JP2009207945A - Adsorption apparatus - Google Patents

Adsorption apparatus Download PDF

Info

Publication number
JP2009207945A
JP2009207945A JP2008050421A JP2008050421A JP2009207945A JP 2009207945 A JP2009207945 A JP 2009207945A JP 2008050421 A JP2008050421 A JP 2008050421A JP 2008050421 A JP2008050421 A JP 2008050421A JP 2009207945 A JP2009207945 A JP 2009207945A
Authority
JP
Japan
Prior art keywords
adsorbent
adsorption
gas
adsorption tower
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008050421A
Other languages
Japanese (ja)
Inventor
Soichiro Tsujimoto
聡一郎 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2008050421A priority Critical patent/JP2009207945A/en
Publication of JP2009207945A publication Critical patent/JP2009207945A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the whole size of an adsorption apparatus to compose it at low cost without reducing the size of an adsorption column, while continuously adsorbing hydrogen sulfide in treating object gas. <P>SOLUTION: The adsorption apparatus is provided with the adsorption column 1 packed with an adsorbent consisting of a porous material containing ferric hydroxide for adsorbing hydrogen sulfide in the treating object gas, and a small vessel 5 for adsorbing with a smaller capacity than the adsorption column 1, and is regeneratably composed by supplying atmospheric air to the adsorption column 1. The apparatus is composed to supply the treating object gas to the small vessel 5 while regenerating the adsorbent in the adsorption column 1, and is composed to supply atmospheric air to the adsorption column 1 while stopping the supply of the treating object gas to the small vessel 5. The packing amount of the adsorbent consisting of the porous material containing ferric hydroxide packed in the small vessel 5 is set small based on the regeneration time required for regenerating the adsorbent in the adsorption column 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、食品工場などから発生するバイオガス中に含まれる硫化水素を除去するとか、クリーニング工場などから発生する排ガス中に含まれる溶剤を回収するなどのために、被処理ガス中の被吸着物を吸着する吸着材を充填した吸着塔を設け、吸着塔内の吸着材に対する再生処理を可能に構成した吸着処理装置に関する。   The present invention, for example, removes hydrogen sulfide contained in biogas generated from a food factory or the like, or recovers a solvent contained in exhaust gas generated from a cleaning factory or the like. The present invention relates to an adsorption processing apparatus provided with an adsorption tower filled with an adsorbent that adsorbs an object to be adsorbed and configured to be able to regenerate the adsorbent in the adsorption tower.

上述のような吸着処理装置としては、従来、次のようなものが知られている。
すなわち、活性炭素繊維を充填した同じ大きさの充填塔(吸着塔)が並列に設けられ、両充填塔の長手方向一端側に、被処理ガスを供給する配管が、供給側開閉ダンパーを介装した分岐供給管を介して接続されるとともに、両充填塔の長手方向他端側に、排出側開閉ダンパーを介装した排ガス配管が接続されている。
Conventionally, the following apparatus is known as the above-described adsorption processing apparatus.
That is, a packed tower (adsorption tower) of the same size filled with activated carbon fibers is provided in parallel, and a pipe for supplying a gas to be treated is provided at one end in the longitudinal direction of both packed towers with a supply-side open / close damper. An exhaust gas pipe having a discharge side opening / closing damper is connected to the other longitudinal end of both packed towers.

また、両充填塔の排ガス配管の接続側に、スチームを供給する配管が、供給側開閉弁を介装した分岐スチーム供給管を介して接続されるとともに、両充填塔の長手方向他端側に、回収配管が、排出側開閉弁を介装した分岐回収配管を介して接続されている。
回収配管には、凝縮器、油水分離槽、蒸留塔などが接続されている。
In addition, a pipe for supplying steam is connected to the connection side of the exhaust gas pipes of both packed towers via a branch steam supply pipe provided with a supply-side on-off valve, and at the other end in the longitudinal direction of both packed towers. The recovery pipe is connected via a branch recovery pipe interposing a discharge side on-off valve.
A condenser, an oil / water separation tank, a distillation tower, and the like are connected to the recovery pipe.

上述構成により、一方の充填塔にのみ被処理ガスを供給して溶剤を吸着処理し、活性炭素繊維が破過に至る前に、その充填塔への被処理ガスの供給を停止するとともに、他方の充填塔に被処理ガスを供給し、しかる後に、溶剤を吸着した充填塔に対してスチームを供給し、吸着材に吸着した溶剤を脱着して吸着材を再生処理するとともに脱着した溶剤を回収し、それらを交互に繰り返すことで連続して溶剤を回収できるようになっている(特許文献1参照)。
特公平6−7902号公報
With the above-described configuration, the gas to be treated is supplied to only one packed tower to adsorb the solvent, and the supply of the gas to be treated to the packed tower is stopped before the activated carbon fiber breaks through. The gas to be treated is supplied to the packed tower, and then steam is supplied to the packed tower that has adsorbed the solvent, the solvent adsorbed on the adsorbent is desorbed to regenerate the adsorbent and recover the desorbed solvent. However, the solvent can be continuously recovered by repeating them alternately (see Patent Document 1).
Japanese Patent Publication No. 6-7902

上述のような従来の公報例の場合にあって、充填塔に充填する吸着材の量を少なくすると、吸着材が破過に至る時間が短くなり、吸着と再生とを頻繁に繰り返さなければならず、ダンパーや開閉弁を頻繁に開閉し、その耐久性が早期に低下する問題があり、充填塔の容量を大きくして吸着材の充填量が多くなるように構成している。   In the case of the conventional publication example as described above, if the amount of adsorbent packed in the packed tower is reduced, the time until the adsorbent breaks through is shortened, and adsorption and regeneration must be repeated frequently. However, there is a problem that the damper and the on-off valve are frequently opened and closed, and the durability thereof is lowered early, and the capacity of the packed tower is increased to increase the amount of adsorbent packed.

しかしながら、容量の大きな充填塔を並設するために、装置全体として大型化するとともに設置スペースが大きくなり、高価になる欠点があった。   However, since the large-capacity packed towers are arranged side by side, there is a disadvantage that the entire apparatus is enlarged and the installation space is increased, resulting in an increase in cost.

本発明は、このような事情に鑑みてなされたものであって、被処理ガス中の硫化水素あるいは溶剤を吸着する吸着処理装置を小型化して安価に構成できるようにすることを目的とするものであり、請求項1および2に係る発明は、被処理ガス中の硫化水素に対する吸着処理を連続して行えるものでありながら、吸着塔は小型化せずに装置全体を小型化して安価に構成できるようにすることを目的とし、請求項3に係る発明は、被処理ガス中の硫化水素に対する吸着処理を連続して行えるものでありながら、吸着塔は小型化せずに装置全体を一層小型化して安価に構成できるようにすることを目的とし、請求項4に係る発明は、吸着塔内の吸着材の吸着能力の不測の低下に起因する硫化水素の除去効率の低下を回避できるようにすることを目的とし、請求項5に係る発明は、被処理ガス中の溶剤に対する吸着処理を連続して行えるものでありながら、吸着塔は小型化せずに装置全体を小型化して安価に構成できるようにすることを目的とし、請求項6に係る発明は、吸着塔内の吸着材の吸着能力の不測の低下に起因する溶剤の除去効率の低下を回避できるようにすることを目的とする。   The present invention has been made in view of such circumstances, and it is an object of the present invention to reduce the size and size of an adsorption treatment apparatus that adsorbs hydrogen sulfide or a solvent in a gas to be treated. In the inventions according to claims 1 and 2, the adsorption tower can be continuously adsorbed to the hydrogen sulfide in the gas to be treated, but the adsorption tower is not downsized and the entire apparatus is downsized and inexpensively configured. The invention according to claim 3 aims to be able to do so, while the adsorption treatment for hydrogen sulfide in the gas to be treated can be continuously performed, but the adsorption tower is not miniaturized and the entire apparatus is further reduced in size. The invention according to claim 4 aims to avoid a decrease in the removal efficiency of hydrogen sulfide due to an unexpected decrease in the adsorption capacity of the adsorbent in the adsorption tower. Purpose to In the invention according to claim 5, while the adsorption treatment for the solvent in the gas to be treated can be continuously performed, the adsorption tower can be reduced in size and configured at low cost without downsizing the adsorption tower. Accordingly, an object of the present invention is to make it possible to avoid a decrease in solvent removal efficiency caused by an unexpected decrease in the adsorption capacity of the adsorbent in the adsorption tower.

請求項1に係る発明は、上述のような目的を達成するために、
被処理ガス中の硫化水素を吸着するように水酸化第二鉄を含む多孔質材料による吸着材を充填した吸着塔を設け、前記吸着塔内の吸着材に水分を含む空気を再生ガスとして供給して再生処理を行うように構成した吸着処理装置であって、
前記吸着塔よりも容量が小さい吸着処理用の小容器を設けるとともに、前記小容器内に水酸化第二鉄または/および酸化第二鉄を含む多孔質材料による小容器用吸着材を充填し、前記吸着塔内の吸着材に対して再生処理を行っている状態で被処理ガスを供給する配管を前記小容器に接続し、かつ、前記小容器用吸着材の充填量を、前記吸着塔内の吸着材を再生処理する場合に要する再生時間に基づいて少量に設定したことを特徴としている。
上記再生時間としては、少なくとも一回の再生に要する時間であれば良く、その場合、小容器用吸着材の充填量としては、一回の再生に要する時間だけ被処理ガス中の硫化水素を吸着できるように設定するものであれば良い。
In order to achieve the above-described object, the invention according to claim 1
An adsorption tower filled with an adsorbent made of a porous material containing ferric hydroxide is adsorbed to adsorb hydrogen sulfide in the gas to be treated, and air containing water is supplied as a regeneration gas to the adsorbent in the adsorption tower. An adsorption processing apparatus configured to perform a regeneration process,
A small vessel for adsorption treatment having a smaller capacity than the adsorption tower is provided, and the small vessel is filled with an adsorbent for a small vessel made of a porous material containing ferric hydroxide and / or ferric oxide, A pipe for supplying a gas to be treated in a state where the adsorbent in the adsorption tower is being regenerated is connected to the small container, and the filling amount of the adsorbent for the small container is set in the adsorption tower. It is characterized in that it is set to a small amount based on the regeneration time required for regenerating the adsorbent.
The regeneration time may be a time required for at least one regeneration. In this case, the amount of adsorbent for small containers is adsorbed with hydrogen sulfide in the gas to be treated for the time required for one regeneration. Anything that can be set is possible.

(作用・効果)
請求項1に係る発明の吸着処理装置の構成によれば、吸着処理に要する時間に比べて再生処理に要する時間が大幅に短いことに着目し、吸着塔内の吸着材を再生処理する場合に要する再生時間の間、小容器内の小容器用吸着材に被処理ガス中の硫化水素を吸着させることができるようにする。
したがって、被処理ガス中の硫化水素を吸着するうえで、小容器内に充填する小容器用吸着材の充填量を吸着塔内に充填する吸着材の充填量に比べて少量にでき、小容器を小型化でき、被処理ガス中の硫化水素に対する吸着処理を連続して行えるものでありながら、吸着塔は小型化せずに装置全体を小型化して安価に構成できる。
小容器用吸着材は再生を行わないため、吸着塔に使用する吸着材と異なり、再生特性を考慮せずに吸着特性のみを考慮して選択できる。小容器用吸着材の寿命までの吸着量および吸着速度は、吸着塔に使用する吸着材より大きなものを選択できるのでより小型化が可能となる。この点からは、小容器用吸着材として酸化第二鉄を含む多孔質材料を使用する方が好ましい。
(Action / Effect)
According to the configuration of the adsorption processing apparatus of the invention according to claim 1, paying attention to the fact that the time required for the regeneration process is significantly shorter than the time required for the adsorption process, the adsorbent in the adsorption tower is regenerated. During the required regeneration time, hydrogen sulfide in the gas to be treated can be adsorbed on the small container adsorbent in the small container.
Therefore, when adsorbing hydrogen sulfide in the gas to be treated, the amount of the adsorbent for the small container filled in the small container can be made smaller than the amount of the adsorbent filled in the adsorption tower. However, the adsorption tower can be reduced in size and inexpensively without reducing the size of the adsorption tower, although the adsorption treatment for hydrogen sulfide in the gas to be treated can be performed continuously.
Since the adsorbent for a small container is not regenerated, unlike the adsorbent used for the adsorption tower, the adsorbent can be selected considering only the adsorption characteristics without considering the regeneration characteristics. The adsorption amount and adsorption speed of the adsorbent for the small container up to the lifetime can be selected larger than the adsorbent used in the adsorption tower, and therefore, the size can be further reduced. From this point, it is preferable to use a porous material containing ferric oxide as an adsorbent for a small container.

