JP2009209215A - Stimulation change responsible material and stimulation change responsible object using the same - Google Patents

Stimulation change responsible material and stimulation change responsible object using the same Download PDF

Info

Publication number
JP2009209215A
JP2009209215A JP2008051308A JP2008051308A JP2009209215A JP 2009209215 A JP2009209215 A JP 2009209215A JP 2008051308 A JP2008051308 A JP 2008051308A JP 2008051308 A JP2008051308 A JP 2008051308A JP 2009209215 A JP2009209215 A JP 2009209215A
Authority
JP
Japan
Prior art keywords
change
acceptor
donor
stimulus
responsive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008051308A
Other languages
Japanese (ja)
Inventor
Yasushi Maeda
寧 前田
Kosuke Okada
康佑 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Fukui NUC
Original Assignee
University of Fukui NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Fukui NUC filed Critical University of Fukui NUC
Priority to JP2008051308A priority Critical patent/JP2009209215A/en
Publication of JP2009209215A publication Critical patent/JP2009209215A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stimulation change responsible material capable of changing a color tone in a single particle, and capable of developing clear color with high contrast. <P>SOLUTION: This material includes a fine particle, dispersed in a dispersion medium, capable of causing a reversible volume change due to the stimulation change. The fine particle supports fluorescent dyes that act as a donor and as an acceptor upon a fluorescence resonance energy transfer, wherein a fluorescence spectrum of the donor and an excitation spectrum of the acceptor have an overlap. The fine particle supports two or more sorts of the fluorescent dyes to become the donor or the acceptor, and in a group of at least two fluorescent dyes, the fluorescence spectrum and the excitation spectrum may have the overlap at a different wavelength range. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、温度等の刺激の変化に応じて蛍光色が変化する変化応答性材料及びこの材料を用いた変化応答体に関する。   The present invention relates to a change-responsive material whose fluorescent color changes in response to a change in a stimulus such as temperature, and a change responder using this material.

温度,光,電流,電界,ph度等(以下、これらを総称して「温度等」と記載する)の刺激の変化に応じて可逆的に体積を変化させる刺激応答性ゲルが知られており、このような刺激応答性ゲルを用いて色調等を変化させる技術が、表示材料や調光材料に応用されている(例えば、特許文献〜4参照)。
特開昭61−148423号公報 特開昭61−148824号公報 特開平11−228850号公報 特開2003−147210号公報
Stimulus-responsive gels that change volume reversibly in response to changes in stimuli such as temperature, light, current, electric field, ph degree (hereinafter collectively referred to as “temperature, etc.”) are known. A technique for changing the color tone or the like using such a stimulus-responsive gel is applied to display materials and light-modulating materials (see, for example, Patent Documents 4 to 4).
JP 61-148423 A JP-A 61-148824 JP-A-11-228850 JP 2003-147210 A

しかし、これら方法では、色素からの反射光を、ゲル粒子を白濁させることによって制御するため、コントラストが低くなってしまうという問題があった。
本発明は上記の課題に鑑みてなされたもので、単一の粒子で色調の変化が可能であり、かつ、蛍光を利用することで背景に対してコントラストが高く鮮やかな発色が可能な変化応答性材料及びこれを用いた刺激変化応答体の提供を目的とする。
However, in these methods, since the reflected light from the pigment is controlled by making the gel particles cloudy, there is a problem that the contrast becomes low.
The present invention has been made in view of the above problems, and a change response capable of changing the color tone with a single particle and capable of vivid coloring with high contrast with respect to the background by using fluorescence. An object is to provide a sex change material and a stimulus change responder using the same.

上記課題を解決するために本発明の発明者が鋭意研究を行った結果、蛍光共鳴エネルギー移動(FRET)を利用することで、本発明の目的を達成できることに想到した。
具体的に、請求項1に記載の発明は、刺激の変化により蛍光色が変化する刺激変化応答性材料において、分散媒中に、刺激の変化により可逆的に体積変化を起こす微粒子を分散させ、この微粒子に、蛍光共鳴エネルギー移動におけるドナーとなる蛍光色素およびアクセプタとなる蛍光色素であって、前記ドナーの蛍光スペクトルと前記アクセプタとの励起スペクトルに重なりを有する前記蛍光色素を担持させた構成としてある。
As a result of intensive studies by the inventors of the present invention in order to solve the above-mentioned problems, it has been conceived that the object of the present invention can be achieved by using fluorescence resonance energy transfer (FRET).
Specifically, in the stimulus change responsive material in which the fluorescent color changes due to a stimulus change, the invention according to claim 1 disperses fine particles that cause a volume change reversibly due to the stimulus change in the dispersion medium, This fine particle is configured to carry a fluorescent dye serving as a donor and an acceptor fluorescent dye in fluorescence resonance energy transfer, and the fluorescent dye having an overlap in the excitation spectrum of the donor and the acceptor. .

