JP2009209224A - Method for producing polylactic acid - Google Patents

Method for producing polylactic acid Download PDF

Info

Publication number
JP2009209224A
JP2009209224A JP2008051651A JP2008051651A JP2009209224A JP 2009209224 A JP2009209224 A JP 2009209224A JP 2008051651 A JP2008051651 A JP 2008051651A JP 2008051651 A JP2008051651 A JP 2008051651A JP 2009209224 A JP2009209224 A JP 2009209224A
Authority
JP
Japan
Prior art keywords
polylactic acid
lactide
polymerization
phosphate
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008051651A
Other languages
Japanese (ja)
Other versions
JP5444623B2 (en
Inventor
Toshifumi Unrinin
敏文 雲林院
Tomokazu Kusunoki
智和 楠
Osamu Morimoto
修 森元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2008051651A priority Critical patent/JP5444623B2/en
Publication of JP2009209224A publication Critical patent/JP2009209224A/en
Application granted granted Critical
Publication of JP5444623B2 publication Critical patent/JP5444623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method for obtaining polylactic acid which contains less residual lactide and satisfies storage stability and moldability without causing corrosion of a reactor. <P>SOLUTION: In the method for producing polylactic acid using lactide as a principal raw material, at the stage of a weight average molecular weight of ≤10,000, a compound represented by general formula 1 is added. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はポリ乳酸の製造方法に関する。本発明の製造方法を用いることで重合反応釜の腐食がなく残留ラクチドが少なく、かつ高分子量のポリ乳酸を得ることができる。本発明によって製造されたポリ乳酸は、粒状、ペレット状、板状など種々の形態で利用することができる。   The present invention relates to a method for producing polylactic acid. By using the production method of the present invention, it is possible to obtain polylactic acid having a high molecular weight with little corrosion of the polymerization reaction vessel and little residual lactide. The polylactic acid produced according to the present invention can be used in various forms such as a granular form, a pellet form, and a plate form.

近年、環境問題等から、優れた生分解性を有する乳酸系ポリマーを、広く活用しようとする研究が盛んに行われ、製造方法に関しても多くの研究や特許出願がなされている。   In recent years, due to environmental problems and the like, extensive research has been conducted to widely use lactic acid-based polymers having excellent biodegradability, and many researches and patent applications have been made regarding production methods.

しかし従来の乳酸もしくはラクチドの重合体であるポリ乳酸、または乳酸もしくはラクチドと他のモノマーとの共重合体は、成形性、耐熱性において十分な性能を有しているとは言い難く、またポリ乳酸は、特殊な用途を除いては、分解性が早すぎて、汎用樹脂として用いにくい等の問題点があり、分解の抑制、特に貯蔵安定性の向上が重要な開発課題となっている。   However, polylactic acid, which is a conventional polymer of lactic acid or lactide, or a copolymer of lactic acid or lactide and another monomer cannot be said to have sufficient performance in moldability and heat resistance. Except for special applications, lactic acid has problems such as its degradability is too fast and difficult to use as a general-purpose resin, and suppression of decomposition, particularly improvement in storage stability, is an important development issue.

同様に成形加工時の樹脂の劣化が激しく、製造した成形体が使用する前に激しい強度劣化を受けてしまう。これらの主な原因は、重合時に残留したラクチド成分、および/または成形加工時に生成したラクチド成分が大気中の水分等によって分解し、有機酸となりポリマー鎖の切断に作用するためである。これに対し、残留ラクチドが少ない乳酸系ポリエステルは、分解は著しく抑制され、貯蔵安定性、成形加工性に優れたものになる。   Similarly, the resin is greatly deteriorated during the molding process, and the produced molded body is subjected to severe strength deterioration before use. The main reason for this is that the lactide component remaining at the time of polymerization and / or the lactide component generated at the time of molding is decomposed by moisture in the atmosphere and becomes an organic acid and acts on the polymer chain scission. In contrast, a lactic acid-based polyester with a small amount of residual lactide is remarkably suppressed in decomposition and has excellent storage stability and molding processability.

乳酸系ポリエステルからラクチドを除去する方法については、溶剤によって抽出する方法、良溶剤にポリマーを溶解し貧溶剤中で析出させる方法が実験室レベルの実験においては既知である。工業規模での製造では、特許文献1に二軸押し出し機による方法が、特許文献2にはストランドを減圧にしたポット内でラクチドを揮発させて除く方法が知られている。しかしながら、これらの方法では減圧、加熱下にラクチドを除いてもラクチドの再発生が起こり、樹脂中のラクチド量を容易に減少させることができない。これは重合に使用した触媒が樹脂中に残存しているため、ポリマー鎖からラクチドを生成する反応にも触媒として関与するためである。   Regarding the method of removing lactide from lactic acid-based polyester, a method of extracting with a solvent and a method of dissolving a polymer in a good solvent and precipitating it in a poor solvent are known in laboratory experiments. In manufacturing on an industrial scale, Patent Document 1 discloses a method using a twin screw extruder, and Patent Document 2 discloses a method in which lactide is volatilized and removed in a pot in which a strand is decompressed. However, in these methods, even when lactide is removed under reduced pressure and heating, lactide is regenerated, and the amount of lactide in the resin cannot be easily reduced. This is because the catalyst used for the polymerization remains in the resin, and thus participates in the reaction for producing lactide from the polymer chain as a catalyst.

特許文献3には、溶剤共存下で乳酸より製造したポリ乳酸からの触媒の除去方法が示されている。この方法は溶剤に溶解しているポリ乳酸に親水性有機溶媒と弱酸を加え触媒成分を除くものである。しかしながら、この方法は大量の溶剤共存下でのポリ乳酸からの触媒の除去方法であり、溶媒の少ない場合は、この方法では触媒が除けず、またポリ乳酸は粉末状、顆粒状、粒状、フレーク状、ブロック状としているものの、かさ密度については0.6g/mlとしポリ乳酸は製造後に溶剤に溶解し沈澱物を得るような操作を必要としている。また、処理時間についても比較的長時間を要し、かつ複雑な混合物となる廃溶剤の処理方法の問題も生じる。   Patent Document 3 discloses a method for removing a catalyst from polylactic acid produced from lactic acid in the presence of a solvent. In this method, a hydrophilic organic solvent and a weak acid are added to polylactic acid dissolved in a solvent to remove a catalyst component. However, this method is a method for removing a catalyst from polylactic acid in the presence of a large amount of solvent. When the amount of solvent is small, this method does not remove the catalyst, and polylactic acid is in the form of powder, granules, granules, flakes. The bulk density is 0.6 g / ml, but the polylactic acid needs to be dissolved in a solvent after production to obtain a precipitate. In addition, the treatment time takes a relatively long time, and there arises a problem of the treatment method of the waste solvent that becomes a complicated mixture.

特許文献4、特許文献5にはリン酸化合物又は亜リン酸化合物を重合反応終了後に添加し、触媒を失活させる方法が示されている。リン酸化合物を重合反応終了時に添加することで触媒を失活でき残留ラクチドの少ないポリ乳酸を得ることができるが、リン酸化合物は、吸湿性があるため取り扱いにくく、腐食性が強いため重合反応に用いる釜を腐食する問題があった。また、亜リン酸化合物を使用することにより、取扱性は改善されるが、触媒を失活させる効果が低減するという問題があった。加えて、重合終了後の高温下でのリン酸化合物又は亜リン酸化合物の添加は、触媒との反応が急激に進行することによる反応液温の急激な上昇や、リン酸化合物又は亜リン酸化合物の気化等安全上の問題もあった。更にリン酸化合物又は亜リン酸化合物の添加の効果を得るためには充分な時間、攪拌する必要があるが、反応終了後のポリ乳酸は、溶融粘度が高いため、攪拌の効率が良くなく、生産性が悪いという側面もあった。   Patent Documents 4 and 5 show a method of adding a phosphoric acid compound or a phosphorous acid compound after the polymerization reaction to deactivate the catalyst. By adding a phosphoric acid compound at the end of the polymerization reaction, the catalyst can be deactivated and polylactic acid with little residual lactide can be obtained. However, the phosphoric acid compound is difficult to handle due to its hygroscopic property, and is highly corrosive. There was a problem of corroding the kettle used for this. Further, by using a phosphorous acid compound, the handleability is improved, but there is a problem that the effect of deactivating the catalyst is reduced. In addition, the addition of a phosphoric acid compound or a phosphorous acid compound at a high temperature after completion of the polymerization may cause a rapid rise in the reaction liquid temperature due to a rapid reaction with the catalyst, a phosphoric acid compound or phosphorous acid. There were also safety issues such as vaporization of compounds. Furthermore, in order to obtain the effect of adding a phosphoric acid compound or a phosphorous acid compound, it is necessary to stir for a sufficient time, but since the polylactic acid after completion of the reaction has a high melt viscosity, the efficiency of stirring is not good. There was also an aspect of poor productivity.

