JP2009207466A - Cell cycle measurement method - Google Patents

Cell cycle measurement method Download PDF

Info

Publication number
JP2009207466A
JP2009207466A JP2008056873A JP2008056873A JP2009207466A JP 2009207466 A JP2009207466 A JP 2009207466A JP 2008056873 A JP2008056873 A JP 2008056873A JP 2008056873 A JP2008056873 A JP 2008056873A JP 2009207466 A JP2009207466 A JP 2009207466A
Authority
JP
Japan
Prior art keywords
amount
dna damage
cell cycle
marker
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008056873A
Other languages
Japanese (ja)
Other versions
JP5436786B2 (en
Inventor
Kazuo Ozawa
和夫 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008056873A priority Critical patent/JP5436786B2/en
Publication of JP2009207466A publication Critical patent/JP2009207466A/en
Application granted granted Critical
Publication of JP5436786B2 publication Critical patent/JP5436786B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell cycle measurement method which enables the more accurate evaluation of a cell cycle by correcting a bias of a measured value generated by DNA damage when using the phosphorylation amount of H3 histone as an index in cell cycle measurement. <P>SOLUTION: The cell cycle measurement method comprises the process of measuring a relation between the amount of generated DNA damage and the amount of a cell cycle marker specific in a G2/M phase about a cell which is the same kind of cell to be detected, as first data, the process of measuring a relation between the amount of DNA damage and the amount of a chromosome DNA damage marker about the above cell as second data, the process of measuring the amount of the cell cycle marker and the amount of the DNA damage marker about a cell group to be detected, and the process of correcting the measured values obtained from the cell group to be detected by using the first and second data. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、細胞ベースアッセイ系における細胞周期の計測方法に関し、特に、DNA傷害発生を伴う細胞について正確に細胞周期の状態を評価する方法に関する。   The present invention relates to a method for measuring a cell cycle in a cell-based assay system, and more particularly to a method for accurately evaluating the state of the cell cycle for cells accompanied by the occurrence of DNA damage.

真核生物においては、細胞核DNAはコアヒストンH2A、2B、H3、H4が2分子ずつ集合した8量体のコア構造と複合体を形成している。この複合体はビーズ状の構造をとっておりヌクレオソームと呼ばれる。近年の数多くの研究から、ヒストンテールの翻訳後修飾が染色体のダイナミックな機能に関与していることが明らかになってきた。とくにヒストンH3の第10番目のセリン残基(H3Ser10)や第28番目のセリン残基(H3Ser28)のリン酸化修飾は、遺伝子転写、体細胞分裂、減数分裂の動きに強く連動し、染色体分裂が進むにつれてリン酸化が増加し、細胞分割直後に急激にリン酸化が消えることが知られている。またAurora-BキナーゼはH3Ser10をリン酸化する細胞内酵素として同定されている(非特許文献1)。   In eukaryotes, nuclear DNA forms a complex with an octamer core structure in which two molecules of core histones H2A, 2B, H3, and H4 are assembled. This complex has a bead-like structure and is called a nucleosome. Numerous recent studies have revealed that histone tail post-translational modifications are involved in the dynamic function of chromosomes. In particular, the phosphorylation modification of the 10th serine residue (H3Ser10) and 28th serine residue (H3Ser28) of histone H3 is strongly linked to gene transcription, somatic cell division and meiosis, and chromosome division is It is known that phosphorylation increases as it progresses, and that phosphorylation rapidly disappears immediately after cell division. Aurora-B kinase has been identified as an intracellular enzyme that phosphorylates H3Ser10 (Non-patent Document 1).

H3Ser10のリン酸化が染色体分裂の際に相関した劇的な量的変化を見せるものの、その生理的な意味についてはまだ十分な解明がなされているとはいえない。幾つかの報告では、H3Ser10リン酸化は染色体凝集に関与するとの説を述べている。しかしその一方、Auroraキナーゼの選択的阻害剤ZM447439を処理した細胞で、H3Ser10リン酸化反応を阻害した条件であっても、染色体凝集が進むことが知られている。   Although the phosphorylation of H3Ser10 shows a dramatic quantitative change correlated with chromosomal division, its physiological meaning has not yet been fully elucidated. Several reports state that H3Ser10 phosphorylation is involved in chromosome aggregation. However, on the other hand, it is known that chromosome aggregation proceeds in cells treated with the selective Aurora kinase inhibitor ZM447439 even under conditions where the H3Ser10 phosphorylation reaction was inhibited.

H3Ser10リン酸化は、細胞周期のG2/M期の進行プロセスにおいて劇的にそのリン酸化の割合が増加すること、また特異的抗体により高い選択性をもって可視化検出が可能なことが経験的に知られている。このことからリン酸化型H3Ser10は細胞周期におけるG2/M期の状態を示すマーカーとして広く利用されている。   H3Ser10 phosphorylation has been empirically known to dramatically increase the rate of phosphorylation during the G2 / M phase of the cell cycle, and to enable visualization and detection with high selectivity by specific antibodies. ing. Therefore, phosphorylated H3Ser10 is widely used as a marker indicating the state of G2 / M phase in the cell cycle.

