JP2009209407A - Agent for chemical conversion treatment and surface-treated metal - Google Patents

Agent for chemical conversion treatment and surface-treated metal Download PDF

Info

Publication number
JP2009209407A
JP2009209407A JP2008053227A JP2008053227A JP2009209407A JP 2009209407 A JP2009209407 A JP 2009209407A JP 2008053227 A JP2008053227 A JP 2008053227A JP 2008053227 A JP2008053227 A JP 2008053227A JP 2009209407 A JP2009209407 A JP 2009209407A
Authority
JP
Japan
Prior art keywords
film
chemical conversion
coating
fine particles
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2008053227A
Other languages
Japanese (ja)
Inventor
Hiroshi Katsura
大詞 桂
Tsutomu Shigenaga
勉 重永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2008053227A priority Critical patent/JP2009209407A/en
Priority to EP09002152A priority patent/EP2100986A1/en
Priority to US12/372,381 priority patent/US20090223601A1/en
Publication of JP2009209407A publication Critical patent/JP2009209407A/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes

Abstract

<P>PROBLEM TO BE SOLVED: To provide an agent for chemical conversion treatment, which forms a chemical conversion coating that has few local portions of low resistance but can improve electrodeposition coating properties of a part of an object to be coated in a low-voltage-applied region. <P>SOLUTION: The agent for chemical conversion treatment forms the chemical conversion coating 21 that contains few local portions 22 of low resistance, but makes at least one type of fine particles of a metal, a semiconductor and an electroconductive organic substance codeposit in the chemical conversion coating 21. Thereby, the chemical conversion coating increases local energizing portions when voltage is applied in an electrodeposition coating period by using a tunnel effect based on the fine particles, and promotes the deposition of the paint film at the part of the object to be coated in the low-voltage-applied region. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、化成処理剤及び表面処理金属に関する。   The present invention relates to a chemical conversion treatment agent and a surface-treated metal.

自動車等の塗装工程においては、一般的に、被塗装物に対するカチオン電着塗装の前にに、被塗装物に対して化成処理が行われる。このような化成処理においては、化成処理剤として、リン酸亜鉛を主成分としたリン酸亜鉛処理剤が多く用いられており、リン酸亜鉛処理剤を用いて被塗装物に対して化成処理を行えば、カチオン電着塗装工程において、良好な電着塗装性(塗膜膜厚特性)を得ることができる。しかし、リン酸亜鉛処理剤は、そのリン酸イオンが富栄養化をもたらし、また、化成処理に伴って、廃棄すべきスラッジを生成するという問題点を有している。このため、このような問題点を解決すべく、特許文献1に示すように、ジルコニウム、チタン、及びハフニウムからなる群より選ばれる少なくとも一種、フッ素、並びに水溶性樹脂からなる金属酸化物タイプの化成処理剤が提案されている。   In a painting process of an automobile or the like, generally, a chemical conversion treatment is performed on an object to be coated before cationic electrodeposition coating on the object to be coated. In such a chemical conversion treatment, as a chemical conversion treatment agent, a zinc phosphate treatment agent containing zinc phosphate as a main component is often used, and a chemical conversion treatment is performed on an object to be coated using the zinc phosphate treatment agent. If it carries out, in a cation electrodeposition coating process, favorable electrodeposition coating property (coat film film thickness characteristic) can be obtained. However, the zinc phosphate treating agent has a problem that the phosphate ions cause eutrophication, and sludge to be discarded is generated with the chemical conversion treatment. Therefore, in order to solve such problems, as shown in Patent Document 1, a metal oxide type chemical conversion comprising at least one selected from the group consisting of zirconium, titanium, and hafnium, fluorine, and a water-soluble resin is used. Treatment agents have been proposed.

ところで、近時、ジルコニウム化合物を主成分とした化成処理剤が開発されつつある。この化成処理剤は、前述の問題点を解決できるだけでなく、コスト面、品質面等でも優れている。
特開2004−218074号公報
By the way, recently, a chemical conversion treatment agent mainly composed of a zirconium compound is being developed. This chemical conversion treatment agent not only solves the above-mentioned problems, but is excellent in terms of cost, quality, and the like.
JP 2004-218074 A

しかし、ジルコニウム化合物を主成分とした化成処理剤を用いて被塗装物に対して化成処理を行った場合には、リン酸亜鉛処理剤を用いる場合に比べて、局所的な低抵抗部の数が少なくて通電しにくい化成皮膜が被塗装物面上に形成される。このため、電着塗装工程における特有の現象として、陽極とそれに近い被塗装物の部分(車体では外板部)との間に高い電圧が印加される一方で、陽極とそれから遠い被塗装物部分(車体では内板部)との間に低い電圧が印加されることになると、その低電圧領域に属する陽極から遠い被塗装物部分においては塗膜析出量が少なくなる。このため、ジルコニウム化合物を主成分とした化成処理剤を用いた場合には、リン酸亜鉛処理剤を用いる場合に比べて、低電圧印加領域である陽極から遠い被塗装物部分(車体では内板部)において、塗膜析出量が低下することになる(図2参照)。   However, when a chemical conversion treatment is performed on an object to be coated using a chemical conversion treatment agent containing a zirconium compound as a main component, the number of local low resistance portions is smaller than when a zinc phosphate treatment agent is used. A chemical conversion film is formed on the surface of the object to be coated that is less likely to be energized. For this reason, as a unique phenomenon in the electrodeposition coating process, a high voltage is applied between the anode and the part of the object to be coated (the outer plate part in the vehicle body), while the anode and the part of the object far from the anode are applied. When a low voltage is applied between the inner plate portion and the inner plate portion of the vehicle body, the coating deposition amount is reduced at the portion of the object far from the anode belonging to the low voltage region. For this reason, when using a chemical conversion treatment agent containing a zirconium compound as a main component, compared to the case of using a zinc phosphate treatment agent, the portion of the object to be coated that is far from the anode, which is the low voltage application region (in the case of the inner plate in the vehicle body) Part), the coating film deposition amount is reduced (see FIG. 2).

本発明は、上記実情に鑑みてなされたもので、その第1の技術的課題は、局所的な低抵抗部が少ない化成皮膜を形成するも、低電圧印加領域における被塗装物部分の電着塗装性を向上させることができる化成処理剤を提供することにある。
第2の技術的課題は、上記化成処理剤を用いて形成された化成皮膜を有する表面処理金属を提供することにある。
The present invention has been made in view of the above circumstances, and a first technical problem thereof is to form a chemical conversion film with few local low-resistance parts, but to perform electrodeposition of a part to be coated in a low voltage application region. It is providing the chemical conversion treatment agent which can improve paintability.
The second technical problem is to provide a surface-treated metal having a chemical conversion film formed using the chemical conversion treatment agent.

前記第1の技術的課題を達成するために本発明(請求項1に係る発明)においては、
局所的な低抵抗部の数が少ない化成皮膜を形成する皮膜形成成分を含む化成処理剤において、
前記皮膜形成成分と共に、金属微粒子、半導体微粒子、及び導電性有機物微粒子の少なくとも一種が含有されている構成としてある。この請求項1の好ましい態様としては、請求項2〜4の記載の通りとなる。
In order to achieve the first technical problem, in the present invention (the invention according to claim 1),
In a chemical conversion treatment agent containing a film forming component that forms a chemical conversion film with a small number of local low resistance parts,
Along with the film forming component, at least one of metal fine particles, semiconductor fine particles, and conductive organic fine particles is contained. Preferred embodiments of the first aspect are as described in the second to fourth aspects.