請求項2に係る発明は、上述のような目的を達成するために、
請求項1に記載の吸着処理装置において、
前記小容器用吸着材の充填量を、前記吸着塔内の吸着材を再生処理する場合に要する再生時間と前記吸着塔内の吸着材に硫黄が蓄積して再生不能となるまでの回数との積で計算される処理時間に基づいて少量に設定したことを特徴としている。
In order to achieve the above object, the invention according to claim 2
The adsorption processing apparatus according to claim 1,
The filling amount of the adsorbent for the small container is defined as the regeneration time required for regenerating the adsorbent in the adsorption tower and the number of times until sulfur accumulates in the adsorbent in the adsorption tower and cannot be regenerated. It is characterized by a small amount based on the processing time calculated by the product.

(作用・効果)
請求項2に係る発明の吸着処理装置の構成によれば、吸着処理に要する時間に比べて再生処理に要する時間が大幅に短いことに着目し、吸着塔内の吸着材を再生処理する場合に要する再生時間の間、小容器内の小容器用吸着材に被処理ガス中の硫化水素を吸着させることができるようにする。かつ、硫化水素を吸着する吸着材として水酸化第二鉄または/および酸化第二鉄を含む多孔質材料による小容器用吸着材を使用する場合、吸着処理で硫化水素と水酸化第二鉄または/および酸化第二鉄とが反応して硫化鉄を生成し、その硫化鉄が再生処理で水分と空気中の酸素とに反応して水酸化第二鉄に変化するに伴い硫黄を生成し、この硫黄が多孔質材料に蓄積し、再生を繰り返したときに特定の回数で再生不能になる。この再生不能となるまでの回数と吸着塔内の吸着材に対する再生時間との積から、小容器内に充填する小容器用吸着材の充填量および小容器の大きさを設定する。
詳述すれば、例えば、吸着塔において吸着処理に要する時間と再生処理に要する時間との比が42:1であり、吸着塔での再生不能となるまでの回数が14回であったとすれば、その寿命時間と小容器で吸着するのに必要な時間との比は42:14×1=3:1になり、小容器内に充填する小容器用吸着材の充填量を、吸着塔内に充填する吸着材の寿命時間の1/3を設計上の時間として決定できる。
したがって、被処理ガス中の硫化水素を吸着するうえで、小容器内に充填する小容器用吸着材の充填量を吸着塔内に充填する吸着材の充填量に比べて少量にでき、小容器を小型化でき、被処理ガス中の硫化水素に対する吸着処理を連続して行えるものでありながら、吸着塔は小型化せずに装置全体を小型化して安価に構成できる。
また、請求項1に係る発明の場合と同様に、小型化の点からは、小容器用吸着材として酸化第二鉄を含む多孔質材料を使用する方が好ましい。
(Action / Effect)
According to the configuration of the adsorption processing apparatus of the invention according to claim 2, paying attention to the fact that the time required for the regeneration process is significantly shorter than the time required for the adsorption process, During the required regeneration time, hydrogen sulfide in the gas to be treated can be adsorbed on the small container adsorbent in the small container. And when using the adsorbent for small containers by the porous material containing ferric hydroxide or / and ferric oxide as the adsorbent for adsorbing hydrogen sulfide, hydrogen sulfide and ferric hydroxide or / And ferric oxide reacts to produce iron sulfide, and the iron sulfide reacts with moisture and oxygen in the air in the regeneration process to produce sulfur as ferric hydroxide, This sulfur accumulates in the porous material and becomes unrecyclable a specific number of times when it is regenerated. From the product of the number of times until the regeneration becomes impossible and the regeneration time for the adsorbent in the adsorption tower, the filling amount of the small container adsorbent and the size of the small container are set.
More specifically, for example, if the ratio of the time required for the adsorption process to the time required for the regeneration process in the adsorption tower is 42: 1, and the number of times until the regeneration in the adsorption tower becomes impossible is 14 times. The ratio between the lifetime and the time required for adsorption in the small container is 42: 14 × 1 = 3: 1, and the amount of adsorbent for small container to be packed in the small container is set in the adsorption tower. 1/3 of the life time of the adsorbent filled in can be determined as the design time.
Therefore, when adsorbing hydrogen sulfide in the gas to be treated, the amount of the adsorbent for the small container filled in the small container can be made smaller than the amount of the adsorbent filled in the adsorption tower. However, the adsorption tower can be reduced in size and inexpensively without reducing the size of the adsorption tower, although the adsorption treatment for hydrogen sulfide in the gas to be treated can be performed continuously.
As in the case of the invention according to claim 1, from the viewpoint of miniaturization, it is preferable to use a porous material containing ferric oxide as an adsorbent for a small container.

また、請求項3に係る発明は、前述のような目的を達成するために、
被処理ガス中の硫化水素を吸着するように水酸化第二鉄を含む多孔質材料による吸着材を充填した吸着塔を設け、前記吸着塔内の吸着材に水分を含む空気を再生ガスとして供給して再生処理を行うように構成した吸着処理装置であって、
前記吸着塔よりも容量が小さい吸着処理用の小容器を設けるとともに、前記小容器内に水酸化第二鉄または/および酸化第二鉄を含む多孔質材料による小容器用吸着材を充填し、前記吸着塔内の吸着材に対して再生処理を行っている状態で被処理ガスを供給する配管と、被処理ガスの供給を停止した状態で再生ガスを供給する再生ガス供給管とを前記小容器に接続し、かつ、前記小容器用吸着材の充填量を、前記吸着塔内の吸着材を再生処理する場合に要する再生時間に基づいて少量に設定したことを特徴としている。
In order to achieve the above-described object, the invention according to claim 3
An adsorption tower filled with an adsorbent made of a porous material containing ferric hydroxide is adsorbed to adsorb hydrogen sulfide in the gas to be treated, and air containing water is supplied as a regeneration gas to the adsorbent in the adsorption tower. An adsorption processing apparatus configured to perform a regeneration process,
A small vessel for adsorption treatment having a smaller capacity than the adsorption tower is provided, and the small vessel is filled with an adsorbent for a small vessel made of a porous material containing ferric hydroxide and / or ferric oxide, A pipe for supplying the gas to be processed while the adsorbent in the adsorption tower is being regenerated, and a gas supply pipe for supplying the regeneration gas in a state in which the supply of the gas to be processed is stopped are described above. The small container adsorbent filling amount is set to a small amount based on the regeneration time required for regenerating the adsorbent in the adsorption tower.

(作用・効果)
請求項3に係る発明の吸着処理装置の構成によれば、吸着処理に要する時間に比べて再生処理に要する時間が大幅に短いことに着目し、吸着塔内の吸着材を再生処理する場合に要する再生時間の間、小容器内の小容器用吸着材に被処理ガス中の硫化水素を吸着させることができるようにする。かつ、硫化水素を吸着する吸着材として水酸化第二鉄または/および酸化第二鉄を含む多孔質材料による小容器用吸着材を使用する場合、吸着処理で硫化水素と水酸化第二鉄とが反応して硫化鉄を生成し、その硫化鉄が再生処理で水分と空気中の酸素とに反応して水酸化第二鉄に変化するに伴い硫黄を生成し、この硫黄が多孔質材料に蓄積し、再生を繰り返したときに特定の回数で再生不能になる。この再生不能となることを考慮しながら、吸着塔内の吸着材に対する再生時間に基づいて、小容器内に充填する小容器用吸着材の充填量および小容器の大きさを設定する。
詳述すれば、例えば、吸着塔において吸着処理に要する時間と再生処理に要する時間との比が42:1であった場合、小容器に充填する小容器用吸着材に対しても再生処理を行うために、その吸着処理に要する時間と再生処理に要する時間との比に比例し、計算上は小容器内に充填する小容器用吸着材の充填量を吸着塔内に充填する吸着材の充填量の1/42にできるといったこととなり、実際上は、小容器用吸着材の充填量が少なくなるために種々の影響が生じるが、それらの種々の影響を十分考慮しても小容器内に充填する小容器用吸着材の充填量を少なくできる。
したがって、被処理ガス中の硫化水素を吸着するうえで、小容器内の小容器用吸着材を再生処理しない場合に比べ、小容器内に充填する小容器用吸着材の充填量を吸着塔内に充填する吸着材の充填量に比べて一層少量にでき、小容器を小型化でき、被処理ガス中の硫化水素に対する吸着処理を連続して行えるものでありながら、吸着塔は小型化せずに装置全体を小型化して安価に構成できる。
また、請求項1に係る発明の場合と同様に、小型化の点からは、小容器用吸着材として酸化第二鉄を含む多孔質材料を使用する方が好ましい。
(Action / Effect)
According to the configuration of the adsorption processing apparatus of the invention according to claim 3, paying attention to the fact that the time required for the regeneration process is significantly shorter than the time required for the adsorption process, During the required regeneration time, hydrogen sulfide in the gas to be treated can be adsorbed on the small container adsorbent in the small container. In addition, when an adsorbent for small containers made of a porous material containing ferric hydroxide or / and ferric oxide is used as an adsorbent for adsorbing hydrogen sulfide, hydrogen sulfide and ferric hydroxide are used in the adsorption treatment. Reacts to produce iron sulfide, and the iron sulfide reacts with moisture and oxygen in the air in the regeneration treatment to produce sulfur as it changes to ferric hydroxide, and this sulfur becomes a porous material. When it is accumulated and replayed, it becomes unplayable a specific number of times. Considering that this regeneration is impossible, the filling amount of the small container adsorbent and the size of the small container are set based on the regeneration time for the adsorbent in the adsorption tower.
More specifically, for example, when the ratio of the time required for the adsorption process and the time required for the regeneration process in the adsorption tower is 42: 1, the regeneration process is also performed on the small container adsorbent filled in the small container. In order to do so, it is proportional to the ratio of the time required for the adsorption process and the time required for the regeneration process. This means that the amount can be reduced to 1/42 of the filling amount. Actually, various effects occur because the filling amount of the adsorbent for the small container is reduced. It is possible to reduce the filling amount of the adsorbent for small containers filled in the container.
Therefore, when adsorbing hydrogen sulfide in the gas to be treated, the amount of the small container adsorbent filled in the small container is reduced in the adsorption tower compared to the case where the small container adsorbent in the small container is not regenerated. Compared to the amount of adsorbent packed in the chamber, the container can be made smaller, the hydrogen sulfide in the gas to be treated can be continuously adsorbed, but the adsorption tower is not downsized. In addition, the entire apparatus can be downsized and configured at low cost.
As in the case of the invention according to claim 1, from the viewpoint of miniaturization, it is preferable to use a porous material containing ferric oxide as an adsorbent for a small container.

また、請求項4に係る発明は、前述のような目的を達成するために、
請求項1、2、3のいずれかに記載の吸着処理装置において、
吸着材に対する再生処理を行わない定常状態で、被処理ガスを吸着塔から小容器に直列に流動するように構成する。
In order to achieve the above-described object, the invention according to claim 4
In the adsorption processing apparatus according to any one of claims 1, 2, and 3,
The gas to be treated is configured to flow in series from the adsorption tower to the small container in a steady state where no regeneration treatment is performed on the adsorbent.

(作用・効果)
請求項4に係る発明の吸着処理装置の構成によれば、被処理ガス中の硫化水素の濃度の予期しない上昇とか、再生処理時期の不測の遅れなどによって硫化水素を吸着塔で吸着できないなど、吸着塔内の吸着材の吸着能力が不測に低下することとなった場合でも、その硫化水素を小容器内の小容器用吸着材で吸着できる。
したがって、吸着塔内の吸着材の吸着能力の不測の低下に起因する硫化水素の除去効率の低下を回避できる。
(Action / Effect)
According to the configuration of the adsorption treatment apparatus of the invention according to claim 4, hydrogen sulfide cannot be adsorbed by the adsorption tower due to an unexpected increase in the concentration of hydrogen sulfide in the gas to be treated, an unexpected delay in the regeneration treatment time, etc. Even when the adsorption capacity of the adsorbent in the adsorption tower is unexpectedly lowered, the hydrogen sulfide can be adsorbed by the adsorbent for small containers in the small container.
Therefore, it is possible to avoid a decrease in the removal efficiency of hydrogen sulfide due to an unexpected decrease in the adsorption capacity of the adsorbent in the adsorption tower.

また、請求項5に係る発明は、前述のような目的を達成するために、
被処理ガス中の溶剤を吸着する吸着材を充填した吸着塔を設け、前記吸着塔内の吸着材に過熱水蒸気を供給して再生処理を行うように構成した吸着処理装置であって、
前記吸着塔よりも容量が小さい吸着処理用の小容器を設けるとともに、前記吸着塔内の吸着材に対して再生処理を行っている状態で被処理ガスを供給する配管を前記小容器に接続し、前記小容器に、被処理ガスの供給を停止した状態で過熱水蒸気を供給する蒸気分岐供給管を接続し、かつ、前記小容器内に充填する小容器用吸着材の充填量を、前記吸着塔内の吸着材を再生処理する場合に要する再生時間に基づいて少量に設定したことを特徴としている。
Further, in order to achieve the above-described object, the invention according to claim 5
An adsorption processing apparatus provided with an adsorption tower filled with an adsorbent that adsorbs a solvent in a gas to be treated, and configured to perform regeneration by supplying superheated steam to the adsorbent in the adsorption tower,
A small vessel for adsorption treatment having a smaller capacity than the adsorption tower is provided, and a pipe for supplying a gas to be treated in a state in which regeneration treatment is performed on the adsorbent in the adsorption tower is connected to the small vessel. A steam branch supply pipe for supplying superheated steam in a state where supply of the gas to be treated is stopped to the small container, and the filling amount of the small container adsorbent to be filled in the small container It is characterized in that it is set to a small amount based on the regeneration time required for regenerating the adsorbent in the tower.

(作用・効果)
請求項5に係る発明の吸着処理装置の構成によれば、吸着処理に要する時間に比べて再生処理に要する時間が短いことに着目し、吸着塔内の吸着材を再生処理する場合に要する再生時間の間、小容器内の小容器用吸着材に被処理ガス中の溶剤を吸着させることができるようにし、吸着塔内の吸着材に対する再生時間に基づいて、小容器内に充填する小容器用吸着材の充填量および小容器の大きさを設定する。
詳述すれば、例えば、吸着塔において吸着処理に要する時間と再生処理に要する時間との比が5:1であり、小容器に充填する小容器用吸着材に対しても再生処理を行うために、その吸着処理に要する時間と再生処理に要する時間との比に比例し、計算上は小容器内に充填する小容器用吸着材の充填量を吸着塔内に充填する吸着材の充填量の1/5にできるといったこととなる。
したがって、被処理ガス中の溶剤を吸着するうえで、小容器内に充填する小容器用吸着材の充填量を吸着塔内に充填する吸着材の充填量に比べて少量にでき、小容器を小型化でき、被処理ガス中の溶剤に対する吸着処理を連続して行えるものでありながら、吸着塔は小型化せずに装置全体を小型化して安価に構成できる。
(Action / Effect)
According to the configuration of the adsorption processing apparatus of the invention according to claim 5, paying attention to the fact that the time required for the regeneration process is shorter than the time required for the adsorption process, the regeneration required when the adsorbent in the adsorption tower is regenerated. A small container that fills the small container based on the regeneration time for the adsorbent in the adsorption tower so that the adsorbent for the small container in the small container can adsorb the solvent in the gas to be treated during the time. Set the adsorbent filling amount and small container size.
More specifically, for example, the ratio of the time required for the adsorption process to the time required for the regeneration process in the adsorption tower is 5: 1, and the regeneration process is also performed on the small container adsorbent filled in the small container. In addition, in proportion to the ratio of the time required for the adsorption process and the time required for the regeneration process, the amount of adsorbent packed in the adsorption tower is calculated in terms of the amount of adsorbent packed in the small container. It can be made 1/5 of that.
Therefore, when adsorbing the solvent in the gas to be treated, the amount of the adsorbent for small containers filled in the small container can be made smaller than the amount of the adsorbent filled in the adsorption tower, and the small container Although it is possible to reduce the size and continuously perform the adsorption treatment on the solvent in the gas to be treated, the adsorption tower can be constructed at a low cost by downsizing the entire apparatus without downsizing.

また、請求項6に係る発明は、前述のような目的を達成するために、
請求項5に記載の吸着処理装置において、
吸着材に対する再生処理を行わない定常状態で、被処理ガスを吸着塔から小容器に直列に流動するように構成する。
In order to achieve the above-described object, the invention according to claim 6
The adsorption processing apparatus according to claim 5, wherein
The gas to be treated is configured to flow in series from the adsorption tower to the small container in a steady state where no regeneration treatment is performed on the adsorbent.

(作用・効果)
請求項6に係る発明の吸着処理装置の構成によれば、被処理ガス中の溶剤の濃度の予期しない上昇とか、再生処理時期の不測の遅れなどによって溶剤を吸着塔で吸着できないなど、吸着塔内の吸着材の吸着能力が不測に低下することとなった場合でも、その溶剤を小容器内の小容器用吸着材で吸着できる。
したがって、吸着塔内の吸着材の吸着能力の不測の低下に起因する溶剤の除去効率の低下を回避できる。
(Action / Effect)
According to the configuration of the adsorption treatment apparatus of the invention according to claim 6, the adsorption tower cannot be adsorbed by the adsorption tower due to an unexpected increase in the concentration of the solvent in the gas to be treated or an unexpected delay in the regeneration treatment time. Even if the adsorbing capacity of the adsorbent in the container is unexpectedly lowered, the solvent can be adsorbed by the adsorbent for the small container in the small container.
Therefore, it is possible to avoid a decrease in the solvent removal efficiency due to an unexpected decrease in the adsorption capacity of the adsorbent in the adsorption tower.

以上の説明から明らかなように、請求項1に係る発明の吸着処理装置の構成によれば、吸着処理に要する時間に比べて再生処理に要する時間が大幅に短いことに着目し、吸着塔内の吸着材を再生処理する場合に要する再生時間の間、小容器内の小容器用吸着材に被処理ガス中の硫化水素を吸着させることができるようにする。
したがって、被処理ガス中の硫化水素を吸着するうえで、小容器内に充填する小容器用吸着材の充填量を吸着塔内に充填する吸着材の充填量に比べて少量にでき、小容器を小型化でき、被処理ガス中の硫化水素に対する吸着処理を連続して行えるものでありながら、吸着塔は小型化せずに装置全体を小型化して安価に構成できる。
小容器用吸着材は再生を行わないため、吸着塔に使用する吸着材と異なり、再生特性を考慮せずに吸着特性のみを考慮して選択できる。小容器用吸着材の寿命までの吸着量および吸着速度は、吸着塔に使用する吸着材より大きなものを選択できるのでより小型化が可能となる。この点からは、小容器用吸着材として酸化第二鉄を含む多孔質材料を使用する方が好ましい。
As can be seen from the above description, according to the configuration of the adsorption processing apparatus of the invention according to claim 1, paying attention to the fact that the time required for the regeneration process is significantly shorter than the time required for the adsorption process, The hydrogen sulfide in the gas to be treated can be adsorbed to the small container adsorbent in the small container during the regeneration time required for regenerating the adsorbent.
Therefore, when adsorbing hydrogen sulfide in the gas to be treated, the amount of the adsorbent for the small container filled in the small container can be made smaller than the amount of the adsorbent filled in the adsorption tower. However, the adsorption tower can be reduced in size and inexpensively without reducing the size of the adsorption tower, although the adsorption treatment for hydrogen sulfide in the gas to be treated can be performed continuously.
Since the adsorbent for a small container is not regenerated, unlike the adsorbent used for the adsorption tower, the adsorbent can be selected considering only the adsorption characteristics without considering the regeneration characteristics. The adsorption amount and adsorption speed of the adsorbent for the small container up to the lifetime can be selected larger than the adsorbent used in the adsorption tower, and therefore, the size can be further reduced. From this point, it is preferable to use a porous material containing ferric oxide as an adsorbent for a small container.

次に、本発明の実施例を図面に基づいて詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る吸着処理装置の実施例1を示す全体概略構成図であり、吸着材を充填した吸着塔1の下方側に、第1の開閉弁V1を介装した被処理ガス供給管2が接続されている。また、吸着塔1の上方側に、第2の開閉弁V2を介装した処理ガス排出管3が接続されている。   FIG. 1 is an overall schematic configuration diagram showing an embodiment 1 of an adsorption treatment apparatus according to the present invention, in which a gas to be treated having a first on-off valve V1 disposed below an adsorption tower 1 filled with an adsorbent. A supply pipe 2 is connected. A processing gas discharge pipe 3 having a second opening / closing valve V2 is connected to the upper side of the adsorption tower 1.

被処理ガス供給管2の第1の開閉弁V1よりも上流側箇所に、第3の開閉弁V3を介装した被処理ガス分岐供給管4が接続され、その被処理ガス分岐供給管4が、小容器用吸着材を充填した小容器5の下方側に接続されている。また、小容器5の上方側と処理ガス排出管3の第2の開閉弁V2より下流側箇所とにわたって処理ガス分岐排出管6が接続されている。   A to-be-processed gas branch supply pipe 4 having a third on-off valve V3 interposed therein is connected to the upstream side of the first on-off valve V1 of the to-be-processed gas supply pipe 2. The small container 5 filled with the small container adsorbent is connected to the lower side. A processing gas branch discharge pipe 6 is connected across the upper side of the small container 5 and the downstream side of the second opening / closing valve V2 of the processing gas discharge pipe 3.

被処理ガス供給管2の第1の開閉弁V1と吸着塔1との間の箇所に、フィルター7、ブロワー8および第5の開閉弁V5を介装した、再生ガスとしての外気を供給する外気供給管9が接続されている。また、処理ガス排出管3の吸着塔1と第2の開閉弁V2との間の箇所に、再生処理後の外気を排出する外気排出管10が接続され、その外気排出管10に第6の開閉弁V6が接続されている。   Outside air that supplies outside air as a regeneration gas through a filter 7, a blower 8, and a fifth on-off valve V 5 at a location between the first on-off valve V 1 and the adsorption tower 1 of the gas supply pipe 2 to be treated. A supply pipe 9 is connected. In addition, an outside air discharge pipe 10 for discharging outside air after the regeneration process is connected to a portion of the processing gas discharge pipe 3 between the adsorption tower 1 and the second on-off valve V2, and a sixth gas is connected to the outside air discharge pipe 10. The on-off valve V6 is connected.

外気供給管9のブロワー8と第5の開閉弁V5との間の箇所と被処理ガス分岐供給管4の第3の開閉弁V3と小容器5との間の箇所とにわたって再生ガス供給管としての外気分岐供給管11が接続され、その外気分岐供給管11に第7の開閉弁V7が接続されている。また、処理ガス分岐排出管6の小容器5と第4の開閉弁V4との間の箇所に、第8の開閉弁V8を介装した外気分岐排出管12が接続されている。   As a regeneration gas supply pipe over a portion between the blower 8 and the fifth on-off valve V5 of the outside air supply pipe 9 and a portion between the third on-off valve V3 of the treated gas branch supply pipe 4 and the small container 5. The outside air branch supply pipe 11 is connected, and the outside air branch supply pipe 11 is connected to the seventh on-off valve V7. Further, an outside air branch discharge pipe 12 having an eighth on-off valve V8 interposed therein is connected to a portion of the processing gas branch discharge pipe 6 between the small container 5 and the fourth on-off valve V4.

図示しないが、吸着塔1の上方箇所に、吸着材の色の変化を監視する監視窓が設けられ、吸着材の色の変化から吸着材が再生を必要とするかどうかを判別できるようになっている。
すなわち、吸着材が、多孔質材料の表面を水酸化第二鉄によりコーティングして構成され、硫化水素と次のように反応するようになっている。
2Fe(OH)+3HS=2Fe+6H
すなわち、水酸化第二鉄が硫化水素と反応して硫化鉄が生成され、この生成した硫化鉄によって、橙色から黒色に変色し、この変色の進み具合によって再生が必要な時期を判別するようになっている。
再生は、水分を含んだ空気である外気を通すことによって行われ、次のような反応による。
Fe+3/2O+3HO=2Fe(OH)+3S
吸着工程を繰り返すに連れて硫黄が吸着材に蓄積されていくために、例えば、14回など、特定回数の再生を行うことによって寿命に達し、交換を必要とする。
吸着材が再生を必要とするかどうかを判別する構成としては、吸着塔1内の上方所定レベルから吸着処理後の被処理ガスをサンプリングするようなものなど、各種の構成が採用できる。これは、後述の実施例2、実施例3、実施例4および実施例5についても同様である。
Although not shown, a monitoring window for monitoring the color change of the adsorbent is provided at an upper portion of the adsorption tower 1 so that it can be determined whether the adsorbent needs to be regenerated from the color change of the adsorbent. ing.
That is, the adsorbent is formed by coating the surface of the porous material with ferric hydroxide and reacts with hydrogen sulfide as follows.
2Fe (OH) 3 + 3H 2 S = 2Fe 2 S 3 + 6H 2 O
That is, ferric hydroxide reacts with hydrogen sulfide to generate iron sulfide, and the generated iron sulfide changes the color from orange to black, and the timing of regeneration is determined by the progress of the color change. It has become.
Regeneration is performed by passing outside air that is moisture-containing air, and is based on the following reaction.
Fe 2 S 3 + 3 / 2O 2 + 3H 2 O = 2Fe (OH) 3 + 3S
Since sulfur is accumulated in the adsorbent as the adsorption process is repeated, the life is reached by performing regeneration a specific number of times, for example, 14 times, and requires replacement.
As a configuration for determining whether or not the adsorbent needs to be regenerated, various configurations such as sampling the gas to be processed after the adsorption process from a predetermined upper level in the adsorption tower 1 can be adopted. The same applies to Example 2, Example 3, Example 4, and Example 5 described later.

上記構成により、食品工場などから発生する硫化水素を含んだバイオガスを被処理ガスとして吸着塔1に供給し、吸着材に硫化水素を吸着する吸着工程と、吸着材に再生ガスとしての外気を通す再生工程とに切り替えられるようになっており、次に説明する。   With the above configuration, a biogas containing hydrogen sulfide generated from a food factory or the like is supplied to the adsorption tower 1 as a gas to be treated, and an adsorbing step for adsorbing hydrogen sulfide to the adsorbent, and outside air as a regeneration gas to the adsorbent The process is switched to a regeneration process that passes through, and will be described next.

・吸着工程
図1の(a)に示すように、第1および第2の開閉弁V1,V2を開くとともに、第3、第4、第5および第6の開閉弁V3,V4,V5,V6を閉じ、被処理ガスを吸着塔1にのみ供給し、吸着材に硫化水素を吸着させる。第7および第8の開閉弁V7,V8は小容器5内の小容器用吸着材を再生するときにのみ開き、ブロワー8を駆動して小容器5にのみ外気を供給する。この小容器5内の小容器用吸着材に対する再生を終了した後は、ブロワー8の駆動を停止するとともに第7および第8の開閉弁V7,V8を閉じる。
Adsorption step As shown in FIG. 1A, the first and second on-off valves V1, V2 are opened, and the third, fourth, fifth, and sixth on-off valves V3, V4, V5, V6. The gas to be treated is supplied only to the adsorption tower 1, and hydrogen sulfide is adsorbed on the adsorbent. The seventh and eighth on-off valves V7 and V8 are opened only when the small container adsorbent in the small container 5 is regenerated, and the blower 8 is driven to supply the outside air only to the small container 5. After the regeneration of the small container adsorbent in the small container 5 is completed, the drive of the blower 8 is stopped and the seventh and eighth on-off valves V7 and V8 are closed.

・再生工程
再生が必要になった後には、図1の(b)に示すように、第7および第8の開閉弁V7,V8を閉じた状態で、第1および第2の開閉弁V1,V2を閉じるとともに、第3、第4、第5および第6の開閉弁V3,V4,V5,V6を開き、被処理ガスを小容器5にのみ供給し、硫化水素の吸着処理を継続する。一方、ブロワー8を駆動して吸着塔1にのみ外気を供給し、吸着塔1内の吸着材に対する再生を行う。
Regeneration step After regeneration is necessary, as shown in FIG. 1B, the first and second on-off valves V1, V7, V8 are closed with the seventh and eighth on-off valves V7, V8 closed. While closing V2, the third, fourth, fifth and sixth on-off valves V3, V4, V5 and V6 are opened, the gas to be treated is supplied only to the small container 5, and the hydrogen sulfide adsorption process is continued. On the other hand, the blower 8 is driven to supply outside air only to the adsorption tower 1 to regenerate the adsorbent in the adsorption tower 1.

次に、上記実施例1に係る装置を用いた場合の計算例を示す。
被処理ガスとしては、窒素ガス中に濃度1000ppmで硫化水素(分子量34)を水分が無い状態で混合したもの(温度25℃)を用い、雰囲気温度25℃の条件下、流量1mN/h(0℃、1気圧換算流量)で吸着塔1に供給し、1ppmレベルまで低減できる場合を想定した。再生空気(外気)としては、温度25℃、湿度60%とした。
吸着塔1および小容器5はそれぞれステンレス製で、それぞれに、多孔質材料の表面を水酸化第二鉄によりコーティングした吸着材(充填密度800kg/m)を充填したものとし、硫化水素の負荷は1.516g/hであるとした。
Next, a calculation example when the apparatus according to the first embodiment is used will be described.
As the gas to be treated, a mixture of nitrogen sulfide and hydrogen sulfide (molecular weight 34) at a concentration of 1000 ppm in the absence of moisture (temperature 25 ° C.) is used, and the flow rate is 1 m 3 N / h under the condition of the ambient temperature 25 ° C. A case was assumed in which the gas was supplied to the adsorption tower 1 at 0 ° C. and 1 atm conversion flow rate and reduced to the 1 ppm level. The regeneration air (outside air) was set to a temperature of 25 ° C. and a humidity of 60%.
The adsorption tower 1 and the small container 5 are each made of stainless steel, each filled with an adsorbent (packing density 800 kg / m 3 ) coated with ferric hydroxide on the surface of the porous material, and loaded with hydrogen sulfide Was 1.516 g / h.

吸着塔1における寿命がきて再生ができなくなるまでの硫化水素の積算吸着量は50重量%で、一回の吸着工程で吸着可能な平均量は3.85重量%であり、吸着工程の吸着可能な回数は13回であり、再生可能な回数、すなわち、吸着塔1内の吸着材に硫黄が蓄積して再生不能となるまでの回数は12(13−1)回となる。
一回の吸着処理時間は300h、一回の吸着処理での吸着量は、0.455kg(≒1.516g×300÷1000)、吸着塔1内における吸着材の充填量は11.83kg(≒0.455÷3.85×100)、再生工程の吸着塔1内の吸着材および吸着工程の小容器5内の小容器用吸着材を再生処理する場合に要する再生時間は10hとした。
The total adsorption amount of hydrogen sulfide until the end of life in the adsorption tower 1 becomes impossible to regenerate is 50% by weight, and the average amount that can be adsorbed in one adsorption process is 3.85% by weight. The number of times is 13 and the number of times that regeneration is possible, that is, the number of times until sulfur accumulates in the adsorbent in the adsorption tower 1 and becomes impossible to regenerate is 12 (13-1) times.
The time for one adsorption treatment is 300 hours, the adsorption amount in one adsorption treatment is 0.455 kg (≈1.516 g × 300 ÷ 1000), and the adsorbent filling amount in the adsorption tower 1 is 11.83 kg (≈ 0.455 ÷ 3.85 × 100), and the regeneration time required for regenerating the adsorbent in the adsorption tower 1 in the regeneration process and the small container adsorbent in the small container 5 in the adsorption process was 10 hours.

上記構成から、上述再生時間に基づいて特定される小容器5内の小容器用吸着材の計算上の充填量は0.39kg(≒11.83×10÷300)である。
実際の小容器5内の小容器用吸着材の充填量は、上記計算値より増量することが好ましい。
充填量が少ないことにより吸着帯の影響が増大し、一回の吸着工程で吸着可能な吸着量の平均値が吸着塔1での充填値より小さくなるからである。
被処理ガス条件を一定にして吸着材量を変化させ、出口濃度がどのように変化するかを見た場合、吸着帯の影響を小さくするには、被処理ガスの硫化水素濃度に依存して、ある程度の接触時間(被処理ガスが小容器用吸着材の充填層を通過する時間)が必要であり、小容器5内への小容器用吸着材の充填量を決める場合、前記計算上の充填量にこの接触時間に相当する量の小容器用吸着材を追加することが好ましい。
また、このようにして決められた小容器5内への小容器用吸着材の充填量に安全係数として1倍〜1.5倍をかけたものを実際の小容器5内への小容器用吸着材の充填量としてもよい。本実施例では前記接触時間を5秒に想定し、この接触時間に相当する量の小容器用吸着材を前記計算上の充填量に追加したものを小容器5内への充填量とした。以下にその計算方法を示す。
接触時間5秒に相当する小容器用吸着材の量は
=1mN/h*(298℃/273℃)*(5秒/3600秒)*800kg/m =1.21kg
実際に小容器5に充填する小容器用吸着材の量は
=1.21kg+0.39kg(前記計算上の充填量)=1.60kg
となる。
これに伴い、小容器5の容量を吸着塔1の容量の1/7.4(≒1.60/11.83)に設定でき、大幅に小型化できると推定された。
From the above configuration, the calculated filling amount of the small container adsorbent in the small container 5 specified based on the regeneration time is 0.39 kg (≈11.83 × 10 ÷ 300).
The actual filling amount of the adsorbent for the small container in the small container 5 is preferably increased from the calculated value.
This is because the influence of the adsorption zone increases due to the small packing amount, and the average value of the adsorption amount that can be adsorbed in one adsorption step is smaller than the packing value in the adsorption tower 1.
In order to reduce the influence of the adsorption zone when the amount of adsorbent is changed with the condition of the gas to be treated being fixed and the outlet concentration changes, depending on the hydrogen sulfide concentration of the gas to be treated When a certain amount of contact time (time for the gas to be processed to pass through the packed bed of the small container adsorbent) is required and the amount of the small container adsorbent filled in the small container 5 is determined, It is preferable to add an adsorbent for a small container in an amount corresponding to the contact time to the filling amount.
Further, the small container 5 filled with the adsorbent for the small container 5 multiplied by 1 to 1.5 times as a safety factor is used for the small container in the actual small container 5. The filling amount of the adsorbent may be used. In this embodiment, the contact time is assumed to be 5 seconds, and the amount of small container adsorbent added to the calculated filling amount is defined as the filling amount in the small container 5. The calculation method is shown below.
The amount of adsorbent for small containers corresponding to a contact time of 5 seconds is = 1 m 3 N / h * (298 ° C./273° C.) * (5 seconds / 3600 seconds) * 800 kg / m 3 = 1.21 kg
The amount of the small container adsorbent to be actually filled in the small container 5 is = 1.21 kg + 0.39 kg (the above-mentioned calculated filling amount) = 1.60 kg.
It becomes.
Accordingly, the capacity of the small container 5 can be set to 1 / 7.4 (≈1.60 / 11.83) of the capacity of the adsorption tower 1, and it was estimated that the size can be greatly reduced.

図2は、本発明に係る吸着処理装置の実施例2を示す全体概略構成図であり、実施例1と異なるところは次の通りである。
すなわち、処理ガス排出管3における、外気排出管10との接続箇所と第2の開閉弁V2との間の箇所と、被処理ガス分岐供給管4における、第3の開閉弁V3と外気分岐供給管11との接続箇所との間の箇所とにわたって直列用被処理ガス供給管21が接続されている。
処理ガス排出管3において、外気排出管10との接続箇所と直列用被処理ガス供給管21との接続箇所との間の箇所に第9の開閉弁V9が介装されている。また、被処理ガス分岐供給管4において、直列用被処理ガス供給管21との接続箇所と外気分岐供給管11との接続箇所との間の箇所に第10の開閉弁V10が介装されている。他の構成は実施例1と同じであり、同一図番を付し、その説明は省略する。
FIG. 2 is an overall schematic configuration diagram showing a second embodiment of the adsorption processing apparatus according to the present invention. The differences from the first embodiment are as follows.
That is, in the processing gas discharge pipe 3, the position between the connection point with the outside air discharge pipe 10 and the second on-off valve V 2, and the third on-off valve V 3 and the outside air branch supply in the processing gas branch supply pipe 4. A serially-treated gas supply pipe 21 is connected to a place between the pipe 11 and the connection place.
In the processing gas discharge pipe 3, a ninth on-off valve V <b> 9 is interposed at a position between the connection position with the outside air discharge pipe 10 and the connection position with the serial processing gas supply pipe 21. Further, in the gas branch supply pipe 4 to be processed, the tenth on-off valve V10 is interposed at a position between the connection point with the serial gas supply pipe 21 and the connection point with the outside air branch supply pipe 11. Yes. Other configurations are the same as those of the first embodiment, and the same reference numerals are given, and descriptions thereof are omitted.

上記構成により、食品工場などから発生する硫化水素を含んだバイオガスを被処理ガスとして吸着塔1および小容器5に直列に供給し、吸着材および小容器用吸着材に硫化水素を吸着する吸着工程と、吸着塔1内の吸着材に再生ガスとしての外気を通す吸着塔再生工程と、小容器5内の小容器用吸着材に再生ガスとしての外気を通す小容器再生工程とに切り替えられるようになっており、次に説明する。   With the above-described configuration, a biogas containing hydrogen sulfide generated from a food factory or the like is supplied in series to the adsorption tower 1 and the small container 5 as a gas to be treated, and the hydrogen sulfide is adsorbed to the adsorbent and the small container adsorbent. The process can be switched between an adsorption tower regeneration process in which outside air as regeneration gas is passed through the adsorbent in the adsorption tower 1 and a small container regeneration process in which outside air as regeneration gas is passed through the adsorbent for small containers in the small container 5. This will be explained next.

・吸着工程
図2の(a)に示すように、第1、第9、第10および第4の開閉弁V1,V9,V10,V4を開くとともに、第2、第3、第5、第6、第7および第8の開閉弁V2,V3,V5,V6,V7,V8を閉じ、被処理ガスを吸着塔1から小容器5に直列に供給し、吸着材および小容器用吸着材に硫化水素を吸着させる。
この構成によれば、不測に吸着塔1内の吸着材に硫化水素が吸着されない場合でも、吸着塔1を経て流される硫化水素を小容器5内の小容器用吸着材によって吸着できる。
Adsorption process As shown in FIG. 2A, the first, ninth, tenth and fourth on-off valves V1, V9, V10, V4 are opened, and the second, third, fifth, sixth are opened. The seventh and eighth on-off valves V2, V3, V5, V6, V7, and V8 are closed, and the gas to be treated is supplied in series from the adsorption tower 1 to the small vessel 5 to sulfidize the adsorbent and the small vessel adsorbent. Adsorb hydrogen.
According to this configuration, even if hydrogen sulfide is not adsorbed to the adsorbent in the adsorption tower 1 unexpectedly, the hydrogen sulfide flowing through the adsorption tower 1 can be adsorbed by the small container adsorbent in the small container 5.

・吸着塔再生工程
吸着塔1内の吸着材に対する再生が必要になった後には、図2の(b)に示すように、第3、第10、第4、第5および第6の開閉弁V3,V10,V4,V5,V6を開くとともに、第1、第9、第2、第7および第8のV1,V9,V2,V7,V8を閉じ、被処理ガスを小容器5にのみ供給し、硫化水素の吸着処理を継続しながら、ブロワー8を駆動して吸着塔1にのみ外気を供給し、吸着塔1内の吸着材に対する再生を行う。
Adsorption tower regeneration step After regeneration of the adsorbent in the adsorption tower 1 is required, as shown in FIG. 2B, the third, tenth, fourth, fifth and sixth on-off valves V3, V10, V4, V5 and V6 are opened, the first, ninth, second, seventh and eighth V1, V9, V2, V7 and V8 are closed, and the gas to be treated is supplied only to the small container 5. Then, while continuing the adsorption treatment of hydrogen sulfide, the blower 8 is driven to supply the outside air only to the adsorption tower 1 to regenerate the adsorbent in the adsorption tower 1.

・小容器再生工程
吸着塔1内の吸着材に対する再生を終了した後には、図2の(c)に示すように、第1、第9、第2、第7および第8のV1,V9,V2,V7,V8を開くとともに、第3、第10、第4、第5および第6の開閉弁V3,V10,V4,V5,V6を閉じ、被処理ガスを吸着塔1にのみ供給し、硫化水素を吸着処理しながら、ブロワー8を駆動して小容器5にのみ外気を供給し、小容器5内の小容器用吸着材に対する再生を行う。この小容器5内の小容器用吸着材に対する再生が終了した後には、前述の吸着塔1および小容器5に被処理ガスを直列に供給する吸着工程に戻る。
Small container regeneration step After the regeneration of the adsorbent in the adsorption tower 1 is completed, as shown in FIG. 2 (c), the first, ninth, second, seventh and eighth V1, V9, V2, V7, V8 are opened, the third, tenth, fourth, fifth and sixth on-off valves V3, V10, V4, V5, V6 are closed, and the gas to be treated is supplied only to the adsorption tower 1, While the hydrogen sulfide is being adsorbed, the blower 8 is driven to supply outside air only to the small container 5, and the small container adsorbent in the small container 5 is regenerated. After the regeneration for the small container adsorbent in the small container 5 is completed, the process returns to the adsorption step of supplying the gas to be treated to the adsorption tower 1 and the small container 5 in series.

図3は、本発明に係る吸着処理装置の実施例3を示す全体概略構成図であり、実施例1と異なるところは次の通りである。
すなわち、実施例1における、外気分岐供給管11、第7の開閉弁V7、外気分岐排出管12および第8の開閉弁V8を無くし、小容器5内の小容器用吸着材に対する再生処理を行わないように構成されている。他の構成は実施例1と同じであり、同一図番を付し、その説明は省略する。
FIG. 3 is an overall schematic configuration diagram showing the third embodiment of the adsorption processing apparatus according to the present invention. The differences from the first embodiment are as follows.
That is, in the first embodiment, the outside air branch supply pipe 11, the seventh on-off valve V7, the outside air branch discharge pipe 12 and the eighth on-off valve V8 are eliminated, and the regeneration process for the small container adsorbent in the small container 5 is performed. Is configured to not. Other configurations are the same as those of the first embodiment, and the same reference numerals are given, and descriptions thereof are omitted.

上記構成により、食品工場などから発生する硫化水素を含んだバイオガスを被処理ガスとして吸着塔1に供給し、吸着材に硫化水素を吸着する吸着工程と、吸着材に再生ガスとしての外気を通す再生工程とに切り替えられるようになっており、次に説明する。   With the above configuration, a biogas containing hydrogen sulfide generated from a food factory or the like is supplied to the adsorption tower 1 as a gas to be treated, and an adsorbing step for adsorbing hydrogen sulfide to the adsorbent, and outside air as a regeneration gas to the adsorbent The process is switched to a regeneration process that passes through, and will be described next.

・吸着工程
図3の(a)に示すように、第1および第2の開閉弁V1,V2を開くとともに、第3、第4、第5および第6の開閉弁V3,V4,V5,V6を閉じ、被処理ガスを吸着塔1にのみ供給し、吸着材に硫化水素を吸着させる。
・再生工程
再生が必要になった後には、図3の(b)に示すように、第1および第2の開閉弁V1,V2を閉じるとともに、第3、第4、第5および第6の開閉弁V3,V4,V5,V6を開き、被処理ガスを小容器5にのみ供給し、硫化水素の吸着処理を継続する。一方、ブロワー8を駆動して吸着塔1にのみ外気を供給し、吸着塔1内の吸着材に対する再生を行う。
Adsorption process As shown in FIG. 3A, the first and second on-off valves V1, V2 are opened, and the third, fourth, fifth, and sixth on-off valves V3, V4, V5, V6. The gas to be treated is supplied only to the adsorption tower 1, and hydrogen sulfide is adsorbed on the adsorbent.
-Regeneration process After regeneration is required, the first and second on-off valves V1, V2 are closed and the third, fourth, fifth, and sixth are closed as shown in FIG. The on-off valves V3, V4, V5, and V6 are opened, the gas to be treated is supplied only to the small container 5, and the hydrogen sulfide adsorption process is continued. On the other hand, the blower 8 is driven to supply outside air only to the adsorption tower 1 to regenerate the adsorbent in the adsorption tower 1.

次に、上記実施例3に係る装置を用いた場合の計算例を示す。
被処理ガスとしては、窒素ガス中に濃度500ppmで硫化水素(分子量34)を水分が無い状態で混合したもの(温度25℃)を用い、雰囲気温度25℃の条件下、流量1mN/h(0℃、1気圧換算流量)で吸着塔1に供給し、1ppmレベルまで低減できる場合を想定した。再生空気(外気)としては、温度25℃、湿度60%とした。
吸着塔1および小容器5はそれぞれステンレス製で、それぞれに、多孔質材料の表面を水酸化第二鉄によりコーティングした吸着材を充填したものとし、硫化水素の負荷は0.757g/hであるとした。
Next, a calculation example when the apparatus according to the third embodiment is used will be described.
As the gas to be treated, a mixture of nitrogen sulfide and hydrogen sulfide (molecular weight 34) at a concentration of 500 ppm in the absence of moisture (temperature 25 ° C.) is used, and the flow rate is 1 m 3 N / h under the condition of the atmospheric temperature 25 ° C. A case was assumed in which the gas was supplied to the adsorption tower 1 at 0 ° C. and 1 atm conversion flow rate and reduced to the 1 ppm level. The regeneration air (outside air) was set to a temperature of 25 ° C. and a humidity of 60%.
The adsorption tower 1 and the small container 5 are each made of stainless steel and filled with an adsorbent in which the surface of the porous material is coated with ferric hydroxide, and the load of hydrogen sulfide is 0.757 g / h. It was.

吸着塔1における寿命がきて再生ができなくなるまでの硫化水素の積算吸着量は50重量%で、一回の吸着工程で吸着可能な平均量は3.85重量%であり、吸着工程の可能な回数は13回であり、再生可能な回数、すなわち、吸着塔1内の吸着材に硫黄が蓄積して再生不能となるまでの回数は12(13−1)回となる。
一回の吸着処理時間は500h、一回の吸着処理での吸着量は、0.379kg(≒0.757g×500÷1000)、吸着塔1内における吸着材の充填量は9.85kg(≒0.379÷3.85×100)、再生工程の吸着塔1内の吸着材を再生処理する場合に要する再生時間は10hとした。
The total adsorption amount of hydrogen sulfide until the end of life in the adsorption tower 1 becomes impossible to regenerate is 50% by weight, and the average amount that can be adsorbed in one adsorption step is 3.85% by weight. The number of times is 13, and the number of times that regeneration is possible, that is, the number of times until sulfur accumulates in the adsorbent in the adsorption tower 1 and becomes impossible to regenerate is 12 (13-1) times.
The time for one adsorption treatment is 500 h, the adsorption amount in one adsorption treatment is 0.379 kg (≈0.757 g × 500 ÷ 1000), and the adsorbent filling amount in the adsorption tower 1 is 9.85 kg (≈ 0.379 ÷ 3.85 × 100), and the regeneration time required for regenerating the adsorbent in the adsorption tower 1 in the regeneration process was 10 hours.

上記構成から、上述再生時間と再生不能となるまでの回数との積から計算される処理時間(12×10h)に基づいて設定される小容器5内の小容器用吸着材の計算上の充填量は2.36kg(≒9.85×12×10÷500)である。
本実施例3では、吸着帯の影響を小さくするための接触時間を4秒とした。この接触時間に相当する小容器用吸着材0.97kgを前記計算上の充填量に追加して実際の小容器5内への充填量を3.33kg(=2.36kg+0.97kg)とした。
これに伴い、小容器5の容量を吸着塔1の容量の1/3.0(≒3.33/9.85)に設定でき、大幅に小型化できると推定された。
From the above configuration, the calculation filling of the adsorbent for the small container in the small container 5 set based on the processing time (12 × 10 h) calculated from the product of the regeneration time and the number of times until the regeneration becomes impossible. The amount is 2.36 kg (≈9.85 × 12 × 10 ÷ 500).
In Example 3, the contact time for reducing the influence of the adsorption band was 4 seconds. 0.97 kg of the small container adsorbent corresponding to this contact time was added to the calculated filling amount, so that the actual filling amount into the small container 5 was 3.33 kg (= 2.36 kg + 0.97 kg).
Accordingly, the capacity of the small container 5 can be set to 1 / 3.0 (≈3.33 / 9.85) of the capacity of the adsorption tower 1, and it is estimated that the size can be greatly reduced.