ところが、強いDNA傷害を発生させる条件下におかれた細胞において、H3Ser10リン酸量が著しく低下し、H3Ser10リン酸化量とG2/M細胞周期との状態の相関性が失われることを示唆する報告がされている。非特許文献2には、培養細胞に高線量のガンマ線を照射し、強いDNA傷害を発生させると、短時間のうちにH3Ser10リン酸化が顕著に低下することが記載されている。また非特許文献3には、過酸化水素あるいは放射線照射で染色体DNA傷害を発生させるとH3Ser10リン酸化量が著しく低下することが記載されており、阻害剤を利用した実験により、この減少は、Aurora-Bキナーゼがpoly ADPリボシル化が亢進することでキナーゼ活性を失い、結果としてH3Ser10リン酸化活性が低下するためと推測している。従って、H3ヒストンのリン酸化量によって細胞周期を評価する場合、DNA傷害による誤差が生じ得るという問題があった。
Prigent C, Dimitrov S., J Cell Sci 2003; 116 (Pt 18): 3677-85 Guo CY, Mizzen C, Wang Y, Larner JM, Cancer Res 2000; 60 (20): 5667-72 Monaco L, Kolthur-Seetharam U, Loury R, Murcia JM, de Murcia G, Sassone-Corsi P, Proc Natl Acad Sci USA 2005; 102(40): 14244-8
However, a report suggesting that the amount of H3Ser10 phosphate is significantly decreased in cells placed under conditions that cause strong DNA damage, and the correlation between the amount of H3Ser10 phosphorylation and the state of the G2 / M cell cycle is lost. Has been. Non-Patent Document 2 describes that phosphorylation of H3Ser10 is remarkably reduced in a short time when a cultured cell is irradiated with a high dose of gamma rays to cause strong DNA damage. Non-Patent Document 3 describes that when chromosomal DNA damage is caused by hydrogen peroxide or irradiation, the amount of phosphorylated H3Ser10 is markedly reduced. It is speculated that -B kinase loses kinase activity due to increased poly ADP ribosylation, resulting in decreased H3Ser10 phosphorylation activity. Therefore, when the cell cycle is evaluated by the phosphorylation amount of H3 histone, there is a problem that an error due to DNA damage may occur.
Prigent C, Dimitrov S., J Cell Sci 2003; 116 (Pt 18): 3677-85 Guo CY, Mizzen C, Wang Y, Larner JM, Cancer Res 2000; 60 (20): 5667-72 Monaco L, Kolthur-Seetharam U, Loury R, Murcia JM, de Murcia G, Sassone-Corsi P, Proc Natl Acad Sci USA 2005; 102 (40): 14244-8

上記問題に鑑み、本発明は、細胞周期の計測において、H3ヒストンのリン酸化量を指標としたときにDNA傷害によって生じる計測値の偏りを補正し、より正確な細胞周期の評価を行う方法を提供する。   In view of the above problems, the present invention corrects a measurement value bias caused by DNA damage when the phosphorylation amount of H3 histone is used as an index in the measurement of the cell cycle, and provides a more accurate evaluation of the cell cycle. provide.

本発明の一つの態様において、検出対象の細胞と同種の細胞について、DNA傷害の発生量とG2/M期に特異的な細胞周期マーカー量との関係を第1のデータとして計測する工程と、上記細胞について、DNA傷害の発生量と染色体DNA傷害マーカー量との関係を第2のデータとして計測する工程と、検出対象の細胞集団について、前記細胞周期マーカー量及びDNA傷害マーカー量を計測する工程と、前記検出対象から得られた計測値を、前記第1及び第2のデータを用いて補正する工程とを具備する、細胞周期の計測方法が提供される。   In one embodiment of the present invention, the step of measuring the relationship between the amount of DNA damage and the amount of cell cycle markers specific to G2 / M phase as first data for the same type of cells as the detection target cells; Measuring the relationship between the amount of occurrence of DNA damage and the amount of chromosomal DNA damage marker as the second data for the cell, and measuring the amount of the cell cycle marker and the amount of DNA damage marker for the detection target cell population And a method of correcting a measurement value obtained from the detection target using the first and second data, and a cell cycle measurement method.

一つの態様において、上記細胞周期マーカーは、リン酸化したH3ser10又はH3ser28であることが好ましい。また、上記染色体DNA傷害マーカーは、染色体DNA傷害と相関関係を有するヒストンであることが好ましい。他の態様において、該染色体DNA傷害マーカーは、リン酸化したH2AXSer139である。   In one embodiment, the cell cycle marker is preferably phosphorylated H3ser10 or H3ser28. The chromosomal DNA damage marker is preferably a histone having a correlation with chromosomal DNA damage. In other embodiments, the chromosomal DNA damage marker is phosphorylated H2AXSer139.

一つの態様において、上記細胞周期マーカー量及びDNA傷害マーカー量の計測は、前記細胞の顕微鏡画像を取得し、取得した画像を解析することによって行われることが好ましい。他の態様において、上記第1のデータと第2のデータは同時に計測される。   In one embodiment, the measurement of the cell cycle marker amount and the DNA damage marker amount is preferably performed by acquiring a microscopic image of the cell and analyzing the acquired image. In another aspect, the first data and the second data are measured simultaneously.