特許文献6にはアルキルホスフェート及び/又はアルキルホスホネートを重合反応終了後に添加し、触媒を失活させる方法が示されている。しかしながら本発明者らが検討したところ、アルキルホスフェート及び/又はアルキルホスホネートを重合反応終了後に添加しても、上述のリン酸化合物と比較すると残留ラクチド低減効果は少なく、貯蔵安定性を満足するポリ乳酸樹脂を得ることができなかった。また、重合終了後の高温下でのアルキルホスフェート及び/又はアルキルホスホネートの添加は、やはり上述と同様の安全上の問題もあった。   Patent Document 6 discloses a method of adding an alkyl phosphate and / or an alkyl phosphonate after the polymerization reaction to deactivate the catalyst. However, as a result of studies by the present inventors, polylactic acid satisfying storage stability is small even when alkyl phosphate and / or alkyl phosphonate is added after the completion of the polymerization reaction, as compared with the above-described phosphoric acid compound, the residual lactide reducing effect is small. The resin could not be obtained. Further, the addition of alkyl phosphate and / or alkyl phosphonate at a high temperature after completion of the polymerization also has the same safety problem as described above.

特許文献7には重縮合反応時にリン酸または亜リン酸化合物を添加することが示されている。しかし、該特許は乳酸の直接重合によるポリ乳酸の製造を対象としている。また、該特許文献で示されているようにリン酸または亜リン酸を重縮合時に添加すると、反応に必要な触媒をも失活し、例えば実用的な機械的強度を発揮する重量平均分子量が2万〜20万のポリ乳酸を得ることが非常に難しい。またリン酸を添加すると重合反応に用いる釜を腐食する問題もある。   Patent Document 7 shows that phosphoric acid or a phosphorous acid compound is added during the polycondensation reaction. However, the patent is directed to the production of polylactic acid by direct polymerization of lactic acid. Further, as shown in the patent document, when phosphoric acid or phosphorous acid is added at the time of polycondensation, the catalyst necessary for the reaction is also deactivated. For example, the weight average molecular weight exhibiting practical mechanical strength is reduced. It is very difficult to obtain 20,000 to 200,000 polylactic acid. Further, when phosphoric acid is added, there is a problem that the kettle used for the polymerization reaction is corroded.

欧州特許532154号公報European Patent No. 532154 特開平5−93050号公報JP-A-5-93050 特開平6−116381号公報JP-A-6-116381 特開平7−228674号公報JP-A-7-228664 特許第2862071号公報Japanese Patent No. 2886071 特許第3513972号公報Japanese Patent No. 3513972 特開昭62−25121号公報JP 62-25121 A

本発明が解決しようとする課題は、製造時に重合反応釜の腐食がなく、また重合後の残留ラクチドが少なく、貯蔵安定性や成形加工性を満足するポリ乳酸を得るための製造方法を提供することである。   The problem to be solved by the present invention is to provide a production method for obtaining polylactic acid that does not corrode the polymerization reaction vessel during production, has little residual lactide after polymerization, and satisfies storage stability and moldability. That is.

このような課題を解決すべく、本発明者らは鋭意検討の結果、本発明を完成させるに至った。すなわち、本発明は、ラクチドを主原料として、触媒を用いたラクチドの開環重合によりポリ乳酸を製造する方法において、重量平均分子量が1万以下の段階で、一般式1で表される有機リン化合物を添加することを特徴とするポリ乳酸の製造方法に関する。   As a result of intensive studies, the present inventors have completed the present invention in order to solve such problems. That is, the present invention provides a method for producing polylactic acid by using lactide as a main raw material by ring-opening polymerization of lactide using a catalyst, at a stage where the weight average molecular weight is 10,000 or less. The present invention relates to a method for producing polylactic acid, which comprises adding a compound.

Figure 2009209224
(式中、Rは水素またはアルキル基、Rはアルキル基、Rは一価の有機基を表す。)
Figure 2009209224
(In the formula, R 1 represents hydrogen or an alkyl group, R 2 represents an alkyl group, and R 3 represents a monovalent organic group.)

本発明によると、製造時に重合反応釜の腐食がなく、しかも残留ラクチドが少ないポリ乳酸が効率よく製造でき、そのポリ乳酸は貯蔵安定性や成形加工性を共に高いレベルで満足することができる。   According to the present invention, it is possible to efficiently produce a polylactic acid that does not corrode the polymerization reaction kettle at the time of production and has little residual lactide, and the polylactic acid can satisfy both storage stability and moldability at a high level.

以下に本発明を更に詳細に説明する。本発明はラクチドを主原料としてラクチドの開環重合によりポリ乳酸を製造する方法において、有機リン化合物の添加時期や添加温度、その他の条件を特徴とするポリ乳酸の製造方法である。   The present invention is described in further detail below. The present invention is a method for producing polylactic acid characterized by the addition time, addition temperature, and other conditions of the organophosphorus compound in the method for producing polylactic acid by ring-opening polymerization of lactide using lactide as a main raw material.

本発明で使用されるラクチドは、D−、L−、DL−またはメソラクチドから選ばれ、共重合も可能である。共重合成分を例示すると、β−ブチロラクトン、γ−ブチロラクトン、ε−カプロラクトン、プロピオラクトン、δ−バレロラクトン、4−バレロラクトン、グリコリド等を挙げることが出来るが、これらに限定されるものではない。またポリグリセリン、イオン性基含有化合物など多価アルコールを共重合することで、物性をコントロールすることもできる。なお、本発明において「主原料」とはポリ乳酸樹脂全体を100モル%としたときに50モル%以上を意味する。   The lactide used in the present invention is selected from D-, L-, DL- or meso-lactide and can be copolymerized. Examples of the copolymer component include β-butyrolactone, γ-butyrolactone, ε-caprolactone, propiolactone, δ-valerolactone, 4-valerolactone, glycolide, and the like, but are not limited thereto. . The physical properties can also be controlled by copolymerizing polyhydric alcohols such as polyglycerin and ionic group-containing compounds. In the present invention, the “main raw material” means 50 mol% or more when the entire polylactic acid resin is 100 mol%.

本発明において用いる重合触媒としては、特に限定されず、オクチル酸スズ、ジブチル酸スズなどのスズ系化合物、アルミアセチルアセトナート、酢酸アルミなどのアルミ系化合物、テトライソプロピルチタネート、テトラブチルチタネートなどのチタン系化合物、ジルコニウムイソプロオイキシドなどのジルコニウム系化合物、三酸化アンチモンなどのアンチモン系化合物等、いずれもポリ乳酸重合に従来公知の触媒が挙げられる。また添加する触媒量によって最終ポリマーの分子量を調整することもできる。   The polymerization catalyst used in the present invention is not particularly limited, and tin compounds such as tin octylate and tin dibutylate; aluminum compounds such as aluminum acetylacetonate and aluminum acetate; titanium such as tetraisopropyl titanate and tetrabutyl titanate Conventionally known catalysts for polylactic acid polymerization include, for example, zirconium compounds such as zirconium compounds and zirconium isoprooxide and antimony compounds such as antimony trioxide. The molecular weight of the final polymer can be adjusted by the amount of catalyst added.

重合触媒の最適量は、触媒種によって異なるがオクチル酸スズを用いる場合、原料ラクチド重量100重量%に対して0.005〜0.5重量%、好ましくは0.01〜0.1重量%の触媒を用い、通常0.5〜10時間加熱重合することでポリ乳酸を製造することが可能である。アルミアセチルアセトナートを用いる場合、0.01〜0.8重量%、好ましくは0.01〜0.1重量%の触媒を用い、通常0.5〜10時間加熱重合する。反応は窒素など不活性ガス雰囲気または気流中にて行うのが好ましい。   The optimum amount of the polymerization catalyst varies depending on the catalyst type, but when tin octylate is used, it is 0.005 to 0.5% by weight, preferably 0.01 to 0.1% by weight based on 100% by weight of the raw material lactide. It is possible to produce polylactic acid by heating and polymerizing usually using a catalyst for 0.5 to 10 hours. When aluminum acetylacetonate is used, 0.01 to 0.8% by weight, preferably 0.01 to 0.1% by weight of catalyst is used, and the polymerization is usually carried out by heating for 0.5 to 10 hours. The reaction is preferably carried out in an inert gas atmosphere such as nitrogen or in an air stream.