図4は、本発明に係る吸着処理装置の実施例4を示す全体概略構成図であり、実施例2と異なるところは次の通りである。
すなわち、実施例2における、外気分岐供給管11、第7の開閉弁V7、外気分岐排出管12および第8の開閉弁V8を無くし、小容器5内の小容器用吸着材に対する再生処理を行わないように構成されている。他の構成は実施例2と同じであり、同一図番を付し、その説明は省略する。
FIG. 4 is an overall schematic configuration diagram illustrating an adsorption processing apparatus according to a fourth embodiment of the present invention. The differences from the second embodiment are as follows.
That is, in the second embodiment, the outside air branch supply pipe 11, the seventh on-off valve V7, the outside air branch discharge pipe 12 and the eighth on-off valve V8 are eliminated, and the regeneration process for the small container adsorbent in the small container 5 is performed. Is configured to not. Other configurations are the same as those of the second embodiment, and the same reference numerals are given and description thereof is omitted.

上記構成により、食品工場などから発生する硫化水素を含んだバイオガスを被処理ガスとして吸着塔1に供給し、吸着材および小容器用吸着材に硫化水素を吸着する吸着工程と、吸着材に再生ガスとしての外気を通す再生工程とに切り替えられるようになっており、次に説明する。   With the above configuration, an adsorption step of supplying biosulfur containing hydrogen sulfide generated from a food factory or the like to the adsorption tower 1 as a gas to be treated, and adsorbing hydrogen sulfide to the adsorbent and the adsorbent for small containers, and the adsorbent Switching to a regeneration process through which outside air as regeneration gas is passed will be described next.

・吸着工程
図4の(a)に示すように、第1、第9、第10および第4の開閉弁V1,V9,V10,V4を開くとともに、第2、第3、第5および第6の開閉弁V2,V3,V5,V6を閉じ、被処理ガスを吸着塔1から小容器5に直列に供給し、吸着材および小容器用吸着材に硫化水素を吸着させる。
この構成によれば、不測に吸着塔1内の吸着材に硫化水素が吸着されない場合でも、吸着塔1を経て流される硫化水素を小容器5内の小容器用吸着材によって吸着できる。
Adsorption process As shown in FIG. 4A, the first, ninth, tenth and fourth on-off valves V1, V9, V10, V4 are opened and the second, third, fifth and sixth are opened. The on-off valves V2, V3, V5, and V6 are closed, and the gas to be treated is supplied in series from the adsorption tower 1 to the small container 5 to adsorb hydrogen sulfide on the adsorbent and the small container adsorbent.
According to this configuration, even if hydrogen sulfide is not adsorbed to the adsorbent in the adsorption tower 1 unexpectedly, the hydrogen sulfide flowing through the adsorption tower 1 can be adsorbed by the small container adsorbent in the small container 5.

・再生工程
吸着塔1内の吸着材に対する再生が必要になった後には、図4の(b)に示すように、第3、第10、第4、第5および第6の開閉弁V3,V10,V4,V5,V6を開くとともに、第1、第9および第2の開閉弁V1,V9,V2を閉じ、被処理ガスを小容器5にのみ供給し、硫化水素の吸着処理を継続しながら、ブロワー8を駆動して吸着塔1にのみ外気を供給し、吸着塔1内の吸着材に対する再生を行う。
-Regeneration process After regeneration of the adsorbent in the adsorption tower 1 becomes necessary, as shown in FIG. 4B, the third, tenth, fourth, fifth and sixth on-off valves V3, V10, V4, V5, and V6 are opened, the first, ninth, and second on-off valves V1, V9, and V2 are closed, the gas to be processed is supplied only to the small container 5, and the hydrogen sulfide adsorption process is continued. However, the blower 8 is driven to supply outside air only to the adsorption tower 1 to regenerate the adsorbent in the adsorption tower 1.

本発明に係る吸着処理装置の実施例5は、小容器5内に、酸化第二鉄を含む多孔質材料による吸着材を小容器用吸着材として充填した。
この酸化第二鉄と硫化水素の反応式は次の通りである。
Fe+3HS=Fe+3H
すなわち、酸化第二鉄が硫化水素と反応して硫化鉄が生成される。他の構成は実施例3と同じである。
In Example 5 of the adsorption processing apparatus according to the present invention, the small container 5 was filled with an adsorbent made of a porous material containing ferric oxide as an adsorbent for the small container.
The reaction formula of ferric oxide and hydrogen sulfide is as follows.
Fe 2 O 3 + 3H 2 S = Fe 2 S 3 + 3H 2 O
That is, ferric oxide reacts with hydrogen sulfide to produce iron sulfide. Other configurations are the same as those of the third embodiment.

次に上記実施例5の計算例を示す。
被処理ガスとしては、バイオガスプラントから得られるバイオガスとし、そのバイオガス中の硫化水素(分子量34)の平均濃度は1500ppmであり、被処理ガスの流量を6リットル/h(25℃、1気圧換算流量)とする。この条件の硫化水素の負荷は0.0125g/hである。
Next, a calculation example of the fifth embodiment will be shown.
The gas to be treated is a biogas obtained from a biogas plant, the average concentration of hydrogen sulfide (molecular weight 34) in the biogas is 1500 ppm, and the flow rate of the gas to be treated is 6 liter / h (25 ° C., 1 Pressure converted to atmospheric pressure). The load of hydrogen sulfide under this condition is 0.0125 g / h.

吸着塔1はステンレス製で、その吸着塔1内に、水酸化第二鉄を含む多孔質材料による粒状の吸着材(サルファ・バインド:サニックス社製)を188g充填する。この吸着材の一回の吸着工程で吸着可能な吸着量は3.3重量%であり、一回分の吸着処理後に再生できる回数は14回、つまり吸着工程の可能な回数は15回であり、寿命がきて再生できなくなるまでの硫化水素の積算吸着量は約50重量%(≒3.3重量%×15)である。また、再生に必要な時間は10hとする。
以上の条件での一回の吸着処理時間(吸着量が3.3重量%になる時間)は496h(≒〔188×0.033〕÷0.0125)となる。
The adsorption tower 1 is made of stainless steel, and the adsorption tower 1 is filled with 188 g of a granular adsorbent (Sulfur Bind: manufactured by Sanix) made of a porous material containing ferric hydroxide. The amount of adsorption that can be adsorbed in one adsorption process of this adsorbent is 3.3% by weight, and the number of times of regeneration after one adsorption process is 14, that is, the number of adsorption processes that can be performed is 15 times. The cumulative amount of adsorption of hydrogen sulfide until the end of its life cannot be regenerated is about 50% by weight (≈3.3% by weight × 15). The time required for reproduction is 10 hours.
The time of one adsorption treatment under the above conditions (the time for the adsorption amount to be 3.3% by weight) is 496 h (≈ [188 × 0.033] ÷ 0.0125).

小容器5もステンレス製で、その小容器5内に、酸化第二鉄を含む多孔質材料による小容器用吸着材として、市販のもので寿命までの吸着量が20重量%程度のものを充填する。これは、吸着塔1の吸着材の吸着量3.3重量%より大幅に大きいものである。ただし、吸着塔1の吸着材の積算吸着量(約50重量%)より小さいものである。小容器用吸着材の形状は直径10mmの円筒状のペレットであり、これを平均6mm程度の長さに調整したものを使用した。
小容器用吸着材を充填した小容器5に要求される寿命は、吸着塔1に充填する吸着材の性能に基づいて決定される。すなわち、上述再生時間と再生不能になるまでの回数との積
とから計算される処理時間140h〔(15−1)×10h〕がそれに該当する。
その処理時間を満たす小容器5内の小容器用吸着材の充填量は下記の実験により約69.74gであることがわかった。この結果から、小容器用吸着材の充填量と吸着塔1の吸着材の充填量との比率は69.74:188であり、約1/2.7にすることができ、大幅に小型化が可能となることがわかった。
The small container 5 is also made of stainless steel, and the small container 5 is filled with a commercially-available adsorbent for a small container made of a porous material containing ferric oxide and having an adsorption amount of about 20% by weight until the end of its life. To do. This is much larger than the adsorption amount of the adsorbent of the adsorption tower 1 of 3.3% by weight. However, it is smaller than the integrated adsorption amount (about 50% by weight) of the adsorbent in the adsorption tower 1. The shape of the adsorbent for a small container was a cylindrical pellet having a diameter of 10 mm, and an averaged length of about 6 mm was used.
The life required of the small container 5 filled with the small container adsorbent is determined based on the performance of the adsorbent filled in the adsorption tower 1. That is, the processing time 140h [(15-1) × 10h] calculated from the product of the reproduction time and the number of times until reproduction becomes impossible corresponds to this.
The filling amount of the small container adsorbent in the small container 5 that satisfies the treatment time was found to be about 69.74 g by the following experiment. From this result, the ratio of the filling amount of the adsorbent for the small container and the filling amount of the adsorbent in the adsorption tower 1 is 69.74: 188, which can be reduced to about 1/2. It became clear that it would be possible.

〈小容器用吸着材の充填量を求める実験〉
小容器用吸着材の充填量を求める実験は、以下のようにして行った。
実験用に被処理ガスとしては、試験が行いやすいように模擬バイオガスを用いた。模擬バイオガスのメタンと二酸化炭素の組成比は一般的な範囲にあるメタン70体積%、二酸化炭素30体積%とし、硫化水素濃度は上記と同じ1500ppmとした。また、被処理ガスの流量と温度も、上記と同じ6リットル/h(25℃、1気圧換算流量)とした。
小容器5内に、小容器用吸着材50g、60g、70g入れたもの3水準につき、実験用の被処理ガスを処理させ、破過時間(小容器5の出口濃度が20ppm程度に上昇するまでの時間)を計測した。その結果は、それぞれ71h、102h、141hであり、上述の寿命140hを得るために必要な充填量は比例計算から約69,74g〔-≒60+10×38/39〕であった。
上述の酸化第二鉄を含む多孔質材料による小容器用吸着材としては、上記実施例4の吸着処理装置に使用しても良い。
<Experiment to determine the filling amount of adsorbent for small containers>
An experiment for determining the filling amount of the adsorbent for a small container was performed as follows.
As the gas to be treated for the experiment, a simulated biogas was used for easy testing. The composition ratio of methane and carbon dioxide in the simulated biogas was in a general range of 70% by volume of methane and 30% by volume of carbon dioxide, and the hydrogen sulfide concentration was 1500 ppm, the same as above. The flow rate and temperature of the gas to be treated were also set to 6 liter / h (25 ° C., 1 atm equivalent flow rate) as described above.
For 3 levels of adsorbents 50g, 60g and 70g for small containers in the small container 5, the gas to be treated for the experiment is processed, and the breakthrough time (until the outlet concentration of the small container 5 rises to about 20ppm) Time). The results were 71h, 102h, and 141h, respectively, and the filling amount necessary to obtain the above-mentioned life 140h was approximately 69,74 g [-≈60 + 10 × 38/39] from proportional calculation.
The adsorbent for small containers made of the porous material containing ferric oxide described above may be used in the adsorption processing apparatus of Example 4 above.

上記実施例5で使用する酸化第二鉄を含む多孔質材料による小容器用吸着材としては、酸化第二鉄、酸化カルシウム、ケイ砂の各粉末を混合してペレット状に押出し成形したものとか、酸化第二鉄の粉末と粘土を混合してペレット状に押出し成形したものなどでも良い。また、天然に産出する黄土をペレット状に押出し成形したものでも良い。
本発明としては、上記実施例1、実施例2、実施例3、実施例4および実施例5において、小容器5内に水酸化第二鉄と酸化第二鉄の混合物を含む多孔質材料による小容器用吸着材を充填するものでも良い。
As the adsorbent for small containers made of a porous material containing ferric oxide used in Example 5, the powders of ferric oxide, calcium oxide, and silica sand are mixed and extruded into a pellet shape. Alternatively, a powder obtained by mixing ferric oxide powder and clay and extruding into a pellet may be used. In addition, a naturally produced ocher may be extruded into a pellet.
The present invention is based on the porous material containing the mixture of ferric hydroxide and ferric oxide in the small container 5 in the above-mentioned Example 1, Example 2, Example 3, Example 4 and Example 5. It may be filled with an adsorbent for a small container.

図5は、本発明に係る吸着処理装置の実施例6を示す全体概略構成図であり、実施例1と異なるところは次の通りである。
溶剤を含む被処理ガスから溶剤を吸着して回収するもので、吸着塔1内に充填する吸着材および小容器5内に充填する小容器用吸着材が、溶剤回収用の粒状活性炭であり、フィルター7、ブロワー8、第5、第6、第7および第8の開閉弁V5,V6,V7,V8、外気供給管9および外気分岐排出管12に代えて再生用の過熱水蒸気を供給する構成が備えられている。
FIG. 5 is an overall schematic configuration diagram showing the sixth embodiment of the adsorption processing apparatus according to the present invention. The differences from the first embodiment are as follows.
Adsorbing and recovering the solvent from the gas to be treated containing the solvent, the adsorbent filled in the adsorption tower 1 and the adsorbent for the small container filled in the small container 5 are granular activated carbon for solvent recovery, A configuration in which superheated steam for regeneration is supplied instead of the filter 7, the blower 8, the fifth, sixth, seventh and eighth on-off valves V5, V6, V7, V8, the outside air supply pipe 9 and the outside air branch discharge pipe 12. Is provided.

すなわち、処理ガス排出管3の吸着塔1と第2の開閉弁V2との間の箇所に、過熱水蒸気を供給する蒸気供給管31が接続され、その蒸気供給管31に第11の開閉弁V11が接続されている。また、蒸気供給管31の第11の開閉弁V11よりも上流側箇所と、処理ガス排出管6の小容器5と第4の開閉弁V4との間の箇所とにわたって、第12の開閉弁V12を介装した再生ガス供給管としての蒸気分岐供給管32が接続されている。   That is, a steam supply pipe 31 for supplying superheated steam is connected to a portion of the processing gas discharge pipe 3 between the adsorption tower 1 and the second on-off valve V2, and the eleventh on-off valve V11 is connected to the steam supply pipe 31. Is connected. In addition, the twelfth on-off valve V12 extends over a location upstream of the eleventh on-off valve V11 of the steam supply pipe 31 and a portion between the small container 5 and the fourth on-off valve V4 of the processing gas discharge pipe 6. A steam branch supply pipe 32 is connected as a regeneration gas supply pipe interposed.

被処理ガス供給管2の第1の開閉弁V1と吸着塔1との間の箇所に、第13の開閉弁V13を介装した溶剤回収管33が接続され、その溶剤回収管33にコンデンサー34と溶剤回収タンク35がその順に接続されている。また、溶剤回収管33の第13の開閉弁V13とコンデンサー34との間の箇所と、被処理ガス分岐供給管4の第3の開閉弁V3と小容器5との間の箇所とにわたって溶剤分岐回収管36が接続され、その溶剤分岐回収管36に第14の開閉弁V14が接続されている。溶剤回収タンク35には、再生工程初期に発生する未凝縮ガスの放散口37が付設されている。他の構成は実施例1と同じであり、同一図番を付し、その説明は省略する。   A solvent recovery pipe 33 having a thirteenth on-off valve V13 interposed is connected to a portion of the gas supply pipe 2 between the first on-off valve V1 and the adsorption tower 1, and a condenser 34 is connected to the solvent recovery pipe 33. And a solvent recovery tank 35 are connected in that order. Further, the solvent branch extends over a portion between the thirteenth on-off valve V13 of the solvent recovery pipe 33 and the condenser 34 and a portion between the third on-off valve V3 of the treated gas branch supply pipe 4 and the small container 5. A recovery pipe 36 is connected, and a fourteenth on-off valve V14 is connected to the solvent branch recovery pipe 36. The solvent recovery tank 35 is provided with a diffusion port 37 for uncondensed gas generated at the initial stage of the regeneration process. Other configurations are the same as those of the first embodiment, and the same reference numerals are given, and descriptions thereof are omitted.

上記構成により、クリーニング工場などから発生する溶剤を含んだガスを被処理ガスとして吸着塔1に供給し、吸着材に溶剤を吸着する吸着工程と、吸着材に再生ガスとしての過熱水蒸気を供給して溶剤を脱着する再生工程とに切り替えられるようになっており、次に説明する。   With the above configuration, a gas containing a solvent generated from a cleaning factory or the like is supplied to the adsorption tower 1 as a gas to be treated, an adsorption process for adsorbing the solvent to the adsorbent, and superheated steam as a regeneration gas is supplied to the adsorbent. Thus, the process can be switched to a regeneration process for desorbing the solvent.

・吸着工程
図5の(a)に示すように、第1および第2の開閉弁V1,V2を開くとともに、第3、第4、第11および第13の開閉弁V3,V4,V11,V13を閉じ、被処理ガスを吸着塔1にのみ供給し、吸着材に溶剤を吸着させる。第12および第14の開閉弁V12,V14は小容器5内の小容器用吸着材を再生するときにのみ開き、過熱水蒸気を小容器5にのみ供給する。この小容器5内の小容器用吸着材に対する再生を終了した後は、第12および第14の開閉弁V12,V14を閉じる。
Adsorption process As shown in FIG. 5A, the first and second on-off valves V1, V2 are opened, and the third, fourth, eleventh and thirteenth on-off valves V3, V4, V11, V13 are opened. The gas to be treated is supplied only to the adsorption tower 1, and the adsorbent is made to adsorb the solvent. The twelfth and fourteenth on-off valves V12 and V14 are opened only when the adsorbent for the small container in the small container 5 is regenerated, and superheated steam is supplied only to the small container 5. After the regeneration for the small container adsorbent in the small container 5 is completed, the twelfth and fourteenth on-off valves V12 and V14 are closed.

・再生工程
再生が必要になった後には、図5の(b)に示すように、第12および第14の開閉弁V12,V14を閉じた状態で、第1および第2の開閉弁V1,V2を閉じるとともに、第3、第4、第11および第13の開閉弁V3,V4,V11,V13を開き、被処理ガスを小容器5にのみ供給し、溶剤の吸着処理を継続する。一方、吸着塔1にのみ過熱水蒸気を供給し、吸着塔1内の吸着材に対する再生を行う。
Regeneration step After regeneration is necessary, as shown in FIG. 5B, the first and second on-off valves V1, V1 and V14 are closed with the twelfth and fourteenth on-off valves V12 and V14 closed. While V2 is closed, the third, fourth, eleventh and thirteenth on-off valves V3, V4, V11, V13 are opened, the gas to be treated is supplied only to the small container 5, and the solvent adsorption process is continued. On the other hand, superheated steam is supplied only to the adsorption tower 1 to regenerate the adsorbent in the adsorption tower 1.

次に、上記実施例6に係る装置を用いた場合の計算例を示す。
被処理ガスとしては、窒素ガス中に濃度20ppmでオクタメチルシクロテトラシロキサン(分子量297)を水分が無い状態で混合したもの(温度25℃)を想定し、雰囲気温度25℃の条件下、流量1mN/h(0℃、1気圧換算流量)で吸着塔1に供給し、吸着塔1および小容器5の出口のオクタメチルシクロテトラシロキサンの時間平均濃度を0.5ppm程度(除去率は97.5%)まで低減できる場合を想定した。再生空気(過熱水蒸気)としては、温度220℃のものを流量0.06kg/hで供給するものとした。
吸着塔1および小容器5はそれぞれステンレス製で、それぞれに、粒状活性炭を充填密度410kg/mで充填したものを想定した。吸着塔1内への吸着材の充填量は0.25kg、小容器5内への小容器用吸着材の充填量は0.05kgとした。
Next, an example of calculation when the apparatus according to the sixth embodiment is used will be described.
The gas to be treated is assumed to be a mixture of nitrogen gas and octamethylcyclotetrasiloxane (molecular weight 297) at a concentration of 20 ppm in the absence of moisture (temperature 25 ° C.). 3 N / h (0 ° C., 1 atm equivalent flow rate) is supplied to the adsorption tower 1, and the time average concentration of octamethylcyclotetrasiloxane at the outlet of the adsorption tower 1 and the small vessel 5 is about 0.5 ppm (removal rate is 97 .5%) was assumed. As the regeneration air (superheated steam), one having a temperature of 220 ° C. was supplied at a flow rate of 0.06 kg / h.
The adsorption tower 1 and the small container 5 were each made of stainless steel and assumed to be filled with granular activated carbon at a packing density of 410 kg / m 3 . The filling amount of the adsorbent into the adsorption tower 1 was 0.25 kg, and the filling amount of the small vessel adsorbent into the small container 5 was 0.05 kg.

吸着工程では、48時間連続して被処理ガスを吸着塔1に流し、処理ガスは大気中に放散するものとした。吸着工程で48時間吸着させた後に再生工程に移行し、過熱水蒸気を2時間吸着塔1に流すものとした。脱着したオクタメチルシクロテトラシロキサンは水蒸気とともにコンデンサー34で冷却し、液体で溶剤回収タンク35に回収し、その後、過熱水蒸気の供給を停止し、吸着材を常温まで冷却するために外気を30分間供給し、吸着塔1の再生工程を終了するものとした。
小容器5に対しては、吸着塔1が再生工程にある時間被処理ガスを供給し、オクタメチルシクロテトラシロキサンを小容器5内の小容器用吸着材に吸着させるものとした。再生時間は1時間とし、再生後は放置して自然に冷却させるものとした。
In the adsorption process, the gas to be treated was allowed to flow to the adsorption tower 1 continuously for 48 hours, and the treatment gas was diffused into the atmosphere. After adsorption for 48 hours in the adsorption process, the process shifted to the regeneration process, and superheated steam was passed through the adsorption tower 1 for 2 hours. The desorbed octamethylcyclotetrasiloxane is cooled together with water vapor by a condenser 34 and collected in a solvent recovery tank 35 as a liquid. Thereafter, the supply of superheated water vapor is stopped and outside air is supplied for 30 minutes to cool the adsorbent to room temperature. Then, the regeneration step of the adsorption tower 1 is completed.
For the small container 5, the gas to be treated is supplied for a time during which the adsorption tower 1 is in the regeneration process, and the octamethylcyclotetrasiloxane is adsorbed on the small container adsorbent in the small container 5. The regeneration time was 1 hour, and after the regeneration, it was left to cool naturally.

小容器5の容量としては、再生工程の吸着塔1内の吸着材を再生処理する場合に要する再生時間は、冷却時間も加えて2.5時間であり、計算上は、吸着塔1での連続吸着時間(48時間)との比較から小容器用吸着材の充填量を吸着塔1の吸着材の1/19.2(2.5/48)にできることとなるが、小容器用吸着材の充填量を少なくなることに起因する種々の影響を考慮し、上記再生時間に基づきながら、1/5に設定した。   As for the capacity of the small container 5, the regeneration time required for regenerating the adsorbent in the adsorption tower 1 in the regeneration step is 2.5 hours including the cooling time. From the comparison with the continuous adsorption time (48 hours), the filling amount of the adsorbent for the small container can be reduced to 1 / 19.2 (2.5 / 48) of the adsorbent of the adsorption tower 1. In consideration of various effects resulting from the decrease in the filling amount, the value was set to 1/5 based on the regeneration time.

上記実施例6において、吸着材および小容器用吸着材としては、繊維状活性炭、あるいは、粒状活性炭と繊維状活性炭の両方を使用するものでも良い。   In Example 6 above, as the adsorbent and the adsorbent for the small container, fibrous activated carbon, or both granular activated carbon and fibrous activated carbon may be used.

上記実施例1、実施例2、実施例3、実施例4および実施例5の吸着処理装置は、下水道、畜産、産業廃棄物より発生するバイオガスを利用したバイオガスプラント、嫌気性消化槽よりバイオガスを発生するし尿処理場、埋め立て廃棄物より嫌気性ガスが発生する最終処分場、消化槽からバイオガスが発生する都市型下水処理場などのバイオガス中に含まれる硫化水素の処理を行う場合とか、BSE対策プラントで死亡牛より発生する硫化水素の処理を行う場合など、各種の場合に適用できる。   The adsorption treatment apparatus of Example 1, Example 2, Example 3, Example 4 and Example 5 is from a biogas plant using anaerobic digester, biogas generated from sewage, livestock, and industrial waste. Treatment of hydrogen sulfide contained in biogas such as biogas-producing urine treatment plant, final disposal site where anaerobic gas is generated from landfill waste, and urban sewage treatment plant where biogas is generated from digestion tank It can be applied to various cases, for example, when processing hydrogen sulfide generated from dead cattle at a BSE countermeasure plant.

本発明としては、吸着塔1における吸着処理時間に比べと再生時間が大幅に短いことに着目し、小容器5に充填する小容器用吸着材を再生しない場合において、その小容器用吸着材の充填量を、吸着塔1が寿命に到達する間での時間硫化水素を吸着できるに足る量に設定するものに限らず、吸着塔1で再生を行っている一回分や2回分など、吸着塔1が寿命に到達するよりも短い時間だけ硫化水素を吸着できるに足る量に設定するものでも良い。   The present invention pays attention to the fact that the regeneration time is significantly shorter than the adsorption treatment time in the adsorption tower 1, and in the case where the small container adsorbent filled in the small container 5 is not regenerated, The adsorbing tower is not limited to the one in which the packed amount is set to an amount sufficient to adsorb hydrogen sulfide for the time required for the adsorption tower 1 to reach the end of its life. It may be set to an amount sufficient to adsorb hydrogen sulfide for a shorter time than 1 reaches the life.

本発明に係る吸着処理装置の実施例1を示す全体概略構成図である。It is a whole schematic block diagram which shows Example 1 of the adsorption processing apparatus which concerns on this invention. 本発明に係る吸着処理装置の実施例2を示す全体概略構成図である。It is a whole schematic block diagram which shows Example 2 of the adsorption processing apparatus which concerns on this invention. 本発明に係る吸着処理装置の実施例3を示す全体概略構成図である。It is a whole schematic block diagram which shows Example 3 of the adsorption processing apparatus which concerns on this invention. 本発明に係る吸着処理装置の実施例4を示す全体概略構成図である。It is a whole schematic block diagram which shows Example 4 of the adsorption processing apparatus which concerns on this invention. 本発明に係る吸着処理装置の実施例6を示す全体概略構成図である。It is a whole schematic block diagram which shows Example 6 of the adsorption processing apparatus which concerns on this invention.

符号の説明Explanation of symbols

1…吸着塔
2…被処理ガス供給管
4…処理ガス分岐供給管(配管)
5…小容器
9…外気供給管
11…外気分岐供給管(再生ガス供給管)
21…直列用被処理ガス供給管
31…蒸気供給管
32…蒸気分岐供給管(再生ガス供給管)
DESCRIPTION OF SYMBOLS 1 ... Adsorption tower 2 ... Process gas supply pipe 4 ... Process gas branch supply pipe (pipe)
5 ... Small container 9 ... Outside air supply pipe 11 ... Outside air branch supply pipe (regenerative gas supply pipe)
21 ... Process gas supply pipe for series 31 ... Steam supply pipe 32 ... Steam branch supply pipe (regeneration gas supply pipe)

Claims (6)

被処理ガス中の硫化水素を吸着するように水酸化第二鉄を含む多孔質材料による吸着材を充填した吸着塔を設け、前記吸着塔内の吸着材に水分を含む空気を再生ガスとして供給して再生処理を行うように構成した吸着処理装置であって、
前記吸着塔よりも容量が小さい吸着処理用の小容器を設けるとともに、前記小容器内に水酸化第二鉄または/および酸化第二鉄を含む多孔質材料による小容器用吸着材を充填し、前記吸着塔内の吸着材に対して再生処理を行っている状態で被処理ガスを供給する配管を前記小容器に接続し、かつ、前記小容器用吸着材の充填量を、前記吸着塔内の吸着材を再生処理する場合に要する再生時間に基づいて少量に設定したことを特徴とする吸着処理装置。
An adsorption tower filled with an adsorbent made of a porous material containing ferric hydroxide is adsorbed to adsorb hydrogen sulfide in the gas to be treated, and air containing water is supplied as a regeneration gas to the adsorbent in the adsorption tower. An adsorption processing apparatus configured to perform a regeneration process,
A small vessel for adsorption treatment having a smaller capacity than the adsorption tower is provided, and the small vessel is filled with an adsorbent for a small vessel made of a porous material containing ferric hydroxide and / or ferric oxide, A pipe for supplying a gas to be treated in a state where the adsorbent in the adsorption tower is being regenerated is connected to the small container, and the filling amount of the adsorbent for the small container is set in the adsorption tower. An adsorption processing apparatus characterized in that the adsorbent is set to a small amount based on a regeneration time required for regenerating the adsorbent.
請求項1に記載の吸着処理装置において、
前記小容器用吸着材の充填量を、前記吸着塔内の吸着材を再生処理する場合に要する再生時間と前記吸着塔内の吸着材に硫黄が蓄積して再生不能となるまでの回数との積で計算される処理時間に基づいて少量に設定したことを特徴とする吸着処理装置。
The adsorption processing apparatus according to claim 1,
The filling amount of the adsorbent for the small container is defined as the regeneration time required for regenerating the adsorbent in the adsorption tower and the number of times until sulfur accumulates in the adsorbent in the adsorption tower and cannot be regenerated. An adsorption processing apparatus characterized in that a small amount is set based on a processing time calculated by a product.
被処理ガス中の硫化水素を吸着するように水酸化第二鉄を含む多孔質材料による吸着材を充填した吸着塔を設け、前記吸着塔内の吸着材に水分を含む空気を再生ガスとして供給して再生処理を行うように構成した吸着処理装置であって、
前記吸着塔よりも容量が小さい吸着処理用の小容器を設けるとともに、前記小容器内に水酸化第二鉄または/および酸化第二鉄を含む多孔質材料による小容器用吸着材を充填し、前記吸着塔内の吸着材に対して再生処理を行っている状態で被処理ガスを供給する配管と、被処理ガスの供給を停止した状態で再生ガスを供給する再生ガス供給管とを前記小容器に接続し、かつ、前記小容器用吸着材の充填量を、前記吸着塔内の吸着材を再生処理する場合に要する再生時間に基づいて少量に設定したことを特徴とする吸着処理装置。
An adsorption tower filled with an adsorbent made of a porous material containing ferric hydroxide is adsorbed to adsorb hydrogen sulfide in the gas to be treated, and air containing water is supplied as a regeneration gas to the adsorbent in the adsorption tower. An adsorption processing apparatus configured to perform a regeneration process,
A small vessel for adsorption treatment having a smaller capacity than the adsorption tower is provided, and the small vessel is filled with an adsorbent for a small vessel made of a porous material containing ferric hydroxide and / or ferric oxide, A pipe for supplying the gas to be processed while the adsorbent in the adsorption tower is being regenerated, and a gas supply pipe for supplying the regeneration gas in a state in which the supply of the gas to be processed is stopped are described above. An adsorption processing apparatus, wherein the adsorption processing apparatus is connected to a container and the filling amount of the adsorbent for the small container is set to a small amount based on a regeneration time required for regenerating the adsorbent in the adsorption tower.
請求項1、2、3のいずれかに記載の吸着処理装置において、
吸着材に対する再生処理を行わない定常状態で、被処理ガスを吸着塔から小容器に直列に流動するように構成してある吸着処理装置。
In the adsorption processing apparatus according to any one of claims 1, 2, and 3,
An adsorption treatment apparatus configured to flow a gas to be treated in series from an adsorption tower to a small container in a steady state where no regeneration treatment is performed on the adsorbent.
被処理ガス中の溶剤を吸着する吸着材を充填した吸着塔を設け、前記吸着塔内の吸着材に過熱水蒸気を供給して再生処理を行うように構成した吸着処理装置であって、
前記吸着塔よりも容量が小さい吸着処理用の小容器を設けるとともに、前記吸着塔内の吸着材に対して再生処理を行っている状態で被処理ガスを供給する配管を前記小容器に接続し、前記小容器に、被処理ガスの供給を停止した状態で過熱水蒸気を供給する蒸気分岐供給管を接続し、かつ、前記小容器内に充填する小容器用吸着材の充填量を、前記吸着塔内の吸着材を再生処理する場合に要する再生時間に基づいて少量に設定したことを特徴とする吸着処理装置。
An adsorption processing apparatus provided with an adsorption tower filled with an adsorbent that adsorbs a solvent in a gas to be treated, and configured to perform regeneration by supplying superheated steam to the adsorbent in the adsorption tower,
A small vessel for adsorption treatment having a smaller capacity than the adsorption tower is provided, and a pipe for supplying a gas to be treated in a state in which regeneration treatment is performed on the adsorbent in the adsorption tower is connected to the small vessel. A steam branch supply pipe for supplying superheated steam in a state where supply of the gas to be treated is stopped to the small container, and the filling amount of the small container adsorbent to be filled in the small container An adsorption processing apparatus characterized in that a small amount is set based on a regeneration time required when the adsorbent in the tower is regenerated.
請求項5に記載の吸着処理装置において、
吸着材に対する再生処理を行わない定常状態で、被処理ガスを吸着塔から小容器に直列に流動するように構成してある吸着処理装置。
The adsorption processing apparatus according to claim 5, wherein
An adsorption treatment apparatus configured to flow a gas to be treated in series from an adsorption tower to a small container in a steady state where no regeneration treatment is performed on the adsorbent.
JP2008050421A 2008-02-29 2008-02-29 Adsorption apparatus Pending JP2009207945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008050421A JP2009207945A (en) 2008-02-29 2008-02-29 Adsorption apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008050421A JP2009207945A (en) 2008-02-29 2008-02-29 Adsorption apparatus

Publications (1)

Publication Number Publication Date
JP2009207945A true JP2009207945A (en) 2009-09-17

Family

ID=41181626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008050421A Pending JP2009207945A (en) 2008-02-29 2008-02-29 Adsorption apparatus

Country Status (1)

Country Link
JP (1) JP2009207945A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210089871A (en) * 2020-01-09 2021-07-19 주식회사 이앤켐솔루션 Ultra-low concentration hydrogen sulphide containing clean biogas production system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210089871A (en) * 2020-01-09 2021-07-19 주식회사 이앤켐솔루션 Ultra-low concentration hydrogen sulphide containing clean biogas production system
KR102367558B1 (en) * 2020-01-09 2022-02-25 (주)이앤켐솔루션 Ultra-low concentration hydrogen sulphide containing clean biogas production system

Similar Documents

Publication Publication Date Title
Golmakani et al. Advances, challenges, and perspectives of biogas cleaning, upgrading, and utilisation
RU2473379C2 (en) Method of isolating carbon dioxide from smoke gases and respective device
KR101623611B1 (en) Multiple fixed-fluidized beds for contaminant removal
US9901864B2 (en) Device and method for simultaneous hydrogen sulphide removal and biogas upgrading
AU2021290220B2 (en) Method for inerting activated carbon in biogas purification equipment
EP2253915B1 (en) Method and apparatus for separating blast furnace gas
JP5906074B2 (en) Hydrogen production system
KR20080061359A (en) Process and apparatus for the purification of methane rich gas streams
JP2022508572A (en) Continuous desulfurization process based on metal oxide-based renewable adsorbents
JP2009024079A (en) Biogas generation system
US8187365B2 (en) Process for removal of metal carbonyls from a synthesis gas stream
US20130324397A1 (en) Carbon adsorbent for hydrogen sulfide removal from gases containing same, and regeneration of adsorbent
CN104540577A (en) Process for the removal of sulfur compounds from gas streams
CN109789365A (en) The method of siloxanes is removed from refuse landfill gas
JP2009207945A (en) Adsorption apparatus
JP2007308600A (en) Gas refiner and method for producing methane
JP2007063476A (en) Fuel gas refining system
JP2008208268A (en) Methane gas purifying equipment, and methane gas purifying equipment and system
JP2007016185A (en) System for gasifying treated material and method for gasifying the treated material
Saleh et al. Equilibrium and Kinetic Studies in adsorption of H2S using Coconut Shell Activated Carbon Xerogel: Effect of Mass Adsorbent and Temperature
JP4919469B2 (en) Adsorption gas storage device and gas storage method
JP7462897B2 (en) Nitrogen-containing organic matter treatment system and treatment method
JP2010280535A (en) Apparatus, method and program for producing hydrogen
JP2007111649A (en) Method for treating gas caused by sludge char and apparatus therefor
JPH0569566B2 (en)