また、本発明の他の側面から、検出対象の細胞と同種の細胞について、DNA傷害の発生量とG2/M期に特異的な細胞周期マーカー量との関係を第1のデータとして計測する工程と、上記細胞について、DNA傷害の発生量と染色体DNA傷害マーカー量との関係を第2のデータとして計測する工程と、前記第1及び第2のデータから、DNA傷害が細胞周期へ与える影響を反映する第3のデータを得る工程とを含み、該第3のデータを用いて、検出対象から得られた細胞周期マーカー量の計測値を補正することを特徴とする、細胞周期計測値の補正方法が提供される。   According to another aspect of the present invention, a step of measuring, as first data, the relationship between the amount of DNA damage and the amount of cell cycle markers specific to G2 / M phase for the same type of cells as the detection target cells. And measuring the relationship between the amount of occurrence of DNA damage and the amount of chromosomal DNA damage marker as the second data for the above cells, and the influence of DNA damage on the cell cycle from the first and second data. Correction of the cell cycle measurement value, wherein the measurement value of the cell cycle marker amount obtained from the detection target is corrected using the third data. A method is provided.

本発明に従えば、DNA傷害によって生じた細胞周期情報に含まれる偏りを補正し、より正確に細胞周期の状態を評価する方法が提供される。   According to the present invention, there is provided a method for correcting the bias included in the cell cycle information caused by DNA damage and more accurately evaluating the state of the cell cycle.

本願発明者らは、鋭意研究の結果、G2/M期に特異的な細胞周期マーカー量の計測値の偏りを補正するために、染色体DNA傷害の発生量を反映する染色体DNA傷害マーカー量を利用することが有効であることを見出した。   As a result of intensive research, the inventors of the present application have used a chromosomal DNA damage marker amount that reflects the amount of chromosomal DNA damage in order to correct the bias in the measurement value of the cell cycle marker amount specific to G2 / M phase. I found it effective.

なお、ここでいう計測値の偏りとは、本来あるべき細胞周期マーカー量が低下することを意味する。   In addition, the bias of the measured value here means that the cell cycle marker amount that should be originally decreased.

本発明において、G2/M期に特異的な細胞周期マーカーとは、G2/M期において特異的に観察される任意のマーカーである。本発明の一つの態様において、該細胞周期マーカーには、リン酸化したH3Ser10及びH3Ser28が好適に用いられる。即ち、H3Ser10及び/又はH3Ser28のリン酸化量が計測される。また、本発明において、染色体DNA傷害マーカーとは、DNA傷害の発生量と比例して増加或いは減少する任意のマーカーであり、H2AXの第139番目のセリン残基のリン酸化が好適に用いられる。即ち、H2AXのSer139のリン酸化量が計測される。   In the present invention, a cell cycle marker specific for G2 / M phase is any marker specifically observed in G2 / M phase. In one embodiment of the present invention, phosphorylated H3Ser10 and H3Ser28 are preferably used as the cell cycle marker. That is, the phosphorylation amount of H3Ser10 and / or H3Ser28 is measured. In the present invention, the chromosomal DNA damage marker is any marker that increases or decreases in proportion to the amount of DNA damage, and phosphorylation of the 139th serine residue of H2AX is preferably used. That is, the phosphorylation amount of Ser139 of H2AX is measured.

H2AX(或いはガンマH2AXとも称される)は、コアヒストン複合体の構成成分の一つである。H2AXはH2Aに類似した分子であり、H2AとはC末端側の一部のアミノ酸配列が異なっている。このH2AXは一部のヒストンコアにおいてH2Aと置き換わってコア構造を形成している。高等真核生物においては、染色体DNA傷害の際にこのH2AXがリン酸化されることが知られている。具体的には、DNA傷害時に、このH2AXの139番目のセリン(Ser139)が急速にリン酸化することがよく知られている。このリン酸化は、Pl3-様キナーゼファミリーのうち、DNA傷害のごく初期に活動を開始し、DNA傷害応答反応で中心的役割を果たすキナーゼ群が作用することによるものである。   H2AX (or gamma H2AX) is one of the components of the core histone complex. H2AX is a molecule similar to H2A, and part of the amino acid sequence on the C-terminal side is different from H2A. This H2AX replaces H2A in some histone cores to form a core structure. In higher eukaryotes, it is known that this H2AX is phosphorylated upon chromosomal DNA damage. Specifically, it is well known that the 139th serine (Ser139) of H2AX is rapidly phosphorylated upon DNA damage. This phosphorylation is due to the action of a group of kinases in the Pl3-like kinase family that start activities at the very early stage of DNA damage and play a central role in the DNA damage response.

このようにH2AXリン酸化がDNA傷害応答反応に直結した現象であることから、H2AXのリン酸化量をDNA傷害の程度を推測するマーカーとして利用することができる。   Thus, since H2AX phosphorylation is a phenomenon directly linked to the DNA damage response reaction, the amount of phosphorylation of H2AX can be used as a marker for estimating the degree of DNA damage.

本発明では、このH2AXのリン酸化量を計測し、その計測値を用いてH3Ser10のリン酸化量の計測値を補正することにより、その細胞周期に本来あるべき正確なH3Ser10のリン酸化量を得ることができ、細胞周期をより正確に計測することが可能である。   In the present invention, the phosphorylated amount of H2AX is measured, and the measured value is used to correct the measured value of the phosphorylated amount of H3Ser10, thereby obtaining an accurate phosphorylated amount of H3Ser10 that should originally be in the cell cycle. It is possible to measure the cell cycle more accurately.