本発明の製造方法において、ラクチドの開環重合開始剤を使用しても良い。例えば脂肪族アルコールのモノ、ジ、または多価アルコールのいずれでもよく、また飽和、もしくは不飽和であってもかまわない。具体的にはメタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、ノナノール、デカノール、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール等のモノアルコール、エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ヘキサンジオール、ノナンジオール、テトラメチレングリコール等の、ジアルコール、グリセロール、ソルビトール、キシリトール、リビトール、エリスリトール等の多価アルコールおよび乳酸メチル、乳酸エチル等を用いることができるがこれらに限定されるものではない。特にエチレングリコール、ラウリルアルコールを用いることが好ましい。用いるアルコールの沸点が重合温度より低い場合には加圧下で反応を行う必要がある。アルコールの量は、目的により異なるが、多すぎると分子量が上がりにくくなる傾向にある。好ましくは全モノマー量100モル%に対して0.01〜1モル%の割合で用いられる。   In the production method of the present invention, a lactide ring-opening polymerization initiator may be used. For example, any of mono-, di- or polyhydric alcohols of aliphatic alcohols may be used, and they may be saturated or unsaturated. Specifically, monoalcohols such as methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, nonanol, decanol, lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, ethylene glycol, 1,2-propanediol, 1 , 3-propanediol, 1,3-butanediol, 1,4-butanediol, hexanediol, nonanediol, tetramethylene glycol and the like polyalcohols such as dialcohol, glycerol, sorbitol, xylitol, ribitol, erythritol and the like Although methyl lactate, ethyl lactate, etc. can be used, it is not limited to these. In particular, it is preferable to use ethylene glycol or lauryl alcohol. When the boiling point of the alcohol used is lower than the polymerization temperature, it is necessary to carry out the reaction under pressure. The amount of alcohol varies depending on the purpose, but if it is too large, the molecular weight tends to be difficult to increase. Preferably, it is used at a ratio of 0.01 to 1 mol% with respect to 100 mol% of the total monomer amount.

本発明で使用する有機リン化合物は一般式1で表される。Rは水素またはアルキル基、Rはアルキル基、Rは一価の有機基を表す。Rは一価の有機基ならどのような種類でも良いが、好ましくは、アルキル基、芳香族基により置換されたアルキル基、アリール基、オルガニルオキシ基(アルコキシ基、アリールオキシ基)、ヒドロキシ基等が挙げられる。その中で残留ラクチド低減の観点からRが、アルキル基、アルコキシ基であることが最も望ましい。 The organophosphorus compound used in the present invention is represented by the general formula 1. R 1 represents hydrogen or an alkyl group, R 2 represents an alkyl group, and R 3 represents a monovalent organic group. R 3 may be of any kind as long as it is a monovalent organic group, but is preferably an alkyl group, an alkyl group substituted by an aromatic group, an aryl group, an organyloxy group (alkoxy group, aryloxy group), hydroxy Groups and the like. Among them, R 3 is most preferably an alkyl group or an alkoxy group from the viewpoint of reducing residual lactide.

Figure 2009209224
Figure 2009209224

有機リン化合物のリン原子に直結している水酸基は、1つ以下であることが好ましい。水酸基が2つ以上になると反応釜の腐食の問題が顕著になる場合があるとともに、目標となる分子量のポリ乳酸を得ることが難しくなる場合があるからである。   It is preferable that the number of hydroxyl groups directly connected to the phosphorus atom of the organic phosphorus compound is one or less. This is because if there are two or more hydroxyl groups, the problem of corrosion of the reaction kettle may become prominent and it may be difficult to obtain polylactic acid having a target molecular weight.

本発明で使用できる一般式1で表される有機リン化合物としては、次のようなものが挙げられるがこれらに限定されるものではない。好ましい態様であるRが水素、アルキル基、Rがアルキル基、Rがアルキル基、芳香族基により置換されたアルキル基、アリール基である化合物としては、メチルホスホン酸ジメチル、メチルホスホン酸メチル、メチルホスホン酸ジエチル、メチルホスホン酸エチル、エチルホスホン酸ジメチル、エチルホスホン酸メチル、エチルホスホン酸ジエチル、エチルホスホン酸エチル、オクタデシルホスホン酸ジメチル、オクタデシルホスホン酸メチル、ドデシルホスホン酸ジエチル、2−エチルヘキシルホスホン酸ビス(2−エチルヘキシル)、2−エチルヘキシルホスホン酸2−エチルヘキシル、ブチルホスホン酸ジブチル、ブチルホスホン酸ブチル、ベンジルホスホン酸ジメチル、ベンジルホスホン酸メチル、ベンジルホスホン酸ジエチル、ベンジルホスホン酸エチル、2−メチルベンジルホスホン酸ジメチル、2−メチルベンジルホスホン酸メチル、2−メチルベンジルホスホン酸ジエチル、2−メチルベンジルホスホン酸エチル、ナフチルメチルホスホン酸ジメチル、ナフチルメチルホスホン酸メチル、ナフチルメチルホスホン酸ジエチル、ナフチルメチルホスホン酸エチル、フェニルホスホン酸ジメチル、フェニルホスホン酸メチル、フェニルホスホン酸ジエチル、フェニルホスホン酸エチル、メチレンビス(ホスホン酸ジエチル)、メチレンビス(ホスホン酸ジイソプロピル)、ビニルホスホン酸ジエチル、アミルホスホン酸ジアミル、オクチルホスホン酸ジエチル、プロピルホスホン酸ジメチル、エチリデンビスホスホン酸テトラキス(1−メチルエチル)、ドデシルホスホン酸ジエチル、(1,1−ジメチルエチル)ホスホン酸ジエチル、(1−メチルエテニル)ホスホン酸ジエチル、イソブチルホスホン酸ジイソブチル、ビニルホスホン酸ジメチル、ジメトキシホスフィニル酢酸メチル、(ジエトキシホスフィニル)酢酸エチル、ホスホノ酢酸トリエチル、ジエチルホスホノ酢酸エチル、ヒドロキシホスホノ酢酸、α−ヒドロキシ−4−クロロベンジルホスホン酸ジエチル、4−アミノベンジルホスホン酸ジエチル、ベンジルホスホン酸ジエチル、4−メトキシベンジルホスホン酸ジエチル、(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ホスホン酸ジエチルなどが挙げられるが、これらに限定されるものではない。上記に列挙した有機リン化合物を有機溶媒に溶解して使用しても良い。使用する溶媒は、開環重合開始剤と同等であっても、種類が異なっても構わない。具体的な溶媒としてはメタノール、エタノール、プロパノール、キシレン、トルエン、エチレングリコール、ラウリルアルコール等が挙げられるが、これらに限定されるものではない。 Examples of the organophosphorus compound represented by Formula 1 that can be used in the present invention include, but are not limited to, the following. Preferred embodiments of the compound in which R 1 is hydrogen, an alkyl group, R 2 is an alkyl group, R 3 is an alkyl group, an alkyl group substituted with an aromatic group, or an aryl group include dimethyl methylphosphonate, methyl methylphosphonate, Diethyl methylphosphonate, ethyl methylphosphonate, dimethyl ethylphosphonate, methyl ethylphosphonate, ethyl ethylphosphonate, ethyl ethylphosphonate, dimethyl octadecylphosphonate, methyl octadecylphosphonate, diethyl dodecylphosphonate, bis (2-ethylhexylphosphonate) 2-ethylhexyl), 2-ethylhexyl 2-ethylhexylphosphonate, dibutyl butylphosphonate, butyl butylphosphonate, dimethyl benzylphosphonate, methyl benzylphosphonate, dibenzylphosphonate Chill, ethyl benzylphosphonate, dimethyl 2-methylbenzylphosphonate, methyl 2-methylbenzylphosphonate, diethyl 2-methylbenzylphosphonate, ethyl 2-methylbenzylphosphonate, dimethyl naphthylmethylphosphonate, methyl naphthylmethylphosphonate, naphthyl Diethyl methylphosphonate, ethyl naphthylmethylphosphonate, dimethyl phenylphosphonate, methyl phenylphosphonate, diethyl phenylphosphonate, ethyl phenylphosphonate, methylenebis (diethylphosphonate), methylenebis (diisopropylphosphonate), diethyl vinylphosphonate, amylphosphone Diamyl acid, diethyl octylphosphonate, dimethyl propylphosphonate, tetrakis (1-methylethyl) ethylidenebisphosphonate, Diethyl phosphonate, diethyl (1,1-dimethylethyl) phosphonate, diethyl (1-methylethenyl) phosphonate, diisobutyl isobutylphosphonate, dimethyl vinylphosphonate, methyl dimethoxyphosphinyl acetate, (diethoxyphosphinyl) acetic acid Ethyl, triethyl phosphonoacetate, ethyl diethylphosphonoacetate, hydroxyphosphonoacetic acid, diethyl α-hydroxy-4-chlorobenzylphosphonate, diethyl 4-aminobenzylphosphonate, diethyl benzylphosphonate, diethyl 4-methoxybenzylphosphonate, Examples include (3,5-di-tert-butyl-4-hydroxybenzyl) phosphonate diethyl, but are not limited thereto. The organic phosphorus compounds listed above may be used by dissolving in an organic solvent. The solvent used may be the same as or different from the ring-opening polymerization initiator. Specific examples of the solvent include, but are not limited to, methanol, ethanol, propanol, xylene, toluene, ethylene glycol, lauryl alcohol, and the like.