前記第2の技術的課題を達成するために本発明(請求項5に係る発明)においては、
請求項1〜4のいずれか1項に係る化成処理剤を用いて形成された化成皮膜を表面上に有し、
前記化成皮膜に、前記金属微粒子、半導体微粒子、及び導電性有機物微粒子の少なくとも一種が共析されている、
ことを特徴とする表面処理金属とした構成としてある。この請求項5の好ましい態様としては、請求項6以下の記載の通りとなる。
In order to achieve the second technical problem, in the present invention (the invention according to claim 5),
Having a chemical conversion film formed on the surface using the chemical conversion treatment agent according to any one of claims 1 to 4,
In the chemical film, at least one of the metal fine particles, semiconductor fine particles, and conductive organic fine particles is co-deposited,
The surface-treated metal is characterized by this. The preferred embodiment of claim 5 is as described in claim 6 and the following.

請求項1に係る発明によれば、当該化成処理剤により、局所的な低抵抗部の数が少ない化成皮膜を形成する場合であっても、その化成皮膜中において金属微粒子、半導体微粒子、及び導電性有機物微粒子の少なくとも一種が含有することになり、その微粒子に基づくトンネル効果を利用して、電着塗装における電圧印加時に局所的な通電部を増加させることができる。このため、塗膜の析出が促進され、低電圧印加領域における被塗装物部分の電着塗装性を向上させることができる。   According to the first aspect of the present invention, even when a chemical conversion film having a small number of local low resistance portions is formed by the chemical conversion treatment agent, the metal fine particles, the semiconductor fine particles, and the conductive particles are formed in the chemical conversion film. At least one kind of conductive organic fine particles is contained, and a local energization portion can be increased at the time of voltage application in electrodeposition coating by utilizing a tunnel effect based on the fine particles. For this reason, precipitation of a coating film is accelerated | stimulated and the electrodeposition coating property of the to-be-coated object part in a low voltage application area | region can be improved.

請求項2に係る発明によれば、皮膜形成成分に、主成分として、Zr,Ti,Hf,Siから選ばれる元素を少なくとも一種有する化合物が含まれていることから、このような皮膜形成成分を用いることにより、局所的な低抵抗部の数が少ない化成皮膜が形成されることになるが、このような皮膜形成成分を用いることによっても、前記請求項1と同様の作用効果を得ることができ、さらには、その化成皮膜の性質に基づき、富栄養化の防止、化成処理に伴うスラッジの生成防止、耐食性の確保を図ることができる。   According to the invention of claim 2, since the film forming component contains a compound having at least one element selected from Zr, Ti, Hf, and Si as a main component, By using this, a chemical conversion film having a small number of local low resistance portions is formed. Even when such a film forming component is used, the same effect as in the first aspect can be obtained. Furthermore, based on the properties of the chemical conversion film, it is possible to prevent eutrophication, prevent sludge formation during chemical conversion treatment, and ensure corrosion resistance.

請求項3に係る発明によれば、微粒子の含有量が、全体に対して8.2質量%以下とされていることから、微粒子に基づき低電圧印加領域における被塗装物部分の電着塗装性を向上させつつ、その微粒子の含有に基づき耐食性が許容限度以下になることを確実に防止できる。   According to the invention of claim 3, since the content of the fine particles is 8.2% by mass or less based on the whole, the electrodeposition coating property of the part to be coated in the low voltage application region based on the fine particles. The corrosion resistance can be reliably prevented from being below the allowable limit based on the inclusion of the fine particles.

請求項4に係る発明によれば、微粒子の平均径が、40nm以下とされていることから、前述の請求項1〜3の作用効果を効果的に得ることができる。   According to the fourth aspect of the invention, since the average diameter of the fine particles is 40 nm or less, the effects of the first to third aspects can be obtained effectively.

請求項5に係る発明によれば、請求項1〜4のいずれか1項に係る化成処理剤を利用して形成された化成皮膜を有する表面処理金属を提供できる。   According to the invention which concerns on Claim 5, the surface treatment metal which has a chemical conversion film formed using the chemical conversion treatment agent which concerns on any one of Claims 1-4 can be provided.

請求項6に係る発明によれば、化成皮膜に、主成分として、Zr,Ti,Hf,Siから選ばれる元素を少なくとも一種有する酸化物が含まれていることから、化成皮膜の主成分が具体化された表面処理金属を提供できる。   According to the invention of claim 6, since the chemical film contains an oxide having at least one element selected from Zr, Ti, Hf, and Si as the main component, the main component of the chemical film is concrete. The surface treated metal can be provided.

請求項7に係る発明によれば、化成皮膜の主成分が、ZrO2であることから、化成皮膜の主成分がより具体化された表面処理金属を提供できる。 According to the seventh aspect of the present invention, since the main component of the chemical conversion film is ZrO 2 , a surface-treated metal in which the main component of the chemical conversion film is more specific can be provided.

以下、本発明の実施形態について、図面に基づいて説明する。
自動車等の塗装においては、一般的に、被塗装物に化成処理により化成皮膜を形成した(表面処理金属の形成)後、カチオン電着塗装(下塗り塗装)が行われている。カチオン電着塗装は、図1に示すように、槽T内のカチオン電着塗料中に被塗装物(例えば車体)Wを浸漬させ、槽Tを陽極、被塗装物Wを陰極として、その両者T,W間に電圧を印加することにより、塗膜が被塗装物W面上に析出されるが、この塗膜は、電着塗装前に被塗装物W面に形成された化成皮膜により、塗膜の電着塗装性、密着性、さらには耐食性等が高められる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the painting of automobiles and the like, generally, after forming a chemical conversion film on a workpiece by chemical conversion treatment (formation of a surface-treated metal), cationic electrodeposition coating (undercoating) is performed. As shown in FIG. 1, the cationic electrodeposition coating is performed by immersing an object to be coated (for example, a vehicle body) W in a cationic electrodeposition coating in a tank T, using the tank T as an anode and the object W as a cathode. By applying a voltage between T and W, a coating film is deposited on the surface to be coated W. This coating film is formed by a chemical conversion film formed on the surface to be coated W before electrodeposition coating. Electrodeposition coating properties, adhesion, and corrosion resistance of the coating film are improved.