ヒストンのリン酸化は極めて多くの種類が存在し、今までに様々な研究がされている。また、ヒストンにはリン酸化以外にもアセチル化などの多くの修飾がある。しかしながら、種々のヒストン修飾はそれぞれ独立して研究されており、ヒストンH3とH2AXの関係性について着目したものはこれまでになかった。ヒストンH3とH2AXの関係を、細胞周期の計測に利用できることは、本願発明によって始めて見出されたものである。   There are many types of histone phosphorylation, and various studies have been conducted so far. In addition to his phosphorylation, histones have many modifications such as acetylation. However, various histone modifications have been studied independently, and there has never been a focus on the relationship between histones H3 and H2AX. It was discovered for the first time by the present invention that the relationship between histone H3 and H2AX can be used for measurement of the cell cycle.

本発明の細胞周期計測方法では、まず、検出対象の細胞と同種の細胞を複数用いて、DNA傷害の発生量とG2/M期に特異的な細胞周期マーカー量との関係を第1のデータとして計測する。これは、細胞に与えるDNA傷害量を変化させ、各傷害量において細胞周期マーカー量を計測することによって行う。   In the cell cycle measurement method of the present invention, first, using a plurality of cells of the same type as the detection target cell, the relationship between the amount of DNA damage occurrence and the amount of cell cycle markers specific to the G2 / M phase is first data. Measure as This is done by changing the amount of DNA damage given to the cells and measuring the amount of cell cycle marker at each amount of damage.

次に、上記細胞について、DNA傷害の発生量と染色体DNA傷害マーカー量との関係を第2のデータとして計測する。これも、細胞に与えるDNA傷害量を変化させ、各傷害量において染色体DNA傷害マーカー量を計測することによって行う。   Next, the relationship between the amount of DNA damage and the amount of chromosomal DNA damage marker is measured as the second data for the cells. This is also performed by changing the amount of DNA damage given to cells and measuring the amount of chromosomal DNA damage marker at each amount of damage.

第1と第2のデータの計測は同時に行うことができる。計測される細胞は、培養用容器中で培養されてよい。この細胞に染色体DNAに傷害を誘導する任意の処理を加え、一定時間保温する。   Measurement of the first and second data can be performed simultaneously. The cells to be measured may be cultured in a culture container. Any treatment that induces damage to chromosomal DNA is added to the cells, and the cells are incubated for a certain period of time.

染色体DNAに傷害を引き起こす処理は、薬剤などを用いた化学的処理、又は、温度及び放射線照射のような物理的処理を含む任意の方法であってよい。   The treatment that causes damage to the chromosomal DNA may be any method including chemical treatment using a drug or the like, or physical treatment such as temperature and irradiation.

マーカー量の計測には抗原抗体反応を利用することができる。細胞を固定した後、それぞれのマーカーに特異的な一次抗体を結合させる。検出に用いる抗体は、例えば、H3Ser10やH2AXがリン酸化する位置の前後10個程度のアミノ酸配列から作成することができる。抗体は公知の方法によって作成してもよいが、商業的に入手可能な抗体を用いてもよい。例えば、抗リン酸化H3Ser10ウサギポリクローナル抗体(Upstate社)及び抗ガンマH2AXマウスモノクローナル抗体(Upstate社)を用いることができる。   An antigen-antibody reaction can be used to measure the marker amount. After fixing the cells, a primary antibody specific for each marker is bound. The antibody used for detection can be prepared, for example, from about 10 amino acid sequences before and after the position where H3Ser10 or H2AX is phosphorylated. The antibody may be prepared by a known method, but a commercially available antibody may be used. For example, anti-phosphorylated H3Ser10 rabbit polyclonal antibody (Upstate) and anti-gamma H2AX mouse monoclonal antibody (Upstate) can be used.

続いて、過剰な抗体を洗浄した後、それぞれの一次抗体に選択的に結合する互いに分離識別可能な波長を有する蛍光色素標識された二次抗体を結合させる。これにより、一次抗体の結合が可視化され検出可能となる。蛍光標識二次抗体には、例えばAlexaFluor488標識抗ウサギIgG抗体及びAlexaFluor635標識抗マウスIgG抗体(各Invitrogen社)を用いることができる。   Subsequently, after the excess antibody is washed, a fluorescent dye-labeled secondary antibody having a wavelength that can be separated and distinguished from each other selectively binds to each primary antibody. Thereby, the binding of the primary antibody is visualized and can be detected. For example, AlexaFluor488-labeled anti-rabbit IgG antibody and AlexaFluor635-labeled anti-mouse IgG antibody (each Invitrogen) can be used as the fluorescently labeled secondary antibody.