特に好ましい態様であるRが水素、アルキル基、Rがアルキル基、Rがオルガニルオキシ基、ヒドロキシ基である化合物としては、トリメチルホスフェート、ジメチルホスフェート、メチルホスフェート、トリエチルホスフェート、ジエチルホスフェート、エチルホスフェート、トリプロピルホスフェート、ジプロピルホスフェート、プロピルホスフェート、トリイソプロピルホスフェート、ジイソプロピルホスフェート、イソプロピルホスフェート、トリブチルホスフェート、ジブチルホスフェート、ブチルホスフェート、トリペンチルホスフェート、ジペンチルホスフェート、ペンチルホスフェート、トリヘキシルホスフェート、ジヘキシルホスフェート、ヘキシルホスフェート、トリヘプチルホスフェート、ジヘプチルホスフェート、ヘプチルホスフェート、トリオクチルホスフェート、ジオクチルホスフェート、ジオクチルホスフェート、メチルフェニルホスフェート、ジメチルフェニルホスフェート、エチルフェニルホスフェート、ジエチルフェニルホスフェート、メチルナフチルホスフェート、ジメチルナフチルホスフェート、エチルナフチルホスフェート、ジエチルナフチルホスフェートなどが挙げられるが、これらに限定されるものではない。上記に列挙した有機リン化合物を有機溶媒に溶解して使用しても良い。使用する溶媒は、開環重合開始剤と同じであっても、異なっても構わない。具体的な溶媒としてはメタノール、エタノール、プロパノール、キシレン、トルエン、エチレングリコール、ラウリルアルコール等が挙げられるが、これらに限定されるものではない。 Particularly preferred embodiments of the compound in which R 1 is hydrogen, an alkyl group, R 2 is an alkyl group, R 3 is an organyloxy group, or a hydroxy group include trimethyl phosphate, dimethyl phosphate, methyl phosphate, triethyl phosphate, diethyl phosphate, Ethyl phosphate, tripropyl phosphate, dipropyl phosphate, propyl phosphate, triisopropyl phosphate, diisopropyl phosphate, isopropyl phosphate, tributyl phosphate, dibutyl phosphate, butyl phosphate, tripentyl phosphate, dipentyl phosphate, pentyl phosphate, trihexyl phosphate, dihexyl phosphate, Hexyl phosphate, triheptyl phosphate, diheptyl phosphate , Heptyl phosphate, trioctyl phosphate, dioctyl phosphate, dioctyl phosphate, methyl phenyl phosphate, dimethyl phenyl phosphate, ethyl phenyl phosphate, diethyl phenyl phosphate, methyl naphthyl phosphate, dimethyl naphthyl phosphate, ethyl naphthyl phosphate, diethyl naphthyl phosphate, etc. However, it is not limited to these. The organic phosphorus compounds listed above may be used by dissolving in an organic solvent. The solvent used may be the same as or different from the ring-opening polymerization initiator. Specific examples of the solvent include, but are not limited to, methanol, ethanol, propanol, xylene, toluene, ethylene glycol, lauryl alcohol, and the like.

有機リン化合物の添加量は、重合に用いる触媒量に対し0.5〜20倍モルが好ましく、特に0.5〜10倍モルが好ましい。0.5倍モルより少ないと触媒を失活できないことがあり、10倍モルより多く添加しても効果に差異が生じない傾向にある。
特にリン原子に直結している水酸基を2つ有する一般式1で表される有機リン化合物の添加量は、特に注意を要する。0.5倍モルより少ないと触媒を失活できない傾向が強く、また10倍モルより多く添加すると重合反応中に触媒を失活させてしまい、目標とする分子量のポリ乳酸を得ることが困難となる可能性があるからである。リン原子に直結している水酸基を2つ有する有機リン化合物は、添加量をより厳密に調整する必要があるということを考慮すると、有機リン化合物は、リン原子に直結している水酸基が1つ以下であることが好ましい。
The addition amount of the organophosphorus compound is preferably 0.5 to 20 times by mole, particularly preferably 0.5 to 10 times by mole, relative to the amount of catalyst used for the polymerization. When the amount is less than 0.5 times mol, the catalyst may not be deactivated, and even when added more than 10 times mol, there is a tendency that the effect does not differ.
In particular, the addition amount of the organophosphorus compound represented by the general formula 1 having two hydroxyl groups directly bonded to the phosphorus atom requires special attention. If the amount is less than 0.5 times mol, the catalyst tends not to be deactivated, and if added more than 10 times mol, the catalyst is deactivated during the polymerization reaction, and it is difficult to obtain polylactic acid having a target molecular weight. Because there is a possibility of becoming. In view of the fact that the amount of the organic phosphorus compound having two hydroxyl groups directly bonded to the phosphorus atom needs to be adjusted more strictly, the organic phosphorus compound has one hydroxyl group directly bonded to the phosphorus atom. The following is preferable.

有機リン化合物の添加時期は、重量平均分子量が1万以下の段階であればいつでも良い。安全性、熱履歴の観点からできるだけ早い段階で添加することが望ましく、具体的には5000以下が好ましく、1000以下が最も好ましい。重量平均分子量が1万より大きい段階で添加すると重合終了までにリン化合物に加えられる熱量(熱履歴)が不十分であるので、有機リン化合物の構造変化が十分でなく、重合触媒を失活できず、ポリ乳酸中の残留ラクチドが多くなる。   The organophosphorus compound may be added at any time as long as the weight average molecular weight is 10,000 or less. It is desirable to add at the earliest possible stage from the viewpoint of safety and thermal history, specifically 5000 or less is preferable, and 1000 or less is most preferable. If added at a stage where the weight average molecular weight is greater than 10,000, the amount of heat (heat history) applied to the phosphorus compound by the end of polymerization is insufficient, so that the structural change of the organic phosphorus compound is not sufficient, and the polymerization catalyst can be deactivated. Therefore, the residual lactide in polylactic acid increases.

重量平均分子量が1万以下の段階で、一般式1で表される有機リン化合物を添加することで残留ラクチドが低減するメカニズムは、本発明者らが核磁気共鳴スペクトル分析、ICP発光分析により検討したところ、重合触媒と錯体を形成することで重合触媒を失活させることが示唆されている。即ち、一般式1で表される有機リン化合物は、添加直後、またその後の重合反応の前期過程では、重合触媒と相互作用できないため、重合触媒が機能し、重合反応が正常に行われ、目標の分子量まで到達可能である。一方で、熱履歴と共に有機リン化合物の構造変化が起こり、重合後期や重合反応終了後は重合触媒を失活させていると推定される。特にリンに直結している水酸基が1つ以下の場合、熱履歴による構造変化がなければ、重合触媒と充分に相互作用できない。本発明において、一般式1で表される有機リン化合物を分子量1万以下の段階で添加することにより、有機リン化合物の熱履歴による構造変化が起こり、重合触媒を失活させていると考えられる。重合触媒が失活すると、ラクチドの副生が抑えられるため、結果的にポリ乳酸中の残留ラクチド量を低減することが可能となる。   The mechanism by which the residual lactide is reduced by adding the organophosphorus compound represented by the general formula 1 at a stage where the weight average molecular weight is 10,000 or less is examined by the present inventors by nuclear magnetic resonance spectrum analysis and ICP emission analysis. As a result, it has been suggested that the polymerization catalyst is deactivated by forming a complex with the polymerization catalyst. That is, since the organophosphorus compound represented by the general formula 1 cannot interact with the polymerization catalyst immediately after the addition or in the subsequent process of the subsequent polymerization reaction, the polymerization catalyst functions and the polymerization reaction is normally performed. The molecular weight of can be reached. On the other hand, it is presumed that the structure change of the organophosphorus compound occurs along with the thermal history, and the polymerization catalyst is deactivated at the late stage of polymerization or after completion of the polymerization reaction. In particular, when the number of hydroxyl groups directly bonded to phosphorus is 1 or less, it is not possible to sufficiently interact with the polymerization catalyst unless there is a structural change due to thermal history. In the present invention, it is considered that the addition of the organophosphorus compound represented by the general formula 1 at a molecular weight of 10,000 or less causes a structural change due to the thermal history of the organophosphorus compound and deactivates the polymerization catalyst. . If the polymerization catalyst is deactivated, lactide by-products are suppressed, and as a result, the amount of residual lactide in polylactic acid can be reduced.

リン原子に直結している水酸基を2つ有する有機リン化合物を用いる場合、重合に用いる触媒量に対する添加量が15倍モルより多い場合は、重合反応中に触媒を失活させてしまい、目標とする分子量のポリ乳酸を得られないことがある。好ましくは、リン原子に直結している水酸基を2つ有する有機リン化合物の添加量が10倍モルより少ない場合は、目標とする分子量のポリ乳酸を得ることが可能かつ残留ラクチドを低減できる。   When using an organic phosphorus compound having two hydroxyl groups directly connected to a phosphorus atom, if the amount added relative to the amount of catalyst used for the polymerization is more than 15 times mole, the catalyst is deactivated during the polymerization reaction, and the target May not be obtained. Preferably, when the addition amount of the organic phosphorus compound having two hydroxyl groups directly bonded to the phosphorus atom is less than 10 times mol, polylactic acid having a target molecular weight can be obtained and the residual lactide can be reduced.

リン原子に直結している水酸基を3つ有する有機リン化合物を添加した場合は、有機リン化合物の種類、添加量に関わらず、重合反応中に触媒を失活させてしまい、目標とする高分子量のポリ乳酸を得られない。   When an organic phosphorus compound having three hydroxyl groups directly connected to a phosphorus atom is added, the catalyst is deactivated during the polymerization reaction regardless of the type and amount of the organic phosphorus compound, and the target high molecular weight Polylactic acid cannot be obtained.

有機リン化合物の添加方法としては特に限定されない。原料であるラクチドと共に添加しても良い。また反応液の温度を上げてラクチド溶解した後に添加しても良い。これらのうち、ラクチドを溶解した後に添加するのが好ましい。ラクチド、有機リン化合物、触媒を速やかに混合することができ、重合効率を高めることができると共に、到達分子量のコントロールが容易になるからである。   The method for adding the organophosphorus compound is not particularly limited. You may add with the lactide which is a raw material. Moreover, you may add, after raising the temperature of a reaction liquid and melt | dissolving a lactide. Of these, it is preferable to add after dissolving the lactide. This is because lactide, an organophosphorus compound, and a catalyst can be quickly mixed, the polymerization efficiency can be increased, and the ultimate molecular weight can be easily controlled.

本発明において、重量平均分子量1万以下の段階で有機リン化合物を添加する限り、重合触媒と有機リン化合物の添加順序は拘らない。重合触媒と有機リン化合物の相互作用を考慮すると、反応効率の観点より有機リン化合物は重合触媒と同時に添加することが好ましい。ここで言う「同時」というのは、触媒と有機リン化合物を予め混合しても添加してもよいし、混合せずに例えば別々若しくは同じ配管から同時に投入してもよい。   In the present invention, the order of addition of the polymerization catalyst and the organophosphorus compound is not limited as long as the organophosphorus compound is added at a stage where the weight average molecular weight is 10,000 or less. Considering the interaction between the polymerization catalyst and the organophosphorus compound, it is preferable to add the organophosphorus compound simultaneously with the polymerization catalyst from the viewpoint of reaction efficiency. The term “simultaneously” as used herein means that the catalyst and the organic phosphorus compound may be mixed or added in advance, or may be added simultaneously, for example, separately or from the same pipe without mixing.

本発明において、ポリ乳酸の重合温度は、ラクチドが溶解し、添加する有機リン化合物の沸点より低い温度であることが好ましい。有機リン化合物の沸点以上で重合すると、例え冷却管を備えていたとしても反応中に有機リン化合物が溜去し、触媒を失活できず残留ラクチド低減することができないおそれがあるからである。重合温度が高ければ、有機リン化合物の構造変化も早く、重合触媒を短時間で失活できるが、ラクチドのラセミ化も進行するため重合温度は、230℃以下が好ましい。即ち、重合温度は、特に100〜230℃が好ましい。   In the present invention, the polymerization temperature of polylactic acid is preferably lower than the boiling point of the organophosphorus compound to which lactide is dissolved and added. This is because if the polymerization is carried out at a temperature higher than the boiling point of the organophosphorus compound, even if a cooling pipe is provided, the organophosphorus compound is distilled off during the reaction, and the catalyst cannot be deactivated and the residual lactide cannot be reduced. If the polymerization temperature is high, the structural change of the organophosphorus compound is quick and the polymerization catalyst can be deactivated in a short time. However, since the racemization of lactide proceeds, the polymerization temperature is preferably 230 ° C. or lower. That is, the polymerization temperature is particularly preferably 100 to 230 ° C.

釜の形態、重合温度により最適な重合時間は異なるが、重合温度に到達してから40〜360分反応させることが好ましい。重合時間が、40分より短いと有機リン化合物が、重合触媒を失活できる構造に変化しないおそれがあり、残留ラクチドが低減できない場合がある。また重合時間が360分を超えると、反応中にポリ乳酸の分解が起こり、樹脂が着色することがある。   Although the optimum polymerization time varies depending on the kettle form and the polymerization temperature, it is preferable to react for 40 to 360 minutes after reaching the polymerization temperature. If the polymerization time is shorter than 40 minutes, the organophosphorus compound may not change to a structure capable of deactivating the polymerization catalyst, and residual lactide may not be reduced. If the polymerization time exceeds 360 minutes, polylactic acid may be decomposed during the reaction, and the resin may be colored.

本発明では、必要に応じ、酸化防止剤、熱安定剤、紫外線吸収剤、滑剤、粘着付与剤、可塑剤、架橋剤、粘度調整剤、静電気防止剤、香料、抗菌剤、分散剤、重合禁止剤などの各種添加剤を、本発明の効果を損なわない範囲で添加できる。   In the present invention, if necessary, an antioxidant, a heat stabilizer, an ultraviolet absorber, a lubricant, a tackifier, a plasticizer, a crosslinking agent, a viscosity modifier, an antistatic agent, a fragrance, an antibacterial agent, a dispersant, and a polymerization prohibition. Various additives such as an agent can be added as long as the effects of the present invention are not impaired.

本発明を更に具体的に説明するために以下に実施例を述べるが、本発明はこれらに限定されるものではない。尚、実施例における特性値は以下の方法によって測定した。   In order to describe the present invention more specifically, examples are described below, but the present invention is not limited thereto. In addition, the characteristic value in an Example was measured with the following method.

(1)重量平均分子量
テトラヒドロフランを移動相とした島津製作所製島津液クロマトグラフProminenceを用いて、カラム温度30℃、流量1mL/分にてGPC測定をおこなった結果から計算して、ポリスチレン換算した値を用いた。カラムは昭和電工(株)Shodex KF−802、804、806を用いた。
(2)残留ラクチド量 (wt%)
試料をクロロホルムDに溶解し、400MHzの核磁気共鳴スペクトル(NMR)装置を用い、ポリ乳酸に由来するプロトンの積分値と残留ラクチドに由来するプロトンの積分値の比から算出した。
(3)腐食性の有無
重合後のポリマー0.2gに硝酸3mLを添加し、密閉性高圧湿式分解法により測定液を調整した。測定液をICP発光法により定量化し、Cr原子が0.1ppm以上観測された場合、腐食性ありと判断した。
(4)貯蔵安定性
合成したポリ乳酸を酢酸エチルに溶解した。その溶液を二軸延伸ポリプロピレンフィルムに塗布後、減圧乾燥して剥がすことにより50μmのポリ乳酸薄膜を得た。得られたポリ乳酸薄膜を40℃、85%RHの条件下に放置し、30日後の分子量保持率が50%以上である場合、貯蔵安定性良好と判断した。30日後の分子量保持率が50%より小さい場合、不良と判断した。
(1) Weight-average molecular weight Calculated from the results of GPC measurement at a column temperature of 30 ° C. and a flow rate of 1 mL / min using Shimadzu liquid chromatograph Prominence manufactured by Shimadzu Corporation with a mobile phase as the mobile phase, a polystyrene-converted value Was used. Showa Denko Co., Ltd. Shodex KF-802, 804, 806 was used for the column.
(2) Residual lactide content (wt%)
The sample was dissolved in chloroform D and calculated from the ratio of the integral value of protons derived from polylactic acid and the integral value of protons derived from residual lactide using a 400 MHz nuclear magnetic resonance spectrum (NMR) apparatus.
(3) Presence or absence of corrosiveness 3 mL of nitric acid was added to 0.2 g of the polymer after polymerization, and the measurement liquid was prepared by a hermetic high-pressure wet decomposition method. The measurement solution was quantified by the ICP emission method, and when Cr atoms were observed in an amount of 0.1 ppm or more, it was judged that there was corrosiveness.
(4) Storage stability The synthesized polylactic acid was dissolved in ethyl acetate. The solution was applied to a biaxially stretched polypropylene film, dried under reduced pressure, and peeled off to obtain a 50 μm polylactic acid thin film. The obtained polylactic acid thin film was left under conditions of 40 ° C. and 85% RH, and when the molecular weight retention after 30 days was 50% or more, it was judged that the storage stability was good. If the molecular weight retention after 30 days was less than 50%, it was judged as defective.

<実施例1>
攪拌機、温度計、窒素吹き込み口を備えた2LのSUS304製反応釜にL−ラクチド400g、D−ラクチド100gを入れ、窒素雰囲気下で攪拌しながら温度120℃でラクチドを溶融した後、オクチル酸スズ0.14g、開始剤としてのエチレングリコール0.5g、トリメチルホスフェート0.29gを添加した。添加時のラクチドの重量平均分子量は500以下であった。その後180℃まで昇温し、重合を1.5時間行い、0.1Torrで0.5時間減圧してポリ乳酸を合成した。
樹脂の還元粘度、残留ラクチド量、腐食性の有無を測定した結果を表1に示す。表1より本発明の方法によれば腐食性なく、残留ラクチドが少なく、かつ高分子量のポリ乳酸が得られることが分かる。
<Example 1>
L-lactide 400 g and D-lactide 100 g were put into a 2 L SUS304 reaction kettle equipped with a stirrer, a thermometer, and a nitrogen blowing port, and the lactide was melted at a temperature of 120 ° C. with stirring in a nitrogen atmosphere. 0.14 g, ethylene glycol 0.5 g as an initiator, and trimethyl phosphate 0.29 g were added. The weight average molecular weight of lactide at the time of addition was 500 or less. Thereafter, the temperature was raised to 180 ° C., polymerization was carried out for 1.5 hours, and the pressure was reduced at 0.1 Torr for 0.5 hours to synthesize polylactic acid.
Table 1 shows the results of measuring the reduced viscosity, residual lactide content, and the presence or absence of corrosiveness of the resin. From Table 1, it can be seen that according to the method of the present invention, polylactic acid having no high corrosiveness, low residual lactide and high molecular weight can be obtained.

<実施例2>
攪拌機、温度計、窒素吹き込み口を備えた2LのSUS304製反応釜にL−ラクチド400g、D−ラクチド100gを入れ、窒素雰囲気下で攪拌しながら温度120℃でラクチドを溶融した後、オクチル酸スズ0.14g、開始剤としてのエチレングリコール0.5gを添加し、180℃まで昇温した。重合を0.3時間おこない、重量平均分子量が8270になった段階で、トリメチルホスフェート0.29gを添加した。その後、重合を1.2時間おこない、0.1Torrで0.5時間減圧してポリ乳酸を合成した。
樹脂の還元粘度、残留ラクチド量、腐食性の有無を測定した結果を表1に示す。実施例1に比べ、トリメチルホスフェートの熱履歴が少ないため、残留ラクチド量は、やや多くなったが、貯蔵安定性は充分に満足できる樹脂を得ることができた。本発明の方法によれば腐食性なく、残留ラクチドが少なく、かつ高分子量のポリ乳酸が得られることが分かる。
<Example 2>
L-lactide 400 g and D-lactide 100 g were put into a 2 L SUS304 reaction kettle equipped with a stirrer, a thermometer, and a nitrogen blowing port, and the lactide was melted at a temperature of 120 ° C. with stirring in a nitrogen atmosphere. 0.14 g and 0.5 g of ethylene glycol as an initiator were added, and the temperature was raised to 180 ° C. Polymerization was performed for 0.3 hour, and 0.29 g of trimethyl phosphate was added when the weight average molecular weight reached 8270. Thereafter, polymerization was carried out for 1.2 hours, and the pressure was reduced at 0.1 Torr for 0.5 hours to synthesize polylactic acid.
Table 1 shows the results of measuring the reduced viscosity, residual lactide content, and the presence or absence of corrosiveness of the resin. Compared to Example 1, since the thermal history of trimethyl phosphate was small, the amount of residual lactide was slightly increased, but a resin with sufficiently satisfactory storage stability could be obtained. It can be seen that according to the method of the present invention, polylactic acid which is not corrosive, has little residual lactide and has a high molecular weight can be obtained.

<実施例3>
トリメチルホスフェート0.29gをジメチルホスフェート0.26gに変更した以外は実施例1と同様の方法でポリ乳酸を合成した。
樹脂の還元粘度、残留ラクチド量、腐食性の有無を測定した結果を表1に示す。表1より本発明の方法によれば腐食性なく、残留ラクチドが少なく、かつ高分子量のポリ乳酸が得られることが分かる。
<Example 3>
Polylactic acid was synthesized in the same manner as in Example 1 except that 0.29 g of trimethyl phosphate was changed to 0.26 g of dimethyl phosphate.
Table 1 shows the results of measuring the reduced viscosity, residual lactide content, and the presence or absence of corrosiveness of the resin. From Table 1, it can be seen that according to the method of the present invention, polylactic acid having no high corrosiveness, low residual lactide and high molecular weight can be obtained.

<実施例4>
トリメチルホスフェート0.29gをメチルホスフェート0.23gに変更した以外は実施例1と同様の方法でポリ乳酸を合成した。
樹脂の還元粘度、残留ラクチド量、腐食性の有無を測定した結果を表1に示す。表1より本発明の方法によれば腐食性なく、残留ラクチドが少なく、かつ高分子量のポリ乳酸が得られることが分かる。
<Example 4>
Polylactic acid was synthesized in the same manner as in Example 1 except that 0.29 g of trimethyl phosphate was changed to 0.23 g of methyl phosphate.
Table 1 shows the results of measuring the reduced viscosity, residual lactide content, and the presence or absence of corrosiveness of the resin. From Table 1, it can be seen that according to the method of the present invention, polylactic acid having no high corrosiveness, low residual lactide and high molecular weight can be obtained.

<実施例5>
トリメチルホスフェート0.29gをフェニルホスホン酸ジメチル0.39gに変更した以外は実施例1と同様の方法でポリ乳酸を合成した。
樹脂の還元粘度、残留ラクチド量、腐食性の有無を測定した結果を表1に示す。表1より本発明の方法によれば腐食性なく、残留ラクチドが少なく、かつ高分子量のポリ乳酸が得られることが分かる。
<Example 5>
Polylactic acid was synthesized in the same manner as in Example 1 except that 0.29 g of trimethyl phosphate was changed to 0.39 g of dimethyl phenylphosphonate.
Table 1 shows the results of measuring the reduced viscosity, residual lactide content, and the presence or absence of corrosiveness of the resin. From Table 1, it can be seen that according to the method of the present invention, polylactic acid having no high corrosiveness, low residual lactide and high molecular weight can be obtained.

<実施例6>
トリメチルホスフェート0.29gをホスホノ酢酸トリエチル0.47gに変更した以外は実施例1と同様の方法でポリ乳酸を合成した。
樹脂の還元粘度、残留ラクチド量、腐食性の有無を測定した結果を表1に示す。表1より本発明の方法によれば腐食性なく、残留ラクチドが少なく、かつ高分子量のポリ乳酸が得られることが分かる。
<Example 6>
Polylactic acid was synthesized in the same manner as in Example 1 except that 0.29 g of trimethyl phosphate was changed to 0.47 g of triethyl phosphonoacetate.
Table 1 shows the results of measuring the reduced viscosity, residual lactide content, and the presence or absence of corrosiveness of the resin. From Table 1, it can be seen that according to the method of the present invention, polylactic acid having no high corrosiveness, low residual lactide and high molecular weight can be obtained.

<実施例7>
トリメチルホスフェート0.29gをトリメチルホスフェート0.024gに変更した以外は実施例1と同様の方法でポリ乳酸を合成した。
樹脂の還元粘度、残留ラクチド量、腐食性の有無を測定した結果を表1に示す。実施例1に比べ、トリメチルホスフェートの量が少ないため、残留ラクチド量は、やや多くなったが、貯蔵安定性は充分に満足できる樹脂を得ることができた。本発明の方法によれば腐食性なく、残留ラクチドが少なく、かつ高分子量のポリ乳酸が得られることが分かる。
<Example 7>
Polylactic acid was synthesized in the same manner as in Example 1 except that 0.29 g of trimethyl phosphate was changed to 0.024 g of trimethyl phosphate.
Table 1 shows the results of measuring the reduced viscosity, residual lactide content, and the presence or absence of corrosiveness of the resin. Since the amount of trimethyl phosphate was smaller than in Example 1, the amount of residual lactide was slightly increased, but a resin with sufficiently satisfactory storage stability could be obtained. It can be seen that according to the method of the present invention, polylactic acid which is not corrosive, has little residual lactide and has a high molecular weight can be obtained.

<実施例8>
トリメチルホスフェート0.29gをトリメチルホスフェート0.73gに変更した以外は実施例1と同様の方法でポリ乳酸を合成した。
樹脂の還元粘度、残留ラクチド量、腐食性の有無を測定した結果を表1に示す。表1より本発明の方法によれば腐食性なく、残留ラクチドが少なく、かつ高分子量のポリ乳酸が得られることが分かる。
<Example 8>
Polylactic acid was synthesized in the same manner as in Example 1 except that 0.29 g of trimethyl phosphate was changed to 0.73 g of trimethyl phosphate.
Table 1 shows the results of measuring the reduced viscosity, residual lactide content, and the presence or absence of corrosiveness of the resin. From Table 1, it can be seen that according to the method of the present invention, polylactic acid having no high corrosiveness, low residual lactide and high molecular weight can be obtained.

<実施例9>
トリメチルホスフェート0.29gをメチルホスフェート0.58gに変更した以外は実施例1と同様の方法でポリ乳酸を合成した。
樹脂の還元粘度、残留ラクチド量、腐食性の有無を測定した結果を表1に示す。実施例1に比べ、メチルホスフェートの量が多いため到達分子量はやや低くなったが、高分子量ポリ乳酸として充分に満足できる樹脂を得ることができた。本発明の方法によれば腐食性なく、残留ラクチドが少なく、かつ高分子量のポリ乳酸が得られることが分かる。
<Example 9>
Polylactic acid was synthesized in the same manner as in Example 1 except that 0.29 g of trimethyl phosphate was changed to 0.58 g of methyl phosphate.
Table 1 shows the results of measuring the reduced viscosity, residual lactide content, and the presence or absence of corrosiveness of the resin. Compared to Example 1, since the amount of methyl phosphate was large, the molecular weight reached was slightly lower, but a resin sufficiently satisfactory as high molecular weight polylactic acid could be obtained. It can be seen that according to the method of the present invention, polylactic acid which is not corrosive, has little residual lactide and has a high molecular weight can be obtained.

<比較例1>
攪拌機、温度計、窒素吹き込み口を備えた2LのSUS304製反応釜にL−ラクチド400g、D−ラクチド100gを入れ、窒素雰囲気下で攪拌しながら温度120℃でラクチドを溶融した後、オクチル酸スズ0.14g、開始剤としてのエチレングリコール0.5gを添加した。その後180℃まで昇温し、重合を1.5時間おこない、0.1Torrで0.5時間減圧してポリ乳酸を合成した。
樹脂の還元粘度、残留ラクチド量、腐食性の有無を測定した結果を表1に示す。表1より有機リン化合物を添加していないので、残留ラクチドが低減できていないことが分かる。
<Comparative Example 1>
L-lactide 400 g and D-lactide 100 g were put into a 2 L SUS304 reaction kettle equipped with a stirrer, a thermometer, and a nitrogen blowing port, and the lactide was melted at a temperature of 120 ° C. with stirring in a nitrogen atmosphere. 0.14 g and 0.5 g of ethylene glycol as an initiator were added. Thereafter, the temperature was raised to 180 ° C., polymerization was carried out for 1.5 hours, and the pressure was reduced at 0.1 Torr for 0.5 hours to synthesize polylactic acid.
Table 1 shows the results of measuring the reduced viscosity, residual lactide content, and the presence or absence of corrosiveness of the resin. It can be seen from Table 1 that the residual lactide could not be reduced because no organophosphorus compound was added.

<比較例2>
攪拌機、温度計、窒素吹き込み口を備えた2LのSUS304製反応釜にL−ラクチド400g、D−ラクチド100gを入れ、窒素雰囲気下で攪拌しながら温度120℃でラクチドを溶融した後、オクチル酸スズ0.14g、開始剤としてのエチレングリコール0.5gを添加し、180℃まで昇温した。重合を0.5時間おこない、重量平均分子量が12670になった段階で、トリメチルホスフェート0.29gを添加した。その後、重合を1.0時間おこない、0.1Torrで0.5時間減圧してポリ乳酸を合成した。
樹脂の還元粘度、残留ラクチド量、腐食性の有無を測定した結果を表1に示す。ラクチドの分子量が1万以上の段階で、トリメチルホスフェートを添加しているため熱履歴少なく、残留ラクチド量が多く、貯蔵安定性を満足できるポリ乳酸を得ることができなかった。
<Comparative Example 2>
L-lactide 400 g and D-lactide 100 g were put into a 2 L SUS304 reaction kettle equipped with a stirrer, a thermometer, and a nitrogen blowing port, and the lactide was melted at a temperature of 120 ° C. with stirring in a nitrogen atmosphere. 0.14 g and 0.5 g of ethylene glycol as an initiator were added, and the temperature was raised to 180 ° C. Polymerization was carried out for 0.5 hour, and 0.29 g of trimethyl phosphate was added when the weight average molecular weight reached 12670. Thereafter, polymerization was carried out for 1.0 hour, and the pressure was reduced at 0.1 Torr for 0.5 hour to synthesize polylactic acid.
Table 1 shows the results of measuring the reduced viscosity, residual lactide content, and the presence or absence of corrosiveness of the resin. Since trimethyl phosphate was added when the molecular weight of lactide was 10,000 or more, polylactic acid having little thermal history, a large amount of residual lactide, and satisfying storage stability could not be obtained.

<比較例3>
攪拌機、温度計、窒素吹き込み口を備えた2LのSUS304製反応釜にL−ラクチド400g、D−ラクチド100gを入れ、窒素雰囲気下で攪拌しながら温度120℃でラクチドを溶融した後、オクチル酸スズ0.14g、開始剤としてのエチレングリコール0.5gを添加し、180℃まで昇温した。その後、重合を1.5時間おこない、反応後終了した段階でトリメチルホスフェート0.29gを添加した。その後、0.5時間攪拌後、0.1Torrで0.5時間減圧してポリ乳酸を合成した。トリメチルホスフェート添加時の重量平均分子量は、81200であった。
樹脂の還元粘度、残留ラクチド量、腐食性の有無を測定した結果を表1に示す。ラクチドの分子量が1万以上の段階で、トリメチルホスフェートを添加しているため熱履歴少なく、残留ラクチド量が多く、貯蔵安定性を満足できる樹脂を得ることができなかった。
<Comparative Example 3>
L-lactide 400 g and D-lactide 100 g were put into a 2 L SUS304 reaction kettle equipped with a stirrer, a thermometer, and a nitrogen blowing port, and the lactide was melted at a temperature of 120 ° C. with stirring in a nitrogen atmosphere. 0.14 g and 0.5 g of ethylene glycol as an initiator were added, and the temperature was raised to 180 ° C. Thereafter, polymerization was carried out for 1.5 hours, and 0.29 g of trimethyl phosphate was added when the reaction was completed. Then, after stirring for 0.5 hour, the pressure was reduced at 0.1 Torr for 0.5 hour to synthesize polylactic acid. The weight average molecular weight when trimethyl phosphate was added was 81200.
Table 1 shows the results of measuring the reduced viscosity, residual lactide content, and the presence or absence of corrosiveness of the resin. Since trimethyl phosphate was added when the molecular weight of lactide was 10,000 or more, a resin having a small heat history, a large amount of residual lactide, and satisfactory storage stability could not be obtained.

<比較例4>
トリメチルホスフェート0.29gをジメチルホスフェート0.26gに変更した以外は比較例3と同様の方法でポリ乳酸を合成した。
樹脂の還元粘度、残留ラクチド量、腐食性の有無を測定した結果を表1に示す。ラクチドの分子量が1万以上の段階で、ジメチルホスフェートを添加しているため熱履歴少なく、残留ラクチド量が多く、貯蔵安定性を満足できる樹脂を得ることができなかった。
<Comparative example 4>
Polylactic acid was synthesized in the same manner as in Comparative Example 3 except that 0.29 g of trimethyl phosphate was changed to 0.26 g of dimethyl phosphate.
Table 1 shows the results of measuring the reduced viscosity, residual lactide content, and the presence or absence of corrosiveness of the resin. Since the molecular weight of lactide was 10,000 or more and dimethyl phosphate was added, a resin having a low heat history, a large amount of residual lactide, and satisfactory storage stability could not be obtained.

<比較例5>
トリメチルホスフェート0.29gをメチルホスフェート0.23gに変更した以外は比較例3と同様の方法でポリ乳酸を合成した。
樹脂の還元粘度、残留ラクチド量、腐食性の有無を測定した結果を表1に示す。ラクチドの分子量が1万以上の段階で、メチルホスフェートを添加しているため熱履歴少なく、残留ラクチド量が多く、貯蔵安定性を満足できる樹脂を得ることができなかった。
<Comparative Example 5>
Polylactic acid was synthesized in the same manner as in Comparative Example 3 except that 0.29 g of trimethyl phosphate was changed to 0.23 g of methyl phosphate.
Table 1 shows the results of measuring the reduced viscosity, residual lactide content, and the presence or absence of corrosiveness of the resin. Since methyl phosphate was added at the stage where the molecular weight of lactide was 10,000 or more, it was not possible to obtain a resin having a small heat history, a large amount of residual lactide, and satisfactory storage stability.

<比較例6>
トリメチルホスフェート0.29gをポリリン酸(105%)0.19gに変更した以外は比較例3と同様の方法でポリ乳酸を合成した。
樹脂の還元粘度、残留ラクチド量、腐食性の有無を測定した結果を表1に示す。残留ラクチドが少なく、かつ高分子量のポリ乳酸を得ることができるが、ポリマー中のCr原子量が0.1ppm以上観測され、反応釜の腐食が認められた。
<Comparative Example 6>
Polylactic acid was synthesized in the same manner as in Comparative Example 3, except that 0.29 g of trimethyl phosphate was changed to 0.19 g of polyphosphoric acid (105%).
Table 1 shows the results of measuring the reduced viscosity, residual lactide content, and the presence or absence of corrosiveness of the resin. Polylactic acid having a low residual lactide and a high molecular weight can be obtained, but the Cr atomic weight in the polymer was observed to be 0.1 ppm or more, and corrosion of the reaction kettle was observed.

<比較例7>
トリメチルホスフェート0.29gをポリリン酸(105%)0.19gに変更した以外は実施例1と同様の方法でポリ乳酸を合成した。
樹脂の還元粘度、残留ラクチド量、腐食性の有無を測定した結果を表1に示す。P−OH結合を3つ有するポリリン酸を分子量1万以下の段階で添加すると、高分子量ポリ乳酸を得られず、反応釜の腐食も認められた。
<Comparative Example 7>
Polylactic acid was synthesized in the same manner as in Example 1 except that 0.29 g of trimethyl phosphate was changed to 0.19 g of polyphosphoric acid (105%).
Table 1 shows the results of measuring the reduced viscosity, residual lactide content, and the presence or absence of corrosiveness of the resin. When polyphosphoric acid having three P-OH bonds was added at a molecular weight of 10,000 or less, high molecular weight polylactic acid could not be obtained, and corrosion of the reaction kettle was also observed.

Figure 2009209224
Figure 2009209224

本発明によると、製造時に重合反応釜の腐食がなく、しかも残留ラクチドが少ないポリ乳酸が効率よく製造でき、そのポリ乳酸は貯蔵安定性や成形加工性を共に高いレベルで満足することができる。   According to the present invention, it is possible to efficiently produce a polylactic acid that does not corrode the polymerization reaction kettle at the time of production and has little residual lactide, and the polylactic acid can satisfy both storage stability and moldability at a high level.

Claims (3)

ラクチドを主原料として、触媒を用いたラクチドの開環重合によりポリ乳酸を製造する方法において、重量平均分子量が1万以下の段階で、一般式1で表される有機リン化合物を添加することを特徴とするポリ乳酸の製造方法。
Figure 2009209224
(式中、Rは水素またはアルキル基、Rはアルキル基、Rは一価の有機基を表す。)
In a method for producing polylactic acid by ring-opening polymerization of lactide using a catalyst using lactide as a main raw material, adding an organophosphorus compound represented by general formula 1 at a stage where the weight average molecular weight is 10,000 or less. A method for producing polylactic acid.
Figure 2009209224
(In the formula, R 1 represents hydrogen or an alkyl group, R 2 represents an alkyl group, and R 3 represents a monovalent organic group.)
一般式1で表される有機リン化合物の添加量が、重合に用いる触媒量に対し0.5〜20倍モルである請求項1に記載のポリ乳酸の製造方法。   2. The method for producing polylactic acid according to claim 1, wherein the addition amount of the organophosphorus compound represented by the general formula 1 is 0.5 to 20 times the amount of the catalyst used for the polymerization. 一般式1で表される有機リン化合物と重合触媒を同時に添加することを特徴とする請求項1または2に記載のポリ乳酸の製造方法。   The method for producing polylactic acid according to claim 1 or 2, wherein the organophosphorus compound represented by the general formula 1 and the polymerization catalyst are added simultaneously.
JP2008051651A 2008-03-03 2008-03-03 Method for producing polylactic acid Active JP5444623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008051651A JP5444623B2 (en) 2008-03-03 2008-03-03 Method for producing polylactic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008051651A JP5444623B2 (en) 2008-03-03 2008-03-03 Method for producing polylactic acid

Publications (2)

Publication Number Publication Date
JP2009209224A true JP2009209224A (en) 2009-09-17
JP5444623B2 JP5444623B2 (en) 2014-03-19

Family

ID=41182701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008051651A Active JP5444623B2 (en) 2008-03-03 2008-03-03 Method for producing polylactic acid

Country Status (1)

Country Link
JP (1) JP5444623B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001546A (en) * 2009-05-21 2011-01-06 Toyobo Co Ltd Method for producing polylactic acid
JP2012188464A (en) * 2011-03-08 2012-10-04 Asahi Kasei Chemicals Corp Aliphatic polyhydroxycarboxylic acid, and process for producing the same
JP2013513008A (en) * 2009-12-08 2013-04-18 アルケマ フランス Process for producing a polymer from at least one cyclic monomer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193127A (en) * 1995-01-19 1996-07-30 Daiso Co Ltd Production of lactic acid polymer
JPH09151243A (en) * 1995-11-30 1997-06-10 Shimadzu Corp Production of polylactic acid
JP2002322253A (en) * 2001-02-20 2002-11-08 Toyobo Co Ltd Polyester polymerization catalyst and polyester produced by using the same and method for producing polyester
WO2007094352A1 (en) * 2006-02-16 2007-08-23 Toray Industries, Inc. Polyether-polylactic acid composition and polylactic acid film containing same
WO2007114459A1 (en) * 2006-03-31 2007-10-11 Teijin Limited Polylactic acid composition
JP2007269960A (en) * 2006-03-31 2007-10-18 Teijin Ltd Polylactic acid composition
JP2008120872A (en) * 2006-11-09 2008-05-29 Teijin Ltd Method for producing polylactide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193127A (en) * 1995-01-19 1996-07-30 Daiso Co Ltd Production of lactic acid polymer
JPH09151243A (en) * 1995-11-30 1997-06-10 Shimadzu Corp Production of polylactic acid
JP2002322253A (en) * 2001-02-20 2002-11-08 Toyobo Co Ltd Polyester polymerization catalyst and polyester produced by using the same and method for producing polyester
WO2007094352A1 (en) * 2006-02-16 2007-08-23 Toray Industries, Inc. Polyether-polylactic acid composition and polylactic acid film containing same
WO2007114459A1 (en) * 2006-03-31 2007-10-11 Teijin Limited Polylactic acid composition
JP2007269960A (en) * 2006-03-31 2007-10-18 Teijin Ltd Polylactic acid composition
JP2008120872A (en) * 2006-11-09 2008-05-29 Teijin Ltd Method for producing polylactide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001546A (en) * 2009-05-21 2011-01-06 Toyobo Co Ltd Method for producing polylactic acid
JP2013513008A (en) * 2009-12-08 2013-04-18 アルケマ フランス Process for producing a polymer from at least one cyclic monomer
KR101456343B1 (en) * 2009-12-08 2014-11-03 아르끄마 프랑스 Method for preparing a polymer from at least one cyclic monomer
US9738751B2 (en) 2009-12-08 2017-08-22 Arkema France Method for preparing a polymer from at least one cyclic monomer
JP2012188464A (en) * 2011-03-08 2012-10-04 Asahi Kasei Chemicals Corp Aliphatic polyhydroxycarboxylic acid, and process for producing the same

Also Published As

Publication number Publication date
JP5444623B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP4997224B2 (en) Polylactic acid composition
JP5541853B2 (en) Polylactic acid film and method for producing the same
JP2008248162A (en) Stereocomplex polylactic acid film
JP2007277548A (en) Method for producing hydrolysis resistant polyester
CA2624911C (en) Polylactide composition
JP5444623B2 (en) Method for producing polylactic acid
AU2014374626A2 (en) Composition for producing biodegradable polyester resin, and production method for biodegradable polyester resin
US8642717B2 (en) Aliphatic polyester resin and a process for producing it
JP2007211197A (en) Polylactic acid plasticizer and its manufacturing method
WO2015118966A1 (en) Polyester resin composition and production method for same
JP2004231831A (en) Method for manufacturing polyester
JP2001288345A (en) Method for producing polybutylene terephthalate copolymer composition and polybutylene terephthalate copolymer composition obtained from the same
JP5381894B2 (en) Method for producing polylactic acid
JP5176649B2 (en) Polyester manufacturing method
JP5412893B2 (en) Polyester manufacturing method
JP2006063199A (en) Polybutylene terephthalate resin composition and molded article
JP5299637B2 (en) Polylactic acid-based stereocomplex
JP5109667B2 (en) Method for producing polybutylene terephthalate
JP5359706B2 (en) Polylactic acid block copolymer
Liu et al. Tri (3‐alkoxyl‐3‐oxopropyl) phosphine oxides derived from PH3 tail gas as a novel phosphorus‐containing plasticizer for polylactide
JP2006104283A (en) Polyester resin composition and molded product
JP5129944B2 (en) Polylactic acid composition
JP2006028457A (en) Polyacetal resin composition and its molded article
JP2014051622A (en) Aliphatic polyester-based resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R151 Written notification of patent or utility model registration

Ref document number: 5444623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350