前記化成皮膜は、化成処理剤を用いて形成されている。化成処理剤には、主成分として、Zr,Ti,Hf,Siから選ばれる元素を少なくとも一種有する化合物が含まれ、副成分として、フッ素(エッチング剤)、水溶性樹脂を含まれたものが用いられ、その化成処理剤により、化成皮膜は、主成分として、Zr,Ti,Hf,Siから選ばれる元素を少なくとも一種有する酸化物が含まれるものとなっている。本実施形態においては、化成処理剤として、ジルコニウム化合物であるH2ZrF6を主成分とするものが用いられて、被塗装物上に酸化ジルコニウム(以下、ZrO2を用いる)を主成分とした化成皮膜(以下、ZrO2皮膜という)が形成され、被塗装物は、表面処理金属として、その表面にZrO2皮膜を有することになっている。すなわち、上記化成処理剤を用いて被塗装物(素地金属(鋼板))を化成処理すると、その被塗装物が酸により溶解(エッチング)されることになり、被塗装物表面に水酸化イオンが形成されてその表面のpHが上昇することになる。これに伴い、水酸化ジルコニウムが析出し、それが脱水、縮合反応することによりZrO2となる。この反応式をまとめて示せば下記(化1)に示す通りとなる。
The chemical conversion film is formed using a chemical conversion treatment agent. The chemical conversion treatment agent includes a compound containing at least one element selected from Zr, Ti, Hf, and Si as a main component, and fluorine (etching agent) and a water-soluble resin as subcomponents. With the chemical conversion treating agent, the chemical conversion film contains an oxide having at least one element selected from Zr, Ti, Hf, and Si as a main component. In the present embodiment, as the chemical conversion treatment agent, a compound containing H 2 ZrF 6 which is a zirconium compound as a main component is used, and zirconium oxide (hereinafter, ZrO 2 is used) as a main component on the object to be coated. A chemical conversion film (hereinafter referred to as a ZrO 2 film) is formed, and the object to be coated has a ZrO 2 film on its surface as a surface-treated metal. That is, when the object to be coated (base metal (steel plate)) is subjected to a chemical conversion treatment using the chemical conversion treatment agent, the object to be coated is dissolved (etched) by an acid, and hydroxide ions are formed on the surface of the object to be coated. As a result, the pH of the surface increases. Along with this, zirconium hydroxide precipitates, and it becomes ZrO 2 by dehydration and condensation reaction. If this reaction formula is shown collectively, it will become as shown in following (Chemical Formula 1).

化成皮膜としてZrO2皮膜が用いている理由は、富栄養化の防止、化成処理に伴って廃棄すべきスラッジの生成抑制を図ることができるばかりでなく、耐食性も確保できるからである。すなわち、耐食性、塗膜密着性等が優れている化成皮膜として、従来からリン酸亜鉛系処理剤を用いたリン酸亜鉛皮膜があることは知られているが、そのリン酸亜鉛皮膜を用いた場合には、そのリン酸イオンに基づき富栄養化をもたらされ、化成処理に伴って廃棄すべきスラッジが生成される等の問題が発生する。このため、本実施形態に係る化成皮膜としては、そのような問題が生ぜず耐食性等が確保できるZrO2皮膜を選択しているのである。但し、ZrO2皮膜が用いられることに伴い、その性質(非結晶性連続皮膜を形成すること)に基づき、その皮膜は、局所的な低抵抗部の数が少ないものとなる。 The reason why the ZrO 2 film is used as the chemical conversion film is that not only eutrophication can be prevented and the generation of sludge to be discarded along with the chemical conversion treatment can be suppressed, but also the corrosion resistance can be ensured. That is, as a chemical conversion film having excellent corrosion resistance, coating film adhesion, etc., it is known that there is a zinc phosphate film using a zinc phosphate-based treatment agent, but the zinc phosphate film was used. In some cases, eutrophication is caused on the basis of the phosphate ions, and problems such as the generation of sludge to be discarded with the chemical conversion treatment occur. For this reason, as the chemical conversion film according to the present embodiment, a ZrO 2 film that does not cause such a problem and can ensure corrosion resistance or the like is selected. However, as the ZrO 2 film is used, the film has a small number of local low-resistance parts based on its properties (formation of an amorphous continuous film).

本実施形態に係る化成皮膜には、そのZrO2皮膜中で共析し得る金属微粒子、半導体粒子、及び導線性有機物微粒子の少なくとも一種が含有されている。ZrO2皮膜は、耐食性を確保でき、また、富栄養化、スラッジ生成の問題を引き起こさない一方で、ZrO2皮膜のままでは、局所的な低抵抗部の数が少ないこと等に基づき、塗装膜厚特性(電着塗装性)がリン酸亜鉛皮膜の塗装膜厚特性に比べて劣ることになり、それを是正する必要があるからである(図2参照)。 The chemical conversion film according to this embodiment contains at least one of metal fine particles, semiconductor particles, and conductive organic fine particles that can be co-deposited in the ZrO 2 film. The ZrO 2 film can ensure corrosion resistance and does not cause problems of eutrophication or sludge generation. On the other hand, the ZrO 2 film is a coating film based on the fact that the number of local low-resistance parts is small. This is because the thickness characteristic (electrodeposition coating property) is inferior to the coating film thickness characteristic of the zinc phosphate coating, and it is necessary to correct it (see FIG. 2).

以下、具体的に説明する。電着塗装においては、その特性上、図1に示すように、陽極(図1においては槽T)とそれに近い被塗装物Wの部分(車体では外板部)との間に高い電圧が印加され、陽極とそれから遠い被塗装物部分(車体では内板部)との間に低い電圧が印加されることになり、陽極に近い被塗装物W部分から塗膜が析出を開始することになる。この析出する塗膜は絶縁性を有しており、この塗膜の析出が進行して析出塗膜が増加するに伴い、塗膜の電気抵抗が大きくなる。このため、塗膜が析出した部位での塗膜の析出が低下し、それに代わって、未析出部位への塗膜の析出が始まる。このような電着塗装の下において、従来のZrO2皮膜(金属微粒子、半導体粒子、及び導線性有機物微粒子の少なくとも一種が含有されていないもの)が被塗装物(例えば冷延鋼板)に形成されていると、図2に示すように、リン酸亜鉛皮膜が形成されている場合に比べて、低電圧印加領域(0〜70V付近)では塗膜膜厚が薄くなりすぎ、高電圧印加領域(70以上)では塗膜膜厚が厚くなりすぎる特性を示す。このため、高電圧印加領域に属する陽極に近い被塗装物部分(車体では外板部)においては、塗膜の膜厚が、リン酸亜鉛皮膜の場合の塗装膜厚よりもかなり厚くなり、低電圧印加領域に属する陽極から遠い被塗装物部分(車体では内板部)においては、塗膜の膜厚がリン酸亜鉛皮膜の場合の塗装膜厚よりもかなり薄くなり、従来のZrO2皮膜をそのまま使用した場合には、その塗膜の付き回り性は、リン酸亜鉛皮膜の場合よりも劣ることになる。 This will be specifically described below. In electrodeposition coating, as shown in FIG. 1, a high voltage is applied between the anode (tank T in FIG. 1) and the portion of the object W to be coated (the outer plate in the vehicle body) due to its characteristics. Thus, a low voltage is applied between the anode and the part to be coated (inner plate part in the vehicle body) far from the anode, and the coating starts to deposit from the part W to be coated close to the anode. . The deposited coating film has insulating properties, and the electrical resistance of the coating film increases as the deposition of the coating film progresses and the deposited coating film increases. For this reason, the deposition of the coating film at the site where the coating film is deposited decreases, and instead, the deposition of the coating film on the undeposited site starts. Under such electrodeposition coating, a conventional ZrO 2 film (which does not contain at least one kind of metal fine particles, semiconductor particles, and conductive organic fine particles) is formed on an object to be coated (for example, a cold-rolled steel sheet). As shown in FIG. 2, compared with the case where the zinc phosphate film is formed, the coating film thickness becomes too thin in the low voltage application region (around 0 to 70 V), and the high voltage application region ( 70 or more) shows a characteristic that the film thickness becomes too thick. For this reason, in the part of the object to be coated (the outer plate part in the vehicle body) close to the anode belonging to the high voltage application region, the coating film thickness is considerably thicker than the coating film thickness in the case of the zinc phosphate coating, In the part of the object to be painted (inner plate part in the vehicle body) that is far from the anode belonging to the voltage application region, the film thickness of the coating film is considerably thinner than that in the case of the zinc phosphate film, and the conventional ZrO 2 film is applied. When used as it is, the throwing power of the coating is inferior to that of the zinc phosphate coating.