さらに、過剰の二次抗体を洗浄した後、細胞核DNAを、第三の識別できる蛍光色を発するDNA結合性色素、例えばDAPI等で染色し、細胞の画像を撮影する。細胞核の蛍光画像で細胞及び細胞核の位置を認識し、続いてこの位置のリン酸化H3Ser10及び/又はH3Ser28、及びH2AXをそれぞれの蛍光色素で検出し、その存在量を計測する。認識細胞あるいは認識核ごとに、それぞれの抗体結合量を集計する。画像撮影には、顕微鏡撮像装置と画像解析装置が一体化したシステムを用いることが好ましく、例えばイメージングサイトメータ(CompupCyte社)が好適に用いられる。上記の蛍光標識抗体を用いた場合を例にとると、イメージングサイトメータ(CompupCyte社)によってDAPI画像、AlexaFluro488画像、AlexaFluro635画像を自動的に取得する。同システムの画像解析機能により、DAPI画像に適度な閾値を設定して細胞核の位置を認識させる。続いてこの細胞核の位置にあるAlexaFluro488とAlexaFluro635の蛍光量を撮影画像により計測する。撮影画像中のAlexaFluro488とAlexaFluro635の蛍光量を集計する。細胞に与えたDNA傷害処理の各段階の蛍光抗体からの蛍光量を集計する。AlexaFluro635蛍光の集計からDNA傷害誘導処理の強度の応じた蛍光量を求める。AlexaFluro635蛍光量がDNA傷害の指標として利用される。また、AlexaFluro488蛍光量を指標としてリン酸化H3Ser10の量を求める。   Further, after washing the excess secondary antibody, the cell nuclear DNA is stained with a DNA-binding dye that emits a third distinguishable fluorescent color, such as DAPI, and a cell image is taken. The position of the cell and the cell nucleus is recognized from the fluorescence image of the cell nucleus, and then phosphorylated H3Ser10 and / or H3Ser28 and H2AX at this position are detected with the respective fluorescent dyes, and their abundance is measured. Each antibody binding amount is counted for each recognition cell or recognition nucleus. For imaging, it is preferable to use a system in which a microscope imaging device and an image analysis device are integrated. For example, an imaging cytometer (CompupCyte) is preferably used. Taking the case of using the above-described fluorescently labeled antibody as an example, DAPI images, AlexaFluro488 images, and AlexaFluro635 images are automatically acquired by an imaging cytometer (CompupCyte). With the image analysis function of the system, an appropriate threshold is set for the DAPI image to recognize the position of the cell nucleus. Subsequently, the fluorescence amount of AlexaFluro488 and AlexaFluro635 at the position of this cell nucleus is measured from the photographed image. The amount of fluorescence of AlexaFluro488 and AlexaFluro635 in the captured image is totaled. The amount of fluorescence from the fluorescent antibody at each stage of DNA damage treatment given to the cells is totaled. From the total of AlexaFluro635 fluorescence, the amount of fluorescence corresponding to the intensity of DNA damage induction treatment is determined. AlexaFluro635 fluorescence is used as an indicator of DNA damage. In addition, the amount of phosphorylated H3Ser10 is determined using AlexaFluro488 fluorescence as an index.

このようにして得られた第1及び第2のデータは、DNA傷害が細胞周期へ与える影響を反映する第3のデータとすることができる。この第3のデータとは、DNA傷害と、上記第1及び第2のデータの対応関係を表すものであり、対応表やグラフ、関係式など、任意の形態であってよい。一つの態様において、第1及び第2のデータの相関関係を表す回帰式が好適に用いられる。この式よりDNA傷害量に応じたH3Ser10リン酸化の計測量に補正を加えるための補正式を求めることが出来る。   The first and second data thus obtained can be third data reflecting the influence of DNA damage on the cell cycle. The third data represents the correspondence between the DNA damage and the first and second data, and may take any form such as a correspondence table, a graph, or a relational expression. In one aspect, a regression equation representing the correlation between the first and second data is preferably used. From this equation, a correction equation for correcting the measurement amount of H3Ser10 phosphorylation according to the amount of DNA damage can be obtained.

次に、検出対象の細胞集団について、前記細胞周期マーカー及びDNA傷害マーカーを計測する。計測方法は上記と同様である。   Next, the cell cycle marker and the DNA damage marker are measured for the cell population to be detected. The measurement method is the same as described above.

そして、細胞集団から得られた計測値を、前記第3のデータを用いて補正する。これにより、H3Ser10及び/又はH3Ser28のリン酸化量に対し、H2AXのリン酸化量で補正を行い、G2/M期の細胞の存在量をより正確に計測することができる。例えば上記で得られた補正式を計測値にあてはめ、H3Ser10リン酸化計測値に補正を加え、細胞周期の状態を示す指標とすることができる。   Then, the measurement value obtained from the cell population is corrected using the third data. Thereby, the phosphorylation amount of H3Ser10 and / or H3Ser28 is corrected with the phosphorylation amount of H2AX, and the abundance of cells in the G2 / M phase can be measured more accurately. For example, the correction equation obtained above can be applied to the measurement value, and the measurement value of H3Ser10 phosphorylation can be corrected to be an index indicating the state of the cell cycle.

本発明における検出対象の細胞集団は、培養用容器中で培養された培養細胞であってよい。また、接着性細胞であっても浮遊細胞であってもよい。浮遊細胞には、例えば血液細胞やヘラ細胞などが含まれる。浮遊細胞を用いる場合は、フローサイトメーターを用いて細胞の蛍光量を測定することによって好適に計測される。また細胞集団は病理切片であってもよい。その病理切片の細胞周期を観察することによって、増殖状態などの細胞の状態を調査することができる。   The cell population to be detected in the present invention may be a cultured cell cultured in a culture vessel. Moreover, it may be an adherent cell or a floating cell. The floating cells include blood cells and spatula cells, for example. When using floating cells, it is preferably measured by measuring the amount of fluorescence of the cells using a flow cytometer. The cell population may be a pathological section. By observing the cell cycle of the pathological section, it is possible to investigate the state of cells such as the growth state.

