JP2009206140A - Power module - Google Patents

Power module Download PDF

Info

Publication number
JP2009206140A
JP2009206140A JP2008044343A JP2008044343A JP2009206140A JP 2009206140 A JP2009206140 A JP 2009206140A JP 2008044343 A JP2008044343 A JP 2008044343A JP 2008044343 A JP2008044343 A JP 2008044343A JP 2009206140 A JP2009206140 A JP 2009206140A
Authority
JP
Japan
Prior art keywords
bus bar
electrode
switching element
wire
semiconductor switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008044343A
Other languages
Japanese (ja)
Inventor
Kazuhiko Futai
和彦 二井
Takeshi Ariyoshi
剛 有吉
Tadashi Yoshida
忠史 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Toyota Motor Corp
Original Assignee
Sumitomo Electric Industries Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Toyota Motor Corp filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008044343A priority Critical patent/JP2009206140A/en
Publication of JP2009206140A publication Critical patent/JP2009206140A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4846Connecting portions with multiple bonds on the same bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4905Shape
    • H01L2224/49051Connectors having different shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power module which can have semiconductor switching elements made compact and also has a power supply/distribution path capable of obtaining advantages of a larger current while using wire bonding. <P>SOLUTION: The power module which has a bus bar 15 for supplying DC power or AC power, semiconductor switching elements 31, 32 having electrodes 31a and 31b, and a long-sized conductor for electrically connecting the bus bar and electrodes to each other is characterized in that an intermediate part of a wire 3 is electrically connected to the electrodes of the semiconductor switching elements, and parts of the wire on both sides of the intermediate part are both electrically connected to the same bus bar 15. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車用モータへの電力供給に用いられるパワーモジュールに関するものである。   The present invention relates to a power module used for supplying electric power to an automobile motor.

モータは、電気エネルギーを機械エネルギーに変換する機能を有し、化石燃料から機械エネルギーを取り出すエンジンとともに、各種の交通手段に用いられている。交通手段のうち、自動車にはエンジン車が圧倒的に多く用いられてきたが、化石燃料の高騰や、地球温暖化防止のためのCO2排出量の抑制運動の高まりなどを背景に、電気自動車やハイブリッド自動車の使用台数が増大し、とくにハイブリッド自動車はその単位燃料当りの走行距離が高いために飛躍的にその台数を増やしている。 The motor has a function of converting electrical energy into mechanical energy, and is used in various transportation means together with an engine that extracts mechanical energy from fossil fuel. Of the means of transportation, engine cars have been overwhelmingly used for automobiles. However, electric cars have been used against the backdrop of soaring fossil fuels and increasing efforts to curb CO 2 emissions to prevent global warming. The number of hybrid vehicles used has increased, and in particular, the number of hybrid vehicles has increased dramatically due to the high mileage per unit fuel.

交通手段に用いられるモータに限らず、モータに供給される電力は、各種電力変換装置によって電力の形態を変換される場合が多い。このとき、モータには大きな電力が供給されるので、電力変換装置も大きな電力を扱うことになり、電力変換装置自体の電力損失を減らし、効率のよい電力変換を行うことが求められる。電力変換装置には、オンオフを繰り返すスイッチとして動作する半導体デバイス、すなわちスイッチング素子が用いられる。理想的なスイッチング素子は、オン状態で電圧ゼロ、またオフ状態で電流ゼロであり、かつオンオフの状態が瞬時に切り替わるため、消費電力はゼロである。しかし、実際のスイッチング素子においては、オン状態における電圧降下による損失と、ターンオン・ターンオフ時における電圧・電流の遷移時間に伴う損失が発熱の原因となる。   Not only motors used for transportation, but the power supplied to the motors is often converted into power by various power converters. At this time, since a large amount of power is supplied to the motor, the power conversion device also handles a large amount of power, and it is required to reduce power loss of the power conversion device itself and perform efficient power conversion. A power conversion device uses a semiconductor device that operates as a switch that repeatedly turns on and off, that is, a switching element. An ideal switching element has zero voltage in the on state and zero current in the off state, and the on / off state is instantaneously switched, so that the power consumption is zero. However, in an actual switching element, the loss due to the voltage drop in the on state and the loss due to the voltage / current transition time at the turn-on / turn-off cause heat generation.

スイッチング素子は電力変換装置の重要な部分を占めるが、電力変換装置にはスイッチング素子のほかに、そのスイッチング素子の動作を制御する、マイコンやマイコンにモータの回転状態の情報を知らせるセンサなどを含む制御部が備えられる。一般に機械装置に用いられるモータには小型化、高性能化が求められるが、とくに交通手段では上記電力変換装置またはモータなどに対する小型化、大容量化(大電流化)の要求が厳しい。このため、スイッチング素子を対象に、従来のシリコン素子の小型化とともに、SiCやGaNを用いてさらなる小型化、大電流化をはかる研究開発が推進されている。このようなスイッチング素子において実現される小型化、大電流化の利点を受けるためには、スイッチング素子の使用環境を形成する電力給配電経路の大電流容量化を実現する必要がある。   Switching elements occupy an important part of the power converter, but in addition to the switching elements, the power converter includes a microcomputer that controls the operation of the switching element and a sensor that informs the microcomputer of the rotation status of the motor. A control unit is provided. In general, motors used in mechanical devices are required to be smaller and have higher performance. In particular, in transportation, there is a strict demand for miniaturization and larger capacity (higher current) for the power converter or motor. For this reason, research and development have been promoted for switching elements, in addition to miniaturization of conventional silicon elements, and further miniaturization and increase of current using SiC and GaN. In order to receive the advantages of downsizing and large current realized in such a switching element, it is necessary to realize a large current capacity in a power supply / distribution path that forms an environment in which the switching element is used.

現状、スイッチング素子を配列してモータに3相交流電力を供給するパワーモジュールにおいて、スイッチング素子と、給電側端子および配電側端子とは、ワイヤで接続するのが普通であり、大電流化に応じて本数を増やして対応している。このため1つのスイッチング素子に数本から十数本のワイヤが並列に接続されることが、普通に行われている。現状、スイッチング素子の表面で、上記ワイヤとの接続に利用できる箇所はほとんど使い尽くされているといってもよい情況にある。上記のようにスイッチング素子の小型化および大電流化が実現すると、大電流化に対応して接続すべきワイヤの本数は増えるのにもかかわらず、ワイヤを接続できるスイッチング素子の面積は減少することになる。   At present, in a power module that arranges switching elements and supplies three-phase AC power to a motor, the switching elements, power supply side terminals, and distribution side terminals are usually connected by wires, and according to the increase in current The number is increased. For this reason, it is a common practice to connect several to a dozen wires in parallel to one switching element. At present, it can be said that almost all the portions of the surface of the switching element that can be used for connection with the wire are used up. As described above, when the switching element is reduced in size and current is increased, the area of the switching element that can be connected to the wire is reduced although the number of wires to be connected in response to the increase in current is increased. become.

パワーモジュールの小型化および大電流化は、従来より精力的に行われているが、現在、ハイブリッド車等で直面している問題は、小型化のレベルなど質的に新しい段階に入っており、旧来の技術の組み合わせでは対応できないのが実情である。旧来の技術のなかで一般的なものをあげると、パワーモジュール全体をコンパクトにしながら回路インダクタンスおよび配線抵抗の低減をはかるのに、スイッチング素子と給配電用バスバーとの接続を、長ねじにより加圧体を上からバスバーおよび半導体チップに押し付けるようにして締結する方法が提案されている(特許文献1)。この方法によれば、全体をコンパクトなものにしながら回路インダクタンスおよび配線抵抗を低くすることができる。
特開2002−95268号公報
Power module miniaturization and high current have been energetically performed, but currently the problems faced in hybrid vehicles etc. have entered a new qualitative stage, such as the level of miniaturization, The fact is that the combination of traditional technologies cannot be supported. The most common technology among the old technologies is to press the connection between the switching element and the power supply / distribution bus bar with a long screw to reduce the circuit inductance and wiring resistance while making the entire power module compact. A method has been proposed in which the body is fastened to the bus bar and the semiconductor chip from above (Patent Document 1). According to this method, the circuit inductance and the wiring resistance can be lowered while making the whole compact.
JP 2002-95268 A

しかしながら、上記のバスバーはパワーモジュール全体をコンパクトにするために用いられており、スイッチング素子の小型化に対応して、接続箇所のサイズを減少させながら電流容量を向上させることを目的としたものではない。またバスバーは、ワイヤボンディングに比べて、接続相手同士の位置精度の厳密性を要し、ワイヤボンディングほど位置精度の融通性が高いものではない。また、寸法精度を向上させる通常の製造方法を用いたのでは、その製造コスト等が上昇するという問題がある。   However, the above-mentioned bus bar is used to make the entire power module compact, and it is not intended to improve the current capacity while reducing the size of the connection part in response to the miniaturization of the switching element. Absent. Further, the bus bar requires strict positional accuracy between connection partners compared to wire bonding, and is not as flexible in positional accuracy as wire bonding. In addition, using a normal manufacturing method for improving the dimensional accuracy has a problem that its manufacturing cost increases.

本発明は、ワイヤボンディングを用いながら、半導体スイッチング素子において実現される小型化および大電流化の利点を受けることができる給配電経路を有するパワーモジュールを提供することを目的とする。   An object of the present invention is to provide a power module having a power supply / distribution path capable of receiving the advantages of miniaturization and large current realized in a semiconductor switching element while using wire bonding.

本発明のパワーモジュールは、直流電力又は交流電力の供給用のバスバー、電極を有する半導体スイッチング素子およびバスバーと電極とを電気接続するための長尺導体とを備えるパワーモジュールである。このパワーモジュールにおいて、長尺導体の中間部分が半導体スイッチング素子の電極に電気接続され、かつ、長尺導体の中間部分を挟む両側の部分がともに、同じバスバーに電気接続されていることを特徴とする。   The power module of the present invention is a power module including a bus bar for supplying DC power or AC power, a semiconductor switching element having an electrode, and a long conductor for electrically connecting the bus bar and the electrode. In this power module, the middle portion of the long conductor is electrically connected to the electrode of the semiconductor switching element, and both portions sandwiching the middle portion of the long conductor are both electrically connected to the same bus bar. To do.

上記の構成によれば、半導体スイッチング素子の表面電極、たとえばIGBTであればエミッタ電極には、両側から長尺導体が接続され、その両側の延びる長尺導体はともに同じバスバーに接続することになる。このため、片側からのみ長尺導体が接続されていた場合に比べて、大略、2倍の電流を流すことが可能になる。ここで長尺導体は、帯状の薄板導体やワイヤなどがあげられるが、長尺導体であればどのような形状の導体であってもかまわない。   According to the above configuration, a long conductor is connected from both sides to the surface electrode of the semiconductor switching element, for example, an emitter electrode in the case of an IGBT, and the long conductors extending on both sides are connected to the same bus bar. . For this reason, compared to the case where the long conductor is connected only from one side, it is possible to pass a current approximately twice as large. Here, the long conductor may be a strip-shaped thin plate conductor, a wire, or the like, but may be any shape as long as it is a long conductor.

また上記の長尺導体がワイヤであり、該ワイヤは、半導体スイッチング素子の表面の電極にその中間部分で接続され、該表面の電極の両側に延在しており、両側に延在するワイヤは、それぞれの端が同じバスバーの異なる部分に接続されてもよい。上記の構成によれば、半導体スイッチング素子の表面電極、たとえばIGBTであればエミッタ電極には、両側からワイヤが接続され、その両側に延在するワイヤはともに同じ端子であるバスバーに接続することになる。このため、片側からのみワイヤが接続されていた場合に比べて、大略、2倍の電流を流すことが可能になる。上記のような両側に延在するワイヤが、両側ともに、回路上、同じ端子を構成するバスバーに接続されるためには、バスバーは少なくとも半導体スイッチング素子の両側に位置する部分を持つ形状でなければならない。上記の条件を満たすバスバーの形状は各種のものが考えられる。   Further, the long conductor is a wire, and the wire is connected to an electrode on the surface of the semiconductor switching element at an intermediate portion thereof, and extends on both sides of the electrode on the surface. , Each end may be connected to a different part of the same bus bar. According to the above configuration, a wire is connected from both sides to the surface electrode of the semiconductor switching element, for example, the emitter electrode in the case of IGBT, and the wires extending on both sides are connected to the bus bar which is the same terminal. Become. For this reason, compared to the case where the wire is connected only from one side, approximately twice the current can flow. In order for the wires extending on both sides as described above to be connected to the bus bar constituting the same terminal on the circuit on both sides, the bus bar must have at least a portion located on both sides of the semiconductor switching element. Don't be. Various shapes of bus bars satisfying the above conditions are conceivable.

上記のバスバーは、半導体スイッチング素子が実装された基板を囲むようにコ字状部分を有するか、またはF字状であることができる。このようなコ字状の形状を持つことにより、ワイヤは対向する2つのアーム部分に、その端を接続させ、その中間位置を半導体スイッチング素子電極に接続させることができる。なお、F字状の形状は、当然、コ字状部分を有する。また、矩形の半導体スイッチングを実装する実装基板の形状も矩形であることから、無駄な隙間を生じることなく空間利用効率を高めることができる。バスバーをコ字状部分を含む形状、たとえばF字状に成形することは、銅などの金属板や金属帯を打ち抜くことにより、容易である。表面には、すずめっき処理やニッケルめっき処理がなされる。   The bus bar may have a U-shaped portion so as to surround the substrate on which the semiconductor switching element is mounted, or may have an F shape. By having such a U-shaped shape, the end of the wire can be connected to two opposing arm portions, and the intermediate position can be connected to the semiconductor switching element electrode. Of course, the F-shaped shape has a U-shaped portion. Moreover, since the shape of the mounting substrate on which the rectangular semiconductor switching is mounted is also rectangular, the space utilization efficiency can be improved without causing a useless gap. Forming the bus bar into a shape including a U-shaped portion, for example, an F shape, is easy by punching a metal plate such as copper or a metal strip. The surface is subjected to tin plating or nickel plating.

上記の長尺導体は、電極に1箇所以上の接続箇所を持つことができる。半導体スイッチング素子は、SiCやGaNを用いることにより大電流化および大電流密度での使用を行っても耐久性は確保でき、接続箇所は1箇所でもよいが、2箇所以上とすることにより、半導体スイッチング素子に許容される電流上限まで大電流を流すのに有利となる。また半導体スイッチング素子の電極での接続箇所に大きな発熱などを生じない。なお、長尺導体のうち、とくにワイヤの接続箇所は、接触面積を大きくするためにワイヤボンディング特有のステッチボンドを形成する。   The long conductor can have one or more connection points on the electrode. The semiconductor switching element can ensure durability even when it is used at a large current density and a large current density by using SiC or GaN, and the number of connection points may be one. This is advantageous for flowing a large current up to the upper limit of current allowed for the switching element. In addition, no large heat generation or the like occurs at the connection portion of the electrode of the semiconductor switching element. Of the long conductors, particularly wire connection portions are formed with stitch bonds peculiar to wire bonding in order to increase the contact area.

上記の半導体スイッチング素子は裏面電極を有し、その裏面電極は該半導体スイッチング素子を実装する配線基板(金属板)に接続され、表面電極を接続する長尺導体と異なる裏面電極接続長尺導体が、配線基板(金属板)と、バスバーと半導体スイッチング素子を挟んで対向するように位置する第2のバスバーとを接続し、その裏面電極接続長尺導体の延びる方向が表面電極を接続する長尺導体の延在方向と交差する方向であるようにできる。この構成により、裏面電極接続の長尺導体は、半導体スイッチング素子の小型化により接続箇所の制約を受ける表面電極接続の長尺導体の妨害とならないように、裏面電極と導通状態の配線基板の端子部(金属板の端)とバスバーとを接続することができる。すなわち裏面電極接続長尺導体は配線基板の端を使って、バスバーと接続することができる。   The semiconductor switching element has a back electrode, and the back electrode is connected to a wiring board (metal plate) on which the semiconductor switching element is mounted. A long wiring board (metal plate) is connected to the second bus bar located opposite to the bus bar with the semiconductor switching element interposed therebetween, and the extending direction of the back electrode connecting long conductor connects the front electrode. It can be made to be a direction which intersects with the extension direction of a conductor. With this configuration, the terminal of the wiring board in a conductive state with the back electrode so that the long conductor of the back electrode connection is not obstructed by the long conductor of the surface electrode connection, which is restricted by the size of the semiconductor switching element. The part (the end of the metal plate) and the bus bar can be connected. That is, the back electrode connection long conductor can be connected to the bus bar using the end of the wiring board.

また、上記の半導体スイッチング素子は表面に制御用のゲート電極を有し、ゲート電極と制御端子コネクト部とを接続する制御端子接続ワイヤの延びる方向は、表面電極を接続するワイヤの延在する方向と交差する方向であるようにできる。この構成により、表面のエミッタ電極など主電極に接続して両側に延在する長尺導体に妨げられることなく(または表面電極接続の長尺導体の妨害をすることなく)、ゲート電極に駆動信号を伝達するワイヤを接続することができる。すなわち、表面電極に接続して両側に延在する長尺導体と、その両側に延在する長尺導体と交差するように上記の半導体スイッチング素子に片側から延びてくる長尺導体(裏面電極接続の長尺導体および制御端子接続ワイヤ)とは、互いに干渉することなく、それぞれの配線を実現することができる。   The semiconductor switching element has a control gate electrode on the surface, and the extending direction of the control terminal connecting wire connecting the gate electrode and the control terminal connecting portion is the extending direction of the wire connecting the surface electrode. It can be the direction that intersects. With this configuration, the drive signal is applied to the gate electrode without being obstructed by the long conductor extending to both sides connected to the main electrode such as the emitter electrode on the surface (or without obstructing the long conductor of the surface electrode connection). Can be connected. That is, a long conductor connected to the surface electrode and extending on both sides, and a long conductor extending from one side to the semiconductor switching element so as to intersect the long conductor extending on both sides (back electrode connection) The long conductor and the control terminal connection wire) can be realized without interfering with each other.

また、半導体スイッチング素子と並列に接続するダイオードを備え、当該半導体スイッチング素子およびダイオードでは、ともにその表面電極にそれぞれ異なる長尺導体がその中間位置で接続されており、それら長尺導体の両側の端は、それぞれ同じバスバーの異なる部分に接続される構成とすることができる。ここでダイオードは、フリーホイールダイオード(Free Wheel Diode:FWD)と呼ばれるものと同じまたは同種のものである。FWDは、スイッチング素子がターンオフした際に、負荷の誘導成分に蓄積されたエネルギーを環流させる役割と、減速、制動時の余剰エネルギーを回生するための電流経路としての役割を持つものである。上記の構成によれば、長尺導体はその中間位置で、半導体スイッチング素子またはダイオードに接続すればよいので、長尺導体がワイヤの場合にはワイヤボンディングにより容易に接続でき、その作業能率を高くすることができる。   In addition, a diode connected in parallel with the semiconductor switching element is provided, and in each of the semiconductor switching element and the diode, different long conductors are respectively connected to the surface electrodes at intermediate positions thereof, and ends on both sides of the long conductors Can be configured to be connected to different parts of the same bus bar. Here, the diode is the same as or similar to what is called a free wheel diode (FWD). The FWD has a role of circulating the energy accumulated in the inductive component of the load when the switching element is turned off, and a role of a current path for regenerating surplus energy during deceleration and braking. According to the above configuration, since the long conductor may be connected to the semiconductor switching element or the diode at the intermediate position, when the long conductor is a wire, it can be easily connected by wire bonding, and the work efficiency is increased. can do.

また上記のように、半導体スイッチング素子に並列接続されるダイオードを備える場合、長尺導体は、半導体スイッチング素子およびダイオードが配列する列に沿うように延在させてもよいし、またはその列に交差するように延在する構成にしてもよい。このような構成によれば、接続のための長尺導体の配置の自由度を増すことができる。   Further, as described above, when a diode connected in parallel to the semiconductor switching element is provided, the long conductor may extend along the column in which the semiconductor switching element and the diode are arranged, or cross the column. It may be configured so as to extend. According to such a structure, the freedom degree of arrangement | positioning of the elongate conductor for a connection can be increased.

また、本発明の他のパワーモジュールは、第1の基板上に配置された第1の半導体スイッチング素子、第1の基板に並ぶように位置する第2の基板上に配置された第2の半導体スイッチング素子、コ字状部分を有するF字状の第1および第2のバスバーおよび接続のための複数のワイヤを備えたパワーモジュールである。このパワーモジュールでは、第1のバスバーと第2のバスバーとは、第1の基板および第2の基板を挟むように対向して、互いに上下逆に、第1の基板と第2の基板との間に、第1のバスバーのコ字状部分の下側横バーと、第2のバスバーのコ字状部分の下側横バーとが並列して重ならないように位置する。また、ワイヤは、第1のバスバーのコ字状部分の上下横バーを橋渡しするようにその両端がその上下横バーに接続され、第1の半導体スイッチング素子の表面電極にその中間位置で接続される。そして、上記のワイヤと異なる別のワイヤは、第2のバスバーのコ字状部分の上下横バーを橋渡しするようにその両端がその上下横バーに接続され、第2の半導体スイッチング素子の表面電極にその中間位置で接続されていることを特徴とする。   Further, another power module of the present invention includes a first semiconductor switching element disposed on the first substrate, and a second semiconductor disposed on the second substrate positioned so as to be aligned with the first substrate. The power module includes a switching element, F-shaped first and second bus bars having a U-shaped portion, and a plurality of wires for connection. In this power module, the first bus bar and the second bus bar face each other with the first substrate and the second substrate sandwiched therebetween, and the first substrate and the second substrate are turned upside down. The lower horizontal bar of the U-shaped portion of the first bus bar and the lower horizontal bar of the U-shaped portion of the second bus bar are positioned so as not to overlap each other. Further, the wire is connected to the upper and lower horizontal bars so as to bridge the upper and lower horizontal bars of the U-shaped portion of the first bus bar, and is connected to the surface electrode of the first semiconductor switching element at the intermediate position. The Another wire different from the above wire is connected to the upper and lower horizontal bars so as to bridge the upper and lower horizontal bars of the U-shaped portion of the second bus bar, and the surface electrode of the second semiconductor switching element It is characterized by being connected at an intermediate position.

上記の構成により、プラス側給電バスバー(第1のバスバー)と、マイナス側給電バスバー(このあと説明する第3のバスバー)との間に配置された、高電位側スイッチング素子(第1の半導体スイッチング素子)および低電位側スイッチング素子(第2の半導体スイッチング素子)の表面電極と、プラス側給電バスバーまたは給電側のバスバーとを、ワイヤにより、電流容量を維持しながら接続点を半減して接続することができる。   With the above configuration, the high potential side switching element (first semiconductor switching) disposed between the plus side feeding bus bar (first bus bar) and the minus side feeding bus bar (third bus bar described later). Element) and the surface electrode of the low-potential side switching element (second semiconductor switching element) and the plus-side power supply bus bar or the power-supply side bus bar are connected by a wire while halving the connection point while maintaining the current capacity. be able to.

また、上記の第1および第2の基板はその上に第1および第2の配線基板(金属板)をそれぞれ有し、第1および第2の半導体スイッチング素子は、裏面に第1および第2の裏面電極をそれぞれ有し、第1および第2の裏面電極は第1および第2の配線基板(金属板)にそれぞれ接続される。さらに表面電極を接続するワイヤと異なる裏面電極接続のためのワイヤは、第1の配線基板(金属板)と第2のバスバーのコ字状部分の縦バーを接続し、また裏面電極接続用のワイヤと異なる別の裏面電極接続のためのワイヤは、第1または第2のバスバーの縦バーに沿うように重なって位置する第3のバスバーと、第2の配線基板(金属板)とを接続している。そして、上記の裏面電極接続のためのワイヤは、いずれも、表面電極を接続するワイヤの延在方向と交差する方向に延びているようにできる。この構成により、プラス側給電バスバー(第1のバスバー)と、マイナス側給電バスバー(第3のバスバー)との間に配置された、高電位側スイッチング素子(第1の半導体スイッチング素子)および低電位側スイッチング素子(第2の半導体スイッチング素子)の裏面電極を、それぞれ相手先のバスバーに接続できる。そして、これら裏面電極接続のワイヤが、上記の表面電極接続のワイヤの配置の妨げとならないようにできる。   The first and second substrates have first and second wiring boards (metal plates) thereon, respectively, and the first and second semiconductor switching elements are first and second on the back surface. The first and second back electrodes are respectively connected to the first and second wiring boards (metal plates). Further, the wire for connecting the back electrode different from the wire for connecting the front electrode connects the first wiring board (metal plate) and the vertical bar of the U-shaped portion of the second bus bar, and is used for connecting the back electrode. A wire for connecting another back surface electrode different from the wire connects the third bus bar positioned so as to overlap the vertical bar of the first or second bus bar and the second wiring board (metal plate). is doing. The wires for connecting the back electrode can be extended in the direction intersecting with the extending direction of the wire connecting the front electrode. With this configuration, the high potential side switching element (first semiconductor switching element) and the low potential disposed between the positive side power supply bus bar (first bus bar) and the negative side power supply bus bar (third bus bar). The back electrodes of the side switching elements (second semiconductor switching elements) can be respectively connected to the counterpart bus bars. Then, these back surface electrode connection wires can be prevented from hindering the arrangement of the front surface electrode connection wires.

図1は、本発明の実施の形態におけるパワーモジュール10を説明するための図である。このパワーモジュール10は、ハイブリッド自動車のモータ配電用の端子である、U相端子、V相端子およびW相端子の3相交流端子を有する。また発電機用の端子である、+端子および−端子と、Ug相端子、Vg相端子およびWg相端子とを有する。スイッチング素子としては、モータ用のスイッチング素子の31,32と、発電機用のスイッチング素子33とが配置される。モータ用スイッチング素子はIGBT(Insulated Gate Bipolar Transistor)31と、フリーホイールダイオード(Free Wheel Diode:FWD)32とがある。本説明では、トランジスタおよびダイオードはいずれも半導体スイッチング素子と呼ぶこととする。FWDは、トランジスタがターンオフした際に、負荷の誘導成分に蓄積されたエネルギーを環流させる役割と、減速、制動時の余剰エネルギーを回生するための電流経路としての役割を持つものである。これら半導体スイッチング素子31,32,33は、図示を省略した下層に絶縁基板を配置した実装基板上に実装され、その絶縁基板の下に放熱板61が配置される。上記の半導体スイッチング素子31,32,33および実装基板等は、筐体65に収納される。上記筐体65内には、スイッチング素子31の上には、上記スイッチング素子のゲート信号を制御する半導体素子等が実装された、図示しない制御信号用端子部が配置される。上記放熱板61の下にその放熱板61に接するように、冷却媒体が流れる冷却媒体路67が設けられる。冷却媒体には、不凍液であるエチレングリコール水溶液などを用いることができる。   FIG. 1 is a diagram for explaining a power module 10 according to an embodiment of the present invention. This power module 10 has a three-phase AC terminal, which is a U-phase terminal, a V-phase terminal, and a W-phase terminal, which are terminals for motor distribution in a hybrid vehicle. Moreover, it has + terminal and-terminal which are terminals for generators, Ug phase terminal, Vg phase terminal, and Wg phase terminal. As the switching elements, motor switching elements 31 and 32 and a generator switching element 33 are arranged. The motor switching element includes an IGBT (Insulated Gate Bipolar Transistor) 31 and a free wheel diode (FWD) 32. In this description, both transistors and diodes are called semiconductor switching elements. The FWD has a role of circulating the energy accumulated in the inductive component of the load when the transistor is turned off, and a role of a current path for regenerating surplus energy during deceleration and braking. These semiconductor switching elements 31, 32, and 33 are mounted on a mounting substrate in which an insulating substrate is disposed in a lower layer (not shown), and a heat radiating plate 61 is disposed under the insulating substrate. The semiconductor switching elements 31, 32, 33, the mounting substrate, and the like are housed in a housing 65. In the housing 65, a control signal terminal (not shown) on which a semiconductor element for controlling the gate signal of the switching element is mounted is disposed on the switching element 31. A cooling medium passage 67 through which a cooling medium flows is provided below the heat radiating plate 61 so as to be in contact with the heat radiating plate 61. An ethylene glycol aqueous solution that is an antifreeze can be used as the cooling medium.

図1において、3相交流モータへの配電端子U相、V相またはW相端子が設けられ、これら配電端子から交流電力が配電される。スイッチング素子31は、給電端子のプラス側とマイナス側との間に、2つ直列に接続され、その2つのスイッチング素子の間に配電端子U,V,Wが接続される(回路については図6を用いてあとで説明する)。図2は、図1におけるAの領域およびAの領域を拡大した図である。領域Aに、高電位側の素子および低電位側の素子が配置される。すなわち、高電位側のIGBT31、FWD32、および低電位側のIGBT31、FWD32が配置される。領域Aの半導体スイッチング素子グループは、領域Aの半導体スイッチング素子グループとは、回路上、並列の関係にある。これは、大電流の給電および配電を行うのに、1系列だけでは容量的に対応できないために、並列に2系列設けている。 In FIG. 1, a distribution terminal U-phase, V-phase or W-phase terminal for a three-phase AC motor is provided, and AC power is distributed from these distribution terminals. Two switching elements 31 are connected in series between the positive side and the negative side of the power supply terminal, and distribution terminals U, V, and W are connected between the two switching elements (the circuit is shown in FIG. 6). Will be used later). Figure 2 is an enlarged view of an area of a region and A 2 of A 1 in FIG. 1. The area A 1, elements of the element and the low potential side of the high potential side is disposed. That is, the high potential side IGBT 31 and FWD 32 and the low potential side IGBT 31 and FWD 32 are arranged. Semiconductor switching element group of the region A 2 is a semiconductor switching element group of the region A 1, the circuit on, a parallel relationship. This is because two lines are provided in parallel because large current supply and distribution cannot be handled in terms of capacity with only one line.

図2において、絶縁基板1の上に配線基板(金属板)2が配置され、その上にIGBT31およびFWD32が位置している。IGBT31およびFWD32は、裏面に図示しないコレクタ電極(裏面電極)を有し、このコレクタ電極が配線基板(金属板)2に接続されている。すなわちIGBT31およびFWD32の裏面電極と配線基板(金属板)2とは、導通状態にある。IGBT31の表面にはエミッタ電極31aが露出し、またFWD32の表面には表面電極32aが露出している。IGBT31の表面電極31aおよび裏面電極と、FWD32の表面電極32aおよび裏面電極とは並列接続されている。すなわちIGBT31の表面電極31aとFWD32の表面電極32aは回路配線上同電位であり、IGBT31の裏面電極とFWD32の裏面電極は回路配線上同電位である。また、IGBT31には、エミッタ電極31aのほかにゲート電極など制御用端子が配置されているが、図2では、図示を省略している。以後の説明では、トランジスタとダイオードとが配列する方向と、表面電極接続のワイヤの延在方向とが交差する場合(実施の形態1)と、並行する場合(実施の形態2)とを便宜上分けることとする。実施の形態1のほうが、実施の形態2よりも、実用上、比較的、重要である場合が多いとおもわれる。   In FIG. 2, a wiring board (metal plate) 2 is disposed on an insulating substrate 1, and an IGBT 31 and an FWD 32 are positioned thereon. The IGBT 31 and the FWD 32 have a collector electrode (back electrode) (not shown) on the back surface, and the collector electrode is connected to the wiring board (metal plate) 2. That is, the back electrodes of the IGBT 31 and the FWD 32 and the wiring board (metal plate) 2 are in a conductive state. The emitter electrode 31 a is exposed on the surface of the IGBT 31, and the surface electrode 32 a is exposed on the surface of the FWD 32. The front surface electrode 31a and the back surface electrode of the IGBT 31 and the front surface electrode 32a and the back surface electrode of the FWD 32 are connected in parallel. That is, the surface electrode 31a of the IGBT 31 and the surface electrode 32a of the FWD 32 have the same potential on the circuit wiring, and the back electrode of the IGBT 31 and the back electrode of the FWD 32 have the same potential on the circuit wiring. The IGBT 31 is provided with a control terminal such as a gate electrode in addition to the emitter electrode 31a, but is not shown in FIG. In the following description, the case where the direction in which the transistors and diodes are arranged intersects the direction in which the surface electrode connection wires extend (Embodiment 1) and the case where they are parallel (Embodiment 2) are separated for convenience. I will do it. The first embodiment is considered to be relatively more important in practical use than the second embodiment.

(実施の形態1)−素子配列方向に交差するようにワイヤが延在する配置−
図3は、本発明の実施の形態1におけるパワーモジュールのU相部分(図1および図2のA領域)を示す図である。本実施の形態では、IGBT31とFWD32とが並ぶ方向と交差するようにワイヤ3が延在している。高電位側では、ワイヤ3は、一方の端および他方の端ともにプラス側給電バスバー15に接続し、中間位置でIGBT31およびFWD32に接続している。これはプラス側給電バスバー15が、コ字状を含むF字状に形成され、コ字の上側横バー15aと下側横バー15bが、半導体スイッチング素子31,32の両側に配置されているために可能となる。IGBT31およびFWD32の表面電極31a,32aは、それぞれ2本のワイヤ3により、プラス側給電バスバー15と接続される。2本のワイヤで接続されているが、プラス側給電バスバー15の異なる部分である両側15a,15bから表面電極31a,32aに接続されるため、従来の片側からのみの接続する場合において、4本のワイヤで接続するのと、大略同じ電流を流すことができる。そして、スイッチング素子において実現する小型化に対応するように、接続点20を半減することができる。なお、接続点20は、接触面積を大きくするために、ワイヤボンディングで通常用いられるステッチボンドとして形成される。なお、本実施の形態および次の実施の形態において、長尺導体としてワイヤの場合のみを示すが、長尺導体に帯状薄板や、スイッチング素子接続用バスバーなどを用いてもよいことはいうまでもない。
(Embodiment 1)-Arrangement in which wires extend so as to intersect the element arrangement direction-
Figure 3 is a diagram showing a U-phase portion of the power module in the first embodiment of the present invention (A 1 area of FIG. 1 and FIG. 2). In the present embodiment, the wire 3 extends so as to intersect the direction in which the IGBT 31 and the FWD 32 are arranged. On the high potential side, the wire 3 is connected to the plus-side power supply bus bar 15 at one end and the other end, and is connected to the IGBT 31 and the FWD 32 at an intermediate position. This is because the plus-side power supply bus bar 15 is formed in an F shape including a U shape, and the upper side horizontal bar 15 a and the lower side bar 15 b are arranged on both sides of the semiconductor switching elements 31 and 32. It becomes possible. The surface electrodes 31 a and 32 a of the IGBT 31 and the FWD 32 are connected to the plus-side power supply bus bar 15 by two wires 3, respectively. Although they are connected by two wires, they are connected to the surface electrodes 31a and 32a from both sides 15a and 15b, which are different parts of the plus-side power supply bus bar 15. It is possible to pass almost the same current as that connected by the wire. The connection point 20 can be halved so as to correspond to the miniaturization realized in the switching element. The connection point 20 is formed as a stitch bond usually used in wire bonding in order to increase the contact area. In the present embodiment and the next embodiment, only the case of a wire as a long conductor is shown, but it goes without saying that a strip-like thin plate, a switching element connecting bus bar, or the like may be used for the long conductor. Absent.

上記のように、IGBT31およびFWD32は、ともにその表面電極31a,32aがプラス側給電バスバー15a,15bと接続する。そして、IGBT31およびFWD32の裏面電極が導通状態にある配線基板(金属板)2は、U相配電バスバー17の縦バー部分17cと裏面電極接続のワイヤ13により接続される。この部分では、金属板2の面積は十分広く、裏面電極接続のワイヤ13による接続は従来と同様の方法で行う。コ字状部分を有するF字形状のU相配電バスバー17は、上述のように、直列接続される高電位側の半導体スイッチング素子31,32と、低電位側の半導体スイッチング素子31,32との間に接続されている。したがって、U相配電バスバー17は、低電位側のIGBT31およびFWD32の表面電極31a,32aに接続される。   As described above, the surface electrodes 31a and 32a of the IGBT 31 and the FWD 32 are both connected to the plus-side power supply bus bars 15a and 15b. The wiring board (metal plate) 2 in which the back electrodes of the IGBT 31 and the FWD 32 are in a conductive state is connected to the vertical bar portion 17c of the U-phase distribution bus bar 17 by the wire 13 for connecting the back electrode. In this part, the area of the metal plate 2 is sufficiently large, and the connection using the wire 13 for the back electrode connection is performed in the same manner as in the past. As described above, the F-shaped U-phase distribution bus bar 17 having a U-shaped portion includes the high-potential side semiconductor switching elements 31 and 32 and the low-potential side semiconductor switching elements 31 and 32 connected in series. Connected between. Therefore, the U-phase distribution bus bar 17 is connected to the low-potential-side IGBT 31 and the surface electrodes 31a and 32a of the FWD 32.

低電位側でも同様に、U相配電バスバー17は、コ字状の上側横バー17aと下側横バー17bとの間で絶縁基板1および配線基板(金属板)2を取り囲んでいる。プラス側給電バスバー15とU相配電バスバー17とは、上下逆に絶縁基板1および配線基板2を挟んで対向して、2つの配線基板2の間に、その下側横バー15b,17bを並列させている。ワイヤ3は、一方の端および他方の端ともにU相配電バスバー17の上下横バー17a,17bに接続し、中間位置でIGBT31およびFWD32の表面電極31a,32aに接続している。このため高電位側の半導体スイッチング素子31,32で得られる効果と同じ効果を低電位側でも得ることができる。すなわち従来の片側からのワイヤボンディングによる場合と比べて、接続箇所を半減させながら同じ電流容量を得ることができる。低電位側において、上記のように、IGBT31およびFWD32は、ともにその表面電極31a,32aがU相配電バスバー17の上下横バー17a,17bと接続する。そして、IGBT31およびFWD32の裏面電極が導通状態にある配線基板(金属板)2は、プラス側給電バスバー15の縦バー部分15cの下に位置するマイナス側給電バスバー16のはみ出している部分と、裏面電極接続のワイヤ13により接続される。この部分では、金属板2の面積は十分広く、ワイヤによる接続は従来と同様の形態で行う。図3に示す範囲は、図1および図2のAの領域に対応しており、U相配電バスバーに対応する範囲で、並列する2つの系列A,Aのうちの1つを示すが、V相配電バスバーおよびW相配電バスバーについても、同様の形態で、給配電の主回路の接続を形成することができる。 Similarly, on the low potential side, the U-phase distribution bus bar 17 surrounds the insulating substrate 1 and the wiring substrate (metal plate) 2 between the U-shaped upper side bar 17a and the lower side bar 17b. The plus-side power supply bus bar 15 and the U-phase distribution bus bar 17 are opposed to each other with the insulating substrate 1 and the wiring substrate 2 interposed therebetween, and the lower horizontal bars 15b and 17b are arranged in parallel between the two wiring substrates 2. I am letting. The wire 3 is connected to the upper and lower horizontal bars 17a and 17b of the U-phase distribution bus bar 17 at one end and the other end, and is connected to the surface electrodes 31a and 32a of the IGBT 31 and the FWD 32 at intermediate positions. For this reason, the same effect as that obtained by the semiconductor switching elements 31 and 32 on the high potential side can be obtained also on the low potential side. In other words, the same current capacity can be obtained while halving the number of connections compared to the case of wire bonding from one side of the prior art. On the low potential side, as described above, the surface electrodes 31 a and 32 a of the IGBT 31 and the FWD 32 are both connected to the upper and lower horizontal bars 17 a and 17 b of the U-phase distribution bus bar 17. Then, the wiring board (metal plate) 2 in which the back electrodes of the IGBT 31 and the FWD 32 are in a conductive state includes a protruding portion of the minus-side power supply bus bar 16 positioned below the vertical bar portion 15c of the plus-side power supply bus bar 15, and a back surface. They are connected by wire 13 for electrode connection. In this portion, the area of the metal plate 2 is sufficiently large, and the connection by the wire is performed in the same manner as in the prior art. The range shown in FIG. 3 corresponds to the area A 1 in FIGS. 1 and 2, and shows one of the two series A 1 and A 2 in parallel in the range corresponding to the U-phase distribution bus bar. However, for the V-phase distribution bus bar and the W-phase distribution bus bar, the connection of the main circuit for power distribution can be formed in the same manner.

図3では、IGBT31にゲート駆動用のゲート電極9cのほかに制御用端子9a,9b,9d,9eが配置されている。これら制御用端子は、温度測定用ダイオードの端子9a,9b、電流検出用端子9dおよびゲート接地端子9eである。これら制御用端子9a〜9eは、制御端子ランド28を介在させて、制御端子コネクト部18の各端子と制御端子接続ワイヤ43で接続される。当然のことであるが、制御用端子9a〜9eには大電流は流れないので、制御端子接続ワイヤ43は、給配電の回路を接続するワイヤ3,13よりも細くてよい。表面電極接続のワイヤ3と、裏面電極接続のワイヤとは、同じ太さかまたは同等の太さである。   In FIG. 3, in addition to the gate electrode 9c for driving the gate, control terminals 9a, 9b, 9d and 9e are arranged on the IGBT 31. These control terminals are temperature measurement diode terminals 9a and 9b, a current detection terminal 9d, and a gate ground terminal 9e. These control terminals 9 a to 9 e are connected to each terminal of the control terminal connecting portion 18 by a control terminal connection wire 43 with a control terminal land 28 interposed therebetween. As a matter of course, since a large current does not flow through the control terminals 9a to 9e, the control terminal connection wire 43 may be thinner than the wires 3 and 13 that connect the power distribution circuit. The wire 3 for connecting the front surface electrode and the wire for connecting the back surface electrode have the same thickness or the same thickness.

ワイヤ3,13,43が互いに干渉しないように、有効に空間を活用するには、給配電の主回路における半導体スイッチング素子の表面電極31a,32aと各バスバー15,17とを表面電極接続のワイヤ(素子の両側に延在する両端を持つ)3と、他のワイヤ13,43とは重ならないように、延びる方向を交差方向にするなどの工夫が必要である。たとえば配線基板(金属板)2と各バスバー17,16とを接続する裏面電極接続ワイヤ13は、自ずと表面電極接続ワイヤ3と重ならない範囲に位置し、表面電極接続ワイヤ3の延在する方向と交差する方向に延びるようにする。そして、制御用端子または制御用電極9a〜9eに接続する制御端子接続ワイヤ43は、やはり表面電極接続ワイヤ3と重ならない範囲に位置し、表面電極接続ワイヤ3の延在する方向と交差する方向に延びるようにする。   In order to effectively use the space so that the wires 3, 13 and 43 do not interfere with each other, the surface electrodes 31 a and 32 a of the semiconductor switching element and the bus bars 15 and 17 in the main circuit for power distribution are connected to the surface electrodes. In order not to overlap 3 (having both ends extending on both sides of the element) and the other wires 13 and 43, it is necessary to devise such that the extending direction is a crossing direction. For example, the back electrode connection wire 13 that connects the wiring board (metal plate) 2 and each bus bar 17, 16 is positioned in a range that does not naturally overlap the surface electrode connection wire 3, and the direction in which the surface electrode connection wire 3 extends. Extend in the intersecting direction. The control terminal connection wire 43 connected to the control terminal or the control electrodes 9a to 9e is located in a range that does not overlap the surface electrode connection wire 3 and intersects the direction in which the surface electrode connection wire 3 extends. To extend.

図4は、図3に示す表面電極接続ワイヤの形態を説明するための断面図である。また、図5は図3に示す表面電極接続ワイヤの形態を説明するための平面図である。図4および図5において、ヒートシンク61上に絶縁基板1が配置され、その上に配線基板(金属板)2が位置する、金属板2の上に半導体スイッチング素子31,32がはんだ接合などにより固定され、半導体スイッチング素子の裏面電極31bと金属板2とは導通状態とされる。半導体スイッチング素子31,32をコ字状に取り囲むように、絶縁層64の上にバスバー15が配置される。図5で明らかなように、ワイヤ3は、スイッチング素子31,32の表面電極31a,32aにその中間位置でステッチボンドして、両端をバスバー15にステッチボンドさせている。とくに表面電極31a,32aには、1本のワイヤが2箇所でステッチボンドを形成している。1本のワイヤでステッチボンドを2箇所形成するほうが接触面積を拡大して電流容量を拡大し、また接触抵抗に起因する発熱を抑制、または分散することができる。   FIG. 4 is a cross-sectional view for explaining the form of the surface electrode connection wire shown in FIG. FIG. 5 is a plan view for explaining the form of the surface electrode connection wire shown in FIG. 4 and 5, the insulating substrate 1 is disposed on the heat sink 61, and the wiring substrate (metal plate) 2 is positioned thereon. The semiconductor switching elements 31 and 32 are fixed on the metal plate 2 by soldering or the like. Then, the back surface electrode 31b of the semiconductor switching element and the metal plate 2 are brought into conduction. Bus bar 15 is arranged on insulating layer 64 so as to surround semiconductor switching elements 31 and 32 in a U-shape. As apparent from FIG. 5, the wire 3 is stitch-bonded to the surface electrodes 31 a and 32 a of the switching elements 31 and 32 at intermediate positions thereof, and both ends are stitch-bonded to the bus bar 15. In particular, the surface electrodes 31a and 32a are formed by one wire with stitch bonds at two locations. When two stitch bonds are formed with one wire, the contact area can be expanded to increase the current capacity, and the heat generation due to the contact resistance can be suppressed or dispersed.

図6は、図1に示すパワーモジュール10の回路図である。とくに図3に示したA領域に対応したU相配電範囲について説明する。回路図の配線は大きく変形が可能であり、図3のバスバーなどと対応づけることは困難な場合が多いが、複数個所の相対的位置関係は対応づけができるので、図3のワイヤやバスバーの符号を図6に記入してある。本発明の実施の形態1において特徴的な表面電極接続ワイヤ3および裏面電極接続ワイヤ13の位置に、大電流が流れる。とくにスイッチング素子31,32に、SiCやGaNが用いられ、またシリコン素子に改良が加えられ、半導体スイッチング素子の小型化と大電流化が可能になった場合、これら配線部3,13に大電流を流すことができなければ、半導体素子の進歩に基づく利点を享受できない。配線部13は、裏面電極と導通する金属板2とバスバー17,16との接続であり、金属板2の面積は比較的自由に広くとれるため、大電流化のためにはワイヤ本数を増やすなどして対応は容易である。問題は、小型化され大電流化可能となった半導体素子の表面電極とバスバーとの接続であるが、本発明の実施の形態1では、ワイヤの中間位置で表面電極に接続し、両端部をコ字状のバスバーに接続することで、電流容量を維持しながら接触点を半減させることが可能となった。 FIG. 6 is a circuit diagram of the power module 10 shown in FIG. Especially explained U phase distribution range corresponding to A 1 region shown in FIG. The wiring of the circuit diagram can be greatly deformed, and it is often difficult to associate with the bus bar of FIG. 3, but since the relative positional relationship of a plurality of locations can be associated, the wires and bus bars of FIG. The reference numerals are entered in FIG. A large current flows through the positions of the surface electrode connection wire 3 and the back electrode connection wire 13 which are characteristic in the first embodiment of the present invention. In particular, when SiC or GaN is used for the switching elements 31 and 32 and the silicon element is improved so that the semiconductor switching element can be reduced in size and increased in current, a large current is applied to these wiring portions 3 and 13. If the current cannot flow, the advantage based on the progress of the semiconductor element cannot be enjoyed. The wiring portion 13 is a connection between the metal plate 2 that is electrically connected to the back electrode and the bus bars 17 and 16, and the area of the metal plate 2 can be made relatively freely wide, so that the number of wires is increased in order to increase the current. Therefore, it is easy to handle. The problem is the connection between the surface electrode of the semiconductor element that has been reduced in size and capable of increasing the current and the bus bar, but in Embodiment 1 of the present invention, the connection is made to the surface electrode at the middle position of the wire, By connecting to the U-shaped bus bar, the contact point can be halved while maintaining the current capacity.

図3に示すパワーモジュール10の部分は、各種の変形が存在する。図3のパワーモジュールが高電位側の領域と、低電位側の領域とが、制御用端子の配列などに関して点対称の関係にあったのに対して、図7に示すパワーモジュールのU相配電部分は、高電位側領域と低電位側領域とが平行移動の関係にある。図3のパワーモジュールでは、マイナス側給電バスバー16がプラス側給電バスバー15と重なるように位置していたのに比して、図7のパワーモジュールでは、マイナス側給電バスバー16は、プラス側給電バスバー15と対向するU相配電バスバー17と重なるように位置している。3種類のバスバー15,16,17の位置関係を変えることにより、表面電極接続ワイヤ3および裏面電極接続ワイヤ13の領域が定まり、次いで、少なくとも高電位側では、裏面電極接続ワイヤ13と表面電極接続ワイヤ3を挟むように制御用端子9a〜9eを配置することで、ワイヤ3,13,43の配置が決定される。このとき、裏面電極接続ワイヤ13と制御端子接続ワイヤ43とはその延びる方向は互いに平行であり、かつその平行な方向は表面電極接続ワイヤ3の延びる方向と交差(直交)する。   The power module 10 shown in FIG. 3 has various modifications. In the power module of FIG. 3, the high potential side region and the low potential side region have a point-symmetric relationship with respect to the arrangement of the control terminals and the like, whereas the U phase distribution of the power module shown in FIG. In the portion, the high potential side region and the low potential side region are in a translational relationship. In the power module shown in FIG. 3, the minus-side power supply bus bar 16 is positioned so as to overlap the plus-side power supply bus bar 15. In the power module shown in FIG. 15 is positioned so as to overlap the U-phase distribution bus bar 17 facing 15. By changing the positional relationship between the three types of bus bars 15, 16, and 17, regions of the surface electrode connection wire 3 and the back electrode connection wire 13 are determined, and then, at least on the high potential side, the back electrode connection wire 13 and the surface electrode connection By arranging the control terminals 9a to 9e so as to sandwich the wire 3, the arrangement of the wires 3, 13, and 43 is determined. At this time, the extending directions of the back electrode connecting wire 13 and the control terminal connecting wire 43 are parallel to each other, and the parallel directions intersect (orthogonal) with the extending direction of the surface electrode connecting wire 3.

(実施の形態2)−素子配列方向に沿うようにワイヤが延在する配置−
図8は、本発明の実施の形態2におけるパワーモジュールのU相配電部分を示す図である。本実施の形態では、表面電極接続ワイヤ3が、スイッチング素子31,32が配列する方向に沿うように延在する点に特徴がある。プラス側給電バスバー15およびU相配電バスバー17を、ともにコ字状部分を持つF字形状に形成して、両者を基板を挟み上下逆にして対向するように配置した場合、制御用端子を接続するワイヤ43と、裏面電極接続ワイヤ13とは、表面電極接続ワイヤ3を挟むように位置することは、本発明の実施の形態1と同じである。しかしながら、低電位側では、マイナス側給電バスバー16および制御端子コネクト部18を、表面電極接続ワイヤ3に関してともに同じ側に配置してもよい(その結果、裏面電極接続ワイヤ13と制御用電極接続ワイヤ43とは、片側に配置される)。またマイナス側給電バスバー16および制御端子コネクト部18が、表面電極接続ワイヤ3を挟むように配置してもよい(その結果、裏面電極接続ワイヤ13と制御用電極接続ワイヤ43とは、同じ側に配列されず、それぞれ別の一方側に配置される)。図8は、マイナス側給電バスバー16および制御端子コネクト部18が、表面電極接続ワイヤ3を挟むように位置する場合を示す図である。しかし、図8において、制御端子コネクト部18およびマイナス側給電バスバー16の両方を、表面電極接続ワイヤ3のどちらか片側に配置してもよい(片側配置)。このような、配置が可能なのは、表面電極接続ワイヤ3が、スイッチング素子が配列する方向に沿うように延在するからであり、その結果、制御用電極9a〜9eと、裏面電極接続ワイヤ13とが、一方の側にのみ配置するスペースが生じたためである。
(Embodiment 2)-Arrangement in which wires extend along the element arrangement direction-
FIG. 8 is a diagram showing a U-phase power distribution portion of the power module according to Embodiment 2 of the present invention. The present embodiment is characterized in that the surface electrode connection wire 3 extends along the direction in which the switching elements 31 and 32 are arranged. When the plus-side power supply bus bar 15 and the U-phase distribution bus bar 17 are both formed in an F-shape having a U-shaped portion and are disposed so as to face each other upside down across the board, the control terminals are connected. It is the same as Embodiment 1 of this invention that the wire 43 to perform and the back surface electrode connection wire 13 are located so that the surface electrode connection wire 3 may be pinched | interposed. However, on the low potential side, the minus-side power supply bus bar 16 and the control terminal connect portion 18 may be disposed on the same side with respect to the front electrode connection wire 3 (as a result, the back electrode connection wire 13 and the control electrode connection wire are arranged). 43 is arranged on one side). Further, the minus-side power supply bus bar 16 and the control terminal connecting portion 18 may be arranged so as to sandwich the front electrode connecting wire 3 (as a result, the back electrode connecting wire 13 and the control electrode connecting wire 43 are on the same side. They are not arranged and are placed on one side of each other). FIG. 8 is a diagram illustrating a case where the minus-side power supply bus bar 16 and the control terminal connection portion 18 are positioned so as to sandwich the surface electrode connection wire 3. However, in FIG. 8, both the control terminal connecting portion 18 and the minus-side power supply bus bar 16 may be arranged on one side of the surface electrode connection wire 3 (one-side arrangement). Such an arrangement is possible because the surface electrode connection wire 3 extends along the direction in which the switching elements are arranged. As a result, the control electrodes 9a to 9e, the back electrode connection wire 13 and However, this is because there is a space to be arranged only on one side.

図9は、低電位側において、裏面電極接続ワイヤ13と制御端子接続ワイヤ43とが片側に位置する場合を示す。図3および図7に示す実施の形態1におけるパワーモジュールの表面電極接続ワイヤ3と比較すると、本実施の形態における表面電極接続用ワイヤ3は、IGBT31またはFWD32の上を越えてワイヤを延ばす必要があり、上記したように、裏面電極接続ワイヤ13と、制御用端子9a〜9eとを同じ側に配置しなければならない等の特別の事情がある場合に用いるのがよい。このような場合でも、同じ電流容量を確保しながら接続点を半減することができる点では、実施の形態1と同じである。   FIG. 9 shows a case where the back electrode connection wire 13 and the control terminal connection wire 43 are located on one side on the low potential side. Compared with the surface electrode connecting wire 3 of the power module in the first embodiment shown in FIGS. 3 and 7, the surface electrode connecting wire 3 in the present embodiment needs to extend over the IGBT 31 or the FWD 32. Yes, as described above, the back electrode connection wire 13 and the control terminals 9a to 9e are preferably used when there are special circumstances such as having to be arranged on the same side. Even in such a case, the connection point can be halved while securing the same current capacity, which is the same as in the first embodiment.

上記の本発明の実施の形態では説明しなかったが、本発明は、当然のことながら、半導体スイッチング素子が1個の素子のみで形成される場合にも適用される。半導体スイッチング素子1個のみで形成される構成は、図3、図7および図8、図9そして図6において、FWD32を除けばよい。このようなスイッチング素子1個のみで形成されるパワーモジュールにおいても、従来と同じ電流容量を維持しながら接続点を半減できる効果を得られることは明白である。また既述のように、ワイヤは、帯状の長尺導体に置き換えることができるし、また素子接続用のバスバーで置き換えることもできる。   Although not described in the above embodiment of the present invention, the present invention is naturally applied to a case where the semiconductor switching element is formed of only one element. The configuration formed by only one semiconductor switching element may be obtained by removing FWD 32 in FIGS. 3, 7 and 8, 9 and 6. It is obvious that even in such a power module formed with only one switching element, an effect of halving the connection point can be obtained while maintaining the same current capacity as that of the conventional one. As described above, the wire can be replaced with a strip-like long conductor, or can be replaced with a bus bar for connecting elements.

上記において、本発明の実施の形態および実施例について説明を行ったが、上記に開示された本発明の実施の形態および実施例は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   Although the embodiments and examples of the present invention have been described above, the embodiments and examples of the present invention disclosed above are merely examples, and the scope of the present invention is the implementation of these inventions. It is not limited to the form. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

本発明のパワーモジュールでは、ワイヤの中間位置でスイッチング素子の表面電極に接続し、両側を延在させて同じバスバーの異なる部分に接続するので、従来と同じ電流容量を維持しながら接続点を半減できる。このため、開発が進行中の小型化されかつ大電流容量化されたスイッチング素子の利点を享受することが可能となる。   In the power module of the present invention, the connection point is connected to the surface electrode of the switching element at the middle position of the wire, and both sides are extended and connected to different parts of the same bus bar. it can. For this reason, it is possible to enjoy the advantages of a switching element having a small size and a large current capacity that is under development.

本発明の実施の形態におけるパワーモジュールを示す図である。It is a figure which shows the power module in embodiment of this invention. 図1のパワーモジュールの部分を示す図である。It is a figure which shows the part of the power module of FIG. 本発明の実施の形態1におけるパワーモジュールを示す図である。It is a figure which shows the power module in Embodiment 1 of this invention. 図3の表面電極接続ワイヤを説明するための断面図である。It is sectional drawing for demonstrating the surface electrode connection wire of FIG. 図3の表面電極接続ワイヤを説明するための平面図である。It is a top view for demonstrating the surface electrode connection wire of FIG. 本発明の実施の形態のパワーモジュールの回路図である。It is a circuit diagram of the power module of an embodiment of the invention. 図3のパワーモジュールの変形例である。It is a modification of the power module of FIG. 本発明の実施の形態2におけるパワーモジュールを示す図である。It is a figure which shows the power module in Embodiment 2 of this invention. 図8のパワーモジュールの変形例である。It is a modification of the power module of FIG.

符号の説明Explanation of symbols

1 絶縁基板、2 配線基板(金属板)、3 表面電極接続ワイヤ、9a,9b,9c,9d,9e 制御用端子、10 パワーモジュール、13 裏面電極接続ワイヤ、15 プラス側給電バスバー、15a 上側横バー、15b 下側横バー、15c 縦バー部分、16 マイナス側給電バスバー、17 U相配電バスバー、17a 上側横バー、17b 下側横バー、17c 縦バー部分、18 制御端子コネクト部、20 接続点(ステッチボンド)、28 制御端子ランド、31,33 IGBT、31a IGBTの表面電極、31b 裏面電極、32 FWD、32a FWDの表面電極、32b 裏面電極、61 ヒートシンク(冷却板)、64 絶縁層、65 筐体、67 冷却路。   DESCRIPTION OF SYMBOLS 1 Insulation board | substrate, 2 Wiring board (metal plate), 3 Surface electrode connection wire, 9a, 9b, 9c, 9d, 9e Control terminal, 10 Power module, 13 Back surface electrode connection wire, 15 Positive side electric power supply bus bar, 15a Upper side horizontal Bar, 15b Lower side bar, 15c Vertical bar part, 16 Negative side feeding bus bar, 17 U phase distribution bus bar, 17a Upper side bar, 17b Lower side bar, 17c Vertical bar part, 18 Control terminal connection part, 20 Connection point (Stitch bond), 28 control terminal land, 31, 33 IGBT, 31a IGBT surface electrode, 31b back electrode, 32 FWD, 32a FWD surface electrode, 32b back electrode, 61 heat sink (cooling plate), 64 insulating layer, 65 Case, 67 Cooling path.

Claims (9)

直流電力又は交流電力の供給用のバスバー、電極を有する半導体スイッチング素子および前記バスバーと前記電極とを電気接続するための長尺導体とを備えるパワーモジュールにおいて、
前記長尺導体の中間部分が前記半導体スイッチング素子の電極に電気接続され、かつ、前記長尺導体の中間部分を挟む両側の部分がともに、同じバスバーに電気接続されていることを特徴とする、パワーモジュール。
In a power module comprising a bus bar for supplying DC power or AC power, a semiconductor switching element having an electrode, and a long conductor for electrically connecting the bus bar and the electrode,
The middle portion of the long conductor is electrically connected to the electrode of the semiconductor switching element, and both portions sandwiching the middle portion of the long conductor are both electrically connected to the same bus bar. Power module.
前記長尺導体がワイヤであり、該ワイヤは、前記半導体スイッチング素子の表面の電極にその中間部分で接続され、該表面の電極の両側に延在しており、前記両側に延在するワイヤは、それぞれの端が同じバスバーの異なる部分に接続されていることを特徴とする、請求項1に記載のパワーモジュール。   The long conductor is a wire, the wire is connected to an electrode on the surface of the semiconductor switching element at an intermediate portion thereof, extends on both sides of the electrode on the surface, and the wires extending on both sides are The power module according to claim 1, wherein each end is connected to a different part of the same bus bar. 前記バスバーは、前記半導体スイッチング素子が実装された基板を囲むようにコ字状部分を有するか、またはF字状であることを特徴とする、請求項1または2に記載のパワーモジュール。   The power module according to claim 1, wherein the bus bar has a U-shaped portion so as to surround a substrate on which the semiconductor switching element is mounted, or has an F shape. 前記長尺導体は、前記表面電極に1箇所以上の接続箇所を持つことを特徴とする、請求項1〜3のいずれかに記載のパワーモジュール。   The power module according to claim 1, wherein the long conductor has one or more connection points on the surface electrode. 前記半導体スイッチング素子は裏面電極を有し、その裏面電極は該半導体スイッチング素子を実装する配線基板に接続され、前記表面電極を接続する長尺導体と異なる裏面電極接続長尺導体が、前記配線基板と第2のバスバーとを接続し、その裏面電極接続長尺導体の延びる方向が前記表面電極を接続する長尺導体の延在方向と交差する方向であることを特徴とする、請求項1〜4のいずれかに記載のパワーモジュール。   The semiconductor switching element has a back electrode, the back electrode is connected to a wiring board on which the semiconductor switching element is mounted, and the back electrode connecting long conductor different from the long conductor connecting the front electrode is the wiring board The second bus bar is connected, and the extending direction of the back electrode connecting long conductor is a direction intersecting the extending direction of the long conductor connecting the front electrode. 4. The power module according to any one of 4. 前記半導体スイッチング素子は前記表面に制御用のゲート電極を有し、前記ゲート電極と制御端子コネクト部とを接続する制御端子接続ワイヤの延びる方向は、前記表面電極を接続する長尺導体の延在する方向と交差する方向であることを特徴とする、請求項1〜5のいずれかに記載のパワーモジュール。   The semiconductor switching element has a control gate electrode on the surface, and the extending direction of the control terminal connecting wire connecting the gate electrode and the control terminal connecting portion is the extension of the long conductor connecting the surface electrode The power module according to claim 1, wherein the power module is in a direction intersecting with a direction to perform. 前記半導体スイッチング素子と並列に接続するダイオードを備え、当該半導体スイッチング素子およびダイオードでは、ともにその表面電極にそれぞれ異なる長尺導体がその中間位置で接続されており、それら長尺導体の両側の端は、それぞれ同じバスバーの異なる部分に接続されていることを特徴とする、請求項1〜6のいずれかに記載のパワーモジュール。   A diode connected in parallel with the semiconductor switching element is provided, and in the semiconductor switching element and the diode, different long conductors are respectively connected to the surface electrodes at intermediate positions thereof, and ends on both sides of the long conductors are The power modules according to claim 1, wherein the power modules are connected to different parts of the same bus bar. 第1の基板上に配置された第1の半導体スイッチング素子、前記第1の基板に並ぶように位置する第2の基板上に配置された第2の半導体スイッチング素子、コ字状部分を有するF字状の第1および第2のバスバーおよび接続のための複数のワイヤを備えたパワーモジュールであって、
前記第1のバスバーと前記第2のバスバーとは、前記第1の基板および第2の基板を挟むように対向して、互いに上下逆に、前記第1の基板と第2の基板との間に、前記第1のバスバーのコ字状部分の下側横バーと、前記第2のバスバーのコ字状部分の下側横バーとが並列して重ならないように位置し、
前記ワイヤは、前記第1のバスバーのコ字状部分の上下横バーを橋渡しするようにその両端がその上下横バーに接続され、前記第1の半導体スイッチング素子の表面電極にその中間位置で接続され、
また前記ワイヤと異なる別のワイヤは、前記第2のバスバーのコ字状部分の上下横バーを橋渡しするようにその両端がその上下横バーに接続され、前記第2の半導体スイッチング素子の表面電極にその中間位置で接続されていることを特徴とする、パワーモジュール。
A first semiconductor switching element disposed on the first substrate; a second semiconductor switching element disposed on the second substrate positioned alongside the first substrate; and an F-shaped portion having a U-shaped portion. A power module comprising a first and second busbar in the shape of a letter and a plurality of wires for connection,
The first bus bar and the second bus bar are opposed to each other so as to sandwich the first substrate and the second substrate, and are turned upside down between the first substrate and the second substrate. The lower horizontal bar of the U-shaped portion of the first bus bar and the lower horizontal bar of the U-shaped portion of the second bus bar are positioned so as not to overlap in parallel.
Both ends of the wire are connected to the upper and lower horizontal bars so as to bridge the upper and lower horizontal bars of the U-shaped portion of the first bus bar, and are connected to the surface electrodes of the first semiconductor switching element at intermediate positions thereof. And
Further, another wire different from the wire is connected to the upper and lower horizontal bars at both ends so as to bridge the upper and lower horizontal bars of the U-shaped portion of the second bus bar, and the surface electrode of the second semiconductor switching element A power module characterized by being connected to the intermediate position of the power module.
前記第1および第2の基板はその上に第1および第2の配線基板をそれぞれ有し、前記第1および第2の半導体スイッチング素子は、裏面に第1および第2の裏面電極をそれぞれ有し、前記第1および第2の裏面電極は前記第1および第2の配線基板にそれぞれ接続され、さらに前記表面電極を接続するワイヤと異なる裏面電極接続のためのワイヤは、前記第1の配線基板と前記第2のバスバーのコ字状部分の縦バーを接続し、また前記裏面電極接続用のワイヤと異なる別の裏面電極接続のためのワイヤは、前記第1または第2のバスバーの縦バーに沿うように重なって位置する第3のバスバーと、前記第2の配線基板とを接続しており、前記裏面電極接続のためのワイヤは、いずれも、前記表面電極を接続するワイヤの延在方向と交差する方向に延びていることを特徴とする、請求項8に記載のパワーモジュール。
The first and second substrates have first and second wiring boards thereon, respectively, and the first and second semiconductor switching elements have first and second back electrodes on the back surface, respectively. The first and second back electrodes are connected to the first and second wiring boards, respectively. Further, the wire for connecting the back electrode different from the wire connecting the front electrode is the first wiring. A wire for connecting the back surface electrode different from the wire for connecting the back surface electrode is connected to the vertical bar of the U-shaped portion of the first or second bus bar. A third bus bar, which is positioned so as to overlap the bar, and the second wiring board are connected to each other, and the wires for connecting the back surface electrodes are all wires extending to connect the surface electrodes. Intersect with direction And wherein the extending direction, the power module of claim 8.
JP2008044343A 2008-02-26 2008-02-26 Power module Pending JP2009206140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008044343A JP2009206140A (en) 2008-02-26 2008-02-26 Power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008044343A JP2009206140A (en) 2008-02-26 2008-02-26 Power module

Publications (1)

Publication Number Publication Date
JP2009206140A true JP2009206140A (en) 2009-09-10

Family

ID=41148154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008044343A Pending JP2009206140A (en) 2008-02-26 2008-02-26 Power module

Country Status (1)

Country Link
JP (1) JP2009206140A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151977A (en) * 2010-01-22 2011-08-04 Denso Corp Vehicular rotary-electric machine
JP2015002229A (en) * 2013-06-14 2015-01-05 ルネサスエレクトロニクス株式会社 Semiconductor device and electronic device
CN104332458A (en) * 2014-11-05 2015-02-04 中国电子科技集团公司第四十三研究所 Power chip interconnection structure and interconnection method
US9530766B2 (en) 2013-08-23 2016-12-27 Mitsubishi Electric Corporation Semiconductor device
JPWO2017006809A1 (en) * 2015-07-09 2018-05-24 三菱電機株式会社 Power semiconductor module
US10032736B2 (en) 2013-09-24 2018-07-24 Renesas Electronics Corporation Semiconductor device
WO2018189948A1 (en) * 2017-04-12 2018-10-18 三菱電機株式会社 Semiconductor module, method for manufacturing semiconductor module, and power conversion apparatus
JP2019186510A (en) * 2018-03-30 2019-10-24 富士電機株式会社 Semiconductor device, semiconductor package, semiconductor module, and semiconductor circuit device
CN112993023A (en) * 2019-12-17 2021-06-18 三菱电机株式会社 Semiconductor module and semiconductor device
JP2022057189A (en) * 2020-09-30 2022-04-11 三菱電機株式会社 Semiconductor device
US11371891B2 (en) 2018-03-30 2022-06-28 Fuji Electric Co., Ltd. Semiconductor device, semiconductor package, semiconductor module, and semiconductor circuit device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011151977A (en) * 2010-01-22 2011-08-04 Denso Corp Vehicular rotary-electric machine
US10453946B2 (en) 2013-06-14 2019-10-22 Renesas Electronics Corporation Semiconductor device and an electronic device
JP2015002229A (en) * 2013-06-14 2015-01-05 ルネサスエレクトロニクス株式会社 Semiconductor device and electronic device
US9704979B2 (en) 2013-06-14 2017-07-11 Renesas Electronics Corporation Semiconductor device and an electronic device
US9997620B2 (en) 2013-06-14 2018-06-12 Renesas Electronics Corporation Semiconductor device and an electronic device
US9530766B2 (en) 2013-08-23 2016-12-27 Mitsubishi Electric Corporation Semiconductor device
US10032736B2 (en) 2013-09-24 2018-07-24 Renesas Electronics Corporation Semiconductor device
CN104332458A (en) * 2014-11-05 2015-02-04 中国电子科技集团公司第四十三研究所 Power chip interconnection structure and interconnection method
JPWO2017006809A1 (en) * 2015-07-09 2018-05-24 三菱電機株式会社 Power semiconductor module
WO2018189948A1 (en) * 2017-04-12 2018-10-18 三菱電機株式会社 Semiconductor module, method for manufacturing semiconductor module, and power conversion apparatus
JP6410998B1 (en) * 2017-04-12 2018-10-24 三菱電機株式会社 Semiconductor module, semiconductor module manufacturing method, and power conversion device
JP2019186510A (en) * 2018-03-30 2019-10-24 富士電機株式会社 Semiconductor device, semiconductor package, semiconductor module, and semiconductor circuit device
US11371891B2 (en) 2018-03-30 2022-06-28 Fuji Electric Co., Ltd. Semiconductor device, semiconductor package, semiconductor module, and semiconductor circuit device
JP7206652B2 (en) 2018-03-30 2023-01-18 富士電機株式会社 Semiconductor devices, semiconductor packages, semiconductor modules, and semiconductor circuit devices
US12025507B2 (en) 2018-03-30 2024-07-02 Fuji Electric Co., Ltd. Semiconductor device, semiconductor package, semiconductor module, and semiconductor circuit device
CN112993023A (en) * 2019-12-17 2021-06-18 三菱电机株式会社 Semiconductor module and semiconductor device
JP2022057189A (en) * 2020-09-30 2022-04-11 三菱電機株式会社 Semiconductor device
US11784156B2 (en) 2020-09-30 2023-10-10 Mitsubishi Electric Corporation Semiconductor device
JP7407684B2 (en) 2020-09-30 2024-01-04 三菱電機株式会社 semiconductor equipment

Similar Documents

Publication Publication Date Title
JP2009206140A (en) Power module
US9390996B2 (en) Double-sided cooling power module and method for manufacturing the same
JP6263311B2 (en) Power converter
US8400775B2 (en) Capacitor with direct DC connection to substrate
US9088226B2 (en) Power module for converting DC to AC
WO2012035933A1 (en) Inverter device
JP2002095268A (en) Power converter device
US20060273592A1 (en) Power unit
US9001518B2 (en) Power module with press-fit clamps
JP2006041362A (en) Semiconductor device, power converter using same, and hybrid automobile using same power converter
WO2008001413A1 (en) Power converter
JP2008270293A (en) Power module
JP2020009834A (en) Semiconductor device
CN110663110A (en) Semiconductor power module
JP2007037211A (en) Electric power distribution component and electric device
US10790218B2 (en) Semiconductor device and electric power conversion apparatus
JP6123722B2 (en) Semiconductor device
JP2013045847A (en) Semiconductor module
JP2008270290A (en) Power module and manufacturing method thereof, and bus bar for connecting element
JP5202366B2 (en) Semiconductor device
TW202234434A (en) Inverter unit, motor unit and vehicle an inverter device, comprising: a power module, a capacitor module and plate-shaped positive and negative bus bars
JP2007081155A (en) Semiconductor device
JP2005117860A (en) Module for power conversion, power converter, and power converter for electric automobile
JP5381903B2 (en) Electronic component equipment
JP2010177573A (en) Semiconductor device