本件発明者は、上記問題となる現象について、研究、検討した結果、次のように考察している。
(1)リン酸亜鉛皮膜の場合には、図3に示すように、リン酸亜鉛系処理剤で鋼板S表面(被塗装物W表面)を処理すると、尖った形状が隣り合うようにして並ぶ結晶性リン酸亜鉛皮膜1がされることになり、多数の低抵抗部(隣り合う尖った形状の境目空間下部)2が形成される。このため、電子が各低抵抗部2に移動し、鋼板S表面で電気分解が起きて水酸イオンが生じ、その水酸イオンにより塗料に水溶性を与えている酸が中和され(H2発生)、それに基づき、図4に示すように、塗膜Fが鋼板S表面に析出・沈着される。この結果、低電圧領域に属する陽極から遠い被塗装物部分であっても、鋼板S表面上に塗膜Fが形成されることが促進される。
これに対して、ZrO2皮膜21の場合には、図8に示すように、化成処理剤で鋼板Sを化成処理すると、ZrO2皮膜として、フラットな非結晶性連続膜が形成されることになり、そのZrO2皮膜21には、局所的な低抵抗部22が形成されるものの、その数は極めて少ない。このため、この従来のZrO2皮膜では通電し難く、低電圧領域に属する陽極から遠い被塗装物部分における塗膜析出量は少ない。
The inventor of the present invention has considered as follows as a result of research and examination on the above-mentioned phenomenon.
(1) In the case of a zinc phosphate film, as shown in FIG. 3, when the surface of the steel sheet S (the surface of the object W to be coated) is treated with a zinc phosphate-based treatment agent, the sharp shapes are arranged side by side. A crystalline zinc phosphate coating 1 is formed, and a large number of low resistance portions (lower adjacent boundary space spaces 2) 2 are formed. For this reason, electrons move to each low resistance portion 2, and electrolysis occurs on the surface of the steel sheet S to generate hydroxide ions, which neutralize the acid that imparts water solubility to the paint (H 2 Based on this, the coating film F is deposited and deposited on the surface of the steel sheet S as shown in FIG. As a result, the formation of the coating film F on the surface of the steel sheet S is promoted even in the part of the object far from the anode belonging to the low voltage region.
In contrast, in the case of the ZrO 2 film 21, as shown in FIG. 8, when the steel sheet S is subjected to chemical conversion treatment with a chemical conversion treatment agent, a flat non-crystalline continuous film is formed as the ZrO 2 film. Thus, although the local low resistance portion 22 is formed in the ZrO 2 film 21, the number thereof is extremely small. For this reason, it is difficult to energize with this conventional ZrO 2 film, and the amount of coating deposited on the part of the object far from the anode belonging to the low voltage region is small.

(2)ZrO2皮膜21における数少ない局所的な各低抵抗部22の抵抗が、リン酸亜鉛皮膜1における低抵抗部2の抵抗よりも高くなっている。このため、この従来のZrO2皮膜21においては、ある程度以上の電圧が印加されない限り通電せず、低電圧領域に属する陽極から遠い被塗装物部分では、図9に示すように(比較として図4参照)、リン酸亜鉛皮膜1の場合に比べて、塗膜Fが析出し難い。 (2) The resistance of each of the few local low resistance portions 22 in the ZrO 2 film 21 is higher than the resistance of the low resistance portion 2 in the zinc phosphate film 1. For this reason, the conventional ZrO 2 film 21 is not energized unless a voltage of a certain level or more is applied, and the part to be coated far from the anode belonging to the low voltage region is shown in FIG. Reference), compared with the case of the zinc phosphate coating 1, the coating film F is difficult to deposit.

(3)その一方、ZrO2皮膜21における最大抵抗部(皮膜の厚みが最も厚い部分(50nm程度):図8参照)23が、抵抗に関し、リン酸亜鉛皮膜1の最大抵抗部(尖った先端部分(1〜2μm程度):図3参照)3よりも小さい。このため、高電圧印加領域においては、ZrO2皮膜21の方が、リン酸亜鉛皮膜1よりも方々で塗膜Fが析出することになり、高電圧領域に属する陽極に近い被塗装物部分(車体では外板部)においては、塗膜Fの膜厚が、リン酸亜鉛皮膜1の場合の塗装膜厚よりもかなり厚くなる。図5、図6、図10、図11は、上記内容を概念的に示したもので、図5、図6は、化成皮膜がリン酸亜鉛皮膜1である場合における高電圧領域の初期、中期現象を概念的に示し、図10、図11は、化成皮膜がZrO2皮膜21である場合における高電圧領域の初期、中期現象を概念的に示している。 (3) On the other hand, the maximum resistance portion (the thickest portion of the coating (about 50 nm): refer to FIG. 8) 23 in the ZrO 2 coating 21 relates to the resistance, and the maximum resistance portion (pointed tip) of the zinc phosphate coating 1 Part (about 1-2 μm): see FIG. 3) smaller than 3. For this reason, in the high voltage application region, the ZrO 2 coating 21 deposits more coating film F than the zinc phosphate coating 1, and the portion of the object to be coated that is close to the anode belonging to the high voltage region ( In the vehicle body, the film thickness of the coating film F is considerably larger than the coating film thickness in the case of the zinc phosphate coating 1. 5, FIG. 6, FIG. 10 and FIG. 11 conceptually show the above contents, and FIG. 5 and FIG. 6 show the initial and intermediate periods of the high voltage region when the chemical conversion film is the zinc phosphate film 1. The phenomenon is conceptually shown, and FIGS. 10 and 11 conceptually show the initial and medium-term phenomena in the high voltage region when the chemical conversion film is the ZrO 2 film 21.

(4)また、リン酸亜鉛皮膜1の各低抵抗部2の大きさ(空間の大きさ)は小さい。このため、その各低抵抗部2で電気分解が起きて水酸イオンが生じ、その水酸イオンにより塗料に水溶性を与えている酸が中和され(H2発生)、塗膜Fが析出すると、図7に示すように、その塗膜Fにより各低抵抗部2(の空間)は容易に埋められる。
これに対して、ZrO2皮膜21における数少ない局所的な各低抵抗部22は、薄く且つリン酸亜鉛皮膜1の低抵抗部2よりも大きい(広い)。このため、その大きな低抵抗部22に電荷が集中し、水酸イオン、水酸イオンによる塗料に水溶性を与えている酸の中和(H2発生)過程を経て塗膜Fが析出するも、その大きな低抵抗部22は、図12に示すように、塗膜Fにより容易には埋まらない。このため、鋼板S上への塗膜の析出に基づき抵抗が大きくならず、陽極に近い被塗装物部分(車体では外板部)においては、塗膜Fの析出し続け、その塗膜の膜厚は、リン酸亜鉛皮膜1の場合の塗装膜厚よりもかなり厚くなる。これに伴い、陽極から遠い被塗装物部分(車体では内板部)には、もともと電子が移動しにくいことに加えて、上記観点からも移動しないことになり、そこでは、容易には、塗膜Fは析出しない。
(4) Moreover, the size (space size) of each low resistance portion 2 of the zinc phosphate coating 1 is small. For this reason, electrolysis occurs in each of the low resistance portions 2 to generate hydroxide ions, and the acid imparting water solubility to the paint is neutralized by the hydroxide ions (H 2 generation), and the coating film F is deposited. Then, as shown in FIG. 7, each low resistance part 2 (space) is easily filled with the coating film F.
On the other hand, the few local low-resistance parts 22 in the ZrO 2 film 21 are thinner and larger (wider) than the low-resistance parts 2 of the zinc phosphate film 1. For this reason, the electric charge concentrates on the large low resistance portion 22, and the coating film F is deposited through the process of neutralization (H 2 generation) of the acid that gives water-solubility to the paint by the hydroxide ions and the hydroxide ions. The large low resistance portion 22 is not easily filled with the coating film F as shown in FIG. For this reason, the resistance does not increase due to the deposition of the coating film on the steel sheet S, and the coating film F continues to be deposited on the part to be coated (the outer plate part in the vehicle body) close to the anode. The thickness is considerably larger than the coating film thickness in the case of the zinc phosphate coating 1. As a result, in addition to the fact that electrons do not easily move to the part of the object to be coated (inner plate part in the vehicle body) far from the anode, it will not move from the above viewpoint. Film F does not precipitate.

本件発明者は、このような考察に基づき、本実施形態に係る化成皮膜を、ZrO2皮膜21を基本としつつも、その内部で、金属微粒子、半導体粒子、及び導線性有機物微粒子の少なくとも一種を共析させたものとした。ZrO2皮膜21を基本としているのは、耐食性等の基本機能を確保するためである。ZrO2皮膜21の内部で、金属微粒子、半導体粒子、及び導線性有機物微粒子の少なくとも一種を共析させているのは、ZrO2の割合を減らして、陽極に近い被塗装物部分(車体では外板部)での塗膜F析出量を減らす一方、電子のトンネル効果に着目し、所定以上の印加電圧をかけたときにだけ通電する通電部を増加させるようとするためである。これにより、ZrO2の割合を減らすことに基づき、陽極に近い被塗装物部分(車体では外板部)での過剰な塗膜F析出量を減らすことができると共に、金属微粒子、半導体粒子、及び導線性有機物微粒子の少なくとも一種の通電(トンネル効果)に基づき、陽極から遠い被塗装物部分(車体では内板部)において、塗膜Fの析出を促進することができる。この結果、このようなZrO2皮膜21の塗膜膜厚特性(電着特性)を、リン酸亜鉛皮膜1の塗装膜厚特性に近づけることができることになり、このようなZrO2皮膜21を用いることにより、富栄養化、スラッジ生成の問題を引き起こさないことは勿論、耐食性及び電着塗装性をも満足させることができることになる。 Based on such considerations, the present inventor uses at least one of metal fine particles, semiconductor particles, and conductive organic fine particles inside the chemical conversion film according to the present embodiment, based on the ZrO 2 film 21. It was eutectoid. The reason why the ZrO 2 coating 21 is used is to secure basic functions such as corrosion resistance. The reason why at least one of metal fine particles, semiconductor particles, and conductive organic fine particles is co-deposited inside the ZrO 2 film 21 is that the ratio of ZrO 2 is reduced, and the portion of the object to be coated that is close to the anode (on the vehicle body) This is because while reducing the amount of coating film F deposited on the plate portion), attention is paid to the tunneling effect of electrons, and an energization portion that is energized only when an applied voltage of a predetermined level or higher is applied. Thereby, based on reducing the ratio of ZrO 2 , it is possible to reduce the excessive coating F deposition amount on the part to be coated (the outer plate part in the vehicle body) close to the anode, and the metal fine particles, semiconductor particles, and Based on at least one type of conduction (tunnel effect) of the conductive organic fine particles, deposition of the coating film F can be promoted in a part to be coated (inner plate part in the vehicle body) far from the anode. As a result, such NurimakumakuAtsu characteristic (electrodeposition characteristic) of the ZrO 2 film 21, will be able to approach the coating thickness properties of the zinc phosphate film 1, using such a ZrO 2 film 21 As a result, not only the problems of eutrophication and sludge generation are caused, but also corrosion resistance and electrodeposition coating properties can be satisfied.

前記金属微粒子としては、Mg,Al,Ca,Co,Ni,Cu,Zn等を用いることができ、半導体粒子としては、ZnO、TiO2等、酸化物半導体を用いることが好ましい。Ti,Zn等の酸化物が半導体となる金属についてはイオンで用いることもできる。導電性有機物粒子としては、ポリアニリン、金属を有機物で保護した微粒子等を用いることができる。このような微粒子の平均粒子径としては、40nm以下が好ましく、20〜40nmがより好ましい。 Mg, Al, Ca, Co, Ni, Cu, Zn or the like can be used as the metal fine particles, and an oxide semiconductor such as ZnO or TiO 2 is preferably used as the semiconductor particles. A metal in which an oxide such as Ti or Zn becomes a semiconductor can also be used as an ion. As the conductive organic particles, polyaniline, fine particles obtained by protecting a metal with an organic material, or the like can be used. The average particle size of such fine particles is preferably 40 nm or less, and more preferably 20 to 40 nm.

また、前述の問題(高電圧印加領域に属する陽極に近い被塗装物部分において、塗膜の膜厚が、リン酸亜鉛皮膜の場合の塗装膜厚よりもかなり厚くなり、低電圧印加領域に属する陽極から遠い被塗装物部分においては、塗膜の膜厚がリン酸亜鉛皮膜の場合の塗装膜厚よりもかなり薄くなること)に関し、従来のZrO2皮膜(金属微粒子、半導体微粒子、及び導線性有機物微粒子を含有せず)における各低抵抗部22の大きさを何らかの方法で小さくしてその各低抵抗部22に電荷が集中しないようにすることが考えられる。しかし、このように各抵抗部22の大きさを小さくした場合には、皮膜の厚みが厚くなって塗膜の析出開始電圧をさらに高くしなければ、塗膜は析出しなくなる。これに対して、ZrO2皮膜21の内部で、金属微粒子、半導体粒子、及び導線性有機物微粒子の少なくとも一種が共析されているものにおいては、各抵抗部22は大きいものの、半導体微粒子等のトンネル効果に基づき、電圧印加時に通電部が増加することになり、大きな各低抵抗部22への電荷の集中を回避できる。このため、この観点からも、前記問題点を解消(ZrO2皮膜21の塗膜膜厚特性をリン酸亜鉛皮膜1の塗装膜厚特性に近づけること)できる。 In addition, the above-mentioned problem (at the part to be coated near the anode belonging to the high voltage application region, the coating film thickness is considerably thicker than the coating film thickness in the case of the zinc phosphate coating, and belongs to the low voltage application region. The ZrO 2 film (metal fine particles, semiconductor fine particles, and conductive properties) related to the object to be coated far from the anode is that the film thickness of the paint film is considerably thinner than that of the zinc phosphate film. It is conceivable to reduce the size of each low resistance portion 22 in the organic resistance fine particles) by some method so that the charges are not concentrated on each low resistance portion 22. However, when the size of each resistance portion 22 is reduced in this way, the coating film will not be deposited unless the coating thickness is increased and the deposition start voltage of the coating film is further increased. On the other hand, in the case where at least one of metal fine particles, semiconductor particles, and conductive organic fine particles is co-deposited inside the ZrO 2 film 21, each resistance portion 22 is large, but tunnels such as semiconductor fine particles are formed. Based on the effect, the number of energized portions increases when a voltage is applied, and a large concentration of charges on each low resistance portion 22 can be avoided. For this reason, also from this viewpoint, the above-mentioned problem can be solved (the coating film thickness characteristic of the ZrO 2 film 21 can be made close to the coating film thickness characteristic of the zinc phosphate film 1).

図13は、上記内容を裏付けるべく、化成被膜として、n型ZnO(半導体微粒子)を共析させたZrO2被膜を用いた場合における塗膜膜厚特性を示したものである。この場合、n型ZnOの含有量は、5.6質量%、そのn型ZnOとしては、下記のものを用いた。
組成:Ga−Doped ZnO
体積抵抗率:20〜100(Ω・cm)
比表面積:30〜50(m2/g)
平均粒子径(1次粒子径):20〜40(nm)
FIG. 13 shows the film thickness characteristics when a ZrO 2 film in which n-type ZnO (semiconductor fine particles) is co-deposited is used as the chemical conversion film to support the above contents. In this case, the content of n-type ZnO was 5.6% by mass, and the following was used as the n-type ZnO.
Composition: Ga-Doped ZnO
Volume resistivity: 20 to 100 (Ω · cm)
Specific surface area: 30-50 (m2 / g)
Average particle diameter (primary particle diameter): 20 to 40 (nm)

この図13の結果によれば、n型ZnO(半導体微粒子)を共析させたZrO2皮膜の塗膜膜厚特性(電着特性)は、リン酸亜鉛皮膜1の塗装膜厚特性に近づくことになった。これは、図14の概念図に示すように、化成被膜として、n型ZnO(半導体微粒子)を共析させたZrO2被膜21を用いた場合には、電圧印加時に、局所的な通電部が増加して(図14中では、1つだけを示す)、塗膜(樹脂)Fが鋼板S表面に析出することが促進されたためと考えられる。この場合、通電部を増加させる印加電圧は、腐食における電圧(例えば1V程度)よりも大きくなるように設定することが好ましい。尚、図14中、符号Pは、酸により水溶性を与えられた塗料を示す。 According to the result of FIG. 13, the coating film thickness characteristic (electrodeposition characteristic) of the ZrO 2 film in which n-type ZnO (semiconductor fine particles) is co-deposited approaches the coating film thickness characteristic of the zinc phosphate film 1. became. As shown in the conceptual diagram of FIG. 14, when the ZrO 2 coating 21 in which n-type ZnO (semiconductor fine particles) is co-deposited is used as the chemical conversion coating, local energizing portions are not present when a voltage is applied. This is probably because the coating (resin) F was promoted to be deposited on the surface of the steel sheet S by increasing (only one is shown in FIG. 14). In this case, it is preferable to set the applied voltage for increasing the current-carrying part to be higher than the voltage in corrosion (for example, about 1 V). In FIG. 14, the symbol P indicates a paint imparted with water solubility by an acid.

図15〜図17は、従来のZrO2皮膜21(n型ZnO含有せず)、上記n型ZnOを共析させたZrO2皮膜21について、走査振動電極法(SVET)を用いて皮膜表面の電流密度分布を測定した結果を示したものである。図15は、従来のZrO2皮膜、n型ZnOを共析させたZrO2皮膜についての電圧非印加時の電流密度分布を示す。この場合には、いずれについても、電流は検出されず、同じ状態となった。図16は、従来のZrO2皮膜についての電圧(1V)印加時の電流密度分布を示す。この場合にも、電流は検出されなかった。図17は、上記n型ZnOを共析させたZrO2皮膜21についての電圧(1V)印加時の電流密度分布を示す。この場合には、図17中の丸印部分で示すように、電流が検出された。これにより、n型ZnOが局部的な通電部の増加に貢献し、n型ZnOにより塗膜Fの析出が促進されることが確認された。 15 to 17 show the current on the surface of a conventional ZrO 2 film 21 (not containing n-type ZnO) and the ZrO 2 film 21 in which the n-type ZnO is co-deposited using the scanning vibration electrode method (SVET). The result of measuring the density distribution is shown. FIG. 15 shows a current density distribution when no voltage is applied to a conventional ZrO 2 film and a ZrO 2 film in which n-type ZnO is co-deposited. In this case, no current was detected in any case, and the same state was obtained. FIG. 16 shows a current density distribution when a voltage (1 V) is applied to a conventional ZrO 2 film. Again, no current was detected. FIG. 17 shows a current density distribution when a voltage (1 V) is applied to the ZrO 2 film 21 on which the n-type ZnO is co-deposited. In this case, a current was detected as indicated by a circle in FIG. Thereby, it was confirmed that n-type ZnO contributes to the increase of a local electricity supply part, and precipitation of the coating film F is accelerated | stimulated by n-type ZnO.

図18は、前記n型ZnOを共析させたZrO2皮膜21について、その皮膜中におけるn型ZnO(半導体成分)の含有割合が、塗膜膜厚(電着特性)及び耐食性に及ぼす影響を示したものである。図18によれば、塗膜膜厚(電着特性)に関しては、n型ZnOの添加量(wt%)が増加するほど塗膜膜厚が厚くなることを示し、耐食性に関しては、n型ZnOの添加量(wt%)が一定値まで許容できるものの、その一定値を超えると、耐食性に問題が生じることになった。この場合、耐食性に関しては、CCT(CCT1サイクル≒JISK5600−7−9サイクルAの3サイクル)60サイクル後の塗膜F膨れ率(%)を測定した。 FIG. 18 shows the influence of the content ratio of n-type ZnO (semiconductor component) in the film on the film thickness (electrodeposition characteristics) and corrosion resistance of the ZrO 2 film 21 in which the n-type ZnO is co-deposited. It is shown. According to FIG. 18, regarding the coating film thickness (electrodeposition characteristics), it is shown that the coating film thickness becomes thicker as the addition amount (wt%) of n-type ZnO increases. Although the amount of addition (wt%) of the material is acceptable up to a certain value, if it exceeds the certain value, a problem arises in corrosion resistance. In this case, regarding the corrosion resistance, the coating film F swelling rate (%) after 60 cycles of CCT (CCT 1 cycle≈3 cycles of JISK5600-7-9 cycle A) was measured.

図19は、耐食性の観点からのn型ZnOの添加量(wt%)の上限を求めた内容を示している。すなわち、図19に、図18から、n型ZnOの添加量(wt%)とCCT60サイクル後の塗膜F膨れ率(%)との関係を示し、その関係から、塗膜膨れ率30(%)を耐食性の許容限界(基準値)として、n型ZnOの添加量(wt%)の上限を求めている。この場合、塗膜膨れ率30(%)を耐食性の許容限界(基準値)としているが、これは、自動車ボディ外板の穴あき錆保証の主流が12年となっており、その保証については、塗膜F膨れ率30(%)未満であれば満足することが実績を通じて確認されていることが根拠となっている。ここで、CCT1サイクル≒JISK5600−7−9サイクルAの3サイクルである。図19によれば、耐食性の許容限界におけるn型ZnOの添加量が、8.2wt%であることを示し、耐食性を確保するためには、n型ZnOの添加量を8.2wt%以下ですることが必要であることを示した。勿論この値は、半導体微粒子に限らず、金属微粒子、導電性有機物微粒子についても、ほぼ適用できる。これらについても、添加量を8.2wt%以下とすれば、化成皮膜中において、n型ZnOの化成皮膜中における含有割合(体積%)と同等ないしはそれ以下の含有割合(体積%)にすることができ、耐食性が確保できるからである。   FIG. 19 shows the content of obtaining the upper limit of the addition amount (wt%) of n-type ZnO from the viewpoint of corrosion resistance. That is, FIG. 19 shows the relationship between the added amount of n-type ZnO (wt%) and the coating film F swelling rate (%) after 60 CCT cycles from FIG. ) As the allowable limit (reference value) of corrosion resistance, the upper limit of the added amount (wt%) of n-type ZnO is obtained. In this case, the coating swelling rate of 30 (%) is the allowable limit (reference value) for corrosion resistance, but this is because the mainstream of perforated rust guarantee on automobile body outer panels is 12 years. It is based on the fact that it is confirmed through results that the coating film F swelling rate is less than 30 (%). Here, CCT1 cycle≈JISK5600-7-9 cycle A, 3 cycles. According to FIG. 19, it is shown that the addition amount of n-type ZnO at the allowable limit of corrosion resistance is 8.2 wt%, and in order to ensure corrosion resistance, the addition amount of n-type ZnO is 8.2 wt% or less. Shown that it is necessary to do. Of course, this value is not limited to the semiconductor fine particles, but can also be applied to metal fine particles and conductive organic fine particles. Also for these, if the addition amount is 8.2 wt% or less, the content ratio (volume%) in the chemical film is equal to or less than the content ratio (volume%) of the n-type ZnO in the chemical film. This is because corrosion resistance can be secured.

電着塗装を説明する概略図である。It is the schematic explaining electrodeposition coating. 従来のZrO2皮膜及びリン酸亜鉛皮膜の塗膜膜厚特性を示す特性図。Characteristic diagram showing the NurimakumakuAtsu characteristics of the conventional ZrO 2 film and the zinc phosphate coating. リン酸亜鉛皮膜における各低抵抗部を概念的に説明する説明図。Explanatory drawing which illustrates each low resistance part in a zinc phosphate film | membrane conceptually. リン酸亜鉛皮膜における各低抵抗部での塗膜の析出を概念的に説明する説明図。Explanatory drawing which illustrates conceptually the precipitation of the coating film in each low resistance part in a zinc phosphate film. リン酸亜鉛皮膜における各低抵抗部での初期の塗膜析出を概念的に示す平面図。The top view which shows notionally the initial stage film deposition in each low resistance part in a zinc phosphate film. リン酸亜鉛皮膜における各低抵抗部での中期の塗膜析出を概念的に示す平面図。The top view which shows notionally the coating-film deposition of the middle stage in each low resistance part in a zinc phosphate film | membrane. リン酸亜鉛皮膜における各低抵抗部での末期の塗膜析出を概念的に示す正面図。The front view which shows notionally the coating-film precipitation of the last stage in each low resistance part in a zinc phosphate film | membrane. ZrO2皮膜における各低抵抗部を概念的に説明する説明図。Explanation drawing conceptually explaining the low resistance part of the ZrO 2 film. ZrO2皮膜における各低抵抗部での塗膜の析出を概念的に説明する説明図。Diagram conceptually illustrating the deposition of the coating at each low resistance part of the ZrO 2 film. ZrO2皮膜における各低抵抗部での初期の塗膜析出を概念的に示す平面図。Plan view conceptually showing an initial coating deposition at the low resistance regions in the ZrO 2 film. ZrO2皮膜における各低抵抗部での中期の塗膜析出を概念的に示す平面図。Plan view conceptually showing metaphase coating deposition at the low resistance regions in the ZrO 2 film. ZrO2皮膜における各低抵抗部での末期の塗膜析出を概念的に示す正面図。Front view conceptually showing a coating film deposition of the end of each low-resistance portions in the ZrO 2 film. n型ZnOを共析させたZrO2皮膜、従来のZrO2皮膜及びリン酸亜鉛皮膜の塗膜膜厚特性を示す特性図。ZrO 2 film of n-type ZnO was codeposited, characteristic diagram showing the NurimakumakuAtsu characteristics of the conventional ZrO 2 film and the zinc phosphate coating. n型ZnOを共析させたZrO2皮膜の下での塗膜の析出を概念的に説明する説明図。diagram conceptually illustrating the deposition of the coating film of n-type ZnO under ZrO 2 film was codeposited. 従来のZrO2皮膜、n型ZnOを共析させたZrO2皮膜についての電圧非印加時の電流密度分布を示す図。It shows a conventional ZrO 2 film, the current density distribution during non-voltage application of ZrO 2 film and the n-type ZnO is codeposited. 従来のZrO2皮膜についての電圧(1V)印加時の電流密度分布を示す図。Shows a current density distribution during voltage (1V) is applied for a conventional ZrO 2 film. n型ZnOを共析させたZrO2皮膜についての電圧(1V)印加時の電流密度分布を示す図。shows a current density distribution during voltage (1V) is applied for the ZrO 2 film of n-type ZnO was codeposited. n型ZnOを共析させたZrO2皮膜について、その皮膜中におけるn型ZnO(半導体成分)の含有割合が、塗膜膜厚(電着特性)及び耐食性に及ぼす影響を示す図。For ZrO 2 film of n-type ZnO were codeposited, the content ratio of n type ZnO (semiconductor component) in the coating in the, shows the effect on NurimakumakuAtsu (electrodeposition characteristic) and corrosion resistance. 耐食性の観点からのn型ZnOの添加量(wt%)の上限を求めることを説明する説明図。Explanatory drawing explaining calculating | requiring the upper limit of the addition amount (wt%) of n-type ZnO from a corrosion-resistant viewpoint.

符号の説明Explanation of symbols

21 ZrO2皮膜
22 ZrO2皮膜の低抵抗部
S 鋼板
W 被塗装物

21 ZrO 2 coating 22 Low resistance part of ZrO 2 coating S Steel plate W Object to be coated

Claims (7)

局所的な低抵抗部の数が少ない化成皮膜を形成する皮膜形成成分を含む化成処理剤において、
前記皮膜形成成分と共に、金属微粒子、半導体微粒子、及び導電性有機物微粒子の少なくとも一種が含有されている、
ことを特徴とする化成処理剤。
In a chemical conversion treatment agent containing a film forming component that forms a chemical conversion film with a small number of local low resistance parts,
Along with the film forming component, contains at least one of metal fine particles, semiconductor fine particles, and conductive organic fine particles,
A chemical conversion treatment agent characterized by that.
請求項1において、
前記皮膜形成成分に、主成分として、Zr,Ti,Hf,Siから選ばれる元素を少なくとも一種有する化合物が含まれている、
ことを特徴とする化成処理剤。
In claim 1,
The film forming component includes a compound having at least one element selected from Zr, Ti, Hf, and Si as a main component.
A chemical conversion treatment agent characterized by that.
請求項2において、
前記微粒子の含有量が、全体に対して8.2質量%以下とされている、
ことを特徴とする化成処理剤。
In claim 2,
The content of the fine particles is 8.2% by mass or less based on the whole,
A chemical conversion treatment agent characterized by that.
請求項1〜3のいずれか1項において、
前記微粒子の平均径が、40nm以下とされている、
ことを特徴とする化成処理剤。
In any one of Claims 1-3,
The average diameter of the fine particles is 40 nm or less,
A chemical conversion treatment agent characterized by that.
請求項1〜4のいずれか1項に係る化成処理剤を用いて形成された化成皮膜を表面上に有し、
前記化成皮膜に、前記金属微粒子、半導体微粒子、及び導電性有機物微粒子の少なくとも一種が共析されている、
ことを特徴とする表面処理金属。
Having a chemical conversion film formed on the surface using the chemical conversion treatment agent according to any one of claims 1 to 4,
In the chemical film, at least one of the metal fine particles, semiconductor fine particles, and conductive organic fine particles is co-deposited,
A surface-treated metal characterized by that.
請求項5において、
前記化成皮膜に、主成分として、Zr,Ti,Hf,Siから選ばれる元素を少なくとも一種有する酸化物が含まれている、
ことを特徴とする表面処理金属。
In claim 5,
The chemical conversion film contains, as a main component, an oxide having at least one element selected from Zr, Ti, Hf, and Si.
A surface-treated metal characterized by that.
請求項6において、
前記化成皮膜の主成分が、ZrO2である、
ことを特徴とする表面処理金属。
In claim 6,
The main component of the chemical conversion film is ZrO 2 .
A surface-treated metal characterized by that.
JP2008053227A 2008-03-04 2008-03-04 Agent for chemical conversion treatment and surface-treated metal Abandoned JP2009209407A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008053227A JP2009209407A (en) 2008-03-04 2008-03-04 Agent for chemical conversion treatment and surface-treated metal
EP09002152A EP2100986A1 (en) 2008-03-04 2009-02-16 Chemical conversion treatment agent and surface-treated metal material
US12/372,381 US20090223601A1 (en) 2008-03-04 2009-02-17 Chemical conversion treatment agent and surface-treated metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008053227A JP2009209407A (en) 2008-03-04 2008-03-04 Agent for chemical conversion treatment and surface-treated metal

Publications (1)

Publication Number Publication Date
JP2009209407A true JP2009209407A (en) 2009-09-17

Family

ID=40637141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008053227A Abandoned JP2009209407A (en) 2008-03-04 2008-03-04 Agent for chemical conversion treatment and surface-treated metal

Country Status (3)

Country Link
US (1) US20090223601A1 (en)
EP (1) EP2100986A1 (en)
JP (1) JP2009209407A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8506728B2 (en) * 2009-09-03 2013-08-13 Mazda Motor Corporation Surface treatment method of metal material
CN104105822B (en) * 2011-11-30 2016-10-19 日本帕卡濑精株式会社 Supply agent, the manufacture method of surface treated steel plate
IN2015DN01537A (en) 2012-08-29 2015-07-03 Ppg Ind Ohio Inc
US10400337B2 (en) 2012-08-29 2019-09-03 Ppg Industries Ohio, Inc. Zirconium pretreatment compositions containing lithium, associated methods for treating metal substrates, and related coated metal substrates
RU2729485C1 (en) 2016-08-24 2020-08-07 Ппг Индастриз Огайо, Инк. Iron-containing cleaner composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0285931B1 (en) * 1987-03-31 1993-08-04 Nippon Steel Corporation Corrosion resistant plated steel strip and method for producing same
IN176027B (en) * 1988-08-12 1995-12-23 Alcan Int Ltd
JP4276530B2 (en) 2002-12-24 2009-06-10 日本ペイント株式会社 Chemical conversion treatment agent and surface treatment metal
EP1433876B1 (en) 2002-12-24 2013-04-24 Chemetall GmbH Chemical conversion coating agent and surface-treated metal
ITMO20040169A1 (en) * 2004-07-02 2004-10-02 Italtecno S R L 'BATHROOM FOR THE CONVERSION COVERING OF ALUMINUM AND ITS ALLOYS AND ITS PROCEDURES'.
JP4976950B2 (en) 2006-07-28 2012-07-18 パナソニック株式会社 Contact structure, contact device using the same, and microrelay
EP1978131B2 (en) * 2007-03-29 2019-03-06 ATOTECH Deutschland GmbH Means for manufacturing corrosion protection coats on metal surfaces

Also Published As

Publication number Publication date
US20090223601A1 (en) 2009-09-10
EP2100986A1 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
CN103209774B (en) The purposes of the object of surface coating process and use the method coating
JP6804464B2 (en) A method for phosphating metal surfaces without the use of nickel
ES2939587T3 (en) Procedure for coating metal surfaces of substrates and objects coated according to this procedure
JP4782601B2 (en) Corrosion prevention method for metal material, high corrosion resistance metal material and method for producing the same
US8506728B2 (en) Surface treatment method of metal material
JP2009209407A (en) Agent for chemical conversion treatment and surface-treated metal
JP2017520684A5 (en)
JP2009179848A (en) Steel sheet for container and method of manufacturing the same
KR102502436B1 (en) Method for producing thin functional coatings on light alloys
CN101643928B (en) Method for electrodepositing phosphate/metal composite film on cathode of surface of magnesium alloy
ES2768727T3 (en) Metal pretreatment modification for improved deposition power
JP6852454B2 (en) Manufacturing method of Sn-based alloy-plated steel sheet and Sn-based alloy-plated steel sheet
JP5163622B2 (en) Method for surface treatment of metal members
JP5365153B2 (en) Surface-treated steel with excellent corrosion resistance
JP5526664B2 (en) Method for surface treatment of metal members
JP5092332B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP6123116B2 (en) Manufacturing method of magnesium alloy products
US9309602B2 (en) Electrolytic iron metallizing of zinc surfaces
WO2014115203A1 (en) Chrome plating solution and method for forming chrome plating film using same
Mohan et al. Pulse electrodeposition of tin from sulphate bath
TWI224633B (en) Surface treatment method for hot-dip galvanized steel by micro-electric-arc plasma oxidation
JP6623543B2 (en) Organic resin coated steel
JP4093675B2 (en) Manufacturing method of steel sheet for coating with excellent hydrogen embrittlement resistance and corrosion resistance
JP2000119866A (en) Phosphate film, aluminum member having phosphate film and production of phosphate film
JP6066030B2 (en) Steel plate for container and method for producing steel plate for container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100329

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20120217