<実施態様>
図面を参照してさらに本発明の一実施態様を説明する。
<Embodiment>
An embodiment of the present invention will be further described with reference to the drawings.

まず、所望の細胞に段階的にDNA傷害を与える。その量と、2種のヒストンのリン酸化量との関係を実測する。そして両者の相関式を求める。図1(a)に示すように、H3Ser10(又はSer28)のリン酸化量は y=ax+b…式(1)であり、H2AXのリン酸化量は y=cx+d…式(2)と表すことができる。   First, DNA damage is given stepwise to desired cells. The relationship between the amount and the amount of phosphorylation of two kinds of histones is actually measured. Then, a correlation formula between them is obtained. As shown in FIG. 1A, the phosphorylation amount of H3Ser10 (or Ser28) is y = ax + b (1), and the phosphorylation amount of H2AX can be expressed as y = cx + d (2). .

次に、検出対象の細胞集団の細胞周期(G2/M量)を求める。このとき、DNA傷害量は未知であるので、その存在量を推定する。H2AXリン酸化量を計測し、その実測値からDNA傷害量を推定することができる。図2に示すように、実測値y2からDNA傷害推定値x2を、式 y2=cx2+d…式(3)により求めることができる。この式を変換してDNA傷害量推定値x2は、x2=(y2−d)/c…式(4)と表される。 Next, the cell cycle (G2 / M amount) of the cell population to be detected is determined. At this time, since the DNA damage amount is unknown, the abundance is estimated. The amount of H2AX phosphorylation is measured, and the amount of DNA damage can be estimated from the measured value. As shown in FIG. 2, the DNA damage estimated value x 2 can be obtained from the actually measured value y 2 by the formula y 2 = cx 2 + d (3). The DNA damage estimated value x2 by converting the equation, x 2 = represented as (y 2 -d) / c ... expression (4).

次に、図3に示すように、DNA傷害の推定値x2を基に、H3Ser10(又はSer28)リン酸化量の計測値y1に補正を加え、G2/M量を推定する。図3におけるX軸との交点「b」が最終的に求める値であるので、式(1)を変換して、b=y1-ax1…式(5)とし、上記で求めたDNA傷害量x2はx1と同じと見なすので、b=y1-ax2…式(6)であり、さらに上式(4)をx2に挿入して b=y1-a{(y2−d)/c}…式(7)である。得られたbの値は補正された計測値であり、即ちこの値がより正確なG2/M量を表す値である。 Next, as shown in FIG. 3, on the basis of the estimated value x 2 of DNA damage, H3Ser10 (or Ser28) correction on the measured value y 1 phosphorylation amount added, to estimate the G2 / M weight. Since the intersection “b” with the X axis in FIG. 3 is a finally obtained value, the expression (1) is converted into b = y 1 -ax 1 (5), and the DNA damage obtained as described above Since the quantity x 2 is considered to be the same as x 1 , b = y 1 −ax 2 (6), and the above expression (4) is inserted into x 2 and b = y 1 −a {(y 2 -D) / c} Equation (7). The obtained value of b is a corrected measurement value, that is, this value represents a more accurate G2 / M amount.

<実施例>
HeLa細胞に、3段階量(1,2,4)のDNA傷害を与える。傷害を与えない「0」を含めて4段階の計測点を設定する。H3Ser10リン酸化量を測り、回帰式を求める(図4a)。また、H2AXリン酸化量を測り、回帰式を求める(図4b)。
<Example>
HeLa cells are injured by 3 steps (1, 2, 4) of DNA damage. Set four measurement points including “0” that does not cause injury. The amount of phosphorylated H3Ser10 is measured, and a regression equation is obtained (FIG. 4a). Further, the amount of phosphorylation of H2AX is measured to obtain a regression equation (FIG. 4b).

これらの結果から補正式 b=y1-(-0.15){(y2−2.2)/0.83}…式(8)が得られ、これに任意の検体の実測値y1、y2の値を入れることにより、補正されたG2/M量を表す値を得ることができる。 From these results, the correction equation b = y 1 − (− 0.15) {(y 2 −2.2) /0.83} Equation (8) is obtained, and the actual measurement values y 1 and y 2 of any sample are obtained. By inserting, a value representing the corrected G2 / M amount can be obtained.

<測定例>
測定対象となる細胞集団Aが強いDNA傷害を受けている場合、y1=1.3、y2=5.0とすると、補正式に代入すると、1.89という数値が得られる。
一方、DNA傷害が弱い細胞集団Bの場合、y1=1.75、y2=2.6とすると、補正式に代入すると、1.82という数値が得られる。
よって、細胞集団A及びBの真のG2/M期の量は、1.89、1.82の値(任意の相対値)と決定される。
<Measurement example>
When the cell population A to be measured is subjected to strong DNA damage, if y 1 = 1.3 and y 2 = 5.0, a numerical value of 1.89 can be obtained by substituting into the correction equation.
On the other hand, in the case of cell population B with weak DNA damage, if y 1 = 1.75 and y 2 = 2.6, a numerical value of 1.82 is obtained by substituting into the correction equation.
Therefore, the true G2 / M phase amounts of the cell populations A and B are determined as 1.89 and 1.82 (arbitrary relative values).

