JP2009209436A - Ruthenium-palladium alloy-plated material and method of manufacturing the same - Google Patents

Ruthenium-palladium alloy-plated material and method of manufacturing the same Download PDF

Info

Publication number
JP2009209436A
JP2009209436A JP2008055993A JP2008055993A JP2009209436A JP 2009209436 A JP2009209436 A JP 2009209436A JP 2008055993 A JP2008055993 A JP 2008055993A JP 2008055993 A JP2008055993 A JP 2008055993A JP 2009209436 A JP2009209436 A JP 2009209436A
Authority
JP
Japan
Prior art keywords
ruthenium
palladium
plating film
palladium alloy
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008055993A
Other languages
Japanese (ja)
Inventor
Takashi Konase
隆 木名瀬
Kazuyoshi Kurane
和義 蔵根
Yoshihisa Fujihira
善久 藤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Metals Trading Co Ltd
Original Assignee
Nikko Shoji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Shoji Co Ltd filed Critical Nikko Shoji Co Ltd
Priority to JP2008055993A priority Critical patent/JP2009209436A/en
Priority to PCT/JP2009/054306 priority patent/WO2009110598A1/en
Publication of JP2009209436A publication Critical patent/JP2009209436A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/567Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/005Jewels; Clockworks; Coins

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plated material having characteristics equal to that of rhodium plated material such as hardness, contact resistance and color tone more economically than the rhodium plated material. <P>SOLUTION: The ruthenium-palladium alloy-plated material has a plating film of a ruthenium-palladium alloy which is formed by electroplating on a base material. The plating film comprises ≥35 wt.% and ≤65 wt.% ruthenium and the balance palladium. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ルテニウム−パラジウム合金めっき物に関する。   The present invention relates to a ruthenium-palladium alloy plated article.

装飾用めっきとして広く使われているロジウムめっき膜は、硬度が高く、耐摩耗性に優れ、Lab表色系立体座標において、L=72〜75、a=0.3〜0.8、b=3.0〜4.0の落ち着いた明るい色調で、高級品に使用されているが、ロジウムの価格高騰により、代替品が求められている。
ルテニウムめっきとしては、特許文献1のような例があるが、めっき物の色調はやや暗い色調であり(L=61.3〜61.7、a=0.2〜0.3、b=3.0〜3.1)、そのままではロジウムめっきの代替とはなり得ない。
ルテニウムターゲットなどを用いて得られた別の組織構造を有するルテニウム膜の場合、L=72.9、a=0.2、b=0.8で、色調は白色となり、bが低いためにぎらぎらした色調となる。
また、ロジウムめっき膜は、硬度が高く、耐摩耗性、接触抵抗特性に優れ、工業用としても用いられている。
特願平4−297199号公報
A rhodium plating film widely used as a decorative plating has high hardness, excellent wear resistance, and L = 72 to 75, a = 0.3 to 0.8, b = It is used in high-end products with a calm and bright color tone of 3.0 to 4.0, but an alternative is being demanded due to the rising price of rhodium.
As ruthenium plating, there is an example as in Patent Document 1, but the color tone of the plated product is a slightly dark color tone (L = 61.3 to 61.7, a = 0.2 to 0.3, b = 3). 0.0 to 3.1), as it is, it cannot be a substitute for rhodium plating.
In the case of a ruthenium film having another structure obtained by using a ruthenium target or the like, L = 72.9, a = 0.2, b = 0.8, the color tone is white, and b is low. Color.
Further, rhodium plating films have high hardness, excellent wear resistance and contact resistance characteristics, and are used for industrial purposes.
Japanese Patent Application No. 4-297199

本発明は、ロジウムめっき物と同等の硬度、接触抵抗、色調などの特性を有するめっき物を、ロジウムめっき物よりも経済的に提供することを目的とする。   An object of the present invention is to provide a plated product having properties such as hardness, contact resistance, and color tone equivalent to those of a rhodium plated product more economically than the rhodium plated product.

本発明者らは、上記課題について鋭意検討を行った結果、ルテニウムとパラジウムとの合金めっき物とすることにより、その組成の特定の範囲において、ロジウムめっき物と同等の硬度、接触抵抗、色調などの特性を有するめっき物を得ることができることを見出し本発明に至った。   As a result of intensive studies on the above problems, the present inventors made an alloy plating product of ruthenium and palladium, and in a specific range of the composition, the hardness, contact resistance, color tone, etc. equivalent to the rhodium plating product The present inventors have found that a plated product having the following characteristics can be obtained, and have reached the present invention.

即ち、本発明は以下のとおりである。
(1)基材上に、電気めっきにより形成されてなるルテニウムとパラジウムとの合金のめっき膜を有するルテニウム−パラジウム合金めっき物であって、該めっき膜がルテニウムが35重量%以上、65重量%以下、残部がパラジウムからなることを特徴とするルテニウム−パラジウム合金めっき物。
(2)前記ルテニウム−パラジウム合金めっき膜が、Lab表色系立体座標において、Lが70以上、aが0.1〜1.0、bが2〜4であることを特徴とする前記(1)記載のルテニウム−パラジウム合金めっき物。
(3)前記ルテニウム−パラジウム合金めっき膜表面が、鉛筆引っかき試験において硬度6Hの鉛筆で痕跡がつきにくいことを特徴とする前記(1)または(2)に記載のルテニウム−パラジウム合金めっき物。
(4)前記ルテニウム−パラジウム合金めっき膜の硬度が700Hv以上であることを特徴とする前記(1)〜(3)のいずれか一項に記載のルテニウム−パラジウム合金めっき物。
(5)ルテニウム塩とパラジウム塩とを含むめっき液を用いて、基材上に、電気めっきにより、ルテニウムが35重量%以上、65重量%以下、残部がパラジウムからなるルテニウム−パラジウム合金めっき膜を形成することを特徴とするルテニウム−パラジウム合金めっき物の製造方法。
That is, the present invention is as follows.
(1) A ruthenium-palladium alloy plating product having a ruthenium-palladium alloy plating film formed by electroplating on a base material, wherein the plating film has a ruthenium content of 35 wt% or more and 65 wt% Hereinafter, the ruthenium-palladium alloy plated product, wherein the balance is made of palladium.
(2) The ruthenium-palladium alloy plating film is characterized in that L is 70 or more, a is 0.1 to 1.0, and b is 2 to 4 in the Lab color system solid coordinates (1) The ruthenium-palladium alloy plated article described in (1).
(3) The ruthenium-palladium alloy plating film surface according to the above (1) or (2), wherein the ruthenium-palladium alloy plating film surface is hard to be marked with a pencil having a hardness of 6H in a pencil scratch test.
(4) The ruthenium-palladium alloy plating film according to any one of (1) to (3), wherein the ruthenium-palladium alloy plating film has a hardness of 700 Hv or more.
(5) Using a plating solution containing a ruthenium salt and a palladium salt, a ruthenium-palladium alloy plating film in which ruthenium is 35 wt% or more and 65 wt% or less and the balance is palladium by electroplating on the base material. A method for producing a ruthenium-palladium alloy plating product, characterized by comprising:

本発明によると、基材上に、電気めっきによりルテニウムとパラジウムとの合金のめっき膜を形成しためっき物であって、該合金めっき膜が、ルテニウムが35重量%以上、65重量%以下、残部がパラジウムからなるルテニウム−パラジウム合金めっき膜とすることにより、ロジウムめっき物と同等の色調、耐摩耗性、接触抵抗性を有するめっき物とすることができる。
したがって、本発明のルテニウム−パラジウム合金めっき物は、価格が高騰するロジウムめっき物よりも経済的であり、ロジウムめっき物の代替品として工業用および装飾用に有効に用いることができる。
According to the present invention, there is provided a plated product in which a plating film of an alloy of ruthenium and palladium is formed on a base material by electroplating, and the alloy plating film has a ruthenium content of 35 wt% or more and 65 wt% or less, and the balance By using a ruthenium-palladium alloy plating film made of palladium, a plated product having the same color tone, wear resistance, and contact resistance as a rhodium plated product can be obtained.
Therefore, the ruthenium-palladium alloy plated product of the present invention is more economical than the rhodium plated product whose price is rising, and can be effectively used for industrial and decorative purposes as a substitute for the rhodium plated product.

基材上に、電気めっきにより、めっき膜のルテニウムの濃度が35重量%以上、65重量%以下、残部がパラジウムとなるようにルテニウム−パラジウム合金めっき膜を形成することにより、ロジウムめっき物と同等の色調特性を有するめっき物とすることができる。ルテニウム濃度が65重量%を超えると、より青みを増した色調となる。また、ルテニウム濃度が35重量%未満であると、黄色味を帯びた色調となる。   Equivalent to rhodium plating by forming a ruthenium-palladium alloy plating film on the substrate by electroplating so that the ruthenium concentration of the plating film is 35 wt% or more and 65 wt% or less, and the balance is palladium. It can be set as the plated object which has the following color tone characteristics. When the ruthenium concentration exceeds 65% by weight, the color tone becomes more bluish. Further, when the ruthenium concentration is less than 35% by weight, a yellowish color tone is obtained.

また、めっき膜のルテニウムの濃度が35重量%以上、65重量%以下、残部がパラジウムであり、Lab表色系立体座標において、Lが70以上、aが0.1〜1.0、bが2〜4とすることが好ましく、装飾用の白色貴金属色調としては、Lが72〜75、aが0.4〜0.8、bが2〜4がより好ましい。
Lab表色系立体座標におけるL、a、bは、ハンター(R.S.Hunter)が提案した均等色空間を示す座標軸であり、光電色彩計により測定し、求めることができる。
また、めっき膜中のルテニウム濃度およびパラジウム濃度は、誘導結合プラズマ質量分析法(ICP)や原子吸光分析法にて測定することができる。
Further, the ruthenium concentration in the plating film is 35% by weight or more and 65% by weight or less, and the balance is palladium. In the Lab color system solid coordinates, L is 70 or more, a is 0.1 to 1.0, and b is It is preferable to set it as 2-4, and as a white noble metal color tone for decoration, L is 72-75, a is 0.4-0.8, and b is more preferable 2-4.
L, a, and b in the Lab color system three-dimensional coordinates are coordinate axes indicating a uniform color space proposed by Hunter (RS Hunter), and can be obtained by measuring with a photoelectric colorimeter.
The ruthenium concentration and palladium concentration in the plating film can be measured by inductively coupled plasma mass spectrometry (ICP) or atomic absorption spectrometry.

また、本発明のルテニウム−パラジウム合金めっき膜は、ルテニウムが35重量%以上、65重量%以下、残部がパラジウムからなる膜とすることにより、色調に加え、硬度や耐食性、接触抵抗値等もロジウム膜と同等とすることができる。ルテニウムの濃度が35重量%未満になっても、65重量%を超えても硬度や耐食性は低下する。したがって、本発明のルテニウム−パラジウムめっき物は、ロジウム地金の高騰から市場ニーズに答えるものとして、装飾用のみならず、工業用接点などへの応用が可能である。
本発明のルテニウム−パラジウムめっき膜は、表面をJIS K5400の鉛筆引っかき試験において、硬度6Hの鉛筆の芯を45度の角度でめっき膜の表面に円を3周描き、その痕跡を顕微鏡で観察した際に、痕跡がつきにくい。尚、本発明において、痕跡がつきにくいとは、3周描いた円(円の直径3mm)を金属顕微鏡25倍で観察写真化した際に、痕跡が見られない又は一部のみに薄い痕跡が見られる場合をいう。
Further, the ruthenium-palladium alloy plating film of the present invention is made of a film comprising ruthenium in an amount of 35 wt% or more and 65 wt% or less and the balance being palladium, so that in addition to the color tone, the hardness, corrosion resistance, contact resistance value, etc. are also rhodium. It can be equivalent to a membrane. Even if the concentration of ruthenium is less than 35% by weight or exceeds 65% by weight, hardness and corrosion resistance are lowered. Therefore, the ruthenium-palladium plated product of the present invention can be applied not only to decoration but also to industrial contacts as a response to market needs due to the soaring rhodium metal.
In the ruthenium-palladium plating film of the present invention, the surface was drawn in a JIS K5400 pencil scratch test by drawing a circle of 3 circles on the surface of the plating film at a 45 degree angle with a pencil core having a hardness of 6H, and the trace was observed with a microscope. There are few traces. In addition, in this invention, when it is hard to leave a trace, when the circle (3 mm in diameter) drawn 3 times is made into an observation photograph with a metal microscope 25 times, a trace is not seen, or a thin trace is only in a part. The case where it is seen.

また、硬度としては、700Hv以上とすることができ、ルテニウムめっき膜、パラジウムめっき膜よりも硬度が高くなり、ロジウム膜の硬度800Hvに近似する。ルテニウムめっき膜やパラジウム膜では、前記鉛筆引っかき試験において、3周ともに痕跡が観察され、硬度はそれぞれ640Hv、280Hv程度である。尚、本発明において硬度は、微小硬度計を用いて測定することができ、具体的には、(株)エリオニクス製、超微小押し込み硬さ試験機ENT−2100を用いて、厚さ0.5μmのめっき膜の硬度を測定した。
本発明のルテニウム−パラジウム合金めっき膜の接触抵抗は、測定の結果、ロジウム膜と同等のデータが得られている。
本発明のルテニウム−パラジウムめっき物の工業用用途としては、例えば、コネクターリードスイッチ、プローブピン等を挙げることができる。
また、装飾用用途としては、眼鏡、ネックレス、ブローチ、タイピン、カフス、時計、カメラ、コンパクト等を挙げることができる。
Further, the hardness can be 700 Hv or more, which is higher than that of the ruthenium plating film and the palladium plating film, and approximates the hardness of the rhodium film of 800 Hv. In the ruthenium plating film and the palladium film, traces are observed on all three rounds in the pencil scratch test, and the hardnesses are about 640 Hv and 280 Hv, respectively. In the present invention, the hardness can be measured using a micro hardness tester. Specifically, the hardness is measured using an ultra micro indentation hardness tester ENT-2100 manufactured by Elionix Co., Ltd. The hardness of the 5 μm plated film was measured.
As a result of the measurement of the contact resistance of the ruthenium-palladium alloy plating film of the present invention, data equivalent to that of the rhodium film is obtained.
Examples of industrial uses of the ruthenium-palladium plated product of the present invention include connector reed switches and probe pins.
Examples of the decorative use include glasses, necklaces, brooches, tie pins, cuffs, watches, cameras, and compacts.

本発明のルテニウム−パラジウム合金めっき膜は、電気めっきにより形成される。めっき液は、少なくともルテニウム塩、パラジウム塩を含有し、さらに伝導塩、pH緩衝剤、安定剤、応力減少剤等を含有することが好ましい。
ルテニウム塩とパラジウム塩とを含有するめっき液を用いて、電気めっきにより形成されるめっき膜は、ESCA(X線光電子分光法)により、ルテニウムとパラジウムが金属で析出しており、合金めっき膜であることが確認できる。
めっき膜中のルテニウム、パラジウムの濃度は、めっき液中のルテニウム濃度、ルテニウム濃度とパラジウム濃度比による影響が最も顕著である。これらを調整することにより、得られるめっき膜のルテニウム、パラジウムの濃度を調整することができ、所望の耐食性、色調、硬度等の特性にすることができる。
また、上記ルテニウム−パラジウムめっき液を使用してめっきする際の、pH、応力減少剤濃度、電流密度等もめっき膜のルテニウム、パラジウム濃度に影響する。
The ruthenium-palladium alloy plating film of the present invention is formed by electroplating. The plating solution preferably contains at least a ruthenium salt and a palladium salt, and further contains a conductive salt, a pH buffer, a stabilizer, a stress reducing agent, and the like.
A plating film formed by electroplating using a plating solution containing a ruthenium salt and a palladium salt has ruthenium and palladium precipitated by metal by ESCA (X-ray photoelectron spectroscopy). It can be confirmed that there is.
The concentration of ruthenium and palladium in the plating film is most markedly affected by the ruthenium concentration in the plating solution, and the ruthenium concentration and palladium concentration ratio. By adjusting these, the concentration of ruthenium and palladium in the resulting plating film can be adjusted, and desired characteristics such as corrosion resistance, color tone, and hardness can be obtained.
Further, pH, stress reducing agent concentration, current density, and the like when plating using the ruthenium-palladium plating solution also affect the ruthenium and palladium concentrations of the plating film.

パラジウム塩としては、パラジウムめっき液に用いる従来公知の化合物を用いることができる。例えば、塩化パラジウム、硝酸パラジウム、ジクロロジアンミンパラジウム塩化物、ジアンミンパラジウム亜硝酸塩、テトラアンミンパラジウム硝酸塩、ジアンミンパラジウム硫酸塩、ジクロロテトラアンミンパラジウム塩化物、ジアンミン蓚酸パラジウム塩、テトラアンミン蓚酸パラジウム塩等を挙げることができる。   As the palladium salt, a conventionally known compound used for a palladium plating solution can be used. Examples thereof include palladium chloride, palladium nitrate, dichlorodiammine palladium chloride, diammine palladium nitrite, tetraammine palladium nitrate, diammine palladium sulfate, dichlorotetraammine palladium chloride, diammine palladium oxalate, and tetraammine oxalate palladium.

ルテニウム塩としては、ルテニウムめっき液に用いる従来公知の化合物を用いることができる。例えば、硫酸ルテニウム、塩化ルテニウム、ルテニウムのアコクロル錯体、ルテニウムの窒素・含硫黄酸錯体、ルテニウムの窒素・含スルファミン酸錯体、ルテニウムの窒素・硫酸錯体、ニトロソ塩化ルテニウム等が挙げられる。   As the ruthenium salt, a conventionally known compound used for a ruthenium plating solution can be used. Examples include ruthenium sulfate, ruthenium chloride, ruthenium acochlor complex, ruthenium nitrogen / sulfur acid complex, ruthenium nitrogen / sulfamate complex, ruthenium nitrogen / sulfuric acid complex, nitroso ruthenium chloride and the like.

めっき液中のルテニウム濃度は0.5〜6.0g/L、パラシウム濃度は、0.4〜1.7g/L、が好ましい。また、めっき液中のルテニウムとパラジウムの濃度の比は、1:0.13〜1:1.70が好ましい。めっき液中のルテニウム濃度、パラジウム濃度を上記の範囲内とすることにより、めっき膜中に含有されるルテニウム、及びパラジウムの濃度が本発明の範囲となり、所望の色調などの特性が得られる。めっき液中のルテニウム濃度が高いと、めっき膜中のルテニウム濃度も高くなり、ルテニウム濃度が65重量%を超えると、青みを帯びた白い色調となる。   The ruthenium concentration in the plating solution is preferably 0.5 to 6.0 g / L, and the palladium concentration is preferably 0.4 to 1.7 g / L. Further, the ratio of the concentration of ruthenium and palladium in the plating solution is preferably 1: 0.13 to 1: 1.70. By setting the ruthenium concentration and palladium concentration in the plating solution within the above ranges, the concentration of ruthenium and palladium contained in the plating film falls within the range of the present invention, and desired characteristics such as color tone can be obtained. When the ruthenium concentration in the plating solution is high, the ruthenium concentration in the plating film is also high, and when the ruthenium concentration exceeds 65% by weight, a bluish white color tone is obtained.

伝導塩、pH緩衝剤、安定剤としては、これら伝導塩、pH緩衝剤、安定剤としての働きをする硫酸もしくは硫酸アンモニウム、硫酸アルカリ塩、塩化アンモニウム、塩化アルカリ塩、スルファミン酸もしくはスルファミン酸アンモニウムあるいはスルファミン酸アルカリ塩等が挙げられる。好ましくはスルファミン酸アンモニウムであって、濃度は、10〜100g/Lの範囲が好ましく、より好ましくは20〜70g/Lである。10g/L未満では、液分解を起こしやすくなる。また、めっき膜中のルテニウム濃度が高くなる。   Conductive salts, pH buffering agents, and stabilizers include those conductive salts, pH buffering agents, sulfuric acid or ammonium sulfate, alkaline sulfates, ammonium chlorides, alkaline chlorides, sulfamic acids or ammonium sulfamates or sulfamines that act as stabilizers. Examples include acid alkali salts. Preferably it is ammonium sulfamate, Comprising: The range of 10-100 g / L is preferable, More preferably, it is 20-70 g / L. If it is less than 10 g / L, liquid decomposition tends to occur. Further, the ruthenium concentration in the plating film is increased.

応力減少剤としては、ベンゼンスルフォン酸、サッカリン、有機カルボン酸、ピリジン、ポリエチレングリコール等が挙げられる。応力減少剤濃度は0.5〜3g/Lの範囲が好ましく、亀裂のない密着しためっき物が得られる。   Examples of the stress reducing agent include benzenesulfonic acid, saccharin, organic carboxylic acid, pyridine, and polyethylene glycol. The stress reducing agent concentration is preferably in the range of 0.5 to 3 g / L, and a closely plated product without cracks can be obtained.

本発明におけるルテニウム−パラジウムめっき液の調製は、上記ルテニウム化合物、パラジウム化合物の水溶液に、所定量の他の添加剤を添加・溶解することにより容易に行うことができる。   The ruthenium-palladium plating solution in the present invention can be easily prepared by adding and dissolving a predetermined amount of other additives in the ruthenium compound and palladium compound aqueous solution.

めっき液のpHは、あまり低pHでは安定性が低下し、又あまり高pHではめっき膜のルテニウム濃度が低下する。好ましくは5〜7で、めっき膜中に含有されるルテニウム、およびパラジウムの濃度が本発明の範囲となり、所望の硬度などの特性が得られる。このpHの調整は、硫酸、塩酸、硝酸、リン酸、スルファミン酸等の無機酸及びアルカリ又はアルカリ土類金属水酸化物、アンモニア等の無機アルカリによって行うことができる。
まためっき時の液温は特に限定されず、めっき膜中のルテニウム濃度は、めっき液の温度にあまり影響されず、安定している。液温が高くなると電着速度は早くなる。しかし、あまり高温になるとめっき液の蒸発により液組成が濃縮されるので、40〜70℃が好ましい。
When the pH of the plating solution is too low, the stability is lowered, and when the pH is too high, the ruthenium concentration of the plating film is lowered. Preferably, the concentration of ruthenium and palladium contained in the plating film is within the range of the present invention, and desired characteristics such as hardness can be obtained. The pH can be adjusted with an inorganic acid such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid or sulfamic acid, and an inorganic alkali such as an alkali or alkaline earth metal hydroxide or ammonia.
Further, the temperature of the solution at the time of plating is not particularly limited, and the ruthenium concentration in the plating film is stable without being influenced by the temperature of the plating solution. The electrodeposition rate increases as the liquid temperature increases. However, if the temperature is too high, the composition of the plating solution is concentrated by evaporation of the plating solution.

電流密度はとくに限定されなく、広い範囲にてめっき膜ルテニウム含有重量%は安定している。あまり高密度ではめっきの焼けが生じる場合があり、又あまり低密度では電着速度が遅くなるので、1〜4A/dm2が好ましい。この範囲で所望の合金濃度を得、硬度、耐食性、色調等の特性が得られる。
めっき膜を形成する基材としては、黄銅板など銅および銅合金、銀および銀合金、金および金合金、錫および錫合金等の導電性基材を用いることができる。銅およびニッケル等の下地めっきを行った基材が好ましい。
めっき方法としては、陰極に被めっき物である基材を用い、陽極としては白金等の不溶性のものを用い、チタニウム上に白金めっきしたものが好ましい。
The current density is not particularly limited, and the plating film ruthenium-containing weight% is stable in a wide range. If the density is too high, burning of the plating may occur. On the other hand, if the density is too low, the electrodeposition rate becomes slow, so 1 to 4 A / dm 2 is preferable. In this range, a desired alloy concentration can be obtained, and characteristics such as hardness, corrosion resistance, and color tone can be obtained.
As a base material for forming the plating film, conductive base materials such as copper and copper alloys such as brass plates, silver and silver alloys, gold and gold alloys, tin and tin alloys can be used. The base material which performed base plating, such as copper and nickel, is preferable.
As a plating method, a substrate that is an object to be plated is used for the cathode, an insoluble material such as platinum is used for the anode, and platinum is plated on titanium.

以下に実施例を示し、本発明をさらに詳細に説明する。
実施例1
塩化ルテニウムの水溶液600mL(Ru:6.7g)にスルファミン酸アンモン67gを加え、煮沸還流反応を7時間行った後、スルファミン酸アンモンを更に110g添加し、攪拌溶解し、アンモニア水でpH6に調整した。
上記溶液にルテニウム濃度1g/Lに対してパラジウム濃度が0.85g/Lとなる量の(Pd:5.7g)の塩化パラジウムを添加し、さらに、応力減少剤を1g/Lとなる量(6.7g)を加えた後、純水で希釈し、6.66Lのめっき液を調合した。
めっき槽として耐食性および耐熱性のあるものとして塩ビ容器を使用し、石英製の電気ヒーターで所定の温度に加熱して、陽極に白金めっきチタンメッシュを配置した。めっき液の攪拌はマグネチックスターラにて行った。
ルテニウム濃度1g/L、パラジウム濃度0.85g/L、pH6.0、安定剤(スルファミン酸アンモン)濃度50g/L、応力減少剤濃度1g/L、液の攪拌は緩やかにしためっき液を60℃に保持してめっきに供した。
基材は、黄銅板を用い、電解脱脂にて表面を清浄にした後、電気ニッケル5μm厚みの下地処理を行って、陰極として、ルテニウム−パラジウム合金めっき液にセットし、電流密度2A/dm2にて20分通電した。
得られためっき膜中のルテニウム含有量、めっき物外観光沢、めっき膜の色調、析出膜厚、硬度、6Hの鉛筆での傷の状態を測定および観察した結果を表1に示す。
The following examples illustrate the present invention in more detail.
Example 1
After adding 67 g of ammonium sulfamate to 600 mL (Ru: 6.7 g) of an aqueous solution of ruthenium chloride and performing a boiling reflux reaction for 7 hours, 110 g of ammonium sulfamate was further added, dissolved by stirring, and adjusted to pH 6 with aqueous ammonia. .
An amount of palladium chloride (Pd: 5.7 g) in which the palladium concentration is 0.85 g / L with respect to the ruthenium concentration of 1 g / L is added to the above solution, and a stress reducing agent is further added in an amount of 1 g / L ( 6.7 g) was added and diluted with pure water to prepare 6.66 L of plating solution.
A vinyl chloride container was used as a plating tank having corrosion resistance and heat resistance, and was heated to a predetermined temperature with an electric heater made of quartz, and a platinum-plated titanium mesh was disposed on the anode. The plating solution was stirred with a magnetic stirrer.
Ruthenium concentration 1 g / L, palladium concentration 0.85 g / L, pH 6.0, stabilizer (ammonium sulfamate) concentration 50 g / L, stress reducing agent concentration 1 g / L, and gentle stirring of the solution at 60 ° C. And was used for plating.
The base material used was a brass plate and the surface was cleaned by electrolytic degreasing, followed by a surface treatment with a thickness of 5 μm electric nickel, set as a cathode in a ruthenium-palladium alloy plating solution, and a current density of 2 A / dm 2. For 20 minutes.
Table 1 shows the results obtained by measuring and observing the ruthenium content in the obtained plated film, the appearance gloss of the plated product, the color tone of the plated film, the deposited film thickness, the hardness, and the state of scratches with a 6H pencil.

実施例2〜4
実施例1において、ルテニウムの量を変え、めっき液中のルテニウム濃度、パラジウム濃度を表1に記載の量にした以外は実施例1と同様にめっき液を調整し、めっきを行い、めっき膜を評価した。結果を表1に示す。
また、実施例2で得られためっき膜のFE−SEMによる表面観察(20,000倍)結果を図1に示す。緻密な結晶が均一に析出し、光沢のある平滑な表面と共に、クラックのないめっき膜が得られていることが分かる。
さらに、上記めっき膜をESCA(X線光電子分光法)によって解析した結果を図2に示す。結合エネルギーに示されるピークから、金属の状態を解析することができる。結合エネルギーから解析すると、ルテニウムとパラジウムが金属で析出していることが確認できた。
また、実施例2で得られためっき膜について、接触抵抗を測定した。ケイエス部品研究所製、接触抵抗測定プロセス MS880−IIを用いて、測定プローブ:Au、測定電流:10mA、測定荷重:60gで測定した結果、実施例2で得られたルテニウム−パラジウム合金めっき膜の接触抵抗は、14.9mΩであった。ロジウムめっき膜についても同様に接触抵抗を測定したところ、16.7mΩであった。
また、ロジウムめっき膜と実施例2で得られたルテニウム−パラジウムめっき膜の接触抵抗を比較した結果を図3に示す。接触抵抗の測定は、Au製プローブピンの先端をめっき面に接触させ順次荷重を加え又は荷重を減じて、定電流負荷時の抵抗推移を求めた。0〜60gに負荷を増やした場合を加重ライン、60gから0gに負荷を減じた時の抵抗推移を除重ラインとしている。図3において、グラフは2本の線に見えるが、それぞれが2本ずつ重なっており、下の線(抵抗が低い方の線)は、ルテニウム−パラジウム合金めっき膜の加重ライン、除重ラインが重なったものであり、上の線は、ロジウムめっき膜の加重ライン、除重ラインが重なったものである。
Examples 2-4
In Example 1, except that the amount of ruthenium was changed and the ruthenium concentration and palladium concentration in the plating solution were changed to the amounts shown in Table 1, the plating solution was adjusted in the same manner as in Example 1, plating was performed, and the plating film was formed. evaluated. The results are shown in Table 1.
Moreover, the surface observation (20,000 times) result by FE-SEM of the plating film obtained in Example 2 is shown in FIG. It can be seen that dense crystals are uniformly deposited, and a plated film without cracks is obtained with a glossy smooth surface.
Furthermore, the result of having analyzed the said plating film by ESCA (X-ray photoelectron spectroscopy) is shown in FIG. The state of the metal can be analyzed from the peak indicated by the binding energy. Analysis from the binding energy confirmed that ruthenium and palladium were deposited as metal.
Further, the contact resistance of the plated film obtained in Example 2 was measured. As a result of measuring with a measurement probe: Au, a measurement current: 10 mA, a measurement load: 60 g using MS880-II, manufactured by KS Parts Laboratory, the ruthenium-palladium alloy plating film obtained in Example 2 was used. The contact resistance was 14.9 mΩ. Similarly, the contact resistance of the rhodium plating film was measured and found to be 16.7 mΩ.
Moreover, the result of having compared the contact resistance of the rhodium plating film and the ruthenium-palladium plating film obtained in Example 2 is shown in FIG. The contact resistance was measured by bringing the tip of the Au probe pin into contact with the plating surface and applying or decreasing the load sequentially to determine the resistance transition at the time of constant current load. When the load is increased from 0 to 60 g, the weighting line is used, and when the load is reduced from 60 g to 0 g, the resistance transition is the deweighting line. In FIG. 3, the graph appears as two lines, but each overlaps two. The lower line (the line with the lower resistance) is the weighted line and the deweighted line of the ruthenium-palladium alloy plating film. The top line is the one where the rhodium plating film weighting line and dewetting line overlap.

比較例1〜4
実施例1において、ルテニウムの量を変え、めっき液中のルテニウム濃度、パラジウム濃度を表1に記載の量にした以外は実施例1と同様にめっき液を調整し、めっきを行い、めっき膜を評価した。結果を表1に示す。
Comparative Examples 1-4
In Example 1, except that the amount of ruthenium was changed and the ruthenium concentration and palladium concentration in the plating solution were changed to the amounts shown in Table 1, the plating solution was adjusted in the same manner as in Example 1, plating was performed, and the plating film was formed. evaluated. The results are shown in Table 1.

実施例2で得られためっき膜のFE−SEMによる表面写真である。3 is a surface photograph of the plating film obtained in Example 2 by FE-SEM. 実施例2で得られためっき膜のESCA(X線光電子分光法)によって解析した結果である。It is the result of having analyzed by ESCA (X-ray photoelectron spectroscopy) of the plating film obtained in Example 2. FIG. 実施例2で得られためっき膜とロジウムめっき膜の接触抵抗測定結果である。It is a contact resistance measurement result of the plating film obtained in Example 2 and a rhodium plating film.

Claims (5)

基材上に、電気めっきにより形成されてなるルテニウムとパラジウムとの合金のめっき膜を有するルテニウム−パラジウム合金めっき物であって、該めっき膜がルテニウムが35重量%以上、65重量%以下、残部がパラジウムからなることを特徴とするルテニウム−パラジウム合金めっき物。   A ruthenium-palladium alloy plating product having a ruthenium-palladium alloy plating film formed by electroplating on a base material, the plating film having a ruthenium content of 35 wt% or more and 65 wt% or less, and the balance A ruthenium-palladium alloy plated article characterized by comprising palladium. 前記ルテニウム−パラジウム合金めっき膜が、Lab表色系立体座標において、Lが70以上、aが0.1〜1.0、bが2〜4であることを特徴とする請求項1記載のルテニウム−パラジウム合金めっき物。   The ruthenium-palladium alloy plating film according to claim 1, wherein L is 70 or more, a is 0.1 to 1.0, and b is 2 to 4 in Lab color system solid coordinates. -Palladium alloy plating product. 前記ルテニウム−パラジウム合金めっき膜表面が、鉛筆引っかき試験において硬度6Hの鉛筆で痕跡がつきにくいことを特徴とする請求項1または2に記載のルテニウム−パラジウム合金めっき物。   The ruthenium-palladium alloy plating film surface according to claim 1 or 2, wherein the ruthenium-palladium alloy plating film surface is hard to be traced by a pencil having a hardness of 6H in a pencil scratch test. 前記ルテニウム−パラジウム合金めっき膜の硬度が700Hv以上であることを特徴とする請求項1〜3のいずれか一項に記載のルテニウム−パラジウム合金めっき物。   The ruthenium-palladium alloy plating film according to any one of claims 1 to 3, wherein the ruthenium-palladium alloy plating film has a hardness of 700 Hv or more. ルテニウム塩とパラジウム塩とを含むめっき液を用いて、基材上に、電気めっきにより、ルテニウムが35重量%以上、65重量%以下、残部がパラジウムからなるルテニウム−パラジウム合金めっき膜を形成することを特徴とするルテニウム−パラジウム合金めっき物の製造方法。   Using a plating solution containing a ruthenium salt and a palladium salt, a ruthenium-palladium alloy plating film comprising ruthenium in an amount of 35 wt% or more and 65 wt% or less and the balance being palladium is formed on a substrate by electroplating. A method for producing a ruthenium-palladium alloy plating product characterized by the following.
JP2008055993A 2008-03-06 2008-03-06 Ruthenium-palladium alloy-plated material and method of manufacturing the same Pending JP2009209436A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008055993A JP2009209436A (en) 2008-03-06 2008-03-06 Ruthenium-palladium alloy-plated material and method of manufacturing the same
PCT/JP2009/054306 WO2009110598A1 (en) 2008-03-06 2009-03-06 Ruthenium-palladium alloy-plated product and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008055993A JP2009209436A (en) 2008-03-06 2008-03-06 Ruthenium-palladium alloy-plated material and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009209436A true JP2009209436A (en) 2009-09-17

Family

ID=41056147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008055993A Pending JP2009209436A (en) 2008-03-06 2008-03-06 Ruthenium-palladium alloy-plated material and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP2009209436A (en)
WO (1) WO2009110598A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111678870A (en) * 2020-06-01 2020-09-18 肇庆宏旺金属实业有限公司 Online detection method and system for continuous vacuum coating of stainless steel coil
AT523922B1 (en) * 2020-09-08 2022-01-15 Iwg Ing W Garhoefer Ges M B H Electrolyte bath for palladium-ruthenium coatings

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046384A (en) * 1996-05-10 1998-02-17 Lucent Technol Inc Palladium alloy plating bath

Also Published As

Publication number Publication date
WO2009110598A1 (en) 2009-09-11

Similar Documents

Publication Publication Date Title
CN107604393B (en) A kind of no cyanogen alkali copper electroplating composition and preparation method thereof
CN101838830B (en) Electrolyte of electroplating palladium-nickel alloy
WO2017143033A1 (en) Articles including a multi-layer coating and methods
ES2791197T3 (en) Electrochemical plating bath for the electrochemical deposition of a Cu-Sn-Zn-Pd alloy, procedure for the electrochemical deposition of said alloy, substrate comprising said alloy and uses of the substrate
JP2016145413A (en) Silver plating material and method for producing the same
AT514818A1 (en) Deposition of Cu, Sn, Zn coatings on metallic substrates
ES2754262T3 (en) Electrolyte and its use for the deposition of black ruthenium coatings and coatings obtained in this way
JP6086532B2 (en) Silver plating material
JP2016204719A (en) Silver plated material and method for producing the same
WO2009110598A1 (en) Ruthenium-palladium alloy-plated product and manufacturing method of the same
JPS61190089A (en) Bath for precipitation of gold/indium/alloy film by electroplating
JPS6223078B2 (en)
TWI748657B (en) Acidic aqueous binary silver-bismuth alloy electroplating compositions and methods
JP2005068445A (en) Metallic member covered with metal
JP2022023995A (en) Acidic aqueous silver-nickel alloy electroplating composition and method
JP2577832B2 (en) Platinum electroforming bath
JP2018059166A (en) Palladium-nickel alloy film and method of producing the same
JP2023005513A (en) Silver-plated material and method for manufacturing the same
JP3029948B2 (en) Sn-Cu-Pd alloy plated member, plating bath used for its production
JP2009001886A (en) Palladium-cobalt alloy plating solution, method for forming palladium-cobalt alloy coating film and method for producing palladium-cobalt alloy hard coating film
JP6049362B2 (en) Black aluminum material and manufacturing method thereof
CN102774068A (en) Aluminum alloy electroplating product and preparation method thereof
GB2077763A (en) Strongly acidic gold alloy electroplating bath
KR101917121B1 (en) Pd-Fe Alloy Plating Solution Compositions for Decoration and Plating Methods Using Thereof
JP5544617B2 (en) Electroless plating method of alloy film and plating solution