蛍光共鳴エネルギー移動は、ドナーとなる分子の蛍光スペクトルとアクセプタとなる分子の励起スペクトルに重なりがある場合に、それらの分子間の距離が一定以下になると、ドナーを励起するとエネルギーがアクセプタに移動してアクセプタとなる分子が励起される現象である。そして、蛍光共鳴エネルギー移動効率は分子間距離が小さくなると急激に増大することが知られている。そのため、上記構成の刺激変化応答性材料は、例えば低温では、水に膨潤しているために分子間距離は大きくなり、ドナーからの発光が優先するが、温度を上昇させ相転移温度を超えると、架橋高分子ゲルが収縮して分子間距離が小さくなり、アクセプタから発せられる発光が強くなる。このように温度で架橋高分子ゲルの膨潤状態を変化させることにより、当該温度を境としてコントラストが大きく変化する。そのため、単一粒子で、温度変化により異なる色調の色へ変化させることが可能になる。   In the fluorescence resonance energy transfer, when there is an overlap between the fluorescence spectrum of the donor molecule and the excitation spectrum of the acceptor molecule, if the distance between these molecules is below a certain level, the energy is transferred to the acceptor when the donor is excited. This is a phenomenon in which the acceptor molecule is excited. It is known that the fluorescence resonance energy transfer efficiency increases rapidly as the intermolecular distance decreases. For this reason, the stimulus change responsive material having the above structure is swollen in water at a low temperature, for example, and the intermolecular distance becomes large, and light emission from the donor has priority, but when the temperature is increased and the phase transition temperature is exceeded. The cross-linked polymer gel contracts, the intermolecular distance decreases, and the luminescence emitted from the acceptor increases. Thus, by changing the swelling state of the crosslinked polymer gel with the temperature, the contrast changes greatly with the temperature as a boundary. Therefore, it is possible to change to a color having a different color tone with a change in temperature with a single particle.

前記微粒子として、請求項2に記載するように、高分子ゲルを用いることができる。
また、請求項3に記載するように、前記粒子に担持させる前記ドナーとなる蛍光色素又は前記アクセプタとなる蛍光色素を二種類以上とし、少なくとも二つの前記蛍光色素の組において、異なる波長領域で、前記励起スペクトルの重なりを有するように構成してもよい。
この場合、請求項4に記載するように、前記微粒子が、コアと一つ又は複数のシェルとからなる複数層構造で形成され、前記コア及び前記シェルに前記ドナーとなる蛍光色素又は前記アクセプタとなる蛍光色素を担持させたものであってもよい。
このようにすることで、多数色に色調を変化させることが可能になる。
As the fine particles, as described in claim 2, a polymer gel can be used.
Further, as described in claim 3, two or more types of fluorescent dyes serving as the donor or acceptor to be carried on the particles, and at least two sets of the fluorescent dyes in different wavelength regions, You may comprise so that the said excitation spectrum may overlap.
In this case, as described in claim 4, the fine particles are formed in a multi-layer structure including a core and one or a plurality of shells, and the core and the shell are the fluorescent dye or the acceptor serving as the donor. It is also possible to carry a fluorescent dye.
In this way, it is possible to change the color tone to many colors.

請求項5に記載するように、構成するモノマー成分の少なくとも一つが、(メタ)アクリル酸アミノ置換アルキルエステル、もしくはN-置換(メタ)アクリルアミドを使用してもよい。
本発明の刺激変化応答体は、請求項6に記載するように、請求項1〜請求項5のいずれかに記載された変化応答性材料を基材上に一次元、二次元もしくは三次元状に配置して構成することができる。
As described in claim 5, at least one of the constituent monomer components may use (meth) acrylic acid amino-substituted alkyl ester or N-substituted (meth) acrylamide.
As described in claim 6, the stimulus change responder of the present invention is provided in a one-dimensional, two-dimensional or three-dimensional form with the change-responsive material according to any one of claims 1 to 5 on a substrate. It can be arranged and configured.

本発明によれば、単一の粒子で色調の変化が可能であり、かつ、蛍光を利用することで背景に対してコントラストが高く鮮やかな発色が可能な変化応答性材料及びこれを用いた変化応答体を得ることができる。   According to the present invention, a change-responsive material capable of changing color tone with a single particle, and capable of vivid coloring with high contrast to the background by using fluorescence, and change using the same A responder can be obtained.

以下、本発明の好適な一実施形態を、図面を参照しながら詳細に説明する。
図1は、本発明の刺激変化応答性材料の一実施形態にかかり、その構成を説明する概略図である。
変化応答性材料は、一定条件下で蛍光共鳴エネルギー移動を起こすドナー3とアクセプタ4とを、温度等の刺激により可逆的な体積変化を生じさせる微粒子2に担持させ、この微粒子を分散媒中に分散させて形成される。
また、微粒子2としては、上記の可逆的な体積変化を生じさせるものであれば公知の種々のものを用いることができ、高分子ゲルを用いることができる。
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram illustrating a configuration according to an embodiment of the stimulus change responsive material of the present invention.
In the change-responsive material, a donor 3 and an acceptor 4 that cause fluorescence resonance energy transfer under a certain condition are supported on a fine particle 2 that causes a reversible volume change by stimulation such as temperature, and the fine particle is contained in a dispersion medium. It is formed by dispersing.
As the fine particles 2, various known ones can be used as long as they cause the above reversible volume change, and a polymer gel can be used.