以上に記載したように、本発明によれば、DNA傷害マーカーを計測することにより、細胞周期マーカーを計測して得た細胞周期計測値の偏りを補正することができる。これにより、DNA傷害発生を伴う細胞ベースアッセイにおいて、より真の値に近い細胞周期状態の計測値を得ることができる。   As described above, according to the present invention, by measuring the DNA damage marker, it is possible to correct the bias of the cell cycle measurement value obtained by measuring the cell cycle marker. As a result, a cell cycle state measurement value closer to the true value can be obtained in a cell-based assay involving the occurrence of DNA damage.

本発明の一実施態様の第1の工程を示す図。The figure which shows the 1st process of one embodiment of this invention. 本発明の一実施態様の第2の工程を示す図。The figure which shows the 2nd process of one embodiment of this invention. 本発明の一実施態様の第3の工程を示す図。The figure which shows the 3rd process of one embodiment of this invention. 本発明の一実施例の結果を示す図。The figure which shows the result of one Example of this invention.

Claims (7)

検出対象の細胞と同種の細胞について、DNA傷害の発生量とG2/M期に特異的な細胞周期マーカー量との関係を第1のデータとして計測する工程と、
上記細胞について、DNA傷害の発生量と染色体DNA傷害マーカー量との関係を第2のデータとして計測する工程と、
検出対象の細胞集団について、前記細胞周期マーカー量及びDNA傷害マーカー量を計測する工程と、
前記検出対象から得られた計測値を、前記第1及び第2のデータを用いて補正する工程と、
を具備する、細胞周期の計測方法。
Measuring the relationship between the amount of DNA damage and the amount of cell cycle markers specific to G2 / M phase as the first data for the same type of cells as the detection target cells;
Measuring the relationship between the amount of occurrence of DNA damage and the amount of chromosomal DNA damage marker as the second data for the cells;
Measuring the cell cycle marker amount and the DNA damage marker amount for a cell population to be detected; and
Correcting the measurement value obtained from the detection object using the first and second data;
A cell cycle measurement method comprising:
前記細胞周期マーカーが、リン酸化したH3ser10又はH3ser28であることを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the cell cycle marker is phosphorylated H3ser10 or H3ser28. 前記染色体DNA傷害マーカーが、染色体DNA傷害と相関関係を有するヒストンであることを特徴とする請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the chromosomal DNA damage marker is a histone having a correlation with chromosomal DNA damage. 前記染色体DNA傷害マーカーが、リン酸化したH2AXSer139であることを特徴とする請求項3に記載の方法。   The method according to claim 3, wherein the chromosomal DNA damage marker is phosphorylated H2AXSer139. 前記細胞周期マーカー量及びDNA傷害マーカー量の計測が、前記細胞の顕微鏡画像を取得し、取得した画像を解析することによって行われることを特徴とする請求項1〜4の何れか一項に記載の方法。   The measurement of the cell cycle marker amount and the DNA damage marker amount is performed by acquiring a microscopic image of the cell and analyzing the acquired image. the method of. 前記第1のデータと第2のデータが同時に計測されることを特徴とする請求項1〜5の何れか一項に記載の方法。   The method according to claim 1, wherein the first data and the second data are measured simultaneously. 検出対象の細胞と同種の細胞について、DNA傷害の発生量とG2/M期に特異的な細胞周期マーカー量との関係を第1のデータとして計測する工程と、
上記細胞について、DNA傷害の発生量と染色体DNA傷害マーカー量との関係を第2のデータとして計測する工程と、
前記第1及び第2のデータから、DNA傷害が細胞周期へ与える影響を反映する第3のデータを得る工程とを含み、
該第3のデータを用いて、検出対象から得られた細胞周期マーカー量の計測値を補正することを特徴とする、細胞周期計測値の補正方法。
Measuring the relationship between the amount of DNA damage and the amount of cell cycle markers specific to G2 / M phase as the first data for the same type of cells as the detection target cells;
Measuring the relationship between the amount of occurrence of DNA damage and the amount of chromosomal DNA damage marker as the second data for the cells;
Obtaining from the first and second data third data reflecting the effect of DNA damage on the cell cycle,
A method of correcting a cell cycle measurement value, wherein the measurement value of a cell cycle marker amount obtained from a detection target is corrected using the third data.
JP2008056873A 2008-03-06 2008-03-06 Cell cycle measurement method Expired - Fee Related JP5436786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008056873A JP5436786B2 (en) 2008-03-06 2008-03-06 Cell cycle measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008056873A JP5436786B2 (en) 2008-03-06 2008-03-06 Cell cycle measurement method

Publications (2)

Publication Number Publication Date
JP2009207466A true JP2009207466A (en) 2009-09-17
JP5436786B2 JP5436786B2 (en) 2014-03-05

Family

ID=41181238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008056873A Expired - Fee Related JP5436786B2 (en) 2008-03-06 2008-03-06 Cell cycle measurement method

Country Status (1)

