that balances with the urging force of the return spring 26, that is, the position of FIG. In this state, as in the state of FIG. 3 and FIG. 4, the back pressure requirement and the silencing requirement are considered with respect to the exhaust gas flow rate at this time, and the return is made so that the bypass passage 28 has the optimum sectional area (maximum flow area). The urging force of the spring 26 is adjusted. For example, if priority is given to the silencing effect at the time of deceleration, it is effective to adjust the flow passage cross-sectional area of the bypass passage 28 to be about 75% to 90%.

以上、本発明の実施形態を説明してきたが、本発明は上述の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲の変更があっても、本発明に包含される。  As mentioned above, although embodiment of this invention was described, this invention is not limited to the above-mentioned embodiment, Even if there is a change of the range which does not deviate from the meaning of this invention, it is included by this invention.

本発明は、自動車の排気管に付設する排気熱回収装置に限らず、本実施形態の製品は、例えば、広く工業用や家庭用の各種燃焼装置に付設する排気熱回収装置に利用可能である。  The present invention is not limited to an exhaust heat recovery device attached to an exhaust pipe of an automobile, and the product of the present embodiment can be used for, for example, an exhaust heat recovery device attached to various industrial and household combustion devices. .

本発明における一実施形態における排気熱回収装置の正面図である。It is a front view of the exhaust heat recovery device in one embodiment in the present invention. 本発明における一実施形態における排気熱回収装置の断面図である。It is sectional drawing of the exhaust heat recovery apparatus in one Embodiment in this invention. 本発明における一実施形態における排気熱回収装置の断面図である。It is sectional drawing of the exhaust heat recovery apparatus in one Embodiment in this invention. 本発明における一実施形態における排気熱回収装置の断面図である。It is sectional drawing of the exhaust heat recovery apparatus in one Embodiment in this invention. 本発明における一実施形態における排気熱回収装置の断面図である。It is sectional drawing of the exhaust heat recovery apparatus in one Embodiment in this invention.

符号の説明Explanation of symbols

1 熱回収装置
2 流入部
3 流出部
4 分岐部
5 合流部
6 熱交換経路
7 バイパス経路
8 媒体入口
9 媒体出口
10 アクチュエータ
11 ロッド
12 クランク
13 弁軸
21 ウオータージャケット
22 排気ガス通路
23 熱交換器
24 第1バルブ
25 第2バルブ
26,30 リターンスプリング
27 弁座
28 バイパス通路
DESCRIPTION OF SYMBOLS 1 Heat recovery apparatus 2 Inflow part 3 Outflow part 4 Branch part 5 Merge part 6 Heat exchange path 7 Bypass path 8 Medium inlet 9 Medium outlet 10 Actuator 11 Rod 12 Crank 13 Valve shaft 21 Water jacket 22 Exhaust gas path 23 Heat exchanger 24 First valve 25 Second valve 26, 30 Return spring 27 Valve seat 28 Bypass passage

Claims (1)

排気ガスと媒体との熱交換を行なう熱交換器を内装する熱交換経路と、排気ガスが熱交換器を迂回するバイパス経路と、両経路の前後に分岐部および合流部とを備える排気熱回収装置において、
熱交換経路を閉塞可能な第1の弁体が合流部内に軸支され、
前記第1の弁体と相対離反方向へ付勢体で付勢されバイパス経路を閉塞可能な第2の弁体が、前記合流部内に前記第1の弁体と同軸に軸支され、
前記第1の弁体は媒体の温度によって伸縮作動するアクチュエータにて回転駆動され、
前記第2の弁体は前記付勢体を介して前記第1の弁体に従動する、
ことを特徴とする排気熱回収装置。
Exhaust heat recovery comprising a heat exchange path that houses a heat exchanger for exchanging heat between the exhaust gas and the medium, a bypass path for the exhaust gas to bypass the heat exchanger, and a branching section and a merging section before and after both paths In the device
A first valve body capable of closing the heat exchange path is pivotally supported in the junction,
A second valve body that is biased by a biasing body in a direction away from the first valve body and can close the bypass path is pivotally supported coaxially with the first valve body in the merging portion;
The first valve body is rotationally driven by an actuator that expands and contracts depending on the temperature of the medium,
The second valve body follows the first valve body via the biasing body;
An exhaust heat recovery device.
JP2008093020A 2008-03-03 2008-03-03 Exhaust heat recovery device Withdrawn JP2009209913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008093020A JP2009209913A (en) 2008-03-03 2008-03-03 Exhaust heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008093020A JP2009209913A (en) 2008-03-03 2008-03-03 Exhaust heat recovery device

Publications (1)

Publication Number Publication Date
JP2009209913A true JP2009209913A (en) 2009-09-17

Family

ID=41183296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008093020A Withdrawn JP2009209913A (en) 2008-03-03 2008-03-03 Exhaust heat recovery device

Country Status (1)

Country Link
JP (1) JP2009209913A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214529A (en) * 2010-03-31 2011-10-27 Yutaka Giken Co Ltd Exhaust heat recovery device
JP2011214526A (en) * 2010-03-31 2011-10-27 Yutaka Giken Co Ltd Exhaust heat recovery device
JP2011231714A (en) * 2010-04-28 2011-11-17 Toyota Motor Corp Exhaust heat recovery device
JP2012246837A (en) * 2011-05-27 2012-12-13 Yutaka Giken Co Ltd Exhaust heat recovery device
JP2015025399A (en) * 2013-07-25 2015-02-05 株式会社ユタカ技研 Heat exchange device
KR101499221B1 (en) * 2013-11-14 2015-03-05 현대자동차주식회사 Apparatus for exhaust heat recovery with embedded valve actuator
CN104819041A (en) * 2014-02-04 2015-08-05 现代自动车株式会社 Operating structure of exhaust heat recovery device with embedded valve actuator
KR20150136244A (en) * 2014-05-27 2015-12-07 현대자동차주식회사 Sturucture for discharging air bubble of exhaust heat recovery device
JP2017008868A (en) * 2015-06-24 2017-01-12 トヨタ自動車株式会社 Exhaust heat recovery device structure
US9890681B2 (en) 2013-07-25 2018-02-13 Yutaka Giken Co., Ltd. Heat exchange device with thermoactuator
US20180163602A1 (en) * 2016-12-09 2018-06-14 Faurecia Systemes D'echappement Exhaust Heat Recovery Device Having an Improved Tightness
JP2019203503A (en) * 2018-05-22 2019-11-28 マレリ株式会社 Exhaust heat recovery device
JP2020066998A (en) * 2018-10-22 2020-04-30 フタバ産業株式会社 Exhaust heat recovery unit

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214526A (en) * 2010-03-31 2011-10-27 Yutaka Giken Co Ltd Exhaust heat recovery device
JP2011214529A (en) * 2010-03-31 2011-10-27 Yutaka Giken Co Ltd Exhaust heat recovery device
JP2011231714A (en) * 2010-04-28 2011-11-17 Toyota Motor Corp Exhaust heat recovery device
JP2012246837A (en) * 2011-05-27 2012-12-13 Yutaka Giken Co Ltd Exhaust heat recovery device
US9890681B2 (en) 2013-07-25 2018-02-13 Yutaka Giken Co., Ltd. Heat exchange device with thermoactuator
JP2015025399A (en) * 2013-07-25 2015-02-05 株式会社ユタカ技研 Heat exchange device
CN104632331B (en) * 2013-11-14 2019-08-20 现代自动车株式会社 The waste heat recovery plant of valve actuating mechanism with insertion
CN104632331A (en) * 2013-11-14 2015-05-20 现代自动车株式会社 Apparatus for exhaust heat recovery with embedded valve actuator
US9617905B2 (en) 2013-11-14 2017-04-11 Hyundai Motor Company Apparatus for exhaust heat recovery with embedded valve actuator
KR101499221B1 (en) * 2013-11-14 2015-03-05 현대자동차주식회사 Apparatus for exhaust heat recovery with embedded valve actuator
US20150129173A1 (en) * 2013-11-14 2015-05-14 Hyundai Motor Company Apparatus for exhaust heat recovery with embedded valve actuator
CN104819041A (en) * 2014-02-04 2015-08-05 现代自动车株式会社 Operating structure of exhaust heat recovery device with embedded valve actuator
KR101565043B1 (en) 2014-02-04 2015-11-02 현대자동차주식회사 Operating structure of exhaust heat recovery device with embedded valve actuator
DE102014117846B4 (en) 2014-02-04 2021-09-23 Hyundai Motor Company Operating structure of a waste heat recovery device with an embedded valve actuator
US9777861B2 (en) 2014-02-04 2017-10-03 Hyundai Motor Company Operating structure of exhaust heat recovery device with embedded valve actuator
KR20150136244A (en) * 2014-05-27 2015-12-07 현대자동차주식회사 Sturucture for discharging air bubble of exhaust heat recovery device
KR101596700B1 (en) * 2014-05-27 2016-02-23 현대자동차주식회사 Sturucture for discharging air bubble of exhaust heat recovery device
KR101857862B1 (en) * 2015-06-24 2018-05-14 도요타 지도샤(주) Exhaust heat recovery structure
US10054026B2 (en) 2015-06-24 2018-08-21 Toyota Jidosha Kabushiki Kaisha Exhaust heat recovery structure
EP3109428B1 (en) 2015-06-24 2018-02-07 Toyota Jidosha Kabushiki Kaisha Exhaust heat recovery structure
JP2017008868A (en) * 2015-06-24 2017-01-12 トヨタ自動車株式会社 Exhaust heat recovery device structure
US20180163602A1 (en) * 2016-12-09 2018-06-14 Faurecia Systemes D'echappement Exhaust Heat Recovery Device Having an Improved Tightness
CN108223085A (en) * 2016-12-09 2018-06-29 佛吉亚排气系统有限公司 Exhaust gas heat recovery device with improved leakproofness
US10557394B2 (en) * 2016-12-09 2020-02-11 Faurecia Systemes D'echappement Exhaust heat recovery device having an improved tightness
JP2020513504A (en) * 2016-12-09 2020-05-14 フォルシア・システム・デシャプモン Exhaust heat recovery device with improved sealing
CN108223085B (en) * 2016-12-09 2021-08-10 佛吉亚排气系统有限公司 Exhaust heat recovery device with improved sealability
JP2019203503A (en) * 2018-05-22 2019-11-28 マレリ株式会社 Exhaust heat recovery device
JP7164486B2 (en) 2018-05-22 2022-11-01 マレリ株式会社 Exhaust heat recovery device
JP2020066998A (en) * 2018-10-22 2020-04-30 フタバ産業株式会社 Exhaust heat recovery unit

Similar Documents

Publication Publication Date Title
JP2009209913A (en) Exhaust heat recovery device
US20080223317A1 (en) Cooling apparatus for internal combustion engine
EP1852585B1 (en) Exhaust heat recovery device
US9452660B2 (en) Valve system configurations for warming and cooling transmission fluid
JP2007107389A (en) Egr valve device for engine
WO2007040130A1 (en) Thermostat device
JP2007092718A (en) Cooling water circuit for egr cooler
JP2007107522A (en) Cooling system for combustion engine
JP2012184693A (en) Cooling device of internal combustion engine
JP4716049B2 (en) Internal combustion engine cooling circuit
EP2625412B1 (en) Waste heat recovery device bypass arrangement
JP2007247638A (en) Exhaust heat recovery device
JP6838485B2 (en) Cooling water control valve device
JP4529754B2 (en) Engine cooling system
JP4529753B2 (en) Engine cooling system
JP6354699B2 (en) Heat exchanger
JP4840408B2 (en) Cooling water circulation device
JP4384230B2 (en) Engine cooling system
JP5668318B2 (en) Vehicle cooling device
WO2006078607A1 (en) Butterfly valve seal and bypass shutoff
JP5573768B2 (en) Cooling device for internal combustion engine
JP3928936B2 (en) Thermostat device
JP7488134B2 (en) Cooling System
JP2007211715A (en) Valve mechanism and heat exchange system using the same
JP5848906B2 (en) Vehicle heat exchange device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510