蛍光共鳴エネルギー移動を起こすためには、ドナー3の蛍光スペクトルとアクセプタ4の励起スペクトルに重なりがあることと、ドナー3とアクセプタ4とが一定の距離に近接することが条件となる。本発明では、蛍光スペクトルと励起スペクトルに重なりがあるドナー3とアクセプタ4とを体積変化を生じさせる微粒子2に担持させて分散媒中に分散させ、微粒子2の体積変化に応じてドナー3とアクセプタ4との距離を接近させ、蛍光共鳴エネルギー移動を起こさせる。   In order to cause fluorescence resonance energy transfer, the fluorescence spectrum of the donor 3 and the excitation spectrum of the acceptor 4 are overlapped, and the donor 3 and the acceptor 4 are close to each other at a certain distance. In the present invention, the donor 3 and the acceptor 4 that overlap in the fluorescence spectrum and the excitation spectrum are supported on the fine particles 2 that cause the volume change and dispersed in the dispersion medium, and the donor 3 and the acceptor according to the volume change of the fine particles 2. 4 is brought close to each other to cause fluorescence resonance energy transfer.

例えば、室温下では、ドナー3とアクセプタ4を担持させた微粒子間の距離が一定以上(蛍光共鳴エネルギー移動を起こさない距離)に保たれていて、励起光を照射するとドナー3の蛍光のみを観察することができる。この状態から、温度を上昇させて微粒子2の体積を変化(図示の例では縮小)させると、ドナー3とアクセプタ4とが接近し、両者の距離が蛍光共鳴エネルギー移動を起こす距離まで接近する。これにより、ドナー3からアクセプタ4への蛍光エネルギーの移動が起こり、アクセプタ4の蛍光のみを観察できるようになる。
従って、本発明によれば、ドナー3の蛍光色素と、アクセプタ4の蛍光色素とを異なる色のものに選択することで、温度変化により、高いコントラスト比で色調を変化させることのできる刺激変化応答性材料を得ることができる。また、この刺激変化応答性材料を、ガラス板やアクリル板等の基材上に一次元状(線状)、二次元状(平面状)又は三次元状(立体状)に配置することで、温度変化により高いコントラスト比で色調を変化させることのできる刺激変化応答体を構成することができる。
For example, at room temperature, the distance between the fine particles carrying the donor 3 and the acceptor 4 is maintained at a certain distance (distance that does not cause fluorescence resonance energy transfer), and when the excitation light is irradiated, only the fluorescence of the donor 3 is observed. can do. From this state, when the temperature is raised and the volume of the fine particles 2 is changed (reduced in the illustrated example), the donor 3 and the acceptor 4 approach each other, and the distance between the two approaches the distance that causes fluorescence resonance energy transfer. Thereby, the fluorescence energy is transferred from the donor 3 to the acceptor 4, and only the fluorescence of the acceptor 4 can be observed.
Therefore, according to the present invention, by selecting the fluorescent dye of the donor 3 and the fluorescent dye of the acceptor 4 in different colors, a stimulus change response that can change the color tone with a high contrast ratio due to a temperature change. Can be obtained. Moreover, by arranging this stimulus change responsive material on a substrate such as a glass plate or an acrylic plate in a one-dimensional shape (linear shape), a two-dimensional shape (planar shape), or a three-dimensional shape (three-dimensional shape), A stimulus change responder capable of changing the color tone with a high contrast ratio due to a temperature change can be configured.

[架橋高分子ゲル]
温度等の刺激の変化により可逆的な体積変化を生じさせる微粒子2としては、架橋高分子ゲルを用いるのが好ましい。架橋高分子ゲルは、N-イソプロピル(メタ)アクリルアミドなどのアルキル置換(メタ)アクリルアミドを構成成分として含む。そして、アルキル置換(メタ)アクリルアミドの構造や組み合わせと組成を変えることで、架橋高分子ゲルのLCST(蛍光エネルギーの移動が生じる温度)を変化させることができる。
[Crosslinked polymer gel]
As the fine particles 2 that cause a reversible volume change by a change in stimulus such as temperature, it is preferable to use a crosslinked polymer gel. The crosslinked polymer gel contains alkyl-substituted (meth) acrylamide such as N-isopropyl (meth) acrylamide as a constituent component. The LCST (temperature at which fluorescence energy transfer occurs) of the crosslinked polymer gel can be changed by changing the structure, combination, and composition of the alkyl-substituted (meth) acrylamide.

さらに、架橋高分子ゲルの構成成分の少なくとも一つとして、(メタ)アクリル酸、(メタ)アクリル酸の金属塩、ジメチルアミノプロピル(メタ)アクリルアミドなどのアミノ置換(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレートなどの(メタ)アクリル酸アミノ置換アルキルエステルなどの、解離するとイオン性を示す基を持つモノマーを含む。   Furthermore, as at least one of the components of the crosslinked polymer gel, (meth) acrylic acid, metal salt of (meth) acrylic acid, amino-substituted (meth) acrylamide such as dimethylaminopropyl (meth) acrylamide, dimethylaminoethyl ( It includes monomers having groups that exhibit ionic properties when dissociated, such as (meth) acrylate, amino-substituted alkyl esters such as (meth) acrylate and diethylaminoethyl (meth) acrylate.

これらのモノマーと、前記アルキル置換(メタ)アクリルアミドなどを共重合した架橋高分子ゲルは、水中に漬けると、架橋高分子ゲル粒子の表面上に位置した前記モノマーに由来するイオン性基が生じる。これらのイオン性基の間の静電的な反発力は、微粒子の分散安定性を増大させ、また、ドナー及びアクセプタと結合する役目を果たすこともできる。すなわち、架橋高分子ゲル中に含まれる、解離するとイオン性を示す反応基を持つモノマーの混合比率により、ゲル表面上に化学的に結合するドナー及びアクセプタの量を制御することが可能となる。前記モノマーの混合比率は、全架橋高分子ゲルに対し、0.1〜10mol%であって、好ましくは0.5〜5mol%である。0.1mol%以下であると、分散安定性が低下し、特に高温において微粒子の凝集が起こり、10mol%以上であると、温度変化に伴う微粒子の体積変化が小さくなる。   When the crosslinked polymer gel obtained by copolymerizing these monomers and the alkyl-substituted (meth) acrylamide is immersed in water, an ionic group derived from the monomer located on the surface of the crosslinked polymer gel particles is generated. The electrostatic repulsion between these ionic groups increases the dispersion stability of the microparticles and can also serve to bind to donors and acceptors. That is, it is possible to control the amount of donor and acceptor chemically bonded on the gel surface by the mixing ratio of monomers having reactive groups that exhibit ionic properties when dissociated contained in the crosslinked polymer gel. The mixing ratio of the monomer is 0.1 to 10 mol%, preferably 0.5 to 5 mol%, based on the total crosslinked polymer gel. When the amount is 0.1 mol% or less, the dispersion stability is lowered, and the aggregation of fine particles occurs particularly at a high temperature. When the amount is 10 mol% or more, the volume change of the fine particles accompanying the temperature change becomes small.

これらのLCSTを持つ架橋高分子ゲルは、ラジカル重合などの一般的な重合方法によって製造することができる。例えば、原料となるN-イソプロピル(メタ)アクリルアミドなどのアルキル置換(メタ)アクリルアミド、(メタ)アクリル酸および架橋剤を水中に溶解させたモノマー水溶液中に、ラジカル重合開始剤を混合することで簡単に架橋高分子ゲルが重合できるが、もちろんこの限りではない。また、あらかじめアルギン酸カプセルなどの高分子ゲル中に前記モノマー水溶液を内包し、アルギン酸カプセル中でモノマーを重合させる方法もある。この方法の場合、重合する架橋高分子ゲルを粒子化することが可能となり、アルギン酸カプセルの粒子径により、その粒子径も制御できる。前記架橋剤の一例としては、N,N'-メチレンビスアクリルアミドなどの多官能性のモノマーが挙げられるが、もちろんこの限りではない。
本発明の材料に使用される液体(分散媒)としては、水、電解質水溶液、アルコール、水に可溶な溶剤やそれらの混合物が使用できる。
These crosslinked polymer gels having LCST can be produced by a general polymerization method such as radical polymerization. For example, it is easy by mixing a radical polymerization initiator in an aqueous monomer solution in which the raw material alkyl-substituted (meth) acrylamide such as N-isopropyl (meth) acrylamide, (meth) acrylic acid and a crosslinking agent are dissolved in water. A crosslinked polymer gel can be polymerized, but this is not a limitation. There is also a method in which the monomer aqueous solution is encapsulated in advance in a polymer gel such as an alginate capsule and the monomer is polymerized in the alginate capsule. In the case of this method, the polymerized crosslinked polymer gel can be formed into particles, and the particle diameter can be controlled by the particle diameter of the alginic acid capsule. An example of the cross-linking agent is a polyfunctional monomer such as N, N′-methylenebisacrylamide, but of course not limited thereto.
As the liquid (dispersion medium) used in the material of the present invention, water, an aqueous electrolyte solution, alcohol, a water-soluble solvent, or a mixture thereof can be used.

[微粒子]
ドナー及びアクセプタを担持させる微粒子(分散質)は、N-イソプロピルアクリルアミド(NIPAM)、アクリル酸、N,N'-メチレンビスアクリルアミド、ドデシル硫酸ナトリウム、フルオレセインモノマー、ローダミンモノマーを、純水に溶解させ、窒素ガスにより脱気したものに、所定温度に加熱し小量の純水に溶解させた過硫酸カリウムを加えて重合を開始し、撹拌しながら数時間反応させ、反応溶液を透析膜に入れ、純水に対して透析することにより精製することができる。
一つの具体例としては、N-イソプロピルアクリルアミド1.67g、アクリル酸0.12g、N,N’-メチレンビスアクリルアミド47mg、ドデシル硫酸ナトリウム150mg、フルオレセインモノマー 10mg、ローダミンモノマー 10mgを、純水50mlに溶解させ、窒素ガスにより脱気したものに、70℃に加熱し小量の純水に溶解させた過硫酸カリウム100mgを加えて重合を開始し、500rpmで撹拌しながら7時間反応させる。反応溶液を透析膜に入れ、純水に対して透析する。
[Fine particles]
Fine particles (dispersoid) supporting donor and acceptor are prepared by dissolving N-isopropylacrylamide (NIPAM), acrylic acid, N, N′-methylenebisacrylamide, sodium dodecyl sulfate, fluorescein monomer, rhodamine monomer in pure water, To the one degassed with nitrogen gas, potassium persulfate heated to a predetermined temperature and dissolved in a small amount of pure water was added to initiate polymerization, reacted for several hours with stirring, and the reaction solution was put into a dialysis membrane. It can be purified by dialysis against pure water.
As one specific example, 1.67 g of N-isopropylacrylamide, 0.12 g of acrylic acid, 47 mg of N, N′-methylenebisacrylamide, 150 mg of sodium dodecyl sulfate, 10 mg of fluorescein monomer, and 10 mg of rhodamine monomer are dissolved in 50 ml of pure water. Then, 100 mg of potassium persulfate heated to 70 ° C. and dissolved in a small amount of pure water is added to the one degassed with nitrogen gas, polymerization is started, and the mixture is reacted for 7 hours while stirring at 500 rpm. The reaction solution is put into a dialysis membrane and dialyzed against pure water.

[ドナー及びアクセプタ]
ドナーとアクセプタ(ドナー/アクセプタ)の組としては、フルオレセイン/ローダミンB、フルオレセイン/テトラメチルローダミン、6−FAM(6−カルボキシフルオレセイン)/6−TAMRA(6−カルボキシテトラメチルローダミン)、1,5−IAEDANS(5−((((2−イオドアセチル)アミノ)エチル)アミノ)ナフタレン−1−スルホン酸)/フルオレセイン、EDANS(5−((2−アミノエチル)アミノ)ナフタレン−1−スルホン酸ナトリウム塩)/DABCYLクロライド(4−ジメチルアミノアゾベンゼン−4’−スルホニルクロライド)、又はBODIPY
FL(Molecular Probes社商品名)/BODIPY FL(Molecular
Probes社商品名)、フルオレセイン/QSY−7(Molecular Probes社商品名)、テトラメチルローダミン/Cy5(アマシャム・ファルマシア社商品名)の組み合わせを用いることができる。
[Donor and acceptor]
Examples of donor and acceptor (donor / acceptor) pairs include fluorescein / rhodamine B, fluorescein / tetramethylrhodamine, 6-FAM (6-carboxyfluorescein) / 6-TAMRA (6-carboxytetramethylrhodamine), 1,5- IAEDANS (5-(((((2-iodoacetyl) amino) ethyl) amino) naphthalene-1-sulfonic acid) / fluorescein, EDANS (5-((2-aminoethyl) amino) naphthalene-1-sulfonic acid sodium salt) / DABCYL chloride (4-dimethylaminoazobenzene-4′-sulfonyl chloride) or BODIPY
FL (Molecular Probes) / BODIPY FL (Molecular
A combination of Fluorescein / QSY-7 (trade name of Molecular Probes), Tetramethylrhodamine / Cy5 (trade name of Amersham Pharmacia) can be used.

上記したように、ドナーとアクセプタ(ドナー/アクセプタ)の組を種々に変化させることで色調を種々変化させることが可能である。そのため、LCST(蛍光エネルギーの移動が生じる温度)が異なる複数の架橋高分子ゲルと複数組のドナーとアクセプタとを適宜に組み合わせることで、温度変化の過程で三色以上に刺激変化応答性材料の色を変化させることが可能である。
これらのドナーおよびアクセプタを微粒子に担持する方法には、(1)予め蛍光色素にビニル基などの重合性基を導入して架橋高分子ゲルを合成するときに共重合する方法、(2)架橋高分子ゲルに導入したアミノ基やカルポキシル基などの官能基と蛍光色素の官能基を重合後に反応させることで共有結合を作る方法、(3)架橋高分子ゲルのイオン性基と蛍光色素のイオン性基の間に働く静電的相互作用により固定する方法などがある。
As described above, it is possible to change the color tone in various ways by changing the combination of the donor and the acceptor (donor / acceptor). Therefore, by appropriately combining a plurality of crosslinked polymer gels having different LCSTs (temperatures at which fluorescence energy transfer occurs) and a plurality of pairs of donors and acceptors, a stimulus change responsive material having three or more colors in the course of temperature changes It is possible to change the color.
These donors and acceptors are supported on fine particles by (1) copolymerization when a polymer group such as a vinyl group is previously introduced into a fluorescent dye to synthesize a crosslinked polymer gel, and (2) crosslinking A method of forming a covalent bond by reacting a functional group of an amino group or a carboxy group introduced into a polymer gel with a functional group of a fluorescent dye after polymerization, (3) ionic groups of a crosslinked polymer gel and ions of the fluorescent dye There is a method of fixing by an electrostatic interaction between sex groups.

蛍光共鳴エネルギー移動の効率(E)は、公知の式
E=1/[1+(R/R
で表されるが、ドナーとアクセプタとの距離は、高分子ゲルの体積変化により、20〜100Åの範囲内、好ましくは、30〜70Åの範囲内で変化するのが好ましい。
The efficiency (E) of fluorescence resonance energy transfer is given by the known formula E = 1 / [1+ (R / R 0 ) 6 ]
However, it is preferable that the distance between the donor and the acceptor varies within a range of 20 to 100 cm, preferably within a range of 30 to 70 cm, due to a volume change of the polymer gel.

[他の実施形態]
本発明の他の実施形態では、異なる温度で蛍光共鳴エネルギー移動を起こすドナー3とアクセプタ4との組を複数種類準備し、各組を共通の微粒子2又は異なる微粒子2に担持させて分散媒中に分散させる。
図2に示す例では、(a)に示すように微粒子2を内側のコア21と外側のシェル22との二重構造とし、コア21の内部又は表面に(b)に示すようにドナー31とアクセプタ41との組を担持させ、シェル22の内部又は表面に(c)に示すようにドナー32とアクセプタ42との組を担持させる。
[Other Embodiments]
In another embodiment of the present invention, a plurality of combinations of donors 3 and acceptors 4 that cause fluorescence resonance energy transfer at different temperatures are prepared, and each set is supported on a common particle 2 or different particles 2 in a dispersion medium. To disperse.
In the example shown in FIG. 2, the fine particle 2 has a double structure of an inner core 21 and an outer shell 22 as shown in (a), and a donor 31 and an inner or surface of the core 21 as shown in (b). A pair with the acceptor 41 is carried, and a pair of the donor 32 and the acceptor 42 is carried inside or on the surface of the shell 22 as shown in FIG.

ドナー31及びアクセプタ41の組とドナー32及びアクセプタ42の組とは、異なる温度で蛍光エネルギーの移動が起こるようにコア21とシェル22にはLCST(下限臨界溶液温度)の異なる高分子ゲルを選択する。この際、大きなコントラストの差を得ることができるように、可能な限り温度差が大きいものを選択するのがよい。
このようにすることで、温度T1から温度T2への変化の過程及び温度T2から温度T3への変化の過程で、三色以上に刺激変化応答性材料の色調を変化させることが可能になる。
For the pair of donor 31 and acceptor 41 and the pair of donor 32 and acceptor 42, polymer gels having different LCST (lower critical solution temperature) are selected for the core 21 and the shell 22 so that the fluorescence energy shifts at different temperatures. To do. At this time, it is preferable to select one having a temperature difference as large as possible so that a large contrast difference can be obtained.
By doing so, it is possible to change the color tone of the stimulus change responsive material to three or more colors in the process of change from the temperature T1 to the temperature T2 and the process of change from the temperature T2 to the temperature T3.

図2(a)に示すような内側のコア21と外側のシェル22との二重構造からなる微粒子としては、コアシェルポリマーを挙げることができる。このようなコアシェルポリマーは、特開平07−070255号公報や特表2001−518527号公報、特開平05−017514号公報等で公知の方法により形成することができる。例えば、特開平07−070255号公報には、先の段階の重合体の存在下、後の段階の重合体が順次に被覆するような連続した多段乳化重合法いわゆるシード乳化重合法によってコアシェルポリマーを形成する方法が開示されている。   Examples of the fine particles having a double structure of the inner core 21 and the outer shell 22 as shown in FIG. 2A include a core-shell polymer. Such a core-shell polymer can be formed by a known method in JP-A-07-070255, JP-T-2001-518527, JP-A-05-017514 and the like. For example, Japanese Patent Application Laid-Open No. 07-070255 discloses a core-shell polymer by a continuous multi-stage emulsion polymerization method so-called seed emulsion polymerization method in which a polymer in a subsequent stage is sequentially coated in the presence of a polymer in a previous stage. A method of forming is disclosed.

[実験例]
前記他の実施形態のコアシェル形の微粒子を使った実験結果を以下に示す。
(1) コア及びシェルの製造

Figure 2009209215
コア(ko-96)を以下の方法で形成した。
次に、このコア30mlに含まれる温度応答性ポリマーの量を計算し、以下のように乳化重合を行った。
Figure 2009209215
[Experimental example]
The experimental results using the core-shell type fine particles of the other embodiment are shown below.
(1) Manufacture of core and shell
Figure 2009209215
A core (ko-96) was formed by the following method.
Next, the amount of the temperature-responsive polymer contained in 30 ml of the core was calculated, and emulsion polymerization was performed as follows.
Figure 2009209215

ここで、iPA:N-イソプロピルアクリルアミド、dEA:N,N-ジエチルアクリルアミド、SDS:界面活性剤(ドデシル硫酸ナトリウム)、BIS:N,N'-メチレンビスアクリルアミド、KPS:開始剤(過硫酸ナトリウム)、SPMA:2-アクリルアミド-2-メチル-1-プロパンスルホン酸、Pro:プロフラビンモノマー、Rhod:ローダミンモノマー、Flu:フルオロセインモノマーを指す。
その結果、ko-102で加えたモノマーの約2/3がシェルとして重合された。
Here, iPA: N-isopropylacrylamide, dEA: N, N-diethylacrylamide, SDS: surfactant (sodium dodecyl sulfate), BIS: N, N′-methylenebisacrylamide, KPS: initiator (sodium persulfate) SPMA: 2-acrylamido-2-methyl-1-propanesulfonic acid, Pro: proflavine monomer, Rhod: rhodamine monomer, Flu: fluorescein monomer.
As a result, about 2/3 of the monomer added by ko-102 was polymerized as a shell.

(2) 上記の結果得られたコア及びシェルの温度収縮
コア(ko-96) 12.8℃でd=106.4nm 24.3℃でd=66.4nm
シェル(ko-102) 12.9℃でd=118.3nm 25.4℃でd=80.2nm
(3) 蛍光強度変化の結果
上記のコアシェル形微粒子を使った蛍光強度変化のグラフを図3に示す。
図3のグラフからわかるように、この実験例では、20℃以下では三色素の発光が同等であるが、21℃〜25℃で青と緑の発光が弱くなるとともに赤の強度が増し、29℃〜33℃で三色とも発光が増す。
(2) Temperature shrinkage of the core and shell obtained as a result of the above Core (ko-96) 12.8 ° C. d = 106.4 nm 24.3 ° C. d = 66.4 nm
Shell (ko-102) d = 118.3 nm at 12.9 ° C. d = 80.2 nm at 25.4 ° C.
(3) Results of Fluorescence Intensity Change FIG. 3 shows a graph of the fluorescence intensity change using the above core-shell fine particles.
As can be seen from the graph of FIG. 3, in this experimental example, the light emission of the three dyes is equal at 20 ° C. or lower, but the blue and green light emission decreases and the red intensity increases at 21 ° C. to 25 ° C. Luminescence increases for all three colors from ℃ to 33 ℃.

本発明の好適な実施形態について説明したが、本発明は上記の実施形態に限定されるものではない。
例えば、上記の説明では刺激の一例として温度を例に挙げたが、光や電流,ph等の他の刺激により体積変化を生じる刺激変化応答性材料であれば、広範に適用が可能である。
また、上記の他の実施形態では、コアの周囲に単一のシェルを形成した二重構造のコアシェル形の微粒子を例に挙げて説明したが、二つ以上のシェルを有する多層コアシェル形の微粒子を使用することで、変化させる色調をより多様化することができる。さらに、色調の多様化は、コアシェル形を使用する必要は必ずしもなく、単一の微粒子の表面に複数組のドナー及びアクセプタの組を担持させるようにしてもよい。
Although a preferred embodiment of the present invention has been described, the present invention is not limited to the above-described embodiment.
For example, in the above description, the temperature is taken as an example of the stimulus, but the stimulus change responsive material that causes a volume change by other stimuli such as light, current, and ph can be widely applied.
In the above-described other embodiments, the core-shell type fine particle having a double structure in which a single shell is formed around the core has been described as an example. However, the multi-layer core-shell type fine particle having two or more shells has been described. By using, the color to be changed can be diversified. Furthermore, for the diversification of the color tone, it is not always necessary to use the core-shell shape, and a plurality of sets of donors and acceptors may be supported on the surface of a single fine particle.

本発明の刺激変化応答性材料は、例えばディスプレイ等の表示装置や、温度や光の強度によってコントラストを自動的に変化させる調光ガラスに適用が可能である。また、蛍光顕微鏡下で単一の微粒子の色調を観察することで、温度の測定が可能であり、細胞などの検体の温度管理が容易になる。   The stimulus change responsive material of the present invention can be applied to, for example, a display device such as a display, or a light control glass that automatically changes contrast according to temperature or light intensity. In addition, the temperature can be measured by observing the color tone of a single fine particle under a fluorescence microscope, and the temperature management of a specimen such as a cell becomes easy.

本発明の刺激変化応答性材料の一実施形態にかかり、その構成を説明する概略図である。It is the schematic which concerns on one Embodiment of the stimulus change responsive material of this invention, and demonstrates the structure. 本発明の他の実施形態にかかり、ドナーとアクセプタとを担持させる微粒子をコアシェル形とした例である。It is an example which made the microparticle which carry | supports a donor and an acceptor concerning other embodiment of this invention into the core-shell type. 本発明の他の実施形態にかかる実験例で、コアシェル形の微粒子を使った蛍光強度変化グラフである。It is an example of experiment concerning other embodiments of the present invention, and is a fluorescence intensity change graph using core shell type fine particles.

符号の説明Explanation of symbols

2 微粒子
21 コア
22 シェル
3 ドナー
31,32 ドナー
4 アクセプタ
41,42 アクセプタ
2 Fine particle 21 Core 22 Shell 3 Donor 31, 32 Donor 4 Acceptor 41, 42 Acceptor

Claims (6)

刺激の変化により蛍光色が変化する刺激変化応答性材料において、
分散媒中に、刺激の変化により可逆的に体積変化を起こす微粒子を分散させ、
この微粒子に、蛍光共鳴エネルギー移動におけるドナーとなる蛍光色素およびアクセプタとなる蛍光色素であって、前記ドナーの蛍光スペクトルと前記アクセプタとの励起スペクトルに重なりを有する前記蛍光色素を担持させたこと、
を特徴とする刺激変化応答性材料。
In a stimulus change responsive material whose fluorescent color changes due to a change in stimulus,
In the dispersion medium, fine particles that reversibly change volume due to a change in stimulation are dispersed.
The fine particles carry a fluorescent dye that becomes a donor and an acceptor fluorescent dye in fluorescence resonance energy transfer, and the fluorescent dye that overlaps the excitation spectrum of the donor's fluorescence spectrum and the acceptor,
A stimulus change responsive material characterized by.
前記微粒子が、高分子ゲルであることを特徴とする請求項1に記載の刺激変化応答性材料。 The stimulus change responsive material according to claim 1, wherein the fine particle is a polymer gel. 前記微粒子に担持させる前記ドナーとなる蛍光色素又は前記アクセプタとなる蛍光色素を二種類以上とし、少なくとも二つの前記蛍光色素の組において、異なる波長領域で、前記蛍光スペクトルと前記励起スペクトルの重なりを有することを特徴とする請求項1又は2に記載の刺激変化応答性材料。 Two or more types of fluorescent dyes serving as the donor or acceptor supported on the fine particles are used, and at least two sets of the fluorescent dyes have an overlap of the fluorescence spectrum and the excitation spectrum in different wavelength regions. The stimulus change responsive material according to claim 1 or 2. 前記微粒子が、コアと一つ又は複数のシェルとからなる複数層構造で形成され、前記コア及び前記シェルに前記ドナーとなる蛍光色素又は前記アクセプタとなる蛍光色素を担持させたことを特徴とする請求項3に記載の刺激変化応答性材料。 The fine particles are formed in a multi-layer structure including a core and one or a plurality of shells, and the core and the shell carry a fluorescent dye serving as the donor or a fluorescent dye serving as the acceptor. The stimulus change responsive material according to claim 3. 構成するモノマー成分の少なくとも一つが、(メタ)アクリル酸アミノ置換アルキルエステル、もしくはN-置換(メタ)アクリルアミドである請求項1〜4のいずれかに記載の刺激変化応答性材料。 The stimulus change responsive material according to any one of claims 1 to 4, wherein at least one of the constituting monomer components is (meth) acrylic acid amino-substituted alkyl ester or N-substituted (meth) acrylamide. 請求項1〜請求項5のいずれかに記載された変化応答性材料を基材上に一次元、二次元もしくは三次元状に配置したことを特徴とする刺激変化応答体。

6. A stimulus change responder characterized in that the change responsive material according to claim 1 is arranged one-dimensionally, two-dimensionally or three-dimensionally on a substrate.

JP2008051308A 2008-02-29 2008-02-29 Stimulation change responsible material and stimulation change responsible object using the same Pending JP2009209215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008051308A JP2009209215A (en) 2008-02-29 2008-02-29 Stimulation change responsible material and stimulation change responsible object using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008051308A JP2009209215A (en) 2008-02-29 2008-02-29 Stimulation change responsible material and stimulation change responsible object using the same

Publications (1)

Publication Number Publication Date
JP2009209215A true JP2009209215A (en) 2009-09-17

Family

ID=41182694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008051308A Pending JP2009209215A (en) 2008-02-29 2008-02-29 Stimulation change responsible material and stimulation change responsible object using the same

Country Status (1)

Country Link
JP (1) JP2009209215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031144A (en) * 2008-07-29 2010-02-12 Kyushu Univ Fluorescent probe comprising core-shell type branched polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031144A (en) * 2008-07-29 2010-02-12 Kyushu Univ Fluorescent probe comprising core-shell type branched polymer

Similar Documents

Publication Publication Date Title
Huo et al. Polymer assemblies with nanostructure-correlated aggregation-induced emission
Abdollahi et al. The light-controlling of temperature-responsivity in stimuli-responsive polymers
KR101015131B1 (en) Hollow polymer particle, colored hollow polymer particle and their production methods
Zhao et al. Thermoresponsive Behavior of Poly (acrylic acid-co-acrylonitrile) with a UCST
Gan et al. Interfacial Nonradiative Energy Transfer in Responsive Core− Shell Hydrogel Nanoparticles
Keyvan Rad et al. Progressive readout platform based on photoswitchable polyacrylic nanofibers containing spiropyran in photopatterning with instant responsivity to acid–base vapors
JP4180096B2 (en) Hollow polymer particles, colored hollow polymer particles and methods for producing them
Tsuji et al. Temperature-sensitive hairy particles prepared by living radical graft polymerization
CN108026217A (en) Polymer beads
TW201207006A (en) Coloured polymer particles
Abdollahi et al. Photoluminescent nanoinks with multilevel security for quick authentication of encoded optical tags by sunlight: effective physicochemical parameters on responsivity, printability, and brightness
CN110283275A (en) The synthesis and its application of carbon quantum dot molecular engram nanogel fluorescent optical sensor
Yang et al. Self-assembly and drug release control of dual-responsive copolymers based on oligo (ethylene glycol) methyl ether methacrylate and spiropyran
Bao et al. pH-responsive dual fluorescent core–shell microspheres fabricated via a one-step emulsion polymerization
Le et al. Fluorescent Organohydrogel with Thermal‐Induced Color Change for Anti‐counterfeiting
CN111040098B (en) Fluorescent polymer microsphere internally loaded with quantum dots and preparation method thereof
Alidaei-Sharif et al. Photoluminescent polymer nanoparticles based on oxazolidine derivatives for authentication and security marking of confidential notes
Babazadeh-Mamaqani et al. Optical chemosensors based on spiropyran-doped polymer nanoparticles for sensing pH of aqueous media
Li et al. Preparation of Responsive Micrometer‐Sized Microgel Particles with a Highly Functionalized Shell
Hechenbichler et al. Thermoresponsive self-assembly of twofold fluorescently labeled block copolymers in aqueous solution and microemulsions
Guo et al. Delicate and Independent Manipulation of Dynamic Fluorescence Behavior of Polymer Nanoparticles Based on a Core–Shell Strategy
Hu et al. Preparation of fluorescent particles with long excitation and emission wavelengths dispersible in organic solvents
Singh et al. Stimuli-responsive photoluminescence soft hybrid microgel particles: synthesis and characterizations
JP2009209215A (en) Stimulation change responsible material and stimulation change responsible object using the same
Furukawa et al. Light‐Controlled On‐Off Switch of a Fluorescent Nanoparticle