Country Link
JP (1) JP5436786B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168311A (en) * 2003-12-08 2005-06-30 Takashi Ito Chromatin function regulator
WO2006046951A2 (en) * 2004-10-21 2006-05-04 University Of Utah Research Foundation Cell cycle arrest and apoptosis
US20060142231A1 (en) * 2003-12-01 2006-06-29 Alan Ashworth DNA damage repair inhibitors for treatment of cancer
WO2006087557A1 (en) * 2005-02-18 2006-08-24 Astrazeneca Ab METHOD FOR DETERMINING RESPONSIVENESS TO CHKl INHIBITORS
WO2006124448A2 (en) * 2005-05-11 2006-11-23 Vector Tobacco Inc. Reduced risk tobacco products and methods of making same
US20070160684A1 (en) * 2005-07-29 2007-07-12 Yun Yen Methods for increasing cancer cell chemosensitivity
WO2007100305A1 (en) * 2006-03-02 2007-09-07 Agency For Science, Technology And Research Sensitizing a cell to cancer treatment by modulating the activity of a nucleic acid encoding rps27l protein

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060142231A1 (en) * 2003-12-01 2006-06-29 Alan Ashworth DNA damage repair inhibitors for treatment of cancer
JP2005168311A (en) * 2003-12-08 2005-06-30 Takashi Ito Chromatin function regulator
WO2006046951A2 (en) * 2004-10-21 2006-05-04 University Of Utah Research Foundation Cell cycle arrest and apoptosis
WO2006087557A1 (en) * 2005-02-18 2006-08-24 Astrazeneca Ab METHOD FOR DETERMINING RESPONSIVENESS TO CHKl INHIBITORS
WO2006124448A2 (en) * 2005-05-11 2006-11-23 Vector Tobacco Inc. Reduced risk tobacco products and methods of making same
US20070160684A1 (en) * 2005-07-29 2007-07-12 Yun Yen Methods for increasing cancer cell chemosensitivity
WO2007100305A1 (en) * 2006-03-02 2007-09-07 Agency For Science, Technology And Research Sensitizing a cell to cancer treatment by modulating the activity of a nucleic acid encoding rps27l protein

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN6013005927; Claude Prigent, et al.: 'Phosphorylation of serine 10 in histone H3, what for?' Journal of Cell Science Vol.116(18), 2003, p.3677-3685 *
JPN6013005931; Chang Y. Guo, et al.: 'Histone H1 and H3 Dephosphorylation Are Differentially Regulated byRadiation-induced Signal Transduc' Cancer Research Vol.60(20), 2000, p.5667-5672 *
JPN6013005933; Lucia Monaco, et al.: 'Inhibition of Aurora-B kinase activity bypoly(ADP-ribosyl)ation in response to DNA damage.' Proceedings of the National Academy of Sciences USA vol. 102 no. 40, 2005, p.14244-14248 *
JPN6013005935; HUANG,X. et al: 'Sequential phosphorylation of Ser-10 on histone H3 and Ser-139 on histone H2AX and ATM activation du' Cytometry, Part A Vol.69A, No.4, 2006, p.222-229 *
JPN6013005937; OZAWA,K.: 'Reduction of phosphorylated histone H3 serine 10 and serine 28 cell cycle marker intensities after D' Cytometry, Part A Vol.73A, No.6, 2008, p.517-527 *

Also Published As

Publication number Publication date
JP5436786B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
Wang et al. Rapid sequential in situ multiplexing with DNA exchange imaging in neuronal cells and tissues
DeLuca et al. Temporal changes in Hec1 phosphorylation control kinetochore–microtubule attachment stability during mitosis
Leuchowius et al. In situ proximity ligation assay for microscopy and flow cytometry
EP2718716B1 (en) Methods and system for the automated determination of immunofluorescent foci using a cell-based immunofluorescence assay using synthetic calibration particles
JP2014527168A5 (en)
van Batenburg et al. From organ to cell: Multi-level telomere length assessment in patients with idiopathic pulmonary fibrosis
Park et al. Dysregulation of telomere lengths and telomerase activity in myelodysplastic syndrome
Voith von Voithenberg et al. Spatially multiplexed RNA in situ hybridization to reveal tumor heterogeneity
Monnet‐Tschudi et al. Methods to assess neuroinflammation
Prevedel et al. Identification, localization, and quantification of HIV reservoirs using microscopy
Han et al. Quantitative analysis reveals asynchronous and more than DSB-associated histone H2AX phosphorylation after exposure to ionizing radiation
Stenzinger et al. Quantitative analysis of diagnostic guidelines for HER2-status assessment
Zhao et al. Whole-mount smFISH allows combining RNA and protein quantification at cellular and subcellular resolution
Kumar et al. Optimization and evaluation of fluorescence in situ hybridization chain reaction in cleared fresh-frozen brain tissues
Ng et al. Quantitative analysis of a multiplexed immunofluorescence panel in T-cell lymphoma
Blake Target validation in drug discovery
JP5436786B2 (en) Cell cycle measurement method
Itano et al. Readily accessible multiplane microscopy: 3D tracking the HIV‐1 genome in living cells
Rees et al. A transfer function approach to measuring cell inheritance
Chou et al. Single-molecule sensitivity RNA FISH analysis of influenza virus genome trafficking
KR101969846B1 (en) Method and apparatus for analyzing nucleic acid by compensating effect of cross-talk in PCR and other data
JP2008099625A (en) Analysis method for cell cycle
Torlakovic How to validate predictive immunohistochemistry testing in pathology?
Uchino et al. Visualizing transcription sites in living cells using a genetically encoded probe specific for the elongating form of RNA polymerase II
Friedman Assessing signal-to-noise in quantitative proteomics: multivariate statistical analysis in DIGE experiments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R151 Written notification of patent or utility model registration

Ref document number